xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision e5c86679)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 	};
166 	struct blk_plug plug;
167 
168 	if (unlikely(type == META_POR))
169 		fio.op_flags &= ~REQ_META;
170 
171 	blk_start_plug(&plug);
172 	for (; nrpages-- > 0; blkno++) {
173 
174 		if (!is_valid_blkaddr(sbi, blkno, type))
175 			goto out;
176 
177 		switch (type) {
178 		case META_NAT:
179 			if (unlikely(blkno >=
180 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 				blkno = 0;
182 			/* get nat block addr */
183 			fio.new_blkaddr = current_nat_addr(sbi,
184 					blkno * NAT_ENTRY_PER_BLOCK);
185 			break;
186 		case META_SIT:
187 			/* get sit block addr */
188 			fio.new_blkaddr = current_sit_addr(sbi,
189 					blkno * SIT_ENTRY_PER_BLOCK);
190 			break;
191 		case META_SSA:
192 		case META_CP:
193 		case META_POR:
194 			fio.new_blkaddr = blkno;
195 			break;
196 		default:
197 			BUG();
198 		}
199 
200 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 						fio.new_blkaddr, false);
202 		if (!page)
203 			continue;
204 		if (PageUptodate(page)) {
205 			f2fs_put_page(page, 1);
206 			continue;
207 		}
208 
209 		fio.page = page;
210 		fio.old_blkaddr = fio.new_blkaddr;
211 		f2fs_submit_page_mbio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	f2fs_submit_merged_bio(sbi, META, READ);
216 	blk_finish_plug(&plug);
217 	return blkno - start;
218 }
219 
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 	struct page *page;
223 	bool readahead = false;
224 
225 	page = find_get_page(META_MAPPING(sbi), index);
226 	if (!page || !PageUptodate(page))
227 		readahead = true;
228 	f2fs_put_page(page, 0);
229 
230 	if (readahead)
231 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233 
234 static int f2fs_write_meta_page(struct page *page,
235 				struct writeback_control *wbc)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 
239 	trace_f2fs_writepage(page, META);
240 
241 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 		goto redirty_out;
243 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 		goto redirty_out;
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 
248 	write_meta_page(sbi, page);
249 	dec_page_count(sbi, F2FS_DIRTY_META);
250 
251 	if (wbc->for_reclaim)
252 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253 						0, page->index, META, WRITE);
254 
255 	unlock_page(page);
256 
257 	if (unlikely(f2fs_cp_error(sbi)))
258 		f2fs_submit_merged_bio(sbi, META, WRITE);
259 
260 	return 0;
261 
262 redirty_out:
263 	redirty_page_for_writepage(wbc, page);
264 	return AOP_WRITEPAGE_ACTIVATE;
265 }
266 
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268 				struct writeback_control *wbc)
269 {
270 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271 	long diff, written;
272 
273 	/* collect a number of dirty meta pages and write together */
274 	if (wbc->for_kupdate ||
275 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276 		goto skip_write;
277 
278 	trace_f2fs_writepages(mapping->host, wbc, META);
279 
280 	/* if mounting is failed, skip writing node pages */
281 	mutex_lock(&sbi->cp_mutex);
282 	diff = nr_pages_to_write(sbi, META, wbc);
283 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
284 	mutex_unlock(&sbi->cp_mutex);
285 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
286 	return 0;
287 
288 skip_write:
289 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
290 	trace_f2fs_writepages(mapping->host, wbc, META);
291 	return 0;
292 }
293 
294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
295 						long nr_to_write)
296 {
297 	struct address_space *mapping = META_MAPPING(sbi);
298 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
299 	struct pagevec pvec;
300 	long nwritten = 0;
301 	struct writeback_control wbc = {
302 		.for_reclaim = 0,
303 	};
304 	struct blk_plug plug;
305 
306 	pagevec_init(&pvec, 0);
307 
308 	blk_start_plug(&plug);
309 
310 	while (index <= end) {
311 		int i, nr_pages;
312 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
313 				PAGECACHE_TAG_DIRTY,
314 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
315 		if (unlikely(nr_pages == 0))
316 			break;
317 
