1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .op = REQ_OP_READ, 68 .op_flags = REQ_META | REQ_PRIO, 69 .old_blkaddr = index, 70 .new_blkaddr = index, 71 .encrypted_page = NULL, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ 115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ 154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 164 .encrypted_page = NULL, 165 }; 166 struct blk_plug plug; 167 168 if (unlikely(type == META_POR)) 169 fio.op_flags &= ~REQ_META; 170 171 blk_start_plug(&plug); 172 for (; nrpages-- > 0; blkno++) { 173 174 if (!is_valid_blkaddr(sbi, blkno, type)) 175 goto out; 176 177 switch (type) { 178 case META_NAT: 179 if (unlikely(blkno >= 180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 181 blkno = 0; 182 /* get nat block addr */ 183 fio.new_blkaddr = current_nat_addr(sbi, 184 blkno * NAT_ENTRY_PER_BLOCK); 185 break; 186 case META_SIT: 187 /* get sit block addr */ 188 fio.new_blkaddr = current_sit_addr(sbi, 189 blkno * SIT_ENTRY_PER_BLOCK); 190 break; 191 case META_SSA: 192 case META_CP: 193 case META_POR: 194 fio.new_blkaddr = blkno; 195 break; 196 default: 197 BUG(); 198 } 199 200 page = f2fs_grab_cache_page(META_MAPPING(sbi), 201 fio.new_blkaddr, false); 202 if (!page) 203 continue; 204 if (PageUptodate(page)) { 205 f2fs_put_page(page, 1); 206 continue; 207 } 208 209 fio.page = page; 210 fio.old_blkaddr = fio.new_blkaddr; 211 f2fs_submit_page_mbio(&fio); 212 f2fs_put_page(page, 0); 213 } 214 out: 215 f2fs_submit_merged_bio(sbi, META, READ); 216 blk_finish_plug(&plug); 217 return blkno - start; 218 } 219 220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 221 { 222 struct page *page; 223 bool readahead = false; 224 225 page = find_get_page(META_MAPPING(sbi), index); 226 if (!page || !PageUptodate(page)) 227 readahead = true; 228 f2fs_put_page(page, 0); 229 230 if (readahead) 231 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 232 } 233 234 static int f2fs_write_meta_page(struct page *page, 235 struct writeback_control *wbc) 236 { 237 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 238 239 trace_f2fs_writepage(page, META); 240 241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 242 goto redirty_out; 243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 244 goto redirty_out; 245 if (unlikely(f2fs_cp_error(sbi))) 246 goto redirty_out; 247 248 write_meta_page(sbi, page); 249 dec_page_count(sbi, F2FS_DIRTY_META); 250 251 if (wbc->for_reclaim) 252 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 253 0, page->index, META, WRITE); 254 255 unlock_page(page); 256 257 if (unlikely(f2fs_cp_error(sbi))) 258 f2fs_submit_merged_bio(sbi, META, WRITE); 259 260 return 0; 261 262 redirty_out: 263 redirty_page_for_writepage(wbc, page); 264 return AOP_WRITEPAGE_ACTIVATE; 265 } 266 267 static int f2fs_write_meta_pages(struct address_space *mapping, 268 struct writeback_control *wbc) 269 { 270 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 271 long diff, written; 272 273 /* collect a number of dirty meta pages and write together */ 274 if (wbc->for_kupdate || 275 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 276 goto skip_write; 277 278 /* if locked failed, cp will flush dirty pages instead */ 279 if (!mutex_trylock(&sbi->cp_mutex)) 280 goto skip_write; 281 282 trace_f2fs_writepages(mapping->host, wbc, META); 283 diff = nr_pages_to_write(sbi, META, wbc); 284 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 285 mutex_unlock(&sbi->cp_mutex); 286 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 287 return 0; 288 289 skip_write: 290 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 291 trace_f2fs_writepages(mapping->host, wbc, META); 292 return 0; 293 } 294 295 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 296 long nr_to_write) 297 { 298 struct address_space *mapping = META_MAPPING(sbi); 299 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 300 struct pagevec pvec; 301 long nwritten = 0; 302 struct writeback_control wbc = { 303 .for_reclaim = 0, 304 }; 305 struct blk_plug plug; 306 307 pagevec_init(&pvec, 0); 308 309 blk_start_plug(&plug); 310 311 while (index <= end) { 312 int i, nr_pages; 313 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 314 PAGECACHE_TAG_DIRTY, 315 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 316 if (unlikely(nr_pages == 0)) 317 break; 318 319 for (i = 0; i < nr_pages; i++) { 320 struct page *page = pvec.pages[i]; 321 322 if (prev == ULONG_MAX) 323 prev = page->index - 1; 324 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 325 pagevec_release(&pvec); 326 goto stop; 327 } 328 329 lock_page(page); 330 331 if (unlikely(page->mapping != mapping)) { 332 continue_unlock: 333 unlock_page(page); 334 continue; 335 } 336 if (!PageDirty(page)) { 337 /* someone wrote it for us */ 338 goto continue_unlock; 339 } 340 341 f2fs_wait_on_page_writeback(page, META, true); 342 343 BUG_ON(PageWriteback(page)); 344 if (!clear_page_dirty_for_io(page)) 345 goto continue_unlock; 346 347 if (mapping->a_ops->writepage(page, &wbc)) { 348 unlock_page(page); 349 break; 350 } 351 nwritten++; 352 prev = page->index; 353 if (unlikely(nwritten >= nr_to_write)) 354 break; 355 } 356 pagevec_release(&pvec); 357 cond_resched(); 358 } 359 stop: 360 if (nwritten) 361 f2fs_submit_merged_bio(sbi, type, WRITE); 362 363 blk_finish_plug(&plug); 364 365 return nwritten; 366 } 367 368 static int f2fs_set_meta_page_dirty(struct page *page) 369 { 370 trace_f2fs_set_page_dirty(page, META); 371 372 if (!PageUptodate(page)) 373 SetPageUptodate(page); 374 if (!PageDirty(page)) { 375 f2fs_set_page_dirty_nobuffers(page); 376 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 377 SetPagePrivate(page); 378 f2fs_trace_pid(page); 379 return 1; 380 } 381 return 0; 382 } 383 384 const struct address_space_operations f2fs_meta_aops = { 385 .writepage = f2fs_write_meta_page, 386 .writepages = f2fs_write_meta_pages, 387 .set_page_dirty = f2fs_set_meta_page_dirty, 388 .invalidatepage = f2fs_invalidate_page, 389 .releasepage = f2fs_release_page, 390 #ifdef CONFIG_MIGRATION 391 .migratepage = f2fs_migrate_page, 392 #endif 393 }; 394 395 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 396 { 397 struct inode_management *im = &sbi->im[type]; 398 struct ino_entry *e, *tmp; 399 400 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 401 retry: 402 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 403 404 spin_lock(&im->ino_lock); 405 e = radix_tree_lookup(&im->ino_root, ino); 406 if (!e) { 407 e = tmp; 408 if (radix_tree_insert(&im->ino_root, ino, e)) { 409 spin_unlock(&im->ino_lock); 410 radix_tree_preload_end(); 411 goto retry; 412 } 413 memset(e, 0, sizeof(struct ino_entry)); 414 e->ino = ino; 415 416 list_add_tail(&e->list, &im->ino_list); 417 if (type != ORPHAN_INO) 418 im->ino_num++; 419 } 420 spin_unlock(&im->ino_lock); 421 radix_tree_preload_end(); 422 423 if (e != tmp) 424 kmem_cache_free(ino_entry_slab, tmp); 425 } 426 427 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 428 { 429 struct inode_management *im = &sbi->im[type]; 430 struct ino_entry *e; 431 432 spin_lock(&im->ino_lock); 433 e = radix_tree_lookup(&im->ino_root, ino); 434 if (e) { 435 list_del(&e->list); 436 radix_tree_delete(&im->ino_root, ino); 437 im->ino_num--; 438 spin_unlock(&im->ino_lock); 439 kmem_cache_free(ino_entry_slab, e); 440 return; 441 } 442 spin_unlock(&im->ino_lock); 443 } 444 445 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 446 { 447 /* add new dirty ino entry into list */ 448 __add_ino_entry(sbi, ino, type); 449 } 450 451 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 452 { 453 /* remove dirty ino entry from list */ 454 __remove_ino_entry(sbi, ino, type); 455 } 456 457 /* mode should be APPEND_INO or UPDATE_INO */ 458 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 459 { 460 struct inode_management *im = &sbi->im[mode]; 461 struct ino_entry *e; 462 463 spin_lock(&im->ino_lock); 464 e = radix_tree_lookup(&im->ino_root, ino); 465 spin_unlock(&im->ino_lock); 466 return e ? true : false; 467 } 468 469 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 470 { 471 struct ino_entry *e, *tmp; 472 int i; 473 474 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 475 struct inode_management *im = &sbi->im[i]; 476 477 spin_lock(&im->ino_lock); 478 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 479 list_del(&e->list); 480 radix_tree_delete(&im->ino_root, e->ino); 481 kmem_cache_free(ino_entry_slab, e); 482 im->ino_num--; 483 } 484 spin_unlock(&im->ino_lock); 485 } 486 } 487 488 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 489 { 490 struct inode_management *im = &sbi->im[ORPHAN_INO]; 491 int err = 0; 492 493 spin_lock(&im->ino_lock); 494 495 #ifdef CONFIG_F2FS_FAULT_INJECTION 496 if (time_to_inject(sbi, FAULT_ORPHAN)) { 497 spin_unlock(&im->ino_lock); 498 f2fs_show_injection_info(FAULT_ORPHAN); 499 return -ENOSPC; 500 } 501 #endif 502 if (unlikely(im->ino_num >= sbi->max_orphans)) 503 err = -ENOSPC; 504 else 505 im->ino_num++; 506 spin_unlock(&im->ino_lock); 507 508 return err; 509 } 510 511 void release_orphan_inode(struct f2fs_sb_info *sbi) 512 { 513 struct inode_management *im = &sbi->im[ORPHAN_INO]; 514 515 spin_lock(&im->ino_lock); 516 f2fs_bug_on(sbi, im->ino_num == 0); 517 im->ino_num--; 518 spin_unlock(&im->ino_lock); 519 } 520 521 void add_orphan_inode(struct inode *inode) 522 { 523 /* add new orphan ino entry into list */ 524 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 525 update_inode_page(inode); 526 } 527 528 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 529 { 530 /* remove orphan entry from orphan list */ 531 __remove_ino_entry(sbi, ino, ORPHAN_INO); 532 } 533 534 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 535 { 536 struct inode *inode; 537 struct node_info ni; 538 int err = acquire_orphan_inode(sbi); 539 540 if (err) { 541 set_sbi_flag(sbi, SBI_NEED_FSCK); 542 f2fs_msg(sbi->sb, KERN_WARNING, 543 "%s: orphan failed (ino=%x), run fsck to fix.", 544 __func__, ino); 545 return err; 546 } 547 548 __add_ino_entry(sbi, ino, ORPHAN_INO); 549 550 inode = f2fs_iget_retry(sbi->sb, ino); 551 if (IS_ERR(inode)) { 552 /* 553 * there should be a bug that we can't find the entry 554 * to orphan inode. 555 */ 556 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 557 return PTR_ERR(inode); 558 } 559 560 clear_nlink(inode); 561 562 /* truncate all the data during iput */ 563 iput(inode); 564 565 get_node_info(sbi, ino, &ni); 566 567 /* ENOMEM was fully retried in f2fs_evict_inode. */ 568 if (ni.blk_addr != NULL_ADDR) { 569 set_sbi_flag(sbi, SBI_NEED_FSCK); 570 f2fs_msg(sbi->sb, KERN_WARNING, 571 "%s: orphan failed (ino=%x) by kernel, retry mount.", 572 __func__, ino); 573 return -EIO; 574 } 575 __remove_ino_entry(sbi, ino, ORPHAN_INO); 576 return 0; 577 } 578 579 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 580 { 581 block_t start_blk, orphan_blocks, i, j; 582 int err; 583 584 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 585 return 0; 586 587 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 588 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 589 590 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 591 592 for (i = 0; i < orphan_blocks; i++) { 593 struct page *page = get_meta_page(sbi, start_blk + i); 594 struct f2fs_orphan_block *orphan_blk; 595 596 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 597 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 598 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 599 err = recover_orphan_inode(sbi, ino); 600 if (err) { 601 f2fs_put_page(page, 1); 602 return err; 603 } 604 } 605 f2fs_put_page(page, 1); 606 } 607 /* clear Orphan Flag */ 608 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 609 return 0; 610 } 611 612 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 613 { 614 struct list_head *head; 615 struct f2fs_orphan_block *orphan_blk = NULL; 616 unsigned int nentries = 0; 617 unsigned short index = 1; 618 unsigned short orphan_blocks; 619 struct page *page = NULL; 620 struct ino_entry *orphan = NULL; 621 struct inode_management *im = &sbi->im[ORPHAN_INO]; 622 623 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 624 625 /* 626 * we don't need to do spin_lock(&im->ino_lock) here, since all the 627 * orphan inode operations are covered under f2fs_lock_op(). 628 * And, spin_lock should be avoided due to page operations below. 