xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision f7d84fa7)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 	};
166 	struct blk_plug plug;
167 
168 	if (unlikely(type == META_POR))
169 		fio.op_flags &= ~REQ_META;
170 
171 	blk_start_plug(&plug);
172 	for (; nrpages-- > 0; blkno++) {
173 
174 		if (!is_valid_blkaddr(sbi, blkno, type))
175 			goto out;
176 
177 		switch (type) {
178 		case META_NAT:
179 			if (unlikely(blkno >=
180 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 				blkno = 0;
182 			/* get nat block addr */
183 			fio.new_blkaddr = current_nat_addr(sbi,
184 					blkno * NAT_ENTRY_PER_BLOCK);
185 			break;
186 		case META_SIT:
187 			/* get sit block addr */
188 			fio.new_blkaddr = current_sit_addr(sbi,
189 					blkno * SIT_ENTRY_PER_BLOCK);
190 			break;
191 		case META_SSA:
192 		case META_CP:
193 		case META_POR:
194 			fio.new_blkaddr = blkno;
195 			break;
196 		default:
197 			BUG();
198 		}
199 
200 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 						fio.new_blkaddr, false);
202 		if (!page)
203 			continue;
204 		if (PageUptodate(page)) {
205 			f2fs_put_page(page, 1);
206 			continue;
207 		}
208 
209 		fio.page = page;
210 		fio.old_blkaddr = fio.new_blkaddr;
211 		f2fs_submit_page_mbio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	f2fs_submit_merged_bio(sbi, META, READ);
216 	blk_finish_plug(&plug);
217 	return blkno - start;
218 }
219 
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 	struct page *page;
223 	bool readahead = false;
224 
225 	page = find_get_page(META_MAPPING(sbi), index);
226 	if (!page || !PageUptodate(page))
227 		readahead = true;
228 	f2fs_put_page(page, 0);
229 
230 	if (readahead)
231 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233 
234 static int f2fs_write_meta_page(struct page *page,
235 				struct writeback_control *wbc)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 
239 	trace_f2fs_writepage(page, META);
240 
241 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 		goto redirty_out;
243 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 		goto redirty_out;
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 
248 	write_meta_page(sbi, page);
249 	dec_page_count(sbi, F2FS_DIRTY_META);
250 
251 	if (wbc->for_reclaim)
252 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253 						0, page->index, META, WRITE);
254 
255 	unlock_page(page);
256 
257 	if (unlikely(f2fs_cp_error(sbi)))
258 		f2fs_submit_merged_bio(sbi, META, WRITE);
259 
260 	return 0;
261 
262 redirty_out:
263 	redirty_page_for_writepage(wbc, page);
264 	return AOP_WRITEPAGE_ACTIVATE;
265 }
266 
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268 				struct writeback_control *wbc)
269 {
270 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271 	long diff, written;
272 
273 	/* collect a number of dirty meta pages and write together */
274 	if (wbc->for_kupdate ||
275 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276 		goto skip_write;
277 
278 	/* if locked failed, cp will flush dirty pages instead */
279 	if (!mutex_trylock(&sbi->cp_mutex))
280 		goto skip_write;
281 
282 	trace_f2fs_writepages(mapping->host, wbc, META);
283 	diff = nr_pages_to_write(sbi, META, wbc);
284 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
285 	mutex_unlock(&sbi->cp_mutex);
286 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
287 	return 0;
288 
289 skip_write:
290 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
291 	trace_f2fs_writepages(mapping->host, wbc, META);
292 	return 0;
293 }
294 
295 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
296 						long nr_to_write)
297 {
298 	struct address_space *mapping = META_MAPPING(sbi);
299 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
300 	struct pagevec pvec;
301 	long nwritten = 0;
302 	struct writeback_control wbc = {
303 		.for_reclaim = 0,
304 	};
305 	struct blk_plug plug;
306 
307 	pagevec_init(&pvec, 0);
308 
309 	blk_start_plug(&plug);
310 
311 	while (index <= end) {
312 		int i, nr_pages;
313 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
314 				PAGECACHE_TAG_DIRTY,
315 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
316 		if (unlikely(nr_pages == 0))