318 		for (i = 0; i < nr_pages; i++) {
319 			struct page *page = pvec.pages[i];
320 
321 			if (prev == ULONG_MAX)
322 				prev = page->index - 1;
323 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
324 				pagevec_release(&pvec);
325 				goto stop;
326 			}
327 
328 			lock_page(page);
329 
330 			if (unlikely(page->mapping != mapping)) {
331 continue_unlock:
332 				unlock_page(page);
333 				continue;
334 			}
335 			if (!PageDirty(page)) {
336 				/* someone wrote it for us */
337 				goto continue_unlock;
338 			}
339 
340 			f2fs_wait_on_page_writeback(page, META, true);
341 
342 			BUG_ON(PageWriteback(page));
343 			if (!clear_page_dirty_for_io(page))
344 				goto continue_unlock;
345 
346 			if (mapping->a_ops->writepage(page, &wbc)) {
347 				unlock_page(page);
348 				break;
349 			}
350 			nwritten++;
351 			prev = page->index;
352 			if (unlikely(nwritten >= nr_to_write))
353 				break;
354 		}
355 		pagevec_release(&pvec);
356 		cond_resched();
357 	}
358 stop:
359 	if (nwritten)
360 		f2fs_submit_merged_bio(sbi, type, WRITE);
361 
362 	blk_finish_plug(&plug);
363 
364 	return nwritten;
365 }
366 
367 static int f2fs_set_meta_page_dirty(struct page *page)
368 {
369 	trace_f2fs_set_page_dirty(page, META);
370 
371 	if (!PageUptodate(page))
372 		SetPageUptodate(page);
373 	if (!PageDirty(page)) {
374 		f2fs_set_page_dirty_nobuffers(page);
375 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
376 		SetPagePrivate(page);
377 		f2fs_trace_pid(page);
378 		return 1;
379 	}
380 	return 0;
381 }
382 
383 const struct address_space_operations f2fs_meta_aops = {
384 	.writepage	= f2fs_write_meta_page,
385 	.writepages	= f2fs_write_meta_pages,
386 	.set_page_dirty	= f2fs_set_meta_page_dirty,
387 	.invalidatepage = f2fs_invalidate_page,
388 	.releasepage	= f2fs_release_page,
389 #ifdef CONFIG_MIGRATION
390 	.migratepage    = f2fs_migrate_page,
391 #endif
392 };
393 
394 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
395 {
396 	struct inode_management *im = &sbi->im[type];
397 	struct ino_entry *e, *tmp;
398 
399 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
400 retry:
401 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
402 
403 	spin_lock(&im->ino_lock);
404 	e = radix_tree_lookup(&im->ino_root, ino);
405 	if (!e) {
406 		e = tmp;
407 		if (radix_tree_insert(&im->ino_root, ino, e)) {
408 			spin_unlock(&im->ino_lock);
409 			radix_tree_preload_end();
410 			goto retry;
411 		}
412 		memset(e, 0, sizeof(struct ino_entry));
413 		e->ino = ino;
414 
415 		list_add_tail(&e->list, &im->ino_list);
416 		if (type != ORPHAN_INO)
417 			im->ino_num++;
418 	}
419 	spin_unlock(&im->ino_lock);
420 	radix_tree_preload_end();
421 
422 	if (e != tmp)
423 		kmem_cache_free(ino_entry_slab, tmp);
424 }
425 
426 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
427 {
428 	struct inode_management *im = &sbi->im[type];
429 	struct ino_entry *e;
430 
431 	spin_lock(&im->ino_lock);
432 	e = radix_tree_lookup(&im->ino_root, ino);
433 	if (e) {
434 		list_del(&e->list);
435 		radix_tree_delete(&im->ino_root, ino);
436 		im->ino_num--;
437 		spin_unlock(&im->ino_lock);
438 		kmem_cache_free(ino_entry_slab, e);
439 		return;
440 	}
441 	spin_unlock(&im->ino_lock);
442 }
443 
444 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
445 {
446 	/* add new dirty ino entry into list */
447 	__add_ino_entry(sbi, ino, type);
448 }
449 
450 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
451 {
452 	/* remove dirty ino entry from list */
453 	__remove_ino_entry(sbi, ino, type);
454 }
455 
456 /* mode should be APPEND_INO or UPDATE_INO */
457 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
458 {
459 	struct inode_management *im = &sbi->im[mode];
460 	struct ino_entry *e;
461 
462 	spin_lock(&im->ino_lock);
463 	e = radix_tree_lookup(&im->ino_root, ino);
464 	spin_unlock(&im->ino_lock);
465 	return e ? true : false;
466 }
467 
468 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
469 {
470 	struct ino_entry *e, *tmp;
471 	int i;
472 
473 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
474 		struct inode_management *im = &sbi->im[i];
475 
476 		spin_lock(&im->ino_lock);
