1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *ino_entry_slab; 24 struct kmem_cache *f2fs_inode_entry_slab; 25 26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 27 { 28 f2fs_build_fault_attr(sbi, 0, 0); 29 set_ckpt_flags(sbi, CP_ERROR_FLAG); 30 if (!end_io) 31 f2fs_flush_merged_writes(sbi); 32 } 33 34 /* 35 * We guarantee no failure on the returned page. 36 */ 37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 38 { 39 struct address_space *mapping = META_MAPPING(sbi); 40 struct page *page = NULL; 41 repeat: 42 page = f2fs_grab_cache_page(mapping, index, false); 43 if (!page) { 44 cond_resched(); 45 goto repeat; 46 } 47 f2fs_wait_on_page_writeback(page, META, true, true); 48 if (!PageUptodate(page)) 49 SetPageUptodate(page); 50 return page; 51 } 52 53 /* 54 * We guarantee no failure on the returned page. 55 */ 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_por = !is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 if (unlikely(!PageUptodate(page))) { 99 f2fs_put_page(page, 1); 100 return ERR_PTR(-EIO); 101 } 102 out: 103 return page; 104 } 105 106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 107 { 108 return __get_meta_page(sbi, index, true); 109 } 110 111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index) 112 { 113 struct page *page; 114 int count = 0; 115 116 retry: 117 page = __get_meta_page(sbi, index, true); 118 if (IS_ERR(page)) { 119 if (PTR_ERR(page) == -EIO && 120 ++count <= DEFAULT_RETRY_IO_COUNT) 121 goto retry; 122 f2fs_stop_checkpoint(sbi, false); 123 } 124 return page; 125 } 126 127 /* for POR only */ 128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 129 { 130 return __get_meta_page(sbi, index, false); 131 } 132 133 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 134 int type) 135 { 136 struct seg_entry *se; 137 unsigned int segno, offset; 138 bool exist; 139 140 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 141 return true; 142 143 segno = GET_SEGNO(sbi, blkaddr); 144 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 145 se = get_seg_entry(sbi, segno); 146 147 exist = f2fs_test_bit(offset, se->cur_valid_map); 148 if (!exist && type == DATA_GENERIC_ENHANCE) { 149 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 150 blkaddr, exist); 151 set_sbi_flag(sbi, SBI_NEED_FSCK); 152 WARN_ON(1); 153 } 154 return exist; 155 } 156 157 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 158 block_t blkaddr, int type) 159 { 160 switch (type) { 161 case META_NAT: 162 break; 163 case META_SIT: 164 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 165 return false; 166 break; 167 case META_SSA: 168 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 169 blkaddr < SM_I(sbi)->ssa_blkaddr)) 170 return false; 171 break; 172 case META_CP: 173 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 174 blkaddr < __start_cp_addr(sbi))) 175 return false; 176 break; 177 case META_POR: 178 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 179 blkaddr < MAIN_BLKADDR(sbi))) 180 return false; 181 break; 182 case DATA_GENERIC: 183 case DATA_GENERIC_ENHANCE: 184 case DATA_GENERIC_ENHANCE_READ: 185 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 186 blkaddr < MAIN_BLKADDR(sbi))) { 187 f2fs_warn(sbi, "access invalid blkaddr:%u", 188 blkaddr); 189 set_sbi_flag(sbi, SBI_NEED_FSCK); 190 WARN_ON(1); 191 return false; 192 } else { 193 return __is_bitmap_valid(sbi, blkaddr, type); 194 } 195 break; 196 case META_GENERIC: 197 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 198 blkaddr >= MAIN_BLKADDR(sbi))) 199 return false; 200 break; 201 default: 202 BUG(); 203 } 204 205 return true; 206 } 207 208 /* 209 * Readahead CP/NAT/SIT/SSA pages 210 */ 211 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 212 int type, bool sync) 213 { 214 struct page *page; 215 block_t blkno = start; 216 struct f2fs_io_info fio = { 217 .sbi = sbi, 218 .type = META, 219 .op = REQ_OP_READ, 220 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 221 .encrypted_page = NULL, 222 .in_list = false, 223 .is_por = (type == META_POR), 224 }; 225 struct blk_plug plug; 226 227 if (unlikely(type == META_POR)) 228 fio.op_flags &= ~REQ_META; 229 230 blk_start_plug(&plug); 231 for (; nrpages-- > 0; blkno++) { 232 233 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 234 goto out; 235 236 switch (type) { 237 case META_NAT: 238 if (unlikely(blkno >= 239 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 240 blkno = 0; 241 /* get nat block addr */ 242 fio.new_blkaddr = current_nat_addr(sbi, 243 blkno * NAT_ENTRY_PER_BLOCK); 244 break; 245 case META_SIT: 246 /* get sit block addr */ 247 fio.new_blkaddr = current_sit_addr(sbi, 248 blkno * SIT_ENTRY_PER_BLOCK); 249 break; 250 case META_SSA: 251 case META_CP: 252 case META_POR: 253 fio.new_blkaddr = blkno; 254 break; 255 default: 256 BUG(); 257 } 258 259 page = f2fs_grab_cache_page(META_MAPPING(sbi), 260 fio.new_blkaddr, false); 261 if (!page) 262 continue; 263 if (PageUptodate(page)) { 264 f2fs_put_page(page, 1); 265 continue; 266 } 267 268 fio.page = page; 269 f2fs_submit_page_bio(&fio); 270 f2fs_put_page(page, 0); 271 } 272 out: 273 blk_finish_plug(&plug); 274 return blkno - start; 275 } 276 277 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 278 { 279 struct page *page; 280 bool readahead = false; 281 282 page = find_get_page(META_MAPPING(sbi), index); 283 if (!page || !PageUptodate(page)) 284 readahead = true; 285 f2fs_put_page(page, 0); 286 287 if (readahead) 288 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 289 } 290 291 static int __f2fs_write_meta_page(struct page *page, 292 struct writeback_control *wbc, 293 enum iostat_type