1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *orphan_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = sbi->meta_inode->i_mapping; 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 42 /* We wait writeback only inside grab_meta_page() */ 43 wait_on_page_writeback(page); 44 SetPageUptodate(page); 45 return page; 46 } 47 48 /* 49 * We guarantee no failure on the returned page. 50 */ 51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 52 { 53 struct address_space *mapping = sbi->meta_inode->i_mapping; 54 struct page *page; 55 repeat: 56 page = grab_cache_page(mapping, index); 57 if (!page) { 58 cond_resched(); 59 goto repeat; 60 } 61 if (PageUptodate(page)) 62 goto out; 63 64 if (f2fs_readpage(sbi, page, index, READ_SYNC)) 65 goto repeat; 66 67 lock_page(page); 68 if (page->mapping != mapping) { 69 f2fs_put_page(page, 1); 70 goto repeat; 71 } 72 out: 73 mark_page_accessed(page); 74 return page; 75 } 76 77 static int f2fs_write_meta_page(struct page *page, 78 struct writeback_control *wbc) 79 { 80 struct inode *inode = page->mapping->host; 81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 82 83 /* Should not write any meta pages, if any IO error was occurred */ 84 if (wbc->for_reclaim || 85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) { 86 dec_page_count(sbi, F2FS_DIRTY_META); 87 wbc->pages_skipped++; 88 set_page_dirty(page); 89 return AOP_WRITEPAGE_ACTIVATE; 90 } 91 92 wait_on_page_writeback(page); 93 94 write_meta_page(sbi, page); 95 dec_page_count(sbi, F2FS_DIRTY_META); 96 unlock_page(page); 97 return 0; 98 } 99 100 static int f2fs_write_meta_pages(struct address_space *mapping, 101 struct writeback_control *wbc) 102 { 103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 104 struct block_device *bdev = sbi->sb->s_bdev; 105 long written; 106 107 if (wbc->for_kupdate) 108 return 0; 109 110 if (get_pages(sbi, F2FS_DIRTY_META) == 0) 111 return 0; 112 113 /* if mounting is failed, skip writing node pages */ 114 mutex_lock(&sbi->cp_mutex); 115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); 116 mutex_unlock(&sbi->cp_mutex); 117 wbc->nr_to_write -= written; 118 return 0; 119 } 120 121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 122 long nr_to_write) 123 { 124 struct address_space *mapping = sbi->meta_inode->i_mapping; 125 pgoff_t index = 0, end = LONG_MAX; 126 struct pagevec pvec; 127 long nwritten = 0; 128 struct writeback_control wbc = { 129 .for_reclaim = 0, 130 }; 131 132 pagevec_init(&pvec, 0); 133 134 while (index <= end) { 135 int i, nr_pages; 136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 137 PAGECACHE_TAG_DIRTY, 138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 139 if (nr_pages == 0) 140 break; 141 142 for (i = 0; i < nr_pages; i++) { 143 struct page *page = pvec.pages[i]; 144 lock_page(page); 145 BUG_ON(page->mapping != mapping); 146 BUG_ON(!PageDirty(page)); 147 clear_page_dirty_for_io(page); 148 if (f2fs_write_meta_page(page, &wbc)) { 149 unlock_page(page); 150 break; 151 } 152 if (nwritten++ >= nr_to_write) 153 break; 154 } 155 pagevec_release(&pvec); 156 cond_resched(); 157 } 158 159 if (nwritten) 160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); 161 162 return nwritten; 163 } 164 165 static int f2fs_set_meta_page_dirty(struct page *page) 166 { 167 struct address_space *mapping = page->mapping; 168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 169 170 SetPageUptodate(page); 171 if (!PageDirty(page)) { 172 __set_page_dirty_nobuffers(page); 173 inc_page_count(sbi, F2FS_DIRTY_META); 174 return 1; 175 } 176 return 0; 177 } 178 179 const struct address_space_operations f2fs_meta_aops = { 180 .writepage = f2fs_write_meta_page, 181 .writepages = f2fs_write_meta_pages, 182 .set_page_dirty = f2fs_set_meta_page_dirty, 183 }; 184 185 int check_orphan_space(struct f2fs_sb_info *sbi) 186 { 187 unsigned int max_orphans; 188 int err = 0; 189 190 /* 191 * considering 512 blocks in a segment 5 blocks are needed for cp 192 * and log segment summaries. Remaining blocks are used to keep 193 * orphan entries with the limitation one reserved segment 194 * for cp pack we can have max 1020*507 orphan entries 195 */ 196 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; 197 mutex_lock(&sbi->orphan_inode_mutex); 198 if (sbi->n_orphans >= max_orphans) 199 err = -ENOSPC; 200 mutex_unlock(&sbi->orphan_inode_mutex); 201 return err; 202 } 203 204 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 205 { 206 struct list_head *head, *this; 207 struct orphan_inode_entry *new = NULL, *orphan = NULL; 208 209 mutex_lock(&sbi->orphan_inode_mutex); 210 head = &sbi->orphan_inode_list; 211 list_for_each(this, head) { 212 orphan = list_entry(this, struct orphan_inode_entry, list); 213 if (orphan->ino == ino) 214 goto out; 215 if (orphan->ino > ino) 216 break; 217 orphan = NULL; 218 } 219 retry: 220 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 221 if (!new) { 222 cond_resched(); 223 goto retry; 224 } 225 new->ino = ino; 226 227 /* add new_oentry into list which is sorted by inode number */ 228 if (orphan) 229 list_add(&new->list, this->prev); 230 else 231 list_add_tail(&new->list, head); 232 233 sbi->n_orphans++; 234 out: 235 mutex_unlock(&sbi->orphan_inode_mutex); 236 } 237 238 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 239 { 240 struct list_head *this, *next, *head; 241 struct orphan_inode_entry *orphan; 242 243 mutex_lock(&sbi->orphan_inode_mutex); 244 head = &sbi->orphan_inode_list; 245 list_for_each_safe(this, next, head) { 246 orphan = list_entry(this, struct orphan_inode_entry, list); 247 if (orphan->ino == ino) { 248 list_del(&orphan->list); 249 kmem_cache_free(orphan_entry_slab, orphan); 250 sbi->n_orphans--; 251 break; 252 } 253 } 254 mutex_unlock(&sbi->orphan_inode_mutex); 255 } 256 257 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 258 { 259 struct inode *inode = f2fs_iget(sbi->sb, ino); 260 BUG_ON(IS_ERR(inode)); 261 clear_nlink(inode); 262 263 /* truncate all the data during iput */ 264 iput(inode); 265 } 266 267 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 268 { 269 block_t start_blk, orphan_blkaddr, i, j; 270 271 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 272 return 0; 273 274 sbi->por_doing = 1; 275 start_blk = __start_cp_addr(sbi) + 1; 276 orphan_blkaddr = __start_sum_addr(sbi) - 1; 277 278 for (i = 0; i < orphan_blkaddr; i++) { 279 struct page *page = get_meta_page(sbi, start_blk + i); 280 struct f2fs_orphan_block *orphan_blk; 281 282 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 283 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 284 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 285 recover_orphan_inode(sbi, ino); 286 } 287 f2fs_put_page(page, 1); 288 } 289 /* clear Orphan Flag */ 290 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 291 sbi->por_doing = 0; 292 return 0; 293 } 294 295 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 296 { 297 struct list_head *head, *this, *next; 298 struct f2fs_orphan_block *orphan_blk = NULL; 299 struct page *page = NULL; 300 unsigned int nentries = 0; 301 unsigned short index = 1; 302 unsigned short orphan_blocks; 303 304 orphan_blocks = (unsigned short)((sbi->n_orphans + 305 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 306 307 mutex_lock(&sbi->orphan_inode_mutex); 308 head = &sbi->orphan_inode_list; 309 310 /* loop for each orphan inode entry and write them in Jornal block */ 311 list_for_each_safe(this, next, head) { 312 struct orphan_inode_entry *orphan; 313 314 orphan = list_entry(this, struct orphan_inode_entry, list); 315 316 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 317 /* 318 * an orphan block is full of 1020 entries, 319 * then we need to flush current orphan blocks 320 * and bring another one in memory 321 */ 322 orphan_blk->blk_addr = cpu_to_le16(index); 323 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 324 orphan_blk->entry_count = cpu_to_le32(nentries); 325 set_page_dirty(page); 326 f2fs_put_page(page, 1); 327 index++; 328 start_blk++; 329 nentries = 0; 330 page = NULL; 331 } 332 if (page) 333 goto page_exist; 334 335 page = grab_meta_page(sbi, start_blk); 336 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 337 memset(orphan_blk, 0, sizeof(*orphan_blk)); 338 page_exist: 339 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 340 } 341 if (!page) 342 goto end; 343 344 orphan_blk->blk_addr = cpu_to_le16(index); 345 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 346 orphan_blk->entry_count = cpu_to_le32(nentries); 347 set_page_dirty(page); 348 