477 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
478 			list_del(&e->list);
479 			radix_tree_delete(&im->ino_root, e->ino);
480 			kmem_cache_free(ino_entry_slab, e);
481 			im->ino_num--;
482 		}
483 		spin_unlock(&im->ino_lock);
484 	}
485 }
486 
487 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
488 {
489 	struct inode_management *im = &sbi->im[ORPHAN_INO];
490 	int err = 0;
491 
492 	spin_lock(&im->ino_lock);
493 
494 #ifdef CONFIG_F2FS_FAULT_INJECTION
495 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
496 		spin_unlock(&im->ino_lock);
497 		f2fs_show_injection_info(FAULT_ORPHAN);
498 		return -ENOSPC;
499 	}
500 #endif
501 	if (unlikely(im->ino_num >= sbi->max_orphans))
502 		err = -ENOSPC;
503 	else
504 		im->ino_num++;
505 	spin_unlock(&im->ino_lock);
506 
507 	return err;
508 }
509 
510 void release_orphan_inode(struct f2fs_sb_info *sbi)
511 {
512 	struct inode_management *im = &sbi->im[ORPHAN_INO];
513 
514 	spin_lock(&im->ino_lock);
515 	f2fs_bug_on(sbi, im->ino_num == 0);
516 	im->ino_num--;
517 	spin_unlock(&im->ino_lock);
518 }
519 
520 void add_orphan_inode(struct inode *inode)
521 {
522 	/* add new orphan ino entry into list */
523 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
524 	update_inode_page(inode);
525 }
526 
527 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
528 {
529 	/* remove orphan entry from orphan list */
530 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
531 }
532 
533 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
534 {
535 	struct inode *inode;
536 	struct node_info ni;
537 	int err = acquire_orphan_inode(sbi);
538 
539 	if (err) {
540 		set_sbi_flag(sbi, SBI_NEED_FSCK);
541 		f2fs_msg(sbi->sb, KERN_WARNING,
542 				"%s: orphan failed (ino=%x), run fsck to fix.",
543 				__func__, ino);
544 		return err;
545 	}
546 
547 	__add_ino_entry(sbi, ino, ORPHAN_INO);
548 
549 	inode = f2fs_iget_retry(sbi->sb, ino);
550 	if (IS_ERR(inode)) {
551 		/*
552 		 * there should be a bug that we can't find the entry
553 		 * to orphan inode.
554 		 */
555 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
556 		return PTR_ERR(inode);
557 	}
558 
559 	clear_nlink(inode);
560 
561 	/* truncate all the data during iput */
562 	iput(inode);
563 
564 	get_node_info(sbi, ino, &ni);
565 
566 	/* ENOMEM was fully retried in f2fs_evict_inode. */
567 	if (ni.blk_addr != NULL_ADDR) {
568 		set_sbi_flag(sbi, SBI_NEED_FSCK);
569 		f2fs_msg(sbi->sb, KERN_WARNING,
570 			"%s: orphan failed (ino=%x), run fsck to fix.",
571 				__func__, ino);
572 		return -EIO;
573 	}
574 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
575 	return 0;
576 }
577 
578 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
579 {
580 	block_t start_blk, orphan_blocks, i, j;
581 	int err;
582 
583 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
584 		return 0;
585 
586 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
587 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
588 
589 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
590 
591 	for (i = 0; i < orphan_blocks; i++) {
592 		struct page *page = get_meta_page(sbi, start_blk + i);
593 		struct f2fs_orphan_block *orphan_blk;
594 
595 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
596 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
597 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
598 			err = recover_orphan_inode(sbi, ino);
599 			if (err) {
600 				f2fs_put_page(page, 1);
601 				return err;
602 			}
603 		}
604 		f2fs_put_page(page, 1);
605 	}
606 	/* clear Orphan Flag */
607 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
608 	return 0;
609 }
610 
611 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
612 {
613 	struct list_head *head;
614 	struct f2fs_orphan_block *orphan_blk = NULL;
615 	unsigned int nentries = 0;
616 	unsigned short index = 1;
617 	unsigned short orphan_blocks;
618 	struct page *page = NULL;
619 	struct ino_entry *orphan = NULL;
620 	struct inode_management *im = &sbi->im[ORPHAN_INO];
621 
622 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
623 
624 	/*
625 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
626 	 * orphan inode operations are covered under f2fs_lock_op().