io_type) 294 { 295 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 296 297 trace_f2fs_writepage(page, META); 298 299 if (unlikely(f2fs_cp_error(sbi))) 300 goto redirty_out; 301 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 302 goto redirty_out; 303 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 304 goto redirty_out; 305 306 f2fs_do_write_meta_page(sbi, page, io_type); 307 dec_page_count(sbi, F2FS_DIRTY_META); 308 309 if (wbc->for_reclaim) 310 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 311 312 unlock_page(page); 313 314 if (unlikely(f2fs_cp_error(sbi))) 315 f2fs_submit_merged_write(sbi, META); 316 317 return 0; 318 319 redirty_out: 320 redirty_page_for_writepage(wbc, page); 321 return AOP_WRITEPAGE_ACTIVATE; 322 } 323 324 static int f2fs_write_meta_page(struct page *page, 325 struct writeback_control *wbc) 326 { 327 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 328 } 329 330 static int f2fs_write_meta_pages(struct address_space *mapping, 331 struct writeback_control *wbc) 332 { 333 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 334 long diff, written; 335 336 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 337 goto skip_write; 338 339 /* collect a number of dirty meta pages and write together */ 340 if (wbc->sync_mode != WB_SYNC_ALL && 341 get_pages(sbi, F2FS_DIRTY_META) < 342 nr_pages_to_skip(sbi, META)) 343 goto skip_write; 344 345 /* if locked failed, cp will flush dirty pages instead */ 346 if (!mutex_trylock(&sbi->cp_mutex)) 347 goto skip_write; 348 349 trace_f2fs_writepages(mapping->host, wbc, META); 350 diff = nr_pages_to_write(sbi, META, wbc); 351 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 352 mutex_unlock(&sbi->cp_mutex); 353 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 354 return 0; 355 356 skip_write: 357 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 358 trace_f2fs_writepages(mapping->host, wbc, META); 359 return 0; 360 } 361 362 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 363 long nr_to_write, enum iostat_type io_type) 364 { 365 struct address_space *mapping = META_MAPPING(sbi); 366 pgoff_t index = 0, prev = ULONG_MAX; 367 struct pagevec pvec; 368 long nwritten = 0; 369 int nr_pages; 370 struct writeback_control wbc = { 371 .for_reclaim = 0, 372 }; 373 struct blk_plug plug; 374 375 pagevec_init(&pvec); 376 377 blk_start_plug(&plug); 378 379 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 380 PAGECACHE_TAG_DIRTY))) { 381 int i; 382 383 for (i = 0; i < nr_pages; i++) { 384 struct page *page = pvec.pages[i]; 385 386 if (prev == ULONG_MAX) 387 prev = page->index - 1; 388 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 389 pagevec_release(&pvec); 390 goto stop; 391 } 392 393 lock_page(page); 394 395 if (unlikely(page->mapping != mapping)) { 396 continue_unlock: 397 unlock_page(page); 398 continue; 399 } 400 if (!PageDirty(page)) { 401 /* someone wrote it for us */ 402 goto continue_unlock; 403 } 404 405 f2fs_wait_on_page_writeback(page, META, true, true); 406 407 if (!clear_page_dirty_for_io(page)) 408 goto continue_unlock; 409 410 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 411 unlock_page(page); 412 break; 413 } 414 nwritten++; 415 prev = page->index; 416 if (unlikely(nwritten >= nr_to_write)) 417 break; 418 } 419 pagevec_release(&pvec); 420 cond_resched(); 421 } 422 stop: 423 if (nwritten) 424 f2fs_submit_merged_write(sbi, type); 425 426 blk_finish_plug(&plug); 427 428 return nwritten; 429 } 430 431 static int f2fs_set_meta_page_dirty(struct page *page) 432 { 433 trace_f2fs_set_page_dirty(page, META); 434 435 if (!PageUptodate(page)) 436 SetPageUptodate(page); 437 if (!PageDirty(page)) { 438 __set_page_dirty_nobuffers(page); 439 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 440 f2fs_set_page_private(page, 0); 441 f2fs_trace_pid(page); 442 return 1; 443 } 444 return 0; 445 } 446 447 const struct address_space_operations f2fs_meta_aops = { 448 .writepage = f2fs_write_meta_page, 449 .writepages = f2fs_write_meta_pages, 450 .set_page_dirty = f2fs_set_meta_page_dirty, 451 .invalidatepage = f2fs_invalidate_page, 452 .releasepage = f2fs_release_page, 453 #ifdef CONFIG_MIGRATION 454 .migratepage = f2fs_migrate_page, 455 #endif 456 }; 457 458 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 459 unsigned int devidx, int type) 460 { 461 struct inode_management *im = &sbi->im[type]; 462 struct ino_entry *e, *tmp; 463 464 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 465 466 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 467 468 spin_lock(&im->ino_lock); 469 e = radix_tree_lookup(&im->ino_root, ino); 470 if (!e) { 471 e = tmp; 472 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 473 f2fs_bug_on(sbi, 1); 474 475 memset(e, 0, sizeof(struct ino_entry)); 476 e->ino = ino; 477 478 list_add_tail(&e->list, &im->ino_list); 479 if (type != ORPHAN_INO) 480 im->ino_num++; 481 } 482 483 if (type == FLUSH_INO) 484 f2fs_set_bit(devidx, (char *)&e->dirty_device); 485 486 spin_unlock(&im->ino_lock); 487 radix_tree_preload_end(); 488 489 if (e != tmp) 490 kmem_cache_free(ino_entry_slab, tmp); 491 } 492 493 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 494 { 495 struct inode_management *im = &sbi->im[type]; 496 struct ino_entry *e; 497 498 spin_lock(&im->ino_lock); 499 e = radix_tree_lookup(&im->ino_root, ino); 500 if (e) { 501 list_del(&e->list); 502 radix_tree_delete(&im->ino_root, ino); 503 im->ino_num--; 504 spin_unlock(&im->ino_lock); 505 kmem_cache_free(ino_entry_slab, e); 506 return; 507 } 508 spin_unlock(&im->ino_lock); 509 } 510 511 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 512 { 513 /* add new dirty ino entry into list */ 514 __add_ino_entry(sbi, ino, 0, type); 515 } 516 517 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 518 { 519 /* remove dirty ino entry from list */ 520 __remove_ino_entry(sbi, ino, type); 521 } 522 523 /* mode should be APPEND_INO or UPDATE_INO */ 524 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 525 { 526 struct inode_management *im = &sbi->im[mode]; 527 struct ino_entry *e; 528 529 spin_lock(&im->ino_lock); 530 e = radix_tree_lookup(&im->ino_root, ino); 531 spin_unlock(&im->ino_lock); 532 return e ? true : false; 533 } 534 535 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 536 { 537 struct ino_entry *e, *tmp; 538 int i; 539 540 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 541 struct inode_management *im = &sbi->im[i]; 542 543 spin_lock(&im->ino_lock); 544 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 545 list_del(&e->list); 546 radix_tree_delete(&im->ino_root, e->ino); 547 kmem_cache_free(ino_entry_slab, e); 548 im->ino_num--; 549 } 550 spin_unlock(&im->ino_lock); 551 } 552 } 553 554 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 555 unsigned int devidx, int type) 556 { 557 __add_ino_entry(sbi, ino, devidx, type); 558 } 559 560 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 561 unsigned int devidx, int type) 562 { 563 struct inode_management *im = &sbi->im[type]; 564 struct ino_entry *e; 565 bool is_dirty = false; 566 567 spin_lock(&im->ino_lock); 568 e = radix_tree_lookup(&im->ino_root, ino); 569 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 570 is_dirty = true; 571 spin_unlock(&im->ino_lock); 572 return is_dirty; 573 } 574 575 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 576 { 577 struct inode_management *im = &sbi->im[ORPHAN_INO]; 578 int err = 0; 579 580 spin_lock(&im->ino_lock); 581 582 if (time_to_inject(sbi, FAULT_ORPHAN)) { 583 spin_unlock(&im->ino_lock); 584 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 585 return -ENOSPC; 586 } 587 588 if (unlikely(im->ino_num >= sbi->max_orphans)) 589 err = -ENOSPC; 590 else 591 im->ino_num++; 592 spin_unlock(&im->ino_lock); 593 594 return err; 595 } 596 597 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 598 { 599 struct inode_management *im = &sbi->im[ORPHAN_INO]; 600 601 spin_lock(&im->ino_lock); 602 f2fs_bug_on(sbi, im->ino_num == 0); 603 im->ino_num--; 604 spin_unlock(&im->ino_lock); 605 } 606 607 void f2fs_add_orphan_inode(struct inode *inode) 608 { 609 /* add new orphan ino entry into list */ 610 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 611 f2fs_update_inode_page(inode); 612 } 613 614 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 615 { 616 /* remove orphan entry from orphan list */ 617 __remove_ino_entry(sbi, ino, ORPHAN_INO); 618 } 619 620 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 621 { 622 struct inode *inode; 623 struct node_info ni; 624 int err; 625 626 inode = f2fs_iget_retry(sbi->sb, ino); 627 if (IS_ERR(inode)) { 628 /* 629 * there should be a bug that we can't find the entry 630 * to orphan inode. 631 */ 632 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 633 return PTR_ERR(inode); 634 } 635 636 err = dquot_initialize(inode); 637 if (err) { 638 iput(inode); 639 goto err_out; 640 } 641 642 clear_nlink(inode); 643 644 /* truncate all the data during iput */ 645 iput(inode); 646 647 err = f2fs_get_node_info(sbi, ino, &ni); 648 if (err) 649 goto err_out; 650 651 /* ENOMEM was fully retried in f2fs_evict_inode. */ 652 if (ni.blk_addr != NULL_ADDR) { 653 err = -EIO; 654 goto err_out; 655 } 656 return 0; 657 658 err_out: 659 set_sbi_flag(sbi, SBI_NEED_FSCK); 660 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 661 __func__, ino); 662 return err; 663 } 664 665 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 666 { 667 block_t start_blk, orphan_blocks, i, j; 668 unsigned int s_flags = sbi->sb->s_flags; 669 int err = 0; 670 #ifdef CONFIG_QUOTA 671 int quota_enabled; 672 #endif 673 674 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 675 return 0; 676 677 if (bdev_read_only(sbi->sb->s_bdev)) { 678 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 679 return 0; 680 } 681 682 if (s_flags & SB_RDONLY) { 683 f2fs_info(sbi, "orphan cleanup on readonly fs"); 684 sbi->sb->s_flags &= ~SB_RDONLY; 685 } 686 687 #ifdef CONFIG_QUOTA 688 /* Needed for iput() to work correctly and not trash data */ 689 sbi->sb->s_flags |= SB_ACTIVE; 690 691 /* 692 * Turn on quotas which were not enabled for read-only mounts if 693 * filesystem has quota feature, so that they are updated correctly. 694 */ 695 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 696 #endif 697 698 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 699 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 700 701 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 702 703 for (i = 0; i < orphan_blocks; i++) { 704 struct page *page; 705 struct f2fs_orphan_block *orphan_blk; 706 707 page = f2fs_get_meta_page(sbi, start_blk + i); 708 if (IS_ERR(page)) { 709 err = PTR_ERR(page); 710 goto out; 711 } 712 713 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 714 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 715 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 716 err = recover_orphan_inode(sbi, ino); 717 if (err) { 718 f2fs_put_page(page, 1); 719 goto out; 720 } 721 } 722 f2fs_put_page(page, 1); 723 } 724 /* clear Orphan Flag */ 725 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 726 out: 727 set_sbi_flag(sbi, SBI_IS_RECOVERED); 728 729 #ifdef CONFIG_QUOTA 730 /* Turn quotas off */ 731 if (quota_enabled) 732 f2fs_quota_off_umount(sbi->sb); 733 #endif 734 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 735 736 return err; 737 } 738 739 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 740 { 741 struct list_head *head; 742 struct f2fs_orphan_block *orphan_blk = NULL; 743 unsigned int nentries = 0; 744 unsigned short index = 1; 745 unsigned short orphan_blocks; 746 struct page *page = NULL; 747 struct ino_entry *orphan = NULL; 748 struct inode_management *im = &sbi->im[ORPHAN_INO]; 749 750 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 751 752 /* 753 * we don't need to do spin_lock(&im->ino_lock) here, since all the 754 * orphan inode operations are covered under f2fs_lock_op(). 