629 */ 630 head = &im->ino_list; 631 632 /* loop for each orphan inode entry and write them in Jornal block */ 633 list_for_each_entry(orphan, head, list) { 634 if (!page) { 635 page = grab_meta_page(sbi, start_blk++); 636 orphan_blk = 637 (struct f2fs_orphan_block *)page_address(page); 638 memset(orphan_blk, 0, sizeof(*orphan_blk)); 639 } 640 641 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 642 643 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 644 /* 645 * an orphan block is full of 1020 entries, 646 * then we need to flush current orphan blocks 647 * and bring another one in memory 648 */ 649 orphan_blk->blk_addr = cpu_to_le16(index); 650 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 651 orphan_blk->entry_count = cpu_to_le32(nentries); 652 set_page_dirty(page); 653 f2fs_put_page(page, 1); 654 index++; 655 nentries = 0; 656 page = NULL; 657 } 658 } 659 660 if (page) { 661 orphan_blk->blk_addr = cpu_to_le16(index); 662 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 663 orphan_blk->entry_count = cpu_to_le32(nentries); 664 set_page_dirty(page); 665 f2fs_put_page(page, 1); 666 } 667 } 668 669 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 670 struct f2fs_checkpoint **cp_block, struct page **cp_page, 671 unsigned long long *version) 672 { 673 unsigned long blk_size = sbi->blocksize; 674 size_t crc_offset = 0; 675 __u32 crc = 0; 676 677 *cp_page = get_meta_page(sbi, cp_addr); 678 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 679 680 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 681 if (crc_offset > (blk_size - sizeof(__le32))) { 682 f2fs_msg(sbi->sb, KERN_WARNING, 683 "invalid crc_offset: %zu", crc_offset); 684 return -EINVAL; 685 } 686 687 crc = cur_cp_crc(*cp_block); 688 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 689 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 690 return -EINVAL; 691 } 692 693 *version = cur_cp_version(*cp_block); 694 return 0; 695 } 696 697 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 698 block_t cp_addr, unsigned long long *version) 699 { 700 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 701 struct f2fs_checkpoint *cp_block = NULL; 702 unsigned long long cur_version = 0, pre_version = 0; 703 int err; 704 705 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 706 &cp_page_1, version); 707 if (err) 708 goto invalid_cp1; 709 pre_version = *version; 710 711 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 712 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 713 &cp_page_2, version); 714 if (err) 715 goto invalid_cp2; 716 cur_version = *version; 717 718 if (cur_version == pre_version) { 719 *version = cur_version; 720 f2fs_put_page(cp_page_2, 1); 721 return cp_page_1; 722 } 723 invalid_cp2: 724 f2fs_put_page(cp_page_2, 1); 725 invalid_cp1: 726 f2fs_put_page(cp_page_1, 1); 727 return NULL; 728 } 729 730 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 731 { 732 struct f2fs_checkpoint *cp_block; 733 struct f2fs_super_block *fsb = sbi->raw_super; 734 struct page *cp1, *cp2, *cur_page; 735 unsigned long blk_size = sbi->blocksize; 736 unsigned long long cp1_version = 0, cp2_version = 0; 737 unsigned long long cp_start_blk_no; 738 unsigned int cp_blks = 1 + __cp_payload(sbi); 739 block_t cp_blk_no; 740 int i; 741 742 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 743 if (!sbi->ckpt) 744 return -ENOMEM; 745 /* 746 * Finding out valid cp block involves read both 747 * sets( cp pack1 and cp pack 2) 748 */ 749 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 750 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 751 752 /* The second checkpoint pack should start at the next segment */ 753 cp_start_blk_no += ((unsigned long long)1) << 754 le32_to_cpu(fsb->log_blocks_per_seg); 755 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 756 757 if (cp1 && cp2) { 758 if (ver_after(cp2_version, cp1_version)) 759 cur_page = cp2; 760 else 761 cur_page = cp1; 762 } else if (cp1) { 763 cur_page = cp1; 764 } else if (cp2) { 765 cur_page = cp2; 766 } else { 767 goto fail_no_cp; 768 } 769 770 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 771 memcpy(sbi->ckpt, cp_block, blk_size); 772 773 /* Sanity checking of checkpoint */ 774 if (sanity_check_ckpt(sbi)) 775 goto free_fail_no_cp; 776 777 if (cur_page == cp1) 778 sbi->cur_cp_pack = 1; 779 else 780 sbi->cur_cp_pack = 2; 781 782 if (cp_blks <= 1) 783 goto done; 784 785 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 786 if (cur_page == cp2) 787 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 788 789 for (i = 1; i < cp_blks; i++) { 790 void *sit_bitmap_ptr; 791 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 792 793 cur_page = get_meta_page(sbi, cp_blk_no + i); 794 sit_bitmap_ptr = page_address(cur_page); 795 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 796 f2fs_put_page(cur_page, 1); 