317 			break;
318 
319 		for (i = 0; i < nr_pages; i++) {
320 			struct page *page = pvec.pages[i];
321 
322 			if (prev == ULONG_MAX)
323 				prev = page->index - 1;
324 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
325 				pagevec_release(&pvec);
326 				goto stop;
327 			}
328 
329 			lock_page(page);
330 
331 			if (unlikely(page->mapping != mapping)) {
332 continue_unlock:
333 				unlock_page(page);
334 				continue;
335 			}
336 			if (!PageDirty(page)) {
337 				/* someone wrote it for us */
338 				goto continue_unlock;
339 			}
340 
341 			f2fs_wait_on_page_writeback(page, META, true);
342 
343 			BUG_ON(PageWriteback(page));
344 			if (!clear_page_dirty_for_io(page))
345 				goto continue_unlock;
346 
347 			if (mapping->a_ops->writepage(page, &wbc)) {
348 				unlock_page(page);
349 				break;
350 			}
351 			nwritten++;
352 			prev = page->index;
353 			if (unlikely(nwritten >= nr_to_write))
354 				break;
355 		}
356 		pagevec_release(&pvec);
357 		cond_resched();
358 	}
359 stop:
360 	if (nwritten)
361 		f2fs_submit_merged_bio(sbi, type, WRITE);
362 
363 	blk_finish_plug(&plug);
364 
365 	return nwritten;
366 }
367 
368 static int f2fs_set_meta_page_dirty(struct page *page)
369 {
370 	trace_f2fs_set_page_dirty(page, META);
371 
372 	if (!PageUptodate(page))
373 		SetPageUptodate(page);
374 	if (!PageDirty(page)) {
375 		f2fs_set_page_dirty_nobuffers(page);
376 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
377 		SetPagePrivate(page);
378 		f2fs_trace_pid(page);
379 		return 1;
380 	}
381 	return 0;
382 }
383 
384 const struct address_space_operations f2fs_meta_aops = {
385 	.writepage	= f2fs_write_meta_page,
386 	.writepages	= f2fs_write_meta_pages,
387 	.set_page_dirty	= f2fs_set_meta_page_dirty,
388 	.invalidatepage = f2fs_invalidate_page,
389 	.releasepage	= f2fs_release_page,
390 #ifdef CONFIG_MIGRATION
391 	.migratepage    = f2fs_migrate_page,
392 #endif
393 };
394 
395 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
396 {
397 	struct inode_management *im = &sbi->im[type];
398 	struct ino_entry *e, *tmp;
399 
400 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
401 retry:
402 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
403 
404 	spin_lock(&im->ino_lock);
405 	e = radix_tree_lookup(&im->ino_root, ino);
406 	if (!e) {
407 		e = tmp;
408 		if (radix_tree_insert(&im->ino_root, ino, e)) {
409 			spin_unlock(&im->ino_lock);
410 			radix_tree_preload_end();
411 			goto retry;
412 		}
413 		memset(e, 0, sizeof(struct ino_entry));
414 		e->ino = ino;
415 
416 		list_add_tail(&e->list, &im->ino_list);
417 		if (type != ORPHAN_INO)
418 			im->ino_num++;
419 	}
420 	spin_unlock(&im->ino_lock);
421 	radix_tree_preload_end();
422 
423 	if (e != tmp)
424 		kmem_cache_free(ino_entry_slab, tmp);
425 }
426 
427 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 {
429 	struct inode_management *im = &sbi->im[type];
430 	struct ino_entry *e;
431 
432 	spin_lock(&im->ino_lock);
433 	e = radix_tree_lookup(&im->ino_root, ino);
434 	if (e) {
435 		list_del(&e->list);
436 		radix_tree_delete(&im->ino_root, ino);
437 		im->ino_num--;
438 		spin_unlock(&im->ino_lock);
439 		kmem_cache_free(ino_entry_slab, e);
440 		return;
441 	}
442 	spin_unlock(&im->ino_lock);
443 }
444 
445 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
446 {
447 	/* add new dirty ino entry into list */
448 	__add_ino_entry(sbi, ino, type);
449 }
450 
451 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
452 {
453 	/* remove dirty ino entry from list */
454 	__remove_ino_entry(sbi, ino, type);
455 }
456 
457 /* mode should be APPEND_INO or UPDATE_INO */
458 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
459 {
460 	struct inode_management *im = &sbi->im[mode];
461 	struct ino_entry *e;
462 
463 	spin_lock(&im->ino_lock);
464 	e = radix_tree_lookup(&im->ino_root, ino);
465 	spin_unlock(&im->ino_lock);
466 	return e ? true : false;
467 }
468 
469 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
470 {
471 	struct ino_entry *e, *tmp;
472 	int i;
473 
474 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
475 		struct inode_management *im = &sbi->im[i];
476 
477 		spin_lock(&im->ino_lock);