755 * And, spin_lock should be avoided due to page operations below. 756 */ 757 head = &im->ino_list; 758 759 /* loop for each orphan inode entry and write them in Jornal block */ 760 list_for_each_entry(orphan, head, list) { 761 if (!page) { 762 page = f2fs_grab_meta_page(sbi, start_blk++); 763 orphan_blk = 764 (struct f2fs_orphan_block *)page_address(page); 765 memset(orphan_blk, 0, sizeof(*orphan_blk)); 766 } 767 768 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 769 770 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 771 /* 772 * an orphan block is full of 1020 entries, 773 * then we need to flush current orphan blocks 774 * and bring another one in memory 775 */ 776 orphan_blk->blk_addr = cpu_to_le16(index); 777 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 778 orphan_blk->entry_count = cpu_to_le32(nentries); 779 set_page_dirty(page); 780 f2fs_put_page(page, 1); 781 index++; 782 nentries = 0; 783 page = NULL; 784 } 785 } 786 787 if (page) { 788 orphan_blk->blk_addr = cpu_to_le16(index); 789 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 790 orphan_blk->entry_count = cpu_to_le32(nentries); 791 set_page_dirty(page); 792 f2fs_put_page(page, 1); 793 } 794 } 795 796 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 797 struct f2fs_checkpoint *ckpt) 798 { 799 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 800 __u32 chksum; 801 802 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 803 if (chksum_ofs < CP_CHKSUM_OFFSET) { 804 chksum_ofs += sizeof(chksum); 805 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 806 F2FS_BLKSIZE - chksum_ofs); 807 } 808 return chksum; 809 } 810 811 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 812 struct f2fs_checkpoint **cp_block, struct page **cp_page, 813 unsigned long long *version) 814 { 815 size_t crc_offset = 0; 816 __u32 crc; 817 818 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 819 if (IS_ERR(*cp_page)) 820 return PTR_ERR(*cp_page); 821 822 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 823 824 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 825 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 826 crc_offset > CP_CHKSUM_OFFSET) { 827 f2fs_put_page(*cp_page, 1); 828 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 829 return -EINVAL; 830 } 831 832 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 833 if (crc != cur_cp_crc(*cp_block)) { 834 f2fs_put_page(*cp_page, 1); 835 f2fs_warn(sbi, "invalid crc value"); 836 return -EINVAL; 837 } 838 839 *version = cur_cp_version(*cp_block); 840 return 0; 841 } 842 843 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 844 block_t cp_addr, unsigned long long *version) 845 { 846 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 847 struct f2fs_checkpoint *cp_block = NULL; 848 unsigned long long cur_version = 0, pre_version = 0; 849 int err; 850 851 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 852 &cp_page_1, version); 853 if (err) 854 return NULL; 855 856 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 857 sbi->blocks_per_seg) { 858 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 859 le32_to_cpu(cp_block->cp_pack_total_block_count)); 860 goto invalid_cp; 861 } 862 pre_version = *version; 863 864 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 865 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 866 &cp_page_2, version); 867 if (err) 868 goto invalid_cp; 869 cur_version = *version; 870 871 if (cur_version == pre_version) { 872 *version = cur_version; 873 f2fs_put_page(cp_page_2, 1); 874 return cp_page_1; 875 } 876 f2fs_put_page(cp_page_2, 1); 877 invalid_cp: 878 f2fs_put_page(cp_page_1, 1); 879 return NULL; 880 } 881 882 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 883 { 884 struct f2fs_checkpoint *cp_block; 885 struct f2fs_super_block *fsb = sbi->raw_super; 886 struct page *cp1, *cp2, *cur_page; 887 unsigned long blk_size = sbi->blocksize; 888 unsigned long long cp1_version = 0, cp2_version = 0; 889 unsigned long long cp_start_blk_no; 890 unsigned int cp_blks = 1 + __cp_payload(sbi); 891 block_t cp_blk_no; 892 int i; 893 int err; 894 895 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks), 896 GFP_KERNEL); 897 if (!sbi->ckpt) 898 return -ENOMEM; 899 /* 900 * Finding out valid cp block involves read both 901 * sets( cp pack1 and cp pack 2) 902 */ 903 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 904 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 905 906 /* The second checkpoint pack should start at the next segment */ 907 cp_start_blk_no += ((unsigned long long)1) << 908 le32_to_cpu(fsb->log_blocks_per_seg); 909 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 910 911 if (cp1 && cp2) { 912 if (ver_after(cp2_version, cp1_version)) 913 cur_page = cp2; 914 else 915 cur_page = cp1; 916 } else if (cp1) { 917 cur_page = cp1; 918 } else if (cp2) { 919 cur_page = cp2; 920 } else { 921 err = -EFSCORRUPTED; 922 goto fail_no_cp; 923 } 924 925 