797 } 798 done: 799 f2fs_put_page(cp1, 1); 800 f2fs_put_page(cp2, 1); 801 return 0; 802 803 free_fail_no_cp: 804 f2fs_put_page(cp1, 1); 805 f2fs_put_page(cp2, 1); 806 fail_no_cp: 807 kfree(sbi->ckpt); 808 return -EINVAL; 809 } 810 811 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 812 { 813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 814 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 815 816 if (is_inode_flag_set(inode, flag)) 817 return; 818 819 set_inode_flag(inode, flag); 820 if (!f2fs_is_volatile_file(inode)) 821 list_add_tail(&F2FS_I(inode)->dirty_list, 822 &sbi->inode_list[type]); 823 stat_inc_dirty_inode(sbi, type); 824 } 825 826 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 827 { 828 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 829 830 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 831 return; 832 833 list_del_init(&F2FS_I(inode)->dirty_list); 834 clear_inode_flag(inode, flag); 835 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 836 } 837 838 void update_dirty_page(struct inode *inode, struct page *page) 839 { 840 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 841 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 842 843 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 844 !S_ISLNK(inode->i_mode)) 845 return; 846 847 spin_lock(&sbi->inode_lock[type]); 848 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 849 __add_dirty_inode(inode, type); 850 inode_inc_dirty_pages(inode); 851 spin_unlock(&sbi->inode_lock[type]); 852 853 SetPagePrivate(page); 854 f2fs_trace_pid(page); 855 } 856 857 void remove_dirty_inode(struct inode *inode) 858 { 859 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 860 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 861 862 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 863 !S_ISLNK(inode->i_mode)) 864 return; 865 866 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 867 return; 868 869 spin_lock(&sbi->inode_lock[type]); 870 __remove_dirty_inode(inode, type); 871 spin_unlock(&sbi->inode_lock[type]); 872 } 873 874 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 875 { 876 struct list_head *head; 877 struct inode *inode; 878 struct f2fs_inode_info *fi; 879 bool is_dir = (type == DIR_INODE); 880 881 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 882 get_pages(sbi, is_dir ? 883 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 884 retry: 885 if (unlikely(f2fs_cp_error(sbi))) 886 return -EIO; 887 888 spin_lock(&sbi->inode_lock[type]); 889 890 head = &sbi->inode_list[type]; 891 if (list_empty(head)) { 892 spin_unlock(&sbi->inode_lock[type]); 893 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 894 get_pages(sbi, is_dir ? 895 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 896 return 0; 897 } 898 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 899 inode = igrab(&fi->vfs_inode); 900 spin_unlock(&sbi->inode_lock[type]); 901 if (inode) { 902 filemap_fdatawrite(inode->i_mapping); 903 iput(inode); 904 } else { 905 /* 906 * We should submit bio, since it exists several 907 * wribacking dentry pages in the freeing inode. 908 */ 909 f2fs_submit_merged_bio(sbi, DATA, WRITE); 910 cond_resched(); 911 } 912 goto retry; 913 } 914 915 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 916 { 917 struct list_head *head = &sbi->inode_list[DIRTY_META]; 918 struct inode *inode; 919 struct f2fs_inode_info *fi; 920 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 921 922 while (total--) { 923 if (unlikely(f2fs_cp_error(sbi))) 924 return -EIO; 925 926 spin_lock(&sbi->inode_lock[DIRTY_META]); 927 if (list_empty(head)) { 928 spin_unlock(&sbi->inode_lock[DIRTY_META]); 929 return 0; 930 } 931 fi = list_first_entry(head, struct f2fs_inode_info, 932 gdirty_list); 933 inode = igrab(&fi->vfs_inode); 934 spin_unlock(&sbi->inode_lock[DIRTY_META]); 935 if (inode) { 936 sync_inode_metadata(inode, 0); 937 938 /* it's on eviction */ 939 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 940 update_inode_page(inode); 941 iput(inode); 942 } 943 }; 944 return 0; 945 } 946 947 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 948 { 949 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 950 struct f2fs_nm_info *nm_i = NM_I(sbi); 951 nid_t last_nid = nm_i->next_scan_nid; 952 953 next_free_nid(sbi, &last_nid); 954 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 955 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 956 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 957 ckpt->next_free_nid = cpu_to_le32(last_nid); 958 } 959 960 /* 961 * Freeze all the FS-operations for checkpoint. 