478 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
479 			list_del(&e->list);
480 			radix_tree_delete(&im->ino_root, e->ino);
481 			kmem_cache_free(ino_entry_slab, e);
482 			im->ino_num--;
483 		}
484 		spin_unlock(&im->ino_lock);
485 	}
486 }
487 
488 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
489 {
490 	struct inode_management *im = &sbi->im[ORPHAN_INO];
491 	int err = 0;
492 
493 	spin_lock(&im->ino_lock);
494 
495 #ifdef CONFIG_F2FS_FAULT_INJECTION
496 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
497 		spin_unlock(&im->ino_lock);
498 		f2fs_show_injection_info(FAULT_ORPHAN);
499 		return -ENOSPC;
500 	}
501 #endif
502 	if (unlikely(im->ino_num >= sbi->max_orphans))
503 		err = -ENOSPC;
504 	else
505 		im->ino_num++;
506 	spin_unlock(&im->ino_lock);
507 
508 	return err;
509 }
510 
511 void release_orphan_inode(struct f2fs_sb_info *sbi)
512 {
513 	struct inode_management *im = &sbi->im[ORPHAN_INO];
514 
515 	spin_lock(&im->ino_lock);
516 	f2fs_bug_on(sbi, im->ino_num == 0);
517 	im->ino_num--;
518 	spin_unlock(&im->ino_lock);
519 }
520 
521 void add_orphan_inode(struct inode *inode)
522 {
523 	/* add new orphan ino entry into list */
524 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
525 	update_inode_page(inode);
526 }
527 
528 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
529 {
530 	/* remove orphan entry from orphan list */
531 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
532 }
533 
534 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536 	struct inode *inode;
537 	struct node_info ni;
538 	int err = acquire_orphan_inode(sbi);
539 
540 	if (err) {
541 		set_sbi_flag(sbi, SBI_NEED_FSCK);
542 		f2fs_msg(sbi->sb, KERN_WARNING,
543 				"%s: orphan failed (ino=%x), run fsck to fix.",
544 				__func__, ino);
545 		return err;
546 	}
547 
548 	__add_ino_entry(sbi, ino, ORPHAN_INO);
549 
550 	inode = f2fs_iget_retry(sbi->sb, ino);
551 	if (IS_ERR(inode)) {
552 		/*
553 		 * there should be a bug that we can't find the entry
554 		 * to orphan inode.
555 		 */
556 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
557 		return PTR_ERR(inode);
558 	}
559 
560 	clear_nlink(inode);
561 
562 	/* truncate all the data during iput */
563 	iput(inode);
564 
565 	get_node_info(sbi, ino, &ni);
566 
567 	/* ENOMEM was fully retried in f2fs_evict_inode. */
568 	if (ni.blk_addr != NULL_ADDR) {
569 		set_sbi_flag(sbi, SBI_NEED_FSCK);
570 		f2fs_msg(sbi->sb, KERN_WARNING,
571 			"%s: orphan failed (ino=%x) by kernel, retry mount.",
572 				__func__, ino);
573 		return -EIO;
574 	}
575 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
576 	return 0;
577 }
578 
579 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
580 {
581 	block_t start_blk, orphan_blocks, i, j;
582 	int err;
583 
584 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
585 		return 0;
586 
587 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
588 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
589 
590 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
591 
592 	for (i = 0; i < orphan_blocks; i++) {
593 		struct page *page = get_meta_page(sbi, start_blk + i);
594 		struct f2fs_orphan_block *orphan_blk;
595 
596 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
597 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
598 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
599 			err = recover_orphan_inode(sbi, ino);
600 			if (err) {
601 				f2fs_put_page(page, 1);
602 				return err;
603 			}
604 		}
605 		f2fs_put_page(page, 1);
606 	}
607 	/* clear Orphan Flag */
608 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
609 	return 0;
610 }
611 
612 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
613 {
614 	struct list_head *head;
615 	struct f2fs_orphan_block *orphan_blk = NULL;
616 	unsigned int nentries = 0;
617 	unsigned short index = 1;
618 	unsigned short orphan_blocks;
619 	struct page *page = NULL;
620 	struct ino_entry *orphan = NULL;
621 	struct inode_management *im = &sbi->im[ORPHAN_INO];
622 
623 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
624 
625 	/*
626 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
627 	 * orphan inode operations are covered under f2fs_lock_op().