627 	 * And, spin_lock should be avoided due to page operations below.
628 	 */
629 	head = &im->ino_list;
630 
631 	/* loop for each orphan inode entry and write them in Jornal block */
632 	list_for_each_entry(orphan, head, list) {
633 		if (!page) {
634 			page = grab_meta_page(sbi, start_blk++);
635 			orphan_blk =
636 				(struct f2fs_orphan_block *)page_address(page);
637 			memset(orphan_blk, 0, sizeof(*orphan_blk));
638 		}
639 
640 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
641 
642 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
643 			/*
644 			 * an orphan block is full of 1020 entries,
645 			 * then we need to flush current orphan blocks
646 			 * and bring another one in memory
647 			 */
648 			orphan_blk->blk_addr = cpu_to_le16(index);
649 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
650 			orphan_blk->entry_count = cpu_to_le32(nentries);
651 			set_page_dirty(page);
652 			f2fs_put_page(page, 1);
653 			index++;
654 			nentries = 0;
655 			page = NULL;
656 		}
657 	}
658 
659 	if (page) {
660 		orphan_blk->blk_addr = cpu_to_le16(index);
661 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
662 		orphan_blk->entry_count = cpu_to_le32(nentries);
663 		set_page_dirty(page);
664 		f2fs_put_page(page, 1);
665 	}
666 }
667 
668 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
669 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
670 		unsigned long long *version)
671 {
672 	unsigned long blk_size = sbi->blocksize;
673 	size_t crc_offset = 0;
674 	__u32 crc = 0;
675 
676 	*cp_page = get_meta_page(sbi, cp_addr);
677 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
678 
679 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
680 	if (crc_offset >= blk_size) {
681 		f2fs_msg(sbi->sb, KERN_WARNING,
682 			"invalid crc_offset: %zu", crc_offset);
683 		return -EINVAL;
684 	}
685 
686 	crc = cur_cp_crc(*cp_block);
687 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
688 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
689 		return -EINVAL;
690 	}
691 
692 	*version = cur_cp_version(*cp_block);
693 	return 0;
694 }
695 
696 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
697 				block_t cp_addr, unsigned long long *version)
698 {
699 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
700 	struct f2fs_checkpoint *cp_block = NULL;
701 	unsigned long long cur_version = 0, pre_version = 0;
702 	int err;
703 
704 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
705 					&cp_page_1, version);
706 	if (err)
707 		goto invalid_cp1;
708 	pre_version = *version;
709 
710 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
711 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
712 					&cp_page_2, version);
713 	if (err)
714 		goto invalid_cp2;
715 	cur_version = *version;
716 
717 	if (cur_version == pre_version) {
718 		*version = cur_version;
719 		f2fs_put_page(cp_page_2, 1);
720 		return cp_page_1;
721 	}
722 invalid_cp2:
723 	f2fs_put_page(cp_page_2, 1);
724 invalid_cp1:
725 	f2fs_put_page(cp_page_1, 1);
726 	return NULL;
727 }
728 
729 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
730 {
731 	struct f2fs_checkpoint *cp_block;
732 	struct f2fs_super_block *fsb = sbi->raw_super;
733 	struct page *cp1, *cp2, *cur_page;
734 	unsigned long blk_size = sbi->blocksize;
735 	unsigned long long cp1_version = 0, cp2_version = 0;
736 	unsigned long long cp_start_blk_no;
737 	unsigned int cp_blks = 1 + __cp_payload(sbi);
738 	block_t cp_blk_no;
739 	int i;
740 
741 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
742 	if (!sbi->ckpt)
743 		return -ENOMEM;
744 	/*
745 	 * Finding out valid cp block involves read both
746 	 * sets( cp pack1 and cp pack 2)
747 	 */
748 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
749 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
750 
751 	/* The second checkpoint pack should start at the next segment */
752 	cp_start_blk_no += ((unsigned long long)1) <<
753 				le32_to_cpu(fsb->log_blocks_per_seg);
754 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
755 
756 	if (cp1 && cp2) {
757 		if (ver_after(cp2_version, cp1_version))
