xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision f3a8b664)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = READ_SYNC | REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 	};
166 	struct blk_plug plug;
167 
168 	if (unlikely(type == META_POR))
169 		fio.op_flags &= ~REQ_META;
170 
171 	blk_start_plug(&plug);
172 	for (; nrpages-- > 0; blkno++) {
173 
174 		if (!is_valid_blkaddr(sbi, blkno, type))
175 			goto out;
176 
177 		switch (type) {
178 		case META_NAT:
179 			if (unlikely(blkno >=
180 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 				blkno = 0;
182 			/* get nat block addr */
183 			fio.new_blkaddr = current_nat_addr(sbi,
184 					blkno * NAT_ENTRY_PER_BLOCK);
185 			break;
186 		case META_SIT:
187 			/* get sit block addr */
188 			fio.new_blkaddr = current_sit_addr(sbi,
189 					blkno * SIT_ENTRY_PER_BLOCK);
190 			break;
191 		case META_SSA:
192 		case META_CP:
193 		case META_POR:
194 			fio.new_blkaddr = blkno;
195 			break;
196 		default:
197 			BUG();
198 		}
199 
200 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 						fio.new_blkaddr, false);
202 		if (!page)
203 			continue;
204 		if (PageUptodate(page)) {
205 			f2fs_put_page(page, 1);
206 			continue;
207 		}
208 
209 		fio.page = page;
210 		fio.old_blkaddr = fio.new_blkaddr;
211 		f2fs_submit_page_mbio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	f2fs_submit_merged_bio(sbi, META, READ);
216 	blk_finish_plug(&plug);
217 	return blkno - start;
218 }
219 
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 	struct page *page;
223 	bool readahead = false;
224 
225 	page = find_get_page(META_MAPPING(sbi), index);
226 	if (!page || !PageUptodate(page))
227 		readahead = true;
228 	f2fs_put_page(page, 0);
229 
230 	if (readahead)
231 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
232 }
233 
234 static int f2fs_write_meta_page(struct page *page,
235 				struct writeback_control *wbc)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 
239 	trace_f2fs_writepage(page, META);
240 
241 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 		goto redirty_out;
243 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 		goto redirty_out;
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 
248 	write_meta_page(sbi, page);
249 	dec_page_count(sbi, F2FS_DIRTY_META);
250 
251 	if (wbc->for_reclaim)
252 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
253 
254 	unlock_page(page);
255 
256 	if (unlikely(f2fs_cp_error(sbi)))
257 		f2fs_submit_merged_bio(sbi, META, WRITE);
258 
259 	return 0;
260 
261 redirty_out:
262 	redirty_page_for_writepage(wbc, page);
263 	return AOP_WRITEPAGE_ACTIVATE;
264 }
265 
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267 				struct writeback_control *wbc)
268 {
269 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270 	long diff, written;
271 
272 	/* collect a number of dirty meta pages and write together */
273 	if (wbc->for_kupdate ||
274 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
275 		goto skip_write;
276 
277 	trace_f2fs_writepages(mapping->host, wbc, META);
278 
279 	/* if mounting is failed, skip writing node pages */
280 	mutex_lock(&sbi->cp_mutex);
281 	diff = nr_pages_to_write(sbi, META, wbc);
282 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
283 	mutex_unlock(&sbi->cp_mutex);
284 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
285 	return 0;
286 
287 skip_write:
288 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
289 	trace_f2fs_writepages(mapping->host, wbc, META);
290 	return 0;
291 }
292 
293 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
294 						long nr_to_write)
295 {
296 	struct address_space *mapping = META_MAPPING(sbi);
297 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
298 	struct pagevec pvec;
299 	long nwritten = 0;
300 	struct writeback_control wbc = {
301 		.for_reclaim = 0,
302 	};
303 	struct blk_plug plug;
304 
305 	pagevec_init(&pvec, 0);
306 
307 	blk_start_plug(&plug);
308 
309 	while (index <= end) {
310 		int i, nr_pages;
311 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
312 				PAGECACHE_TAG_DIRTY,
313 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