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 926 memcpy(sbi->ckpt, cp_block, blk_size); 927 928 if (cur_page == cp1) 929 sbi->cur_cp_pack = 1; 930 else 931 sbi->cur_cp_pack = 2; 932 933 /* Sanity checking of checkpoint */ 934 if (f2fs_sanity_check_ckpt(sbi)) { 935 err = -EFSCORRUPTED; 936 goto free_fail_no_cp; 937 } 938 939 if (cp_blks <= 1) 940 goto done; 941 942 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 943 if (cur_page == cp2) 944 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 945 946 for (i = 1; i < cp_blks; i++) { 947 void *sit_bitmap_ptr; 948 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 949 950 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 951 if (IS_ERR(cur_page)) { 952 err = PTR_ERR(cur_page); 953 goto free_fail_no_cp; 954 } 955 sit_bitmap_ptr = page_address(cur_page); 956 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 957 f2fs_put_page(cur_page, 1); 958 } 959 done: 960 f2fs_put_page(cp1, 1); 961 f2fs_put_page(cp2, 1); 962 return 0; 963 964 free_fail_no_cp: 965 f2fs_put_page(cp1, 1); 966 f2fs_put_page(cp2, 1); 967 fail_no_cp: 968 kvfree(sbi->ckpt); 969 return err; 970 } 971 972 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 973 { 974 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 975 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 976 977 if (is_inode_flag_set(inode, flag)) 978 return; 979 980 set_inode_flag(inode, flag); 981 if (!f2fs_is_volatile_file(inode)) 982 list_add_tail(&F2FS_I(inode)->dirty_list, 983 &sbi->inode_list[type]); 984 stat_inc_dirty_inode(sbi, type); 985 } 986 987 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 988 { 989 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 990 991 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 992 return; 993 994 list_del_init(&F2FS_I(inode)->dirty_list); 995 clear_inode_flag(inode, flag); 996 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 997 } 998 999 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 1000 { 1001 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1002 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1003 1004 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1005 !S_ISLNK(inode->i_mode)) 1006 return; 1007 1008 spin_lock(&sbi->inode_lock[type]); 1009 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1010 __add_dirty_inode(inode, type); 1011 inode_inc_dirty_pages(inode); 1012 spin_unlock(&sbi->inode_lock[type]); 1013 1014 f2fs_set_page_private(page, 0); 1015 f2fs_trace_pid(page); 1016 } 1017 1018 void f2fs_remove_dirty_inode(struct inode *inode) 1019 { 1020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1021 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1022 1023 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1024 !S_ISLNK(inode->i_mode)) 1025 return; 1026 1027 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1028 return; 1029 1030 spin_lock(&sbi->inode_lock[type]); 1031 __remove_dirty_inode(inode, type); 1032 spin_unlock(&sbi->inode_lock[type]); 1033 } 1034 1035 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1036 { 1037 struct list_head *head; 1038 struct inode *inode; 1039 struct f2fs_inode_info *fi; 1040 bool is_dir = (type == DIR_INODE); 1041 unsigned long ino = 0; 1042 1043 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1044 get_pages(sbi, is_dir ? 1045 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1046 retry: 1047 if (unlikely(f2fs_cp_error(sbi))) 1048 return -EIO; 1049 1050 spin_lock(&sbi->inode_lock[type]); 1051 1052 head = &sbi->inode_list[type]; 1053 if (list_empty(head)) { 1054 spin_unlock(&sbi->inode_lock[type]); 1055 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1056 get_pages(sbi, is_dir ? 1057 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1058 return 0; 1059 } 1060 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1061 inode = igrab(&fi->vfs_inode); 1062 spin_unlock(&sbi->inode_lock[type]); 1063 if (inode) { 1064 unsigned long cur_ino = inode->i_ino; 1065 1066 F2FS_I(inode)->cp_task = current; 1067 1068 filemap_fdatawrite(inode->i_mapping); 1069 1070 F2FS_I(inode)->cp_task = NULL; 1071 1072 iput(inode); 1073 /* We need to give cpu to another writers. */ 1074 if (ino == cur_ino) 1075 cond_resched(); 1076 else 1077 ino = cur_ino; 1078 } else { 1079 /* 1080 * We should submit bio, since it exists several 1081 * wribacking dentry pages in the freeing inode. 1082 */ 1083 f2fs_submit_merged_write(sbi, DATA); 1084 cond_resched(); 1085 } 1086 goto retry; 1087 } 1088 1089 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1090 { 1091 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1092 struct inode *inode; 1093 struct f2fs_inode_info *fi; 1094 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1095 1096 while (total--) { 1097 if (unlikely(f2fs_cp_error(sbi))) 1098 return -EIO; 1099 1100 spin_lock(&sbi->inode_lock[DIRTY_META]); 1101 if (list_empty(head)) { 1102 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1103 return 0; 1104 } 1105 fi = list_first_entry(head, struct f2fs_inode_info, 1106 gdirty_list); 1107 inode = igrab(&fi->vfs_inode); 1108 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1109 if (inode) { 1110 sync_inode_metadata(inode, 0); 1111 1112 /* it's on eviction */ 1113 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1114 f2fs_update_inode_page(inode); 1115 iput(inode); 1116 } 1117 } 1118 return 0; 1119 } 1120 1121 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1122 { 1123 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1124 struct f2fs_nm_info *nm_i = NM_I(sbi); 1125 nid_t last_nid = nm_i->next_scan_nid; 1126 1127 next_free_nid(sbi, &last_nid); 1128 