758 			cur_page = cp2;
759 		else
760 			cur_page = cp1;
761 	} else if (cp1) {
762 		cur_page = cp1;
763 	} else if (cp2) {
764 		cur_page = cp2;
765 	} else {
766 		goto fail_no_cp;
767 	}
768 
769 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
770 	memcpy(sbi->ckpt, cp_block, blk_size);
771 
772 	/* Sanity checking of checkpoint */
773 	if (sanity_check_ckpt(sbi))
774 		goto free_fail_no_cp;
775 
776 	if (cur_page == cp1)
777 		sbi->cur_cp_pack = 1;
778 	else
779 		sbi->cur_cp_pack = 2;
780 
781 	if (cp_blks <= 1)
782 		goto done;
783 
784 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
785 	if (cur_page == cp2)
786 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
787 
788 	for (i = 1; i < cp_blks; i++) {
789 		void *sit_bitmap_ptr;
790 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
791 
792 		cur_page = get_meta_page(sbi, cp_blk_no + i);
793 		sit_bitmap_ptr = page_address(cur_page);
794 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
795 		f2fs_put_page(cur_page, 1);
796 	}
797 done:
798 	f2fs_put_page(cp1, 1);
799 	f2fs_put_page(cp2, 1);
800 	return 0;
801 
802 free_fail_no_cp:
803 	f2fs_put_page(cp1, 1);
804 	f2fs_put_page(cp2, 1);
805 fail_no_cp:
806 	kfree(sbi->ckpt);
807 	return -EINVAL;
808 }
809 
810 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
811 {
812 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
813 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
814 
815 	if (is_inode_flag_set(inode, flag))
816 		return;
817 
818 	set_inode_flag(inode, flag);
819 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
820 	stat_inc_dirty_inode(sbi, type);
821 }
822 
823 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
824 {
825 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
826 
827 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
828 		return;
829 
830 	list_del_init(&F2FS_I(inode)->dirty_list);
831 	clear_inode_flag(inode, flag);
832 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
833 }
834 
835 void update_dirty_page(struct inode *inode, struct page *page)
836 {
837 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
839 
840 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
841 			!S_ISLNK(inode->i_mode))
842 		return;
843 
844 	spin_lock(&sbi->inode_lock[type]);
845 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
846 		__add_dirty_inode(inode, type);
847 	inode_inc_dirty_pages(inode);
848 	spin_unlock(&sbi->inode_lock[type]);
849 
850 	SetPagePrivate(page);
851 	f2fs_trace_pid(page);
852 }
853 
854 void remove_dirty_inode(struct inode *inode)
855 {
856 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
857 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
858 
859 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
860 			!S_ISLNK(inode->i_mode))
861 		return;
862 
863 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
864 		return;
865 
866 	spin_lock(&sbi->inode_lock[type]);
867 	__remove_dirty_inode(inode, type);
868 	spin_unlock(&sbi->inode_lock[type]);
869 }
870 
871 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
872 {
873 	struct list_head *head;
874 	struct inode *inode;
875 	struct f2fs_inode_info *fi;
876 	bool is_dir = (type == DIR_INODE);
877 
878 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
879 				get_pages(sbi, is_dir ?
880 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
881 retry:
882 	if (unlikely(f2fs_cp_error(sbi)))
883 		return -EIO;
884 
885 	spin_lock(&sbi->inode_lock[type]);
886 
887 	head = &sbi->inode_list[type];
888 	if (list_empty(head)) {
889 		spin_unlock(&sbi->inode_lock[type]);
890 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
891 				get_pages(sbi, is_dir ?
892 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
893 		return 0;
894 	}
895 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
896 	inode = igrab(&fi->vfs_inode);
897 	spin_unlock(&sbi->inode_lock[type]);
898 	if (inode) {
899 		filemap_fdatawrite(inode->i_mapping);
900 		iput(inode);
901 	} else {
902 		/*
903 		 * We should submit bio, since it exists several
904 		 * wribacking dentry pages in the freeing inode.