314 		if (unlikely(nr_pages == 0))
315 			break;
316 
317 		for (i = 0; i < nr_pages; i++) {
318 			struct page *page = pvec.pages[i];
319 
320 			if (prev == ULONG_MAX)
321 				prev = page->index - 1;
322 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
323 				pagevec_release(&pvec);
324 				goto stop;
325 			}
326 
327 			lock_page(page);
328 
329 			if (unlikely(page->mapping != mapping)) {
330 continue_unlock:
331 				unlock_page(page);
332 				continue;
333 			}
334 			if (!PageDirty(page)) {
335 				/* someone wrote it for us */
336 				goto continue_unlock;
337 			}
338 
339 			f2fs_wait_on_page_writeback(page, META, true);
340 
341 			BUG_ON(PageWriteback(page));
342 			if (!clear_page_dirty_for_io(page))
343 				goto continue_unlock;
344 
345 			if (mapping->a_ops->writepage(page, &wbc)) {
346 				unlock_page(page);
347 				break;
348 			}
349 			nwritten++;
350 			prev = page->index;
351 			if (unlikely(nwritten >= nr_to_write))
352 				break;
353 		}
354 		pagevec_release(&pvec);
355 		cond_resched();
356 	}
357 stop:
358 	if (nwritten)
359 		f2fs_submit_merged_bio(sbi, type, WRITE);
360 
361 	blk_finish_plug(&plug);
362 
363 	return nwritten;
364 }
365 
366 static int f2fs_set_meta_page_dirty(struct page *page)
367 {
368 	trace_f2fs_set_page_dirty(page, META);
369 
370 	if (!PageUptodate(page))
371 		SetPageUptodate(page);
372 	if (!PageDirty(page)) {
373 		f2fs_set_page_dirty_nobuffers(page);
374 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
375 		SetPagePrivate(page);
376 		f2fs_trace_pid(page);
377 		return 1;
378 	}
379 	return 0;
380 }
381 
382 const struct address_space_operations f2fs_meta_aops = {
383 	.writepage	= f2fs_write_meta_page,
384 	.writepages	= f2fs_write_meta_pages,
385 	.set_page_dirty	= f2fs_set_meta_page_dirty,
386 	.invalidatepage = f2fs_invalidate_page,
387 	.releasepage	= f2fs_release_page,
388 #ifdef CONFIG_MIGRATION
389 	.migratepage    = f2fs_migrate_page,
390 #endif
391 };
392 
393 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
394 {
395 	struct inode_management *im = &sbi->im[type];
396 	struct ino_entry *e, *tmp;
397 
398 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
399 retry:
400 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
401 
402 	spin_lock(&im->ino_lock);
403 	e = radix_tree_lookup(&im->ino_root, ino);
404 	if (!e) {
405 		e = tmp;
406 		if (radix_tree_insert(&im->ino_root, ino, e)) {
407 			spin_unlock(&im->ino_lock);
408 			radix_tree_preload_end();
409 			goto retry;
410 		}
411 		memset(e, 0, sizeof(struct ino_entry));
412 		e->ino = ino;
413 
414 		list_add_tail(&e->list, &im->ino_list);
415 		if (type != ORPHAN_INO)
416 			im->ino_num++;
417 	}
418 	spin_unlock(&im->ino_lock);
419 	radix_tree_preload_end();
420 
421 	if (e != tmp)
422 		kmem_cache_free(ino_entry_slab, tmp);
423 }
424 
425 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
426 {
427 	struct inode_management *im = &sbi->im[type];
428 	struct ino_entry *e;
429 
430 	spin_lock(&im->ino_lock);
431 	e = radix_tree_lookup(&im->ino_root, ino);
432 	if (e) {
433 		list_del(&e->list);
434 		radix_tree_delete(&im->ino_root, ino);
435 		im->ino_num--;
436 		spin_unlock(&im->ino_lock);
437 		kmem_cache_free(ino_entry_slab, e);
438 		return;
439 	}
440 	spin_unlock(&im->ino_lock);
441 }
442 
443 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
444 {
445 	/* add new dirty ino entry into list */
446 	__add_ino_entry(sbi, ino, type);
447 }
448 
449 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
450 {
451 	/* remove dirty ino entry from list */
452 	__remove_ino_entry(sbi, ino, type);
453 }
454 
455 /* mode should be APPEND_INO or UPDATE_INO */
456 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
457 {
458 	struct inode_management *im = &sbi->im[mode];
459 	struct ino_entry *e;
460 
461 	spin_lock(&im->ino_lock);
462 	e = radix_tree_lookup(&im->ino_root, ino);
463 	spin_unlock(&im->ino_lock);
464 	return e ? true : false;
465 }
466 
467 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
468 {
469 	struct ino_entry *e, *tmp;
470 	int i;
471 
472 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
473 		struct inode_management *im = &sbi->im[i];
474 