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1129 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1130 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1131 ckpt->next_free_nid = cpu_to_le32(last_nid); 1132 } 1133 1134 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1135 { 1136 bool ret = false; 1137 1138 if (!is_journalled_quota(sbi)) 1139 return false; 1140 1141 down_write(&sbi->quota_sem); 1142 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1143 ret = false; 1144 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1145 ret = false; 1146 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1147 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1148 ret = true; 1149 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1150 ret = true; 1151 } 1152 up_write(&sbi->quota_sem); 1153 return ret; 1154 } 1155 1156 /* 1157 * Freeze all the FS-operations for checkpoint. 1158 */ 1159 static int block_operations(struct f2fs_sb_info *sbi) 1160 { 1161 struct writeback_control wbc = { 1162 .sync_mode = WB_SYNC_ALL, 1163 .nr_to_write = LONG_MAX, 1164 .for_reclaim = 0, 1165 }; 1166 struct blk_plug plug; 1167 int err = 0, cnt = 0; 1168 1169 blk_start_plug(&plug); 1170 1171 retry_flush_quotas: 1172 f2fs_lock_all(sbi); 1173 if (__need_flush_quota(sbi)) { 1174 int locked; 1175 1176 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1177 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1178 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1179 goto retry_flush_dents; 1180 } 1181 f2fs_unlock_all(sbi); 1182 1183 /* only failed during mount/umount/freeze/quotactl */ 1184 locked = down_read_trylock(&sbi->sb->s_umount); 1185 f2fs_quota_sync(sbi->sb, -1); 1186 if (locked) 1187 up_read(&sbi->sb->s_umount); 1188 cond_resched(); 1189 goto retry_flush_quotas; 1190 } 1191 1192 retry_flush_dents: 1193 /* write all the dirty dentry pages */ 1194 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1195 f2fs_unlock_all(sbi); 1196 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1197 if (err) 1198 goto out; 1199 cond_resched(); 1200 goto retry_flush_quotas; 1201 } 1202 1203 /* 1204 * POR: we should ensure that there are no dirty node pages 1205 * until finishing nat/sit flush. inode->i_blocks can be updated. 1206 */ 1207 down_write(&sbi->node_change); 1208 1209 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1210 up_write(&sbi->node_change); 1211 f2fs_unlock_all(sbi); 1212 err = f2fs_sync_inode_meta(sbi); 1213 if (err) 1214 goto out; 1215 cond_resched(); 1216 goto retry_flush_quotas; 1217 } 1218 1219 retry_flush_nodes: 1220 down_write(&sbi->node_write); 1221 1222 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1223 up_write(&sbi->node_write); 1224 atomic_inc(&sbi->wb_sync_req[NODE]); 1225 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1226 atomic_dec(&sbi->wb_sync_req[NODE]); 1227 if (err) { 1228 up_write(&sbi->node_change); 1229 f2fs_unlock_all(sbi); 1230 goto out; 1231 } 1232 cond_resched(); 1233 goto retry_flush_nodes; 1234 } 1235 1236 /* 1237 * sbi->node_change is used only for AIO write_begin path which produces 1238 * dirty node blocks and some checkpoint values by block allocation. 1239 */ 1240 __prepare_cp_block(sbi); 1241 up_write(&sbi->node_change); 1242 out: 1243 blk_finish_plug(&plug); 1244 return err; 1245 } 1246 1247 static void unblock_operations(struct f2fs_sb_info *sbi) 1248 { 1249 up_write(&sbi->node_write); 1250 f2fs_unlock_all(sbi); 1251 } 1252 1253 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1254 { 1255 DEFINE_WAIT(wait); 1256 1257 for (;;) { 1258 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1259 1260 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1261 break; 1262 1263 if (unlikely(f2fs_cp_error(sbi))) 1264 break; 1265 1266 io_schedule_timeout(5*HZ); 1267 } 1268 finish_wait(&sbi->cp_wait, &wait); 1269 } 1270 1271 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1272 { 1273 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1274 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1275 unsigned long flags; 1276 1277 spin_lock_irqsave(&sbi->cp_lock, flags); 1278 1279 if ((cpc->reason & CP_UMOUNT) && 1280 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1281 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1282 disable_nat_bits(sbi, false); 1283 1284 if (cpc->reason & CP_TRIMMED) 1285 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1286 else 1287 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1288 1289 if (cpc->reason & CP_UMOUNT) 1290 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1291 else 1292 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1293 1294 if (cpc->reason & CP_FASTBOOT) 1295 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1296 else 1297 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1298 1299 if (orphan_num) 1300 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1301 else 1302 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1303 1304 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1305 is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1306 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1307 1308 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1309 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1310 else 1311 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1312 1313 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1314 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1315 else 1316 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1317 1318 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1319 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1320 else 1321 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1322 1323 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1324 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1325 1326 /* set this flag to activate crc|cp_ver for recovery */ 1327 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1328 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1329 1330 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1331 } 1332 1333 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1334 void *src, block_t blk_addr) 1335 { 1336 struct writeback_control wbc = { 1337 .for_reclaim = 0, 1338 }; 1339 1340 /* 1341 * pagevec_lookup_tag and lock_page again will take 1342 * some extra time. Therefore, f2fs_update_meta_pages and 1343 * f2fs_sync_meta_pages are combined in this function. 