905 		 */
906 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
907 		cond_resched();
908 	}
909 	goto retry;
910 }
911 
912 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
913 {
914 	struct list_head *head = &sbi->inode_list[DIRTY_META];
915 	struct inode *inode;
916 	struct f2fs_inode_info *fi;
917 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
918 
919 	while (total--) {
920 		if (unlikely(f2fs_cp_error(sbi)))
921 			return -EIO;
922 
923 		spin_lock(&sbi->inode_lock[DIRTY_META]);
924 		if (list_empty(head)) {
925 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
926 			return 0;
927 		}
928 		fi = list_first_entry(head, struct f2fs_inode_info,
929 							gdirty_list);
930 		inode = igrab(&fi->vfs_inode);
931 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
932 		if (inode) {
933 			sync_inode_metadata(inode, 0);
934 
935 			/* it's on eviction */
936 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
937 				update_inode_page(inode);
938 			iput(inode);
939 		}
940 	};
941 	return 0;
942 }
943 
944 /*
945  * Freeze all the FS-operations for checkpoint.
946  */
947 static int block_operations(struct f2fs_sb_info *sbi)
948 {
949 	struct writeback_control wbc = {
950 		.sync_mode = WB_SYNC_ALL,
951 		.nr_to_write = LONG_MAX,
952 		.for_reclaim = 0,
953 	};
954 	struct blk_plug plug;
955 	int err = 0;
956 
957 	blk_start_plug(&plug);
958 
959 retry_flush_dents:
960 	f2fs_lock_all(sbi);
961 	/* write all the dirty dentry pages */
962 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
963 		f2fs_unlock_all(sbi);
964 		err = sync_dirty_inodes(sbi, DIR_INODE);
965 		if (err)
966 			goto out;
967 		goto retry_flush_dents;
968 	}
969 
970 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
971 		f2fs_unlock_all(sbi);
972 		err = f2fs_sync_inode_meta(sbi);
973 		if (err)
974 			goto out;
975 		goto retry_flush_dents;
976 	}
977 
978 	/*
979 	 * POR: we should ensure that there are no dirty node pages
980 	 * until finishing nat/sit flush.
981 	 */
982 retry_flush_nodes:
983 	down_write(&sbi->node_write);
984 
985 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
986 		up_write(&sbi->node_write);
987 		err = sync_node_pages(sbi, &wbc);
988 		if (err) {
989 			f2fs_unlock_all(sbi);
990 			goto out;
991 		}
992 		goto retry_flush_nodes;
993 	}
994 out:
995 	blk_finish_plug(&plug);
996 	return err;
997 }
998 
999 static void unblock_operations(struct f2fs_sb_info *sbi)
1000 {
1001 	up_write(&sbi->node_write);
1002 	f2fs_unlock_all(sbi);
1003 }
1004 
1005 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1006 {
1007 	DEFINE_WAIT(wait);
1008 
1009 	for (;;) {
1010 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1011 
1012 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1013 			break;
1014 
1015 		io_schedule_timeout(5*HZ);
1016 	}
1017 	finish_wait(&sbi->cp_wait, &wait);
1018 }
1019 
1020 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1021 {
1022 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1023 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1024 
1025 	spin_lock(&sbi->cp_lock);
1026 
1027 	if (cpc->reason == CP_UMOUNT && ckpt->cp_pack_total_block_count >
1028 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1029 		disable_nat_bits(sbi, false);
1030 
1031 	if (cpc->reason == CP_UMOUNT)
1032 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1033 	else
1034 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1035 
1036 	if (cpc->reason == CP_FASTBOOT)
1037 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1038 	else
1039 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1040 
1041 	if (orphan_num)
1042 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1043 	else
1044 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1045 
1046 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1047 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1048 
1049 	/* set this flag to activate crc|cp_ver for recovery */
1050 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1051 
1052 	spin_unlock(&sbi->cp_lock);
1053 }
1054 
1055 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1056 {
1057 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1058 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1059 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1060 	nid_t last_nid = nm_i->next_scan_nid;
1061 	block_t start_blk;
1062 	unsigned int data_sum_blocks, orphan_blocks;
1063 	__u32 crc32 = 0;
1064 	int i;
1065 	int cp_payload_blks = __cp_payload(sbi);
1066 	struct super_block *sb = sbi->sb;
1067 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1068 	u64 kbytes_written;
1069 
1070 	/* Flush all the NAT/SIT pages */
1071 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1072 		sync_meta_pages(sbi, META, LONG_MAX);
1073 		if (unlikely(f2fs_cp_error(sbi)))
1074 			return -EIO;
1075 	}
1076 
1077 	next_free_nid(sbi, &last_nid);
1078 
1079 	/*
1080 	 * modify checkpoint
1081 	 * version number is already updated
1082 	 */
1083 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1084 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1085 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1086 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1087 		ckpt->cur_node_segno[i] =