475 		spin_lock(&im->ino_lock);
476 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
477 			list_del(&e->list);
478 			radix_tree_delete(&im->ino_root, e->ino);
479 			kmem_cache_free(ino_entry_slab, e);
480 			im->ino_num--;
481 		}
482 		spin_unlock(&im->ino_lock);
483 	}
484 }
485 
486 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
487 {
488 	struct inode_management *im = &sbi->im[ORPHAN_INO];
489 	int err = 0;
490 
491 	spin_lock(&im->ino_lock);
492 
493 #ifdef CONFIG_F2FS_FAULT_INJECTION
494 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
495 		spin_unlock(&im->ino_lock);
496 		return -ENOSPC;
497 	}
498 #endif
499 	if (unlikely(im->ino_num >= sbi->max_orphans))
500 		err = -ENOSPC;
501 	else
502 		im->ino_num++;
503 	spin_unlock(&im->ino_lock);
504 
505 	return err;
506 }
507 
508 void release_orphan_inode(struct f2fs_sb_info *sbi)
509 {
510 	struct inode_management *im = &sbi->im[ORPHAN_INO];
511 
512 	spin_lock(&im->ino_lock);
513 	f2fs_bug_on(sbi, im->ino_num == 0);
514 	im->ino_num--;
515 	spin_unlock(&im->ino_lock);
516 }
517 
518 void add_orphan_inode(struct inode *inode)
519 {
520 	/* add new orphan ino entry into list */
521 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
522 	update_inode_page(inode);
523 }
524 
525 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
526 {
527 	/* remove orphan entry from orphan list */
528 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
529 }
530 
531 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533 	struct inode *inode;
534 	struct node_info ni;
535 	int err = acquire_orphan_inode(sbi);
536 
537 	if (err) {
538 		set_sbi_flag(sbi, SBI_NEED_FSCK);
539 		f2fs_msg(sbi->sb, KERN_WARNING,
540 				"%s: orphan failed (ino=%x), run fsck to fix.",
541 				__func__, ino);
542 		return err;
543 	}
544 
545 	__add_ino_entry(sbi, ino, ORPHAN_INO);
546 
547 	inode = f2fs_iget_retry(sbi->sb, ino);
548 	if (IS_ERR(inode)) {
549 		/*
550 		 * there should be a bug that we can't find the entry
551 		 * to orphan inode.
552 		 */
553 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
554 		return PTR_ERR(inode);
555 	}
556 
557 	clear_nlink(inode);
558 
559 	/* truncate all the data during iput */
560 	iput(inode);
561 
562 	get_node_info(sbi, ino, &ni);
563 
564 	/* ENOMEM was fully retried in f2fs_evict_inode. */
565 	if (ni.blk_addr != NULL_ADDR) {
566 		set_sbi_flag(sbi, SBI_NEED_FSCK);
567 		f2fs_msg(sbi->sb, KERN_WARNING,
568 			"%s: orphan failed (ino=%x), run fsck to fix.",
569 				__func__, ino);
570 		return -EIO;
571 	}
572 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
573 	return 0;
574 }
575 
576 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
577 {
578 	block_t start_blk, orphan_blocks, i, j;
579 	int err;
580 
581 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
582 		return 0;
583 
584 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
585 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
586 
587 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
588 
589 	for (i = 0; i < orphan_blocks; i++) {
590 		struct page *page = get_meta_page(sbi, start_blk + i);
591 		struct f2fs_orphan_block *orphan_blk;
592 
593 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
594 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
595 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
596 			err = recover_orphan_inode(sbi, ino);
597 			if (err) {
598 				f2fs_put_page(page, 1);
599 				return err;
600 			}
601 		}
602 		f2fs_put_page(page, 1);
603 	}
604 	/* clear Orphan Flag */
605 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
606 	return 0;
607 }
608 
609 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
610 {
611 	struct list_head *head;
612 	struct f2fs_orphan_block *orphan_blk = NULL;
613 	unsigned int nentries = 0;
614 	unsigned short index = 1;
615 	unsigned short orphan_blocks;
616 	struct page *page = NULL;
617 	struct ino_entry *orphan = NULL;
618 	struct inode_management *im = &sbi->im[ORPHAN_INO];
619 
620 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
621 
622 	/*
623 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
624 	 * orphan inode operations are covered under f2fs_lock_op().