1344 */ 1345 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1346 int err; 1347 1348 f2fs_wait_on_page_writeback(page, META, true, true); 1349 1350 memcpy(page_address(page), src, PAGE_SIZE); 1351 1352 set_page_dirty(page); 1353 if (unlikely(!clear_page_dirty_for_io(page))) 1354 f2fs_bug_on(sbi, 1); 1355 1356 /* writeout cp pack 2 page */ 1357 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1358 if (unlikely(err && f2fs_cp_error(sbi))) { 1359 f2fs_put_page(page, 1); 1360 return; 1361 } 1362 1363 f2fs_bug_on(sbi, err); 1364 f2fs_put_page(page, 0); 1365 1366 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1367 f2fs_submit_merged_write(sbi, META_FLUSH); 1368 } 1369 1370 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1371 { 1372 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1373 struct f2fs_nm_info *nm_i = NM_I(sbi); 1374 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1375 block_t start_blk; 1376 unsigned int data_sum_blocks, orphan_blocks; 1377 __u32 crc32 = 0; 1378 int i; 1379 int cp_payload_blks = __cp_payload(sbi); 1380 struct super_block *sb = sbi->sb; 1381 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1382 u64 kbytes_written; 1383 int err; 1384 1385 /* Flush all the NAT/SIT pages */ 1386 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1387 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) && 1388 !f2fs_cp_error(sbi)); 1389 1390 /* 1391 * modify checkpoint 1392 * version number is already updated 1393 */ 1394 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1395 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1396 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1397 ckpt->cur_node_segno[i] = 1398 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1399 ckpt->cur_node_blkoff[i] = 1400 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1401 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1402 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1403 } 1404 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1405 ckpt->cur_data_segno[i] = 1406 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1407 ckpt->cur_data_blkoff[i] = 1408 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1409 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1410 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1411 } 1412 1413 /* 2 cp + n data seg summary + orphan inode blocks */ 1414 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1415 spin_lock_irqsave(&sbi->cp_lock, flags); 1416 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1417 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1418 else 1419 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1420 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1421 1422 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1423 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1424 orphan_blocks); 1425 1426 if (__remain_node_summaries(cpc->reason)) 1427 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1428 cp_payload_blks + data_sum_blocks + 1429 orphan_blocks + NR_CURSEG_NODE_TYPE); 1430 else 1431 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1432 cp_payload_blks + data_sum_blocks + 1433 orphan_blocks); 1434 1435 /* update ckpt flag for checkpoint */ 1436 update_ckpt_flags(sbi, cpc); 1437 1438 /* update SIT/NAT bitmap */ 1439 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1440 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1441 1442 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1443 *((__le32 *)((unsigned char *)ckpt + 1444 le32_to_cpu(ckpt->checksum_offset))) 1445 = cpu_to_le32(crc32); 1446 1447 start_blk = __start_cp_next_addr(sbi); 1448 1449 /* write nat bits */ 1450 if (enabled_nat_bits(sbi, cpc)) { 1451 __u64 cp_ver = cur_cp_version(ckpt); 1452 block_t blk; 1453 1454 cp_ver |= ((__u64)crc32 << 32); 1455 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1456 1457 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1458 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1459 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1460 (i << F2FS_BLKSIZE_BITS), blk + i); 1461 } 1462 1463 /* write out checkpoint buffer at block 0 */ 1464 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1465 1466 for (i = 1; i < 1 + cp_payload_blks; i++) 1467 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1468 start_blk++); 1469 1470 if (orphan_num) { 1471 write_orphan_inodes(sbi, start_blk); 1472 start_blk += orphan_blocks; 1473 } 1474 1475 f2fs_write_data_summaries(sbi, start_blk); 1476 start_blk += data_sum_blocks; 1477 1478 /* Record write statistics in the hot node summary */ 1479 kbytes_written = sbi->kbytes_written; 1480 if (sb->s_bdev->bd_part) 1481 kbytes_written += BD_PART_WRITTEN(sbi); 1482 1483 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1484 1485 if (__remain_node_summaries(cpc->reason)) { 1486 