628 	 * And, spin_lock should be avoided due to page operations below.
629 	 */
630 	head = &im->ino_list;
631 
632 	/* loop for each orphan inode entry and write them in Jornal block */
633 	list_for_each_entry(orphan, head, list) {
634 		if (!page) {
635 			page = grab_meta_page(sbi, start_blk++);
636 			orphan_blk =
637 				(struct f2fs_orphan_block *)page_address(page);
638 			memset(orphan_blk, 0, sizeof(*orphan_blk));
639 		}
640 
641 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
642 
643 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
644 			/*
645 			 * an orphan block is full of 1020 entries,
646 			 * then we need to flush current orphan blocks
647 			 * and bring another one in memory
648 			 */
649 			orphan_blk->blk_addr = cpu_to_le16(index);
650 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
651 			orphan_blk->entry_count = cpu_to_le32(nentries);
652 			set_page_dirty(page);
653 			f2fs_put_page(page, 1);
654 			index++;
655 			nentries = 0;
656 			page = NULL;
657 		}
658 	}
659 
660 	if (page) {
661 		orphan_blk->blk_addr = cpu_to_le16(index);
662 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
663 		orphan_blk->entry_count = cpu_to_le32(nentries);
664 		set_page_dirty(page);
665 		f2fs_put_page(page, 1);
666 	}
667 }
668 
669 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
670 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
671 		unsigned long long *version)
672 {
673 	unsigned long blk_size = sbi->blocksize;
674 	size_t crc_offset = 0;
675 	__u32 crc = 0;
676 
677 	*cp_page = get_meta_page(sbi, cp_addr);
678 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
679 
680 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
681 	if (crc_offset > (blk_size - sizeof(__le32))) {
682 		f2fs_msg(sbi->sb, KERN_WARNING,
683 			"invalid crc_offset: %zu", crc_offset);
684 		return -EINVAL;
685 	}
686 
687 	crc = cur_cp_crc(*cp_block);
688 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
689 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
690 		return -EINVAL;
691 	}
692 
693 	*version = cur_cp_version(*cp_block);
694 	return 0;
695 }
696 
697 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
698 				block_t cp_addr, unsigned long long *version)
699 {
700 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
701 	struct f2fs_checkpoint *cp_block = NULL;
702 	unsigned long long cur_version = 0, pre_version = 0;
703 	int err;
704 
705 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
706 					&cp_page_1, version);
707 	if (err)
708 		goto invalid_cp1;
709 	pre_version = *version;
710 
711 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
712 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
713 					&cp_page_2, version);
714 	if (err)
715 		goto invalid_cp2;
716 	cur_version = *version;
717 
718 	if (cur_version == pre_version) {
719 		*version = cur_version;
720 		f2fs_put_page(cp_page_2, 1);
721 		return cp_page_1;
722 	}
723 invalid_cp2:
724 	f2fs_put_page(cp_page_2, 1);
725 invalid_cp1:
726 	f2fs_put_page(cp_page_1, 1);
727 	return NULL;
728 }
729 
730 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
731 {
732 	struct f2fs_checkpoint *cp_block;
733 	struct f2fs_super_block *fsb = sbi->raw_super;
734 	struct page *cp1, *cp2, *cur_page;
735 	unsigned long blk_size = sbi->blocksize;
736 	unsigned long long cp1_version = 0, cp2_version = 0;
737 	unsigned long long cp_start_blk_no;
738 	unsigned int cp_blks = 1 + __cp_payload(sbi);
739 	block_t cp_blk_no;
740 	int i;
741 
742 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
743 	if (!sbi->ckpt)
744 		return -ENOMEM;
745 	/*
746 	 * Finding out valid cp block involves read both
747 	 * sets( cp pack1 and cp pack 2)
748 	 */
749 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
750 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
751 
752 	/* The second checkpoint pack should start at the next segment */
753 	cp_start_blk_no += ((unsigned long long)1) <<
754 				le32_to_cpu(fsb->log_blocks_per_seg);
755 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
756 
757 	if (cp1 && cp2) {
758 		if (ver_after(cp2_version, cp1_version))
759 			cur_page = cp2;