625 	 * And, spin_lock should be avoided due to page operations below.
626 	 */
627 	head = &im->ino_list;
628 
629 	/* loop for each orphan inode entry and write them in Jornal block */
630 	list_for_each_entry(orphan, head, list) {
631 		if (!page) {
632 			page = grab_meta_page(sbi, start_blk++);
633 			orphan_blk =
634 				(struct f2fs_orphan_block *)page_address(page);
635 			memset(orphan_blk, 0, sizeof(*orphan_blk));
636 		}
637 
638 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
639 
640 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
641 			/*
642 			 * an orphan block is full of 1020 entries,
643 			 * then we need to flush current orphan blocks
644 			 * and bring another one in memory
645 			 */
646 			orphan_blk->blk_addr = cpu_to_le16(index);
647 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
648 			orphan_blk->entry_count = cpu_to_le32(nentries);
649 			set_page_dirty(page);
650 			f2fs_put_page(page, 1);
651 			index++;
652 			nentries = 0;
653 			page = NULL;
654 		}
655 	}
656 
657 	if (page) {
658 		orphan_blk->blk_addr = cpu_to_le16(index);
659 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
660 		orphan_blk->entry_count = cpu_to_le32(nentries);
661 		set_page_dirty(page);
662 		f2fs_put_page(page, 1);
663 	}
664 }
665 
666 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
667 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
668 		unsigned long long *version)
669 {
670 	unsigned long blk_size = sbi->blocksize;
671 	size_t crc_offset = 0;
672 	__u32 crc = 0;
673 
674 	*cp_page = get_meta_page(sbi, cp_addr);
675 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
676 
677 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
678 	if (crc_offset >= blk_size) {
679 		f2fs_msg(sbi->sb, KERN_WARNING,
680 			"invalid crc_offset: %zu", crc_offset);
681 		return -EINVAL;
682 	}
683 
684 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block
685 							+ crc_offset)));
686 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
687 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
688 		return -EINVAL;
689 	}
690 
691 	*version = cur_cp_version(*cp_block);
692 	return 0;
693 }
694 
695 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
696 				block_t cp_addr, unsigned long long *version)
697 {
698 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
699 	struct f2fs_checkpoint *cp_block = NULL;
700 	unsigned long long cur_version = 0, pre_version = 0;
701 	int err;
702 
703 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
704 					&cp_page_1, version);
705 	if (err)
706 		goto invalid_cp1;
707 	pre_version = *version;
708 
709 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
710 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
711 					&cp_page_2, version);
712 	if (err)
713 		goto invalid_cp2;
714 	cur_version = *version;
715 
716 	if (cur_version == pre_version) {
717 		*version = cur_version;
718 		f2fs_put_page(cp_page_2, 1);
719 		return cp_page_1;
720 	}
721 invalid_cp2:
722 	f2fs_put_page(cp_page_2, 1);
723 invalid_cp1:
724 	f2fs_put_page(cp_page_1, 1);
725 	return NULL;
726 }
727 
728 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
729 {
730 	struct f2fs_checkpoint *cp_block;
731 	struct f2fs_super_block *fsb = sbi->raw_super;
732 	struct page *cp1, *cp2, *cur_page;
733 	unsigned long blk_size = sbi->blocksize;
734 	unsigned long long cp1_version = 0, cp2_version = 0;
735 	unsigned long long cp_start_blk_no;
736 	unsigned int cp_blks = 1 + __cp_payload(sbi);
737 	block_t cp_blk_no;
738 	int i;
739 
740 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
741 	if (!sbi->ckpt)
742 		return -ENOMEM;
743 	/*
744 	 * Finding out valid cp block involves read both
745 	 * sets( cp pack1 and cp pack 2)
746 	 */
747 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
748 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
749 
750 	/* The second checkpoint pack should start at the next segment */
751 	cp_start_blk_no += ((unsigned long long)1) <<
752 				le32_to_cpu(fsb->log_blocks_per_seg);
753 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
