xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision d7a3d85e)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 	struct address_space *mapping = META_MAPPING(sbi);
35 	struct page *page = NULL;
36 repeat:
37 	page = grab_cache_page(mapping, index);
38 	if (!page) {
39 		cond_resched();
40 		goto repeat;
41 	}
42 	f2fs_wait_on_page_writeback(page, META);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 	struct address_space *mapping = META_MAPPING(sbi);
53 	struct page *page;
54 	struct f2fs_io_info fio = {
55 		.type = META,
56 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
57 		.blk_addr = index,
58 	};
59 repeat:
60 	page = grab_cache_page(mapping, index);
61 	if (!page) {
62 		cond_resched();
63 		goto repeat;
64 	}
65 	if (PageUptodate(page))
66 		goto out;
67 
68 	if (f2fs_submit_page_bio(sbi, page, &fio))
69 		goto repeat;
70 
71 	lock_page(page);
72 	if (unlikely(page->mapping != mapping)) {
73 		f2fs_put_page(page, 1);
74 		goto repeat;
75 	}
76 out:
77 	return page;
78 }
79 
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
81 						block_t blkaddr, int type)
82 {
83 	switch (type) {
84 	case META_NAT:
85 		break;
86 	case META_SIT:
87 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
88 			return false;
89 		break;
90 	case META_SSA:
91 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
92 			blkaddr < SM_I(sbi)->ssa_blkaddr))
93 			return false;
94 		break;
95 	case META_CP:
96 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
97 			blkaddr < __start_cp_addr(sbi)))
98 			return false;
99 		break;
100 	case META_POR:
101 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
102 			blkaddr < MAIN_BLKADDR(sbi)))
103 			return false;
104 		break;
105 	default:
106 		BUG();
107 	}
108 
109 	return true;
110 }
111 
112 /*
113  * Readahead CP/NAT/SIT/SSA pages
114  */
115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
116 {
117 	block_t prev_blk_addr = 0;
118 	struct page *page;
119 	block_t blkno = start;
120 	struct f2fs_io_info fio = {
121 		.type = META,
122 		.rw = READ_SYNC | REQ_META | REQ_PRIO
123 	};
124 
125 	for (; nrpages-- > 0; blkno++) {
126 
127 		if (!is_valid_blkaddr(sbi, blkno, type))
128 			goto out;
129 
130 		switch (type) {
131 		case META_NAT:
132 			if (unlikely(blkno >=
133 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
134 				blkno = 0;
135 			/* get nat block addr */
136 			fio.blk_addr = current_nat_addr(sbi,
137 					blkno * NAT_ENTRY_PER_BLOCK);
138 			break;
139 		case META_SIT:
140 			/* get sit block addr */
141 			fio.blk_addr = current_sit_addr(sbi,
142 					blkno * SIT_ENTRY_PER_BLOCK);
143 			if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
144 				goto out;
145 			prev_blk_addr = fio.blk_addr;
146 			break;
147 		case META_SSA:
148 		case META_CP:
149 		case META_POR:
150 			fio.blk_addr = blkno;
151 			break;
152 		default:
153 			BUG();
154 		}
155 
156 		page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
157 		if (!page)
158 			continue;
159 		if (PageUptodate(page)) {
160 			f2fs_put_page(page, 1);
161 			continue;
162 		}
163 
164 		f2fs_submit_page_mbio(sbi, page, &fio);
165 		f2fs_put_page(page, 0);
166 	}
167 out:
168 	f2fs_submit_merged_bio(sbi, META, READ);
169 	return blkno - start;
170 }
171 
172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
173 {
174 	struct page *page;
175 	bool readahead = false;
176 
177 	page = find_get_page(META_MAPPING(sbi), index);
178 	if (!page || (page && !PageUptodate(page)))
179 		readahead = true;
180 	f2fs_put_page(page, 0);
181 
182 	if (readahead)
183 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
184 }
185 
186 static int f2fs_write_meta_page(struct page *page,
187 				struct writeback_control *wbc)
188 {
189 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
190 
191 	trace_f2fs_writepage(page, META);
192 
193 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
194 		goto redirty_out;
195 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
196 		goto redirty_out;
197 	if (unlikely(f2fs_cp_error(sbi)))
198 		goto redirty_out;
199 
200 	f2fs_wait_on_page_writeback(page, META);
201 	write_meta_page(sbi, page);
202 	dec_page_count(sbi, F2FS_DIRTY_META);
203 	unlock_page(page);
204 
205 	if (wbc->for_reclaim)
206 		f2fs_submit_merged_bio(sbi, META, WRITE);
207 	return 0;
208 
209 redirty_out:
210 	redirty_page_for_writepage(wbc, page);
211 	return AOP_WRITEPAGE_ACTIVATE;
212 }
213 