760 		else
761 			cur_page = cp1;
762 	} else if (cp1) {
763 		cur_page = cp1;
764 	} else if (cp2) {
765 		cur_page = cp2;
766 	} else {
767 		goto fail_no_cp;
768 	}
769 
770 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
771 	memcpy(sbi->ckpt, cp_block, blk_size);
772 
773 	/* Sanity checking of checkpoint */
774 	if (sanity_check_ckpt(sbi))
775 		goto free_fail_no_cp;
776 
777 	if (cur_page == cp1)
778 		sbi->cur_cp_pack = 1;
779 	else
780 		sbi->cur_cp_pack = 2;
781 
782 	if (cp_blks <= 1)
783 		goto done;
784 
785 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
786 	if (cur_page == cp2)
787 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
788 
789 	for (i = 1; i < cp_blks; i++) {
790 		void *sit_bitmap_ptr;
791 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
792 
793 		cur_page = get_meta_page(sbi, cp_blk_no + i);
794 		sit_bitmap_ptr = page_address(cur_page);
795 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
796 		f2fs_put_page(cur_page, 1);
797 	}
798 done:
799 	f2fs_put_page(cp1, 1);
800 	f2fs_put_page(cp2, 1);
801 	return 0;
802 
803 free_fail_no_cp:
804 	f2fs_put_page(cp1, 1);
805 	f2fs_put_page(cp2, 1);
806 fail_no_cp:
807 	kfree(sbi->ckpt);
808 	return -EINVAL;
809 }
810 
811 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
812 {
813 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
815 
816 	if (is_inode_flag_set(inode, flag))
817 		return;
818 
819 	set_inode_flag(inode, flag);
820 	if (!f2fs_is_volatile_file(inode))
821 		list_add_tail(&F2FS_I(inode)->dirty_list,
822 						&sbi->inode_list[type]);
823 	stat_inc_dirty_inode(sbi, type);
824 }
825 
826 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
827 {
828 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
829 
830 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
831 		return;
832 
833 	list_del_init(&F2FS_I(inode)->dirty_list);
834 	clear_inode_flag(inode, flag);
835 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
836 }
837 
838 void update_dirty_page(struct inode *inode, struct page *page)
839 {
840 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
841 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
842 
843 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
844 			!S_ISLNK(inode->i_mode))
845 		return;
846 
847 	spin_lock(&sbi->inode_lock[type]);
848 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
849 		__add_dirty_inode(inode, type);
850 	inode_inc_dirty_pages(inode);
851 	spin_unlock(&sbi->inode_lock[type]);
852 
853 	SetPagePrivate(page);
854 	f2fs_trace_pid(page);
855 }
856 
857 void remove_dirty_inode(struct inode *inode)
858 {
859 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
860 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
861 
862 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
863 			!S_ISLNK(inode->i_mode))
864 		return;
865 
866 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
867 		return;
868 
869 	spin_lock(&sbi->inode_lock[type]);
870 	__remove_dirty_inode(inode, type);
871 	spin_unlock(&sbi->inode_lock[type]);
872 }
873 
874 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
875 {
876 	struct list_head *head;
877 	struct inode *inode;
878 	struct f2fs_inode_info *fi;
879 	bool is_dir = (type == DIR_INODE);
880 
881 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
882 				get_pages(sbi, is_dir ?
883 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
884 retry:
885 	if (unlikely(f2fs_cp_error(sbi)))
886 		return -EIO;
887 
888 	spin_lock(&sbi->inode_lock[type]);
889 
890 	head = &sbi->inode_list[type];
891 	if (list_empty(head)) {
892 		spin_unlock(&sbi->inode_lock[type]);
893 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
894 				get_pages(sbi, is_dir ?
895 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
896 		return 0;
897 	}
898 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
899 	inode = igrab(&fi->vfs_inode);
900 	spin_unlock(&sbi->inode_lock[type]);
901 	if (inode) {
902 		filemap_fdatawrite(inode->i_mapping);
903 		iput(inode);
904 	} else {
905 		/*
906 		 * We should submit bio, since it exists several
907 		 * wribacking dentry pages in the freeing inode.