962 */ 963 static int block_operations(struct f2fs_sb_info *sbi) 964 { 965 struct writeback_control wbc = { 966 .sync_mode = WB_SYNC_ALL, 967 .nr_to_write = LONG_MAX, 968 .for_reclaim = 0, 969 }; 970 struct blk_plug plug; 971 int err = 0; 972 973 blk_start_plug(&plug); 974 975 retry_flush_dents: 976 f2fs_lock_all(sbi); 977 /* write all the dirty dentry pages */ 978 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 979 f2fs_unlock_all(sbi); 980 err = sync_dirty_inodes(sbi, DIR_INODE); 981 if (err) 982 goto out; 983 cond_resched(); 984 goto retry_flush_dents; 985 } 986 987 /* 988 * POR: we should ensure that there are no dirty node pages 989 * until finishing nat/sit flush. inode->i_blocks can be updated. 990 */ 991 down_write(&sbi->node_change); 992 993 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 994 up_write(&sbi->node_change); 995 f2fs_unlock_all(sbi); 996 err = f2fs_sync_inode_meta(sbi); 997 if (err) 998 goto out; 999 cond_resched(); 1000 goto retry_flush_dents; 1001 } 1002 1003 retry_flush_nodes: 1004 down_write(&sbi->node_write); 1005 1006 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1007 up_write(&sbi->node_write); 1008 err = sync_node_pages(sbi, &wbc); 1009 if (err) { 1010 up_write(&sbi->node_change); 1011 f2fs_unlock_all(sbi); 1012 goto out; 1013 } 1014 cond_resched(); 1015 goto retry_flush_nodes; 1016 } 1017 1018 /* 1019 * sbi->node_change is used only for AIO write_begin path which produces 1020 * dirty node blocks and some checkpoint values by block allocation. 1021 */ 1022 __prepare_cp_block(sbi); 1023 up_write(&sbi->node_change); 1024 out: 1025 blk_finish_plug(&plug); 1026 return err; 1027 } 1028 1029 static void unblock_operations(struct f2fs_sb_info *sbi) 1030 { 1031 up_write(&sbi->node_write); 1032 f2fs_unlock_all(sbi); 1033 } 1034 1035 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1036 { 1037 DEFINE_WAIT(wait); 1038 1039 for (;;) { 1040 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1041 1042 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1043 break; 1044 1045 io_schedule_timeout(5*HZ); 1046 } 1047 finish_wait(&sbi->cp_wait, &wait); 1048 } 1049 1050 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1051 { 1052 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1053 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1054 1055 spin_lock(&sbi->cp_lock); 1056 1057 if ((cpc->reason & CP_UMOUNT) && 1058 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1059 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1060 disable_nat_bits(sbi, false); 1061 1062 if (cpc->reason & CP_TRIMMED) 1063 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1064 1065 if (cpc->reason & CP_UMOUNT) 1066 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1067 else 1068 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1069 1070 if (cpc->reason & CP_FASTBOOT) 1071 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1072 else 1073 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1074 1075 if (orphan_num) 1076 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1077 else 1078 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1079 1080 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1081 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1082 1083 /* set this flag to activate crc|cp_ver for recovery */ 1084 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1085 1086 spin_unlock(&sbi->cp_lock); 1087 } 1088 1089 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1090 { 1091 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1092 struct f2fs_nm_info *nm_i = NM_I(sbi); 1093 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1094 block_t start_blk; 1095 unsigned int data_sum_blocks, orphan_blocks; 1096 __u32 crc32 = 0; 1097 int i; 1098 int cp_payload_blks = __cp_payload(sbi); 1099 struct super_block *sb = sbi->sb; 1100 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1101 u64 kbytes_written; 1102 1103 /* Flush all the NAT/SIT pages */ 1104 while (get_pages(sbi, F2FS_DIRTY_META)) { 1105 