754 
755 	if (cp1 && cp2) {
756 		if (ver_after(cp2_version, cp1_version))
757 			cur_page = cp2;
758 		else
759 			cur_page = cp1;
760 	} else if (cp1) {
761 		cur_page = cp1;
762 	} else if (cp2) {
763 		cur_page = cp2;
764 	} else {
765 		goto fail_no_cp;
766 	}
767 
768 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
769 	memcpy(sbi->ckpt, cp_block, blk_size);
770 
771 	/* Sanity checking of checkpoint */
772 	if (sanity_check_ckpt(sbi))
773 		goto fail_no_cp;
774 
775 	if (cp_blks <= 1)
776 		goto done;
777 
778 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
779 	if (cur_page == cp2)
780 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
781 
782 	for (i = 1; i < cp_blks; i++) {
783 		void *sit_bitmap_ptr;
784 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
785 
786 		cur_page = get_meta_page(sbi, cp_blk_no + i);
787 		sit_bitmap_ptr = page_address(cur_page);
788 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
789 		f2fs_put_page(cur_page, 1);
790 	}
791 done:
792 	f2fs_put_page(cp1, 1);
793 	f2fs_put_page(cp2, 1);
794 	return 0;
795 
796 fail_no_cp:
797 	kfree(sbi->ckpt);
798 	return -EINVAL;
799 }
800 
801 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
802 {
803 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
804 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
805 
806 	if (is_inode_flag_set(inode, flag))
807 		return;
808 
809 	set_inode_flag(inode, flag);
810 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
811 	stat_inc_dirty_inode(sbi, type);
812 }
813 
814 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
815 {
816 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
817 
818 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
819 		return;
820 
821 	list_del_init(&F2FS_I(inode)->dirty_list);
822 	clear_inode_flag(inode, flag);
823 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
824 }
825 
826 void update_dirty_page(struct inode *inode, struct page *page)
827 {
828 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
829 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
830 
831 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
832 			!S_ISLNK(inode->i_mode))
833 		return;
834 
835 	spin_lock(&sbi->inode_lock[type]);
836 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
837 		__add_dirty_inode(inode, type);
838 	inode_inc_dirty_pages(inode);
839 	spin_unlock(&sbi->inode_lock[type]);
840 
841 	SetPagePrivate(page);
842 	f2fs_trace_pid(page);
843 }
844 
845 void remove_dirty_inode(struct inode *inode)
846 {
847 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
848 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
849 
850 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
851 			!S_ISLNK(inode->i_mode))
852 		return;
853 
854 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
855 		return;
856 
857 	spin_lock(&sbi->inode_lock[type]);
858 	__remove_dirty_inode(inode, type);
859 	spin_unlock(&sbi->inode_lock[type]);
860 }
861 
862 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
863 {
864 	struct list_head *head;
865 	struct inode *inode;
866 	struct f2fs_inode_info *fi;
867 	bool is_dir = (type == DIR_INODE);
868 
869 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
870 				get_pages(sbi, is_dir ?
871 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
872 retry:
873 	if (unlikely(f2fs_cp_error(sbi)))
874 		return -EIO;
875 
876 	spin_lock(&sbi->inode_lock[type]);
877 
878 	head = &sbi->inode_list[type];
879 	if (list_empty(head)) {
880 		spin_unlock(&sbi->inode_lock[type]);
881 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
882 				get_pages(sbi, is_dir ?
883 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
884 		return 0;
885 	}
886 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
887 	inode = igrab(&fi->vfs_inode);
888 	spin_unlock(&sbi->inode_lock[type]);
889 	if (inode) {
890 		filemap_fdatawrite(inode->i_mapping);
891 		iput(inode);
892 	} else {
893 		/*
894 		 * We should submit bio, since it exists several
895 		 * wribacking dentry pages in the freeing inode.