1088 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1089 		ckpt->cur_node_blkoff[i] =
1090 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1091 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1092 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1093 	}
1094 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1095 		ckpt->cur_data_segno[i] =
1096 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1097 		ckpt->cur_data_blkoff[i] =
1098 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1099 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1100 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1101 	}
1102 
1103 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1104 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1105 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1106 
1107 	/* 2 cp  + n data seg summary + orphan inode blocks */
1108 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1109 	spin_lock(&sbi->cp_lock);
1110 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1111 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1112 	else
1113 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1114 	spin_unlock(&sbi->cp_lock);
1115 
1116 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1117 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1118 			orphan_blocks);
1119 
1120 	if (__remain_node_summaries(cpc->reason))
1121 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1122 				cp_payload_blks + data_sum_blocks +
1123 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1124 	else
1125 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1126 				cp_payload_blks + data_sum_blocks +
1127 				orphan_blocks);
1128 
1129 	/* update ckpt flag for checkpoint */
1130 	update_ckpt_flags(sbi, cpc);
1131 
1132 	/* update SIT/NAT bitmap */
1133 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1134 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1135 
1136 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1137 	*((__le32 *)((unsigned char *)ckpt +
1138 				le32_to_cpu(ckpt->checksum_offset)))
1139 				= cpu_to_le32(crc32);
1140 
1141 	start_blk = __start_cp_next_addr(sbi);
1142 
1143 	/* write nat bits */
1144 	if (enabled_nat_bits(sbi, cpc)) {
1145 		__u64 cp_ver = cur_cp_version(ckpt);
1146 		unsigned int i;
1147 		block_t blk;
1148 
1149 		cp_ver |= ((__u64)crc32 << 32);
1150 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1151 
1152 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1153 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1154 			update_meta_page(sbi, nm_i->nat_bits +
1155 					(i << F2FS_BLKSIZE_BITS), blk + i);
1156 
1157 		/* Flush all the NAT BITS pages */
1158 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1159 			sync_meta_pages(sbi, META, LONG_MAX);
1160 			if (unlikely(f2fs_cp_error(sbi)))
1161 				return -EIO;
1162 		}
1163 	}
1164 
1165 	/* need to wait for end_io results */
1166 	wait_on_all_pages_writeback(sbi);
1167 	if (unlikely(f2fs_cp_error(sbi)))
1168 		return -EIO;
1169 
1170 	/* write out checkpoint buffer at block 0 */
1171 	update_meta_page(sbi, ckpt, start_blk++);
1172 
1173 	for (i = 1; i < 1 + cp_payload_blks; i++)
1174 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1175 							start_blk++);
1176 
1177 	if (orphan_num) {
1178 		write_orphan_inodes(sbi, start_blk);
1179 		start_blk += orphan_blocks;
1180 	}
1181 
1182 	write_data_summaries(sbi, start_blk);
1183 	start_blk += data_sum_blocks;
1184 
1185 	/* Record write statistics in the hot node summary */
1186 	kbytes_written = sbi->kbytes_written;
1187 	if (sb->s_bdev->bd_part)
1188 		kbytes_written += BD_PART_WRITTEN(sbi);
1189 
1190 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1191 
1192 	if (__remain_node_summaries(cpc->reason)) {
1193 		write_node_summaries(sbi, start_blk);
1194 		start_blk += NR_CURSEG_NODE_TYPE;
1195 	}
1196 
1197 	/* writeout checkpoint block */
1198 	update_meta_page(sbi, ckpt, start_blk);
1199 
1200 	/* wait for previous submitted node/meta pages writeback */
1201 	wait_on_all_pages_writeback(sbi);
1202 
1203 	if (unlikely(f2fs_cp_error(sbi)))
1204 		return -EIO;
1205 
1206 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1207 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1208 
1209 	/* update user_block_counts */
1210 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1211 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1212 
1213 	/* Here, we only have one bio having CP pack */
1214 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1215 
1216 	/* wait for previous submitted meta pages writeback */
1217 	wait_on_all_pages_writeback(sbi);
1218 
1219 	release_ino_entry(sbi, false);
1220 
1221 	if (unlikely(f2fs_cp_error(sbi)))
1222 		return -EIO;
1223 
1224 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1225 	clear_sbi_flag(sbi, SBI_NEED_CP);
1226 	__set_cp_next_pack(sbi);
1227 
1228 	/*
1229 	 * redirty superblock if metadata like node page or inode cache is
1230 	 * updated during writing checkpoint.