f2fs_write_node_summaries(sbi, start_blk); 1487 start_blk += NR_CURSEG_NODE_TYPE; 1488 } 1489 1490 /* update user_block_counts */ 1491 sbi->last_valid_block_count = sbi->total_valid_block_count; 1492 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1493 1494 /* Here, we have one bio having CP pack except cp pack 2 page */ 1495 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1496 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) && 1497 !f2fs_cp_error(sbi)); 1498 1499 /* wait for previous submitted meta pages writeback */ 1500 f2fs_wait_on_all_pages_writeback(sbi); 1501 1502 /* flush all device cache */ 1503 err = f2fs_flush_device_cache(sbi); 1504 if (err) 1505 return err; 1506 1507 /* barrier and flush checkpoint cp pack 2 page if it can */ 1508 commit_checkpoint(sbi, ckpt, start_blk); 1509 f2fs_wait_on_all_pages_writeback(sbi); 1510 1511 /* 1512 * invalidate intermediate page cache borrowed from meta inode which are 1513 * used for migration of encrypted or verity inode's blocks. 1514 */ 1515 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi)) 1516 invalidate_mapping_pages(META_MAPPING(sbi), 1517 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1518 1519 f2fs_release_ino_entry(sbi, false); 1520 1521 f2fs_reset_fsync_node_info(sbi); 1522 1523 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1524 clear_sbi_flag(sbi, SBI_NEED_CP); 1525 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1526 1527 spin_lock(&sbi->stat_lock); 1528 sbi->unusable_block_count = 0; 1529 spin_unlock(&sbi->stat_lock); 1530 1531 __set_cp_next_pack(sbi); 1532 1533 /* 1534 * redirty superblock if metadata like node page or inode cache is 1535 * updated during writing checkpoint. 1536 */ 1537 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1538 get_pages(sbi, F2FS_DIRTY_IMETA)) 1539 set_sbi_flag(sbi, SBI_IS_DIRTY); 1540 1541 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1542 1543 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1544 } 1545 1546 /* 1547 * We guarantee that this checkpoint procedure will not fail. 1548 */ 1549 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1550 { 1551 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1552 unsigned long long ckpt_ver; 1553 int err = 0; 1554 1555 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1556 return -EROFS; 1557 1558 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1559 if (cpc->reason != CP_PAUSE) 1560 return 0; 1561 f2fs_warn(sbi, "Start checkpoint disabled!"); 1562 } 1563 mutex_lock(&sbi->cp_mutex); 1564 1565 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1566 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1567 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1568 goto out; 1569 if (unlikely(f2fs_cp_error(sbi))) { 1570 err = -EIO; 1571 goto out; 1572 } 1573 1574 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1575 1576 err = block_operations(sbi); 1577 if (err) 1578 goto out; 1579 1580 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1581 1582 f2fs_flush_merged_writes(sbi); 1583 1584 /* this is the case of multiple fstrims without any changes */ 1585 if (cpc->reason & CP_DISCARD) { 1586 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1587 unblock_operations(sbi); 1588 goto out; 1589 } 1590 1591 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1592 SIT_I(sbi)->dirty_sentries == 0 && 1593 prefree_segments(sbi) == 0) { 1594 f2fs_flush_sit_entries(sbi, cpc); 1595 f2fs_clear_prefree_segments(sbi, cpc); 1596 unblock_operations(sbi); 1597 goto out; 1598 } 1599 } 1600 1601 /* 1602 * update checkpoint pack index 1603 * Increase the version number so that 1604 * SIT entries and seg summaries are written at correct place 1605 */ 1606 ckpt_ver = cur_cp_version(ckpt); 1607 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1608 1609 /* write cached NAT/SIT entries to NAT/SIT area */ 1610 err = f2fs_flush_nat_entries(sbi, cpc); 1611 if (err) 1612 goto stop; 1613 1614 f2fs_flush_sit_entries(sbi, cpc); 1615 1616 /* unlock all the fs_lock[] in do_checkpoint() */ 1617 err = do_checkpoint(sbi, cpc); 1618 if (err) 1619 f2fs_release_discard_addrs(sbi); 1620 else 1621 f2fs_clear_prefree_segments(sbi, cpc); 1622 stop: 1623 unblock_operations(sbi); 1624 stat_inc_cp_count(sbi->stat_info); 1625 1626 if (cpc->reason & CP_RECOVERY) 1627 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1628 1629 /* do checkpoint periodically */ 1630 f2fs_update_time(sbi, CP_TIME); 1631 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1632 out: 1633 mutex_unlock(&sbi->cp_mutex); 1634 return err; 1635 } 1636 1637 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1638 { 1639 int i; 1640 1641 for (i = 0; i < MAX_INO_ENTRY; i++) { 1642 struct inode_management *im = &sbi->im[i]; 1643 1644 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1645 spin_lock_init(&im->ino_lock); 1646 INIT_LIST_HEAD(&im->ino_list); 1647 im->ino_num = 0; 1648 } 1649 1650 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1651 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1652 F2FS_ORPHANS_PER_BLOCK; 1653 } 1654 1655 int __init f2fs_create_checkpoint_caches(void) 1656 { 1657 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1658 sizeof(struct ino_entry)); 1659 if (!ino_entry_slab) 1660 return -ENOMEM; 1661 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1662 sizeof(struct inode_entry)); 1663 if (!f2fs_inode_entry_slab) { 1664 kmem_cache_destroy(ino_entry_slab); 1665 return -ENOMEM; 1666 } 1667 return 0; 1668 } 1669 1670 void f2fs_destroy_checkpoint_caches(void) 1671 { 1672 kmem_cache_destroy(ino_entry_slab); 1673 kmem_cache_destroy(f2fs_inode_entry_slab); 1674 } 1675