896 		 */
897 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
898 		cond_resched();
899 	}
900 	goto retry;
901 }
902 
903 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
904 {
905 	struct list_head *head = &sbi->inode_list[DIRTY_META];
906 	struct inode *inode;
907 	struct f2fs_inode_info *fi;
908 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
909 
910 	while (total--) {
911 		if (unlikely(f2fs_cp_error(sbi)))
912 			return -EIO;
913 
914 		spin_lock(&sbi->inode_lock[DIRTY_META]);
915 		if (list_empty(head)) {
916 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
917 			return 0;
918 		}
919 		fi = list_entry(head->next, struct f2fs_inode_info,
920 							gdirty_list);
921 		inode = igrab(&fi->vfs_inode);
922 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
923 		if (inode) {
924 			update_inode_page(inode);
925 			iput(inode);
926 		}
927 	};
928 	return 0;
929 }
930 
931 /*
932  * Freeze all the FS-operations for checkpoint.
933  */
934 static int block_operations(struct f2fs_sb_info *sbi)
935 {
936 	struct writeback_control wbc = {
937 		.sync_mode = WB_SYNC_ALL,
938 		.nr_to_write = LONG_MAX,
939 		.for_reclaim = 0,
940 	};
941 	struct blk_plug plug;
942 	int err = 0;
943 
944 	blk_start_plug(&plug);
945 
946 retry_flush_dents:
947 	f2fs_lock_all(sbi);
948 	/* write all the dirty dentry pages */
949 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
950 		f2fs_unlock_all(sbi);
951 		err = sync_dirty_inodes(sbi, DIR_INODE);
952 		if (err)
953 			goto out;
954 		goto retry_flush_dents;
955 	}
956 
957 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
958 		f2fs_unlock_all(sbi);
959 		err = f2fs_sync_inode_meta(sbi);
960 		if (err)
961 			goto out;
962 		goto retry_flush_dents;
963 	}
964 
965 	/*
966 	 * POR: we should ensure that there are no dirty node pages
967 	 * until finishing nat/sit flush.
968 	 */
969 retry_flush_nodes:
970 	down_write(&sbi->node_write);
971 
972 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
973 		up_write(&sbi->node_write);
974 		err = sync_node_pages(sbi, &wbc);
975 		if (err) {
976 			f2fs_unlock_all(sbi);
977 			goto out;
978 		}
979 		goto retry_flush_nodes;
980 	}
981 out:
982 	blk_finish_plug(&plug);
983 	return err;
984 }
985 
986 static void unblock_operations(struct f2fs_sb_info *sbi)
987 {
988 	up_write(&sbi->node_write);
989 
990 	build_free_nids(sbi);
991 	f2fs_unlock_all(sbi);
992 }
993 
994 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
995 {
996 	DEFINE_WAIT(wait);
997 
998 	for (;;) {
999 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1000 
1001 		if (!atomic_read(&sbi->nr_wb_bios))
1002 			break;
1003 
1004 		io_schedule_timeout(5*HZ);
1005 	}
1006 	finish_wait(&sbi->cp_wait, &wait);
1007 }
1008 
1009 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1010 {
1011 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1012 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1013 
1014 	spin_lock(&sbi->cp_lock);
1015 
1016 	if (cpc->reason == CP_UMOUNT)
1017 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1018 	else
1019 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1020 
1021 	if (cpc->reason == CP_FASTBOOT)
1022 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1023 	else
1024 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1025 
1026 	if (orphan_num)
1027 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1028 	else
1029 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1030 
1031 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1032 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1033 
1034 	/* set this flag to activate crc|cp_ver for recovery */
1035 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1036 
1037 	spin_unlock(&sbi->cp_lock);
1038 }
1039 
1040 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1041 {
1042 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1043 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1044 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1045 	nid_t last_nid = nm_i->next_scan_nid;
1046 	block_t start_blk;
1047 	unsigned int data_sum_blocks, orphan_blocks;
1048 	__u32 crc32 = 0;
1049 	int i;
1050 	int cp_payload_blks = __cp_payload(sbi);
1051 	struct super_block *sb = sbi->sb;
1052 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1053 	u64 kbytes_written;
1054 
1055 	/* Flush all the NAT/SIT pages */
1056 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1057 		sync_meta_pages(sbi, META, LONG_MAX);
1058 		if (unlikely(f2fs_cp_error(sbi)))
1059 			return -EIO;
1060 	}
1061 
1062 	next_free_nid(sbi, &last_nid);
1063 
1064 	/*
1065 	 * modify checkpoint