1231 	 */
1232 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1233 			get_pages(sbi, F2FS_DIRTY_IMETA))
1234 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1235 
1236 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1237 
1238 	return 0;
1239 }
1240 
1241 /*
1242  * We guarantee that this checkpoint procedure will not fail.
1243  */
1244 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1245 {
1246 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1247 	unsigned long long ckpt_ver;
1248 	int err = 0;
1249 
1250 	mutex_lock(&sbi->cp_mutex);
1251 
1252 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1253 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1254 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1255 		goto out;
1256 	if (unlikely(f2fs_cp_error(sbi))) {
1257 		err = -EIO;
1258 		goto out;
1259 	}
1260 	if (f2fs_readonly(sbi->sb)) {
1261 		err = -EROFS;
1262 		goto out;
1263 	}
1264 
1265 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1266 
1267 	err = block_operations(sbi);
1268 	if (err)
1269 		goto out;
1270 
1271 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1272 
1273 	f2fs_flush_merged_bios(sbi);
1274 
1275 	/* this is the case of multiple fstrims without any changes */
1276 	if (cpc->reason == CP_DISCARD) {
1277 		if (!exist_trim_candidates(sbi, cpc)) {
1278 			unblock_operations(sbi);
1279 			goto out;
1280 		}
1281 
1282 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1283 				SIT_I(sbi)->dirty_sentries == 0 &&
1284 				prefree_segments(sbi) == 0) {
1285 			flush_sit_entries(sbi, cpc);
1286 			clear_prefree_segments(sbi, cpc);
1287 			unblock_operations(sbi);
1288 			goto out;
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * update checkpoint pack index
1294 	 * Increase the version number so that
1295 	 * SIT entries and seg summaries are written at correct place
1296 	 */
1297 	ckpt_ver = cur_cp_version(ckpt);
1298 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1299 
1300 	/* write cached NAT/SIT entries to NAT/SIT area */
1301 	flush_nat_entries(sbi, cpc);
1302 	flush_sit_entries(sbi, cpc);
1303 
1304 	/* unlock all the fs_lock[] in do_checkpoint() */
1305 	err = do_checkpoint(sbi, cpc);
1306 	if (err)
1307 		release_discard_addrs(sbi);
1308 	else
1309 		clear_prefree_segments(sbi, cpc);
1310 
1311 	unblock_operations(sbi);
1312 	stat_inc_cp_count(sbi->stat_info);
1313 
1314 	if (cpc->reason == CP_RECOVERY)
1315 		f2fs_msg(sbi->sb, KERN_NOTICE,
1316 			"checkpoint: version = %llx", ckpt_ver);
1317 
1318 	/* do checkpoint periodically */
1319 	f2fs_update_time(sbi, CP_TIME);
1320 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1321 out:
1322 	mutex_unlock(&sbi->cp_mutex);
1323 	return err;
1324 }
1325 
1326 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1327 {
1328 	int i;
1329 
1330 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1331 		struct inode_management *im = &sbi->im[i];
1332 
1333 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1334 		spin_lock_init(&im->ino_lock);
1335 		INIT_LIST_HEAD(&im->ino_list);
1336 		im->ino_num = 0;
1337 	}
1338 
1339 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1340 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1341 				F2FS_ORPHANS_PER_BLOCK;
1342 }
1343 
1344 int __init create_checkpoint_caches(void)
1345 {
1346 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1347 			sizeof(struct ino_entry));
1348 	if (!ino_entry_slab)
1349 		return -ENOMEM;
1350 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1351 			sizeof(struct inode_entry));
1352 	if (!inode_entry_slab) {
1353 		kmem_cache_destroy(ino_entry_slab);
1354 		return -ENOMEM;
1355 	}
1356 	return 0;
1357 }
1358 
1359 void destroy_checkpoint_caches(void)
1360 {
1361 	kmem_cache_destroy(ino_entry_slab);
1362 	kmem_cache_destroy(inode_entry_slab);
1363 }
1364