f2fs_put_page(page, 1); 349 end: 350 mutex_unlock(&sbi->orphan_inode_mutex); 351 } 352 353 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 354 block_t cp_addr, unsigned long long *version) 355 { 356 struct page *cp_page_1, *cp_page_2 = NULL; 357 unsigned long blk_size = sbi->blocksize; 358 struct f2fs_checkpoint *cp_block; 359 unsigned long long cur_version = 0, pre_version = 0; 360 unsigned int crc = 0; 361 size_t crc_offset; 362 363 /* Read the 1st cp block in this CP pack */ 364 cp_page_1 = get_meta_page(sbi, cp_addr); 365 366 /* get the version number */ 367 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 368 crc_offset = le32_to_cpu(cp_block->checksum_offset); 369 if (crc_offset >= blk_size) 370 goto invalid_cp1; 371 372 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); 373 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 374 goto invalid_cp1; 375 376 pre_version = le64_to_cpu(cp_block->checkpoint_ver); 377 378 /* Read the 2nd cp block in this CP pack */ 379 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 380 cp_page_2 = get_meta_page(sbi, cp_addr); 381 382 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 383 crc_offset = le32_to_cpu(cp_block->checksum_offset); 384 if (crc_offset >= blk_size) 385 goto invalid_cp2; 386 387 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); 388 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 389 goto invalid_cp2; 390 391 cur_version = le64_to_cpu(cp_block->checkpoint_ver); 392 393 if (cur_version == pre_version) { 394 *version = cur_version; 395 f2fs_put_page(cp_page_2, 1); 396 return cp_page_1; 397 } 398 invalid_cp2: 399 f2fs_put_page(cp_page_2, 1); 400 invalid_cp1: 401 f2fs_put_page(cp_page_1, 1); 402 return NULL; 403 } 404 405 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 406 { 407 struct f2fs_checkpoint *cp_block; 408 struct f2fs_super_block *fsb = sbi->raw_super; 409 struct page *cp1, *cp2, *cur_page; 410 unsigned long blk_size = sbi->blocksize; 411 unsigned long long cp1_version = 0, cp2_version = 0; 412 unsigned long long cp_start_blk_no; 413 414 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 415 if (!sbi->ckpt) 416 return -ENOMEM; 417 /* 418 * Finding out valid cp block involves read both 419 * sets( cp pack1 and cp pack 2) 420 */ 421 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 422 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 423 424 /* The second checkpoint pack should start at the next segment */ 425 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 426 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 427 428 if (cp1 && cp2) { 429 if (ver_after(cp2_version, cp1_version)) 430 cur_page = cp2; 431 else 432 cur_page = cp1; 433 } else if (cp1) { 434 cur_page = cp1; 435 } else if (cp2) { 436 cur_page = cp2; 437 } else { 438 goto fail_no_cp; 439 } 440 441 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 442 memcpy(sbi->ckpt, cp_block, blk_size); 443 444 f2fs_put_page(cp1, 1); 445 f2fs_put_page(cp2, 1); 446 return 0; 447 448 fail_no_cp: 449 kfree(sbi->ckpt); 450 return -EINVAL; 451 } 452 453 void set_dirty_dir_page(struct inode *inode, struct page *page) 454 { 455 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 456 struct list_head *head = &sbi->dir_inode_list; 457 struct dir_inode_entry *new; 458 struct list_head *this; 459 460 if (!S_ISDIR(inode->i_mode)) 461 return; 462 retry: 463 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 464 if (!new) { 465 cond_resched(); 466 goto retry; 467 } 468 new->inode = inode; 469 INIT_LIST_HEAD(&new->list); 470 471 spin_lock(&sbi->dir_inode_lock); 472 list_for_each(this, head) { 473 struct dir_inode_entry *entry; 474 entry = list_entry(this, struct dir_inode_entry, list); 475 if (entry->inode == inode) { 476 kmem_cache_free(inode_entry_slab, new); 477 goto out; 478 } 479 } 480 list_add_tail(&new->list, head); 481 sbi->n_dirty_dirs++; 482 483 BUG_ON(!S_ISDIR(inode->i_mode)); 484 out: 485 inc_page_count(sbi, F2FS_DIRTY_DENTS); 486 inode_inc_dirty_dents(inode); 487 SetPagePrivate(page); 488 489 spin_unlock(&sbi->dir_inode_lock); 490 } 491 492 void remove_dirty_dir_inode(struct inode *inode) 493 { 494 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 495 struct list_head *head = &sbi->dir_inode_list; 496 struct list_head *this; 