1066 	 * version number is already updated
1067 	 */
1068 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1069 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1070 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1071 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1072 		ckpt->cur_node_segno[i] =
1073 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1074 		ckpt->cur_node_blkoff[i] =
1075 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1076 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1077 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1078 	}
1079 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1080 		ckpt->cur_data_segno[i] =
1081 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1082 		ckpt->cur_data_blkoff[i] =
1083 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1084 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1085 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1086 	}
1087 
1088 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1089 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1090 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1091 
1092 	/* 2 cp  + n data seg summary + orphan inode blocks */
1093 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1094 	spin_lock(&sbi->cp_lock);
1095 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1096 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1097 	else
1098 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1099 	spin_unlock(&sbi->cp_lock);
1100 
1101 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1102 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1103 			orphan_blocks);
1104 
1105 	if (__remain_node_summaries(cpc->reason))
1106 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1107 				cp_payload_blks + data_sum_blocks +
1108 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1109 	else
1110 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1111 				cp_payload_blks + data_sum_blocks +
1112 				orphan_blocks);
1113 
1114 	/* update ckpt flag for checkpoint */
1115 	update_ckpt_flags(sbi, cpc);
1116 
1117 	/* update SIT/NAT bitmap */
1118 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1119 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1120 
1121 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1122 	*((__le32 *)((unsigned char *)ckpt +
1123 				le32_to_cpu(ckpt->checksum_offset)))
1124 				= cpu_to_le32(crc32);
1125 
1126 	start_blk = __start_cp_addr(sbi);
1127 
1128 	/* need to wait for end_io results */
1129 	wait_on_all_pages_writeback(sbi);
1130 	if (unlikely(f2fs_cp_error(sbi)))
1131 		return -EIO;
1132 
1133 	/* write out checkpoint buffer at block 0 */
1134 	update_meta_page(sbi, ckpt, start_blk++);
1135 
1136 	for (i = 1; i < 1 + cp_payload_blks; i++)
1137 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1138 							start_blk++);
1139 
1140 	if (orphan_num) {
1141 		write_orphan_inodes(sbi, start_blk);
1142 		start_blk += orphan_blocks;
1143 	}
1144 
1145 	write_data_summaries(sbi, start_blk);
1146 	start_blk += data_sum_blocks;
1147 
1148 	/* Record write statistics in the hot node summary */
1149 	kbytes_written = sbi->kbytes_written;
1150 	if (sb->s_bdev->bd_part)
1151 		kbytes_written += BD_PART_WRITTEN(sbi);
1152 
1153 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1154 
1155 	if (__remain_node_summaries(cpc->reason)) {
1156 		write_node_summaries(sbi, start_blk);
1157 		start_blk += NR_CURSEG_NODE_TYPE;
1158 	}
1159 
1160 	/* writeout checkpoint block */
1161 	update_meta_page(sbi, ckpt, start_blk);
1162 
1163 	/* wait for previous submitted node/meta pages writeback */
1164 	wait_on_all_pages_writeback(sbi);
1165 
1166 	if (unlikely(f2fs_cp_error(sbi)))
1167 		return -EIO;
1168 
1169 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1170 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1171 
1172 	/* update user_block_counts */
1173 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1174 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1175 
1176 	/* Here, we only have one bio having CP pack */
1177 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1178 
1179 	/* wait for previous submitted meta pages writeback */
1180 	wait_on_all_pages_writeback(sbi);
1181 
1182 	release_ino_entry(sbi, false);
1183 
1184 	if (unlikely(f2fs_cp_error(sbi)))
1185 		return -EIO;
1186 
1187 	clear_prefree_segments(sbi, cpc);
1188 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1189 	clear_sbi_flag(sbi, SBI_NEED_CP);
1190 
1191 	/*
1192 	 * redirty superblock if metadata like node page or inode cache is
1193 	 * updated during writing checkpoint.