908 		 */
909 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
910 		cond_resched();
911 	}
912 	goto retry;
913 }
914 
915 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
916 {
917 	struct list_head *head = &sbi->inode_list[DIRTY_META];
918 	struct inode *inode;
919 	struct f2fs_inode_info *fi;
920 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
921 
922 	while (total--) {
923 		if (unlikely(f2fs_cp_error(sbi)))
924 			return -EIO;
925 
926 		spin_lock(&sbi->inode_lock[DIRTY_META]);
927 		if (list_empty(head)) {
928 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
929 			return 0;
930 		}
931 		fi = list_first_entry(head, struct f2fs_inode_info,
932 							gdirty_list);
933 		inode = igrab(&fi->vfs_inode);
934 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
935 		if (inode) {
936 			sync_inode_metadata(inode, 0);
937 
938 			/* it's on eviction */
939 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
940 				update_inode_page(inode);
941 			iput(inode);
942 		}
943 	};
944 	return 0;
945 }
946 
947 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
948 {
949 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
950 	struct f2fs_nm_info *nm_i = NM_I(sbi);
951 	nid_t last_nid = nm_i->next_scan_nid;
952 
953 	next_free_nid(sbi, &last_nid);
954 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
955 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
956 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
957 	ckpt->next_free_nid = cpu_to_le32(last_nid);
958 }
959 
960 /*
961  * Freeze all the FS-operations for checkpoint.
962  */
963 static int block_operations(struct f2fs_sb_info *sbi)
964 {
965 	struct writeback_control wbc = {
966 		.sync_mode = WB_SYNC_ALL,
967 		.nr_to_write = LONG_MAX,
968 		.for_reclaim = 0,
969 	};
970 	struct blk_plug plug;
971 	int err = 0;
972 
973 	blk_start_plug(&plug);
974 
975 retry_flush_dents:
976 	f2fs_lock_all(sbi);
977 	/* write all the dirty dentry pages */
978 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
979 		f2fs_unlock_all(sbi);
980 		err = sync_dirty_inodes(sbi, DIR_INODE);
981 		if (err)
982 			goto out;
983 		cond_resched();
984 		goto retry_flush_dents;
985 	}
986 
987 	/*
988 	 * POR: we should ensure that there are no dirty node pages
989 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
990 	 */
991 	down_write(&sbi->node_change);
992 
993 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
994 		up_write(&sbi->node_change);
995 		f2fs_unlock_all(sbi);
996 		err = f2fs_sync_inode_meta(sbi);
997 		if (err)
998 			goto out;
999 		cond_resched();
1000 		goto retry_flush_dents;
1001 	}
1002 
1003 retry_flush_nodes:
1004 	down_write(&sbi->node_write);
1005 
1006 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1007 		up_write(&sbi->node_write);
1008 		err = sync_node_pages(sbi, &wbc);
1009 		if (err) {
1010 			up_write(&sbi->node_change);
1011 			f2fs_unlock_all(sbi);
1012 			goto out;
1013 		}
1014 		cond_resched();
1015 		goto retry_flush_nodes;
1016 	}
1017 
1018 	/*
1019 	 * sbi->node_change is used only for AIO write_begin path which produces
1020 	 * dirty node blocks and some checkpoint values by block allocation.
1021 	 */
1022 	__prepare_cp_block(sbi);
1023 	up_write(&sbi->node_change);
1024 out:
1025 	blk_finish_plug(&plug);
1026 	return err;
1027 }
1028 
1029 static void unblock_operations(struct f2fs_sb_info *sbi)
1030 {
1031 	up_write(&sbi->node_write);
1032 	f2fs_unlock_all(sbi);
1033 }
1034 
1035 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1036 {
1037 	DEFINE_WAIT(wait);
1038 
1039 	for (;;) {
1040 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1041 
1042 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1043 			break;
1044 
1045 		io_schedule_timeout(5*HZ);
1046 	}
1047 	finish_wait(&sbi->cp_wait, &wait);
1048 }
1049 
1050 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1051 {
1052 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1053 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1054 
1055 	spin_lock(&sbi->cp_lock);
1056 
1057 	if ((cpc->reason & CP_UMOUNT) &&
1058 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1059 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1060 		disable_nat_bits(sbi, false);
1061 
1062 	if (cpc->reason & CP_TRIMMED)
1063 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1064 
1065 	if (cpc->reason & CP_UMOUNT)
1066 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1067 	else
1068 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1069 
1070 	if (cpc->reason & CP_FASTBOOT)
1071 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1072 	else
1073 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1074 
1075 	if (orphan_num)
1076 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1077 	else
1078 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1079 
1080 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1081 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1082 
1083 	/* set this flag to activate crc|cp_ver for recovery */
1084 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1085 
1086 	spin_unlock(&sbi->cp_lock);
1087 }
1088 
1089 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1090 {
1091 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1092 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1093 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1094 	block_t start_blk;
1095 	unsigned int data_sum_blocks, orphan_blocks;
1096 	__u32 crc32 = 0;
1097 	int i;