sync_meta_pages(sbi, META, LONG_MAX); 1106 if (unlikely(f2fs_cp_error(sbi))) 1107 return -EIO; 1108 } 1109 1110 /* 1111 * modify checkpoint 1112 * version number is already updated 1113 */ 1114 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1115 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1116 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1117 ckpt->cur_node_segno[i] = 1118 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1119 ckpt->cur_node_blkoff[i] = 1120 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1121 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1122 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1123 } 1124 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1125 ckpt->cur_data_segno[i] = 1126 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1127 ckpt->cur_data_blkoff[i] = 1128 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1129 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1130 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1131 } 1132 1133 /* 2 cp + n data seg summary + orphan inode blocks */ 1134 data_sum_blocks = npages_for_summary_flush(sbi, false); 1135 spin_lock(&sbi->cp_lock); 1136 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1137 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1138 else 1139 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1140 spin_unlock(&sbi->cp_lock); 1141 1142 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1143 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1144 orphan_blocks); 1145 1146 if (__remain_node_summaries(cpc->reason)) 1147 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1148 cp_payload_blks + data_sum_blocks + 1149 orphan_blocks + NR_CURSEG_NODE_TYPE); 1150 else 1151 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1152 cp_payload_blks + data_sum_blocks + 1153 orphan_blocks); 1154 1155 /* update ckpt flag for checkpoint */ 1156 update_ckpt_flags(sbi, cpc); 1157 1158 /* update SIT/NAT bitmap */ 1159 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1160 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1161 1162 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1163 *((__le32 *)((unsigned char *)ckpt + 1164 le32_to_cpu(ckpt->checksum_offset))) 1165 = cpu_to_le32(crc32); 1166 1167 start_blk = __start_cp_next_addr(sbi); 1168 1169 /* write nat bits */ 1170 if (enabled_nat_bits(sbi, cpc)) { 1171 __u64 cp_ver = cur_cp_version(ckpt); 1172 block_t blk; 1173 1174 cp_ver |= ((__u64)crc32 << 32); 1175 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1176 1177 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1178 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1179 update_meta_page(sbi, nm_i->nat_bits + 1180 (i << F2FS_BLKSIZE_BITS), blk + i); 1181 1182 /* Flush all the NAT BITS pages */ 1183 while (get_pages(sbi, F2FS_DIRTY_META)) { 1184 sync_meta_pages(sbi, META, LONG_MAX); 1185 if (unlikely(f2fs_cp_error(sbi))) 1186 return -EIO; 1187 } 1188 } 1189 1190 /* need to wait for end_io results */ 1191 wait_on_all_pages_writeback(sbi); 1192 if (unlikely(f2fs_cp_error(sbi))) 1193 return -EIO; 1194 1195 /* write out checkpoint buffer at block 0 */ 1196 update_meta_page(sbi, ckpt, start_blk++); 1197 1198 for (i = 1; i < 1 + cp_payload_blks; i++) 1199 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1200 start_blk++); 1201 1202 if (orphan_num) { 1203 write_orphan_inodes(sbi, start_blk); 1204 start_blk += orphan_blocks; 1205 } 1206 1207 write_data_summaries(sbi, start_blk); 1208 start_blk += data_sum_blocks; 1209 1210 /* Record write statistics in the hot node summary */ 1211 kbytes_written = sbi->kbytes_written; 1212 if (sb->s_bdev->bd_part) 1213 kbytes_written += BD_PART_WRITTEN(sbi); 1214 1215 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1216 1217 if (__remain_node_summaries(cpc->reason)) { 1218 write_node_summaries(sbi, start_blk); 1219 start_blk += NR_CURSEG_NODE_TYPE; 1220 } 1221 1222 /* writeout checkpoint block */ 1223 update_meta_page(sbi, ckpt, start_blk); 1224 1225 /* wait for previous submitted node/meta pages writeback */ 1226 wait_on_all_pages_writeback(sbi); 1227 1228 if (unlikely(f2fs_cp_error(sbi))) 1229 return -EIO; 1230 1231 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1232 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1233 1234 /* update