1194 	 */
1195 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1196 			get_pages(sbi, F2FS_DIRTY_IMETA))
1197 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1198 
1199 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * We guarantee that this checkpoint procedure will not fail.
1206  */
1207 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1208 {
1209 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1210 	unsigned long long ckpt_ver;
1211 	int err = 0;
1212 
1213 	mutex_lock(&sbi->cp_mutex);
1214 
1215 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1216 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1217 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1218 		goto out;
1219 	if (unlikely(f2fs_cp_error(sbi))) {
1220 		err = -EIO;
1221 		goto out;
1222 	}
1223 	if (f2fs_readonly(sbi->sb)) {
1224 		err = -EROFS;
1225 		goto out;
1226 	}
1227 
1228 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1229 
1230 	err = block_operations(sbi);
1231 	if (err)
1232 		goto out;
1233 
1234 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1235 
1236 	f2fs_flush_merged_bios(sbi);
1237 
1238 	/* this is the case of multiple fstrims without any changes */
1239 	if (cpc->reason == CP_DISCARD && !is_sbi_flag_set(sbi, SBI_IS_DIRTY)) {
1240 		f2fs_bug_on(sbi, NM_I(sbi)->dirty_nat_cnt);
1241 		f2fs_bug_on(sbi, SIT_I(sbi)->dirty_sentries);
1242 		f2fs_bug_on(sbi, prefree_segments(sbi));
1243 		flush_sit_entries(sbi, cpc);
1244 		clear_prefree_segments(sbi, cpc);
1245 		f2fs_wait_all_discard_bio(sbi);
1246 		unblock_operations(sbi);
1247 		goto out;
1248 	}
1249 
1250 	/*
1251 	 * update checkpoint pack index
1252 	 * Increase the version number so that
1253 	 * SIT entries and seg summaries are written at correct place
1254 	 */
1255 	ckpt_ver = cur_cp_version(ckpt);
1256 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1257 
1258 	/* write cached NAT/SIT entries to NAT/SIT area */
1259 	flush_nat_entries(sbi);
1260 	flush_sit_entries(sbi, cpc);
1261 
1262 	/* unlock all the fs_lock[] in do_checkpoint() */
1263 	err = do_checkpoint(sbi, cpc);
1264 
1265 	f2fs_wait_all_discard_bio(sbi);
1266 
1267 	unblock_operations(sbi);
1268 	stat_inc_cp_count(sbi->stat_info);
1269 
1270 	if (cpc->reason == CP_RECOVERY)
1271 		f2fs_msg(sbi->sb, KERN_NOTICE,
1272 			"checkpoint: version = %llx", ckpt_ver);
1273 
1274 	/* do checkpoint periodically */
1275 	f2fs_update_time(sbi, CP_TIME);
1276 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1277 out:
1278 	mutex_unlock(&sbi->cp_mutex);
1279 	return err;
1280 }
1281 
1282 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1283 {
1284 	int i;
1285 
1286 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1287 		struct inode_management *im = &sbi->im[i];
1288 
1289 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1290 		spin_lock_init(&im->ino_lock);
1291 		INIT_LIST_HEAD(&im->ino_list);
1292 		im->ino_num = 0;
1293 	}
1294 
1295 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1296 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1297 				F2FS_ORPHANS_PER_BLOCK;
1298 }
1299 
1300 int __init create_checkpoint_caches(void)
1301 {
1302 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1303 			sizeof(struct ino_entry));
1304 	if (!ino_entry_slab)
1305 		return -ENOMEM;
1306 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1307 			sizeof(struct inode_entry));
1308 	if (!inode_entry_slab) {
1309 		kmem_cache_destroy(ino_entry_slab);
1310 		return -ENOMEM;
1311 	}
1312 	return 0;
1313 }
1314 
1315 void destroy_checkpoint_caches(void)
1316 {
1317 	kmem_cache_destroy(ino_entry_slab);
1318 	kmem_cache_destroy(inode_entry_slab);
1319 }
1320