1098 	int cp_payload_blks = __cp_payload(sbi);
1099 	struct super_block *sb = sbi->sb;
1100 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1101 	u64 kbytes_written;
1102 
1103 	/* Flush all the NAT/SIT pages */
1104 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1105 		sync_meta_pages(sbi, META, LONG_MAX);
1106 		if (unlikely(f2fs_cp_error(sbi)))
1107 			return -EIO;
1108 	}
1109 
1110 	/*
1111 	 * modify checkpoint
1112 	 * version number is already updated
1113 	 */
1114 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1115 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1116 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1117 		ckpt->cur_node_segno[i] =
1118 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1119 		ckpt->cur_node_blkoff[i] =
1120 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1121 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1122 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1123 	}
1124 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1125 		ckpt->cur_data_segno[i] =
1126 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1127 		ckpt->cur_data_blkoff[i] =
1128 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1129 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1130 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1131 	}
1132 
1133 	/* 2 cp  + n data seg summary + orphan inode blocks */
1134 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1135 	spin_lock(&sbi->cp_lock);
1136 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1137 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1138 	else
1139 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1140 	spin_unlock(&sbi->cp_lock);
1141 
1142 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1143 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1144 			orphan_blocks);
1145 
1146 	if (__remain_node_summaries(cpc->reason))
1147 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1148 				cp_payload_blks + data_sum_blocks +
1149 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1150 	else
1151 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1152 				cp_payload_blks + data_sum_blocks +
1153 				orphan_blocks);
1154 
1155 	/* update ckpt flag for checkpoint */
1156 	update_ckpt_flags(sbi, cpc);
1157 
1158 	/* update SIT/NAT bitmap */
1159 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1160 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1161 
1162 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1163 	*((__le32 *)((unsigned char *)ckpt +
1164 				le32_to_cpu(ckpt->checksum_offset)))
1165 				= cpu_to_le32(crc32);
1166 
1167 	start_blk = __start_cp_next_addr(sbi);
1168 
1169 	/* write nat bits */
1170 	if (enabled_nat_bits(sbi, cpc)) {
1171 		__u64 cp_ver = cur_cp_version(ckpt);
1172 		block_t blk;
1173 
1174 		cp_ver |= ((__u64)crc32 << 32);
1175 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1176 
1177 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1178 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1179 			update_meta_page(sbi, nm_i->nat_bits +
1180 					(i << F2FS_BLKSIZE_BITS), blk + i);
1181 
1182 		/* Flush all the NAT BITS pages */
1183 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1184 			sync_meta_pages(sbi, META, LONG_MAX);
1185 			if (unlikely(f2fs_cp_error(sbi)))
1186 				return -EIO;
1187 		}
1188 	}
1189 
1190 	/* need to wait for end_io results */
1191 	wait_on_all_pages_writeback(sbi);
1192 	if (unlikely(f2fs_cp_error(sbi)))
1193 		return -EIO;
1194 
1195 	/* write out checkpoint buffer at block 0 */
1196 	update_meta_page(sbi, ckpt, start_blk++);
1197 
1198 	for (i = 1; i < 1 + cp_payload_blks; i++)
1199 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1200 							start_blk++);
1201 
1202 	if (orphan_num) {
1203 		write_orphan_inodes(sbi, start_blk);
1204 		start_blk += orphan_blocks;
1205 	}
1206 
1207 	write_data_summaries(sbi, start_blk);
1208 	start_blk += data_sum_blocks;
1209 
1210 	/* Record write statistics in the hot node summary */
1211 	kbytes_written = sbi->kbytes_written;
1212 	if (sb->s_bdev->bd_part)
1213 		kbytes_written += BD_PART_WRITTEN(sbi);
1214 
1215 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1216 
1217 	if (__remain_node_summaries(cpc->reason)) {
1218 		write_node_summaries(sbi, start_blk);
1219 		start_blk += NR_CURSEG_NODE_TYPE;
1220 	}
1221 
1222 	/* writeout checkpoint block */
1223 	update_meta_page(sbi, ckpt, start_blk);
1224 
1225 	/* wait for previous submitted node/meta pages writeback */
1226 	wait_on_all_pages_writeback(sbi);
1227 
1228 	if (unlikely(f2fs_cp_error(sbi)))
1229 		return -EIO;
1230 
1231 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1232 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1233 
1234 	/* update user_block_counts */
1235 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1236 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1237 
1238 	/* Here, we only have one bio having CP pack */
1239 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1240 
1241 	/* wait for previous submitted meta pages writeback */
1242 	wait_on_all_pages_writeback(sbi);
1243 
1244 	release_ino_entry(sbi, false);
1245 
1246 	if (unlikely(f2fs_cp_error(sbi)))
1247 		return -EIO;
1248 
1249 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1250 	clear_sbi_flag(sbi, SBI_NEED_CP);
1251 	__set_cp_next_pack(sbi);
1252 
1253 	/*
1254 	 * redirty superblock if metadata like node page or inode cache is
1255 	 * updated during writing checkpoint.