user_block_counts */ 1235 sbi->last_valid_block_count = sbi->total_valid_block_count; 1236 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1237 1238 /* Here, we only have one bio having CP pack */ 1239 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1240 1241 /* wait for previous submitted meta pages writeback */ 1242 wait_on_all_pages_writeback(sbi); 1243 1244 release_ino_entry(sbi, false); 1245 1246 if (unlikely(f2fs_cp_error(sbi))) 1247 return -EIO; 1248 1249 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1250 clear_sbi_flag(sbi, SBI_NEED_CP); 1251 __set_cp_next_pack(sbi); 1252 1253 /* 1254 * redirty superblock if metadata like node page or inode cache is 1255 * updated during writing checkpoint. 1256 */ 1257 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1258 get_pages(sbi, F2FS_DIRTY_IMETA)) 1259 set_sbi_flag(sbi, SBI_IS_DIRTY); 1260 1261 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * We guarantee that this checkpoint procedure will not fail. 1268 */ 1269 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1270 { 1271 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1272 unsigned long long ckpt_ver; 1273 int err = 0; 1274 1275 mutex_lock(&sbi->cp_mutex); 1276 1277 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1278 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1279 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1280 goto out; 1281 if (unlikely(f2fs_cp_error(sbi))) { 1282 err = -EIO; 1283 goto out; 1284 } 1285 if (f2fs_readonly(sbi->sb)) { 1286 err = -EROFS; 1287 goto out; 1288 } 1289 1290 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1291 1292 err = block_operations(sbi); 1293 if (err) 1294 goto out; 1295 1296 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1297 1298 f2fs_flush_merged_bios(sbi); 1299 1300 /* this is the case of multiple fstrims without any changes */ 1301 if (cpc->reason & CP_DISCARD) { 1302 if (!exist_trim_candidates(sbi, cpc)) { 1303 unblock_operations(sbi); 1304 goto out; 1305 } 1306 1307 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1308 SIT_I(sbi)->dirty_sentries == 0 && 1309 prefree_segments(sbi) == 0) { 1310 flush_sit_entries(sbi, cpc); 1311 clear_prefree_segments(sbi, cpc); 1312 unblock_operations(sbi); 1313 goto out; 1314 } 1315 } 1316 1317 /* 1318 * update checkpoint pack index 1319 * Increase the version number so that 1320 * SIT entries and seg summaries are written at correct place 1321 */ 1322 ckpt_ver = cur_cp_version(ckpt); 1323 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1324 1325 /* write cached NAT/SIT entries to NAT/SIT area */ 1326 flush_nat_entries(sbi, cpc); 1327 flush_sit_entries(sbi, cpc); 1328 1329 /* unlock all the fs_lock[] in do_checkpoint() */ 1330 err = do_checkpoint(sbi, cpc); 1331 if (err) 1332 release_discard_addrs(sbi); 1333 else 1334 clear_prefree_segments(sbi, cpc); 1335 1336 unblock_operations(sbi); 1337 stat_inc_cp_count(sbi->stat_info); 1338 1339 if (cpc->reason & CP_RECOVERY) 1340 f2fs_msg(sbi->sb, KERN_NOTICE, 1341 "checkpoint: version = %llx", ckpt_ver); 1342 1343 /* do checkpoint periodically */ 1344 f2fs_update_time(sbi, CP_TIME); 1345 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1346 out: 1347 mutex_unlock(&sbi->cp_mutex); 1348 return err; 1349 } 1350 1351 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1352 { 1353 int i; 1354 1355 for (i = 0; i < MAX_INO_ENTRY; i++) { 1356 struct inode_management *im = &sbi->im[i]; 1357 1358 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1359 spin_lock_init(&im->ino_lock); 1360 INIT_LIST_HEAD(&im->ino_list); 1361 im->ino_num = 0; 1362 } 1363 1364 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1365 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1366 F2FS_ORPHANS_PER_BLOCK; 1367 } 1368 1369 int __init create_checkpoint_caches(void) 1370 { 1371 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1372 sizeof(struct ino_entry)); 1373 if (!ino_entry_slab) 1374 return -ENOMEM; 1375 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1376 sizeof(struct inode_entry)); 1377 if (!inode_entry_slab) { 1378 kmem_cache_destroy(ino_entry_slab); 1379 return -ENOMEM; 1380 } 1381 return 0; 1382 } 1383 1384 void destroy_checkpoint_caches(void) 1385 { 1386 kmem_cache_destroy(ino_entry_slab); 1387 kmem_cache_destroy(inode_entry_slab); 1388 } 1389