497 498 if (!S_ISDIR(inode->i_mode)) 499 return; 500 501 spin_lock(&sbi->dir_inode_lock); 502 if (atomic_read(&F2FS_I(inode)->dirty_dents)) 503 goto out; 504 505 list_for_each(this, head) { 506 struct dir_inode_entry *entry; 507 entry = list_entry(this, struct dir_inode_entry, list); 508 if (entry->inode == inode) { 509 list_del(&entry->list); 510 kmem_cache_free(inode_entry_slab, entry); 511 sbi->n_dirty_dirs--; 512 break; 513 } 514 } 515 out: 516 spin_unlock(&sbi->dir_inode_lock); 517 } 518 519 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 520 { 521 struct list_head *head = &sbi->dir_inode_list; 522 struct dir_inode_entry *entry; 523 struct inode *inode; 524 retry: 525 spin_lock(&sbi->dir_inode_lock); 526 if (list_empty(head)) { 527 spin_unlock(&sbi->dir_inode_lock); 528 return; 529 } 530 entry = list_entry(head->next, struct dir_inode_entry, list); 531 inode = igrab(entry->inode); 532 spin_unlock(&sbi->dir_inode_lock); 533 if (inode) { 534 filemap_flush(inode->i_mapping); 535 iput(inode); 536 } else { 537 /* 538 * We should submit bio, since it exists several 539 * wribacking dentry pages in the freeing inode. 540 */ 541 f2fs_submit_bio(sbi, DATA, true); 542 } 543 goto retry; 544 } 545 546 /* 547 * Freeze all the FS-operations for checkpoint. 548 */ 549 static void block_operations(struct f2fs_sb_info *sbi) 550 { 551 struct writeback_control wbc = { 552 .sync_mode = WB_SYNC_ALL, 553 .nr_to_write = LONG_MAX, 554 .for_reclaim = 0, 555 }; 556 struct blk_plug plug; 557 558 blk_start_plug(&plug); 559 560 retry_flush_dents: 561 mutex_lock_all(sbi); 562 563 /* write all the dirty dentry pages */ 564 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 565 mutex_unlock_all(sbi); 566 sync_dirty_dir_inodes(sbi); 567 goto retry_flush_dents; 568 } 569 570 /* 571 * POR: we should ensure that there is no dirty node pages 572 * until finishing nat/sit flush. 573 */ 574 retry_flush_nodes: 575 mutex_lock(&sbi->node_write); 576 577 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 578 mutex_unlock(&sbi->node_write); 579 sync_node_pages(sbi, 0, &wbc); 580 goto retry_flush_nodes; 581 } 582 blk_finish_plug(&plug); 583 } 584 585 static void unblock_operations(struct f2fs_sb_info *sbi) 586 { 587 mutex_unlock(&sbi->node_write); 588 mutex_unlock_all(sbi); 589 } 590 591 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 592 { 593 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 594 nid_t last_nid = 0; 595 block_t start_blk; 596 struct page *cp_page; 597 unsigned int data_sum_blocks, orphan_blocks; 598 unsigned int crc32 = 0; 599 void *kaddr; 600 int i; 601 602 /* Flush all the NAT/SIT pages */ 603 while (get_pages(sbi, F2FS_DIRTY_META)) 604 sync_meta_pages(sbi, META, LONG_MAX); 605 606 next_free_nid(sbi, &last_nid); 607 608 /* 609 * modify checkpoint 610 * version number is already updated 611 */ 612 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 613 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 614 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 615 for (i = 0; i < 3; i++) { 616 ckpt->cur_node_segno[i] = 617 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 618 ckpt->cur_node_blkoff[i] = 619 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 620 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 621 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 622 } 623 for (i = 0; i < 3; i++) { 624 ckpt->cur_data_segno[i] = 625 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 626 ckpt->cur_data_blkoff[i] = 627 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 628 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 629 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 630 } 631 632 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 633 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 634 ckpt->next_free_nid = cpu_to_le32(last_nid); 635 636 /* 2 cp + n data seg summary + orphan inode blocks */ 637 data_sum_blocks = npages_for_summary_flush(sbi); 638 if (data_sum_blocks < 3) 639 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 640 else 641 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 642 643 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 644 / F2FS_ORPHANS_PER_BLOCK; 645 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 646 647 if (is_umount) { 648 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 649 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 650 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 651 } else { 652 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 653 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 654 data_sum_blocks + orphan_blocks); 655 } 656 657 if (sbi->n_orphans) 658 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 659 else 660 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 661 662 /* update SIT/NAT bitmap */ 663 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 664 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 665 666 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 667 *(__le32 *)((unsigned char *)ckpt + 668 le32_to_cpu(ckpt->checksum_offset)) 669 = cpu_to_le32(crc32); 670 671 start_blk = __start_cp_addr(sbi); 672 673 /* write out checkpoint buffer at block 0 */ 674 cp_page = grab_meta_page(sbi, start_blk++); 675 kaddr = page_address(cp_page); 676 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 677 set_page_dirty(cp_page); 678 f2fs_put_page(cp_page, 1); 679 680 if (sbi->n_orphans) { 681 write_orphan_inodes(sbi, start_blk); 682 start_blk += orphan_blocks; 683 } 684 685 write_data_summaries(sbi, start_blk); 686 start_blk += data_sum_blocks; 687 if (is_umount) { 688 write_node_summaries(sbi, start_blk); 689 start_blk += NR_CURSEG_NODE_TYPE; 690 } 691 692 /* writeout checkpoint block */ 693 cp_page = grab_meta_page(sbi, start_blk); 694 kaddr = page_address(cp_page); 695 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 696 set_page_dirty(cp_page); 697 f2fs_put_page(cp_page, 1); 698 699 /* wait for previous submitted node/meta pages writeback */ 700 while (get_pages(sbi, F2FS_WRITEBACK)) 701 congestion_wait(BLK_RW_ASYNC, HZ / 50); 702 703 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); 704 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); 705 706 /* update user_block_counts */ 707 sbi->last_valid_block_count = sbi->total_valid_block_count; 708 sbi->alloc_valid_block_count = 0; 709 710 /* Here, we only have one bio having CP pack */ 711 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 712 713 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { 714 clear_prefree_segments(sbi); 715 F2FS_RESET_SB_DIRT(sbi); 716 } 717 } 718 719 /* 720 * We guarantee that this checkpoint procedure should not fail. 721 */ 722 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 723 { 724 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 725 unsigned long long ckpt_ver; 726 727 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 728 729 mutex_lock(&sbi->cp_mutex); 730 block_operations(sbi); 731 732 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 733 734 f2fs_submit_bio(sbi, DATA, true); 735 f2fs_submit_bio(sbi, NODE, true); 736 f2fs_submit_bio(sbi, META, true); 737 738 /* 739 * update checkpoint pack index 740 * Increase the version number so that 741 * SIT entries and seg summaries are written at correct place 742 */ 743 ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver); 744 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 745 746 /* write cached NAT/SIT entries to NAT/SIT area */ 747 flush_nat_entries(sbi); 748 flush_sit_entries(sbi); 749 750 /* unlock all the fs_lock[] in do_checkpoint() */ 751 do_checkpoint(sbi, is_umount); 752 753 unblock_operations(sbi); 754 mutex_unlock(&sbi->cp_mutex); 755 756 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 757 } 758 759 void init_orphan_info(struct f2fs_sb_info *sbi) 760 { 761 mutex_init(&sbi->orphan_inode_mutex); 762 INIT_LIST_HEAD(&sbi->orphan_inode_list); 763 sbi->n_orphans = 0; 764 } 765 766 int __init create_checkpoint_caches(void) 767 { 768 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 769 sizeof(struct orphan_inode_entry), NULL); 770 if (unlikely(!orphan_entry_slab)) 771 return -ENOMEM; 772 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 773 sizeof(struct dir_inode_entry), NULL); 774 if (unlikely(!inode_entry_slab)) { 775 kmem_cache_destroy(orphan_entry_slab); 776 return -ENOMEM; 777 } 778 return 0; 779 } 780 781 void destroy_checkpoint_caches(void) 782 { 783 kmem_cache_destroy(orphan_entry_slab); 784 kmem_cache_destroy(inode_entry_slab); 785 } 786