1256 	 */
1257 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1258 			get_pages(sbi, F2FS_DIRTY_IMETA))
1259 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1260 
1261 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * We guarantee that this checkpoint procedure will not fail.
1268  */
1269 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1270 {
1271 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1272 	unsigned long long ckpt_ver;
1273 	int err = 0;
1274 
1275 	mutex_lock(&sbi->cp_mutex);
1276 
1277 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1278 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1279 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1280 		goto out;
1281 	if (unlikely(f2fs_cp_error(sbi))) {
1282 		err = -EIO;
1283 		goto out;
1284 	}
1285 	if (f2fs_readonly(sbi->sb)) {
1286 		err = -EROFS;
1287 		goto out;
1288 	}
1289 
1290 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1291 
1292 	err = block_operations(sbi);
1293 	if (err)
1294 		goto out;
1295 
1296 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1297 
1298 	f2fs_flush_merged_bios(sbi);
1299 
1300 	/* this is the case of multiple fstrims without any changes */
1301 	if (cpc->reason & CP_DISCARD) {
1302 		if (!exist_trim_candidates(sbi, cpc)) {
1303 			unblock_operations(sbi);
1304 			goto out;
1305 		}
1306 
1307 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1308 				SIT_I(sbi)->dirty_sentries == 0 &&
1309 				prefree_segments(sbi) == 0) {
1310 			flush_sit_entries(sbi, cpc);
1311 			clear_prefree_segments(sbi, cpc);
1312 			unblock_operations(sbi);
1313 			goto out;
1314 		}
1315 	}
1316 
1317 	/*
1318 	 * update checkpoint pack index
1319 	 * Increase the version number so that
1320 	 * SIT entries and seg summaries are written at correct place
1321 	 */
1322 	ckpt_ver = cur_cp_version(ckpt);
1323 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1324 
1325 	/* write cached NAT/SIT entries to NAT/SIT area */
1326 	flush_nat_entries(sbi, cpc);
1327 	flush_sit_entries(sbi, cpc);
1328 
1329 	/* unlock all the fs_lock[] in do_checkpoint() */
1330 	err = do_checkpoint(sbi, cpc);
1331 	if (err)
1332 		release_discard_addrs(sbi);
1333 	else
1334 		clear_prefree_segments(sbi, cpc);
1335 
1336 	unblock_operations(sbi);
1337 	stat_inc_cp_count(sbi->stat_info);
1338 
1339 	if (cpc->reason & CP_RECOVERY)
1340 		f2fs_msg(sbi->sb, KERN_NOTICE,
1341 			"checkpoint: version = %llx", ckpt_ver);
1342 
1343 	/* do checkpoint periodically */
1344 	f2fs_update_time(sbi, CP_TIME);
1345 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1346 out:
1347 	mutex_unlock(&sbi->cp_mutex);
1348 	return err;
1349 }
1350 
1351 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1352 {
1353 	int i;
1354 
1355 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1356 		struct inode_management *im = &sbi->im[i];
1357 
1358 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1359 		spin_lock_init(&im->ino_lock);
1360 		INIT_LIST_HEAD(&im->ino_list);
1361 		im->ino_num = 0;
1362 	}
1363 
1364 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1365 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1366 				F2FS_ORPHANS_PER_BLOCK;
1367 }
1368 
1369 int __init create_checkpoint_caches(void)
1370 {
1371 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1372 			sizeof(struct ino_entry));
1373 	if (!ino_entry_slab)
1374 		return -ENOMEM;
1375 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1376 			sizeof(struct inode_entry));
1377 	if (!inode_entry_slab) {
1378 		kmem_cache_destroy(ino_entry_slab);
1379 		return -ENOMEM;
1380 	}
1381 	return 0;
1382 }
1383 
1384 void destroy_checkpoint_caches(void)
1385 {
1386 	kmem_cache_destroy(ino_entry_slab);
1387 	kmem_cache_destroy(inode_entry_slab);
1388 }
1389