214 static int f2fs_write_meta_pages(struct address_space *mapping,
215 				struct writeback_control *wbc)
216 {
217 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
218 	long diff, written;
219 
220 	trace_f2fs_writepages(mapping->host, wbc, META);
221 
222 	/* collect a number of dirty meta pages and write together */
223 	if (wbc->for_kupdate ||
224 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
225 		goto skip_write;
226 
227 	/* if mounting is failed, skip writing node pages */
228 	mutex_lock(&sbi->cp_mutex);
229 	diff = nr_pages_to_write(sbi, META, wbc);
230 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
231 	mutex_unlock(&sbi->cp_mutex);
232 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
233 	return 0;
234 
235 skip_write:
236 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
237 	return 0;
238 }
239 
240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
241 						long nr_to_write)
242 {
243 	struct address_space *mapping = META_MAPPING(sbi);
244 	pgoff_t index = 0, end = LONG_MAX;
245 	struct pagevec pvec;
246 	long nwritten = 0;
247 	struct writeback_control wbc = {
248 		.for_reclaim = 0,
249 	};
250 
251 	pagevec_init(&pvec, 0);
252 
253 	while (index <= end) {
254 		int i, nr_pages;
255 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
256 				PAGECACHE_TAG_DIRTY,
257 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
258 		if (unlikely(nr_pages == 0))
259 			break;
260 
261 		for (i = 0; i < nr_pages; i++) {
262 			struct page *page = pvec.pages[i];
263 
264 			lock_page(page);
265 
266 			if (unlikely(page->mapping != mapping)) {
267 continue_unlock:
268 				unlock_page(page);
269 				continue;
270 			}
271 			if (!PageDirty(page)) {
272 				/* someone wrote it for us */
273 				goto continue_unlock;
274 			}
275 
276 			if (!clear_page_dirty_for_io(page))
277 				goto continue_unlock;
278 
279 			if (mapping->a_ops->writepage(page, &wbc)) {
280 				unlock_page(page);
281 				break;
282 			}
283 			nwritten++;
284 			if (unlikely(nwritten >= nr_to_write))
285 				break;
286 		}
287 		pagevec_release(&pvec);
288 		cond_resched();
289 	}
290 
291 	if (nwritten)
292 		f2fs_submit_merged_bio(sbi, type, WRITE);
293 
294 	return nwritten;
295 }
296 
297 static int f2fs_set_meta_page_dirty(struct page *page)
298 {
299 	trace_f2fs_set_page_dirty(page, META);
300 
301 	SetPageUptodate(page);
302 	if (!PageDirty(page)) {
303 		__set_page_dirty_nobuffers(page);
304 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
305 		SetPagePrivate(page);
306 		f2fs_trace_pid(page);
307 		return 1;
308 	}
309 	return 0;
310 }
311 
312 const struct address_space_operations f2fs_meta_aops = {
313 	.writepage	= f2fs_write_meta_page,
314 	.writepages	= f2fs_write_meta_pages,
315 	.set_page_dirty	= f2fs_set_meta_page_dirty,
316 	.invalidatepage = f2fs_invalidate_page,
317 	.releasepage	= f2fs_release_page,
318 };
319 
320 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
321 {
322 	struct inode_management *im = &sbi->im[type];
323 	struct ino_entry *e;
324 retry:
325 	if (radix_tree_preload(GFP_NOFS)) {
326 		cond_resched();
327 		goto retry;
328 	}
329 
330 	spin_lock(&im->ino_lock);
331 
332 	e = radix_tree_lookup(&im->ino_root, ino);
333 	if (!e) {
334 		e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
335 		if (!e) {
336 			spin_unlock(&im->ino_lock);
337 			radix_tree_preload_end();
338 			goto retry;
339 		}
340 		if (radix_tree_insert(&im->ino_root, ino, e)) {
341 			spin_unlock(&im->ino_lock);
342 			kmem_cache_free(ino_entry_slab, e);
343 			radix_tree_preload_end();
344 			goto retry;
345 		}
346 		memset(e, 0, sizeof(struct ino_entry));
347 		e->ino = ino;
348 
349 		list_add_tail(&e->list, &im->ino_list);
350 		if (type != ORPHAN_INO)
351 			im->ino_num++;
352 	}
353 	spin_unlock(&im->ino_lock);
354 	radix_tree_preload_end();
355 }
356 
357 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
358 {
359 	struct inode_management *im = &sbi->im[type];
360 	struct ino_entry *e;
361 
362 	spin_lock(&im->ino_lock);
363 	e = radix_tree_lookup(&im->ino_root, ino);
364 	if (e) {
365 		list_del(&e->list);
366 		radix_tree_delete(&im->ino_root, ino);
367 		im->ino_num--;
368 		spin_unlock(&im->ino_lock);
369 		kmem_cache_free(ino_entry_slab, e);
370 		return;
371 	}
372 	spin_unlock(&im->ino_lock);
373 }
374 
375 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
376 {
377 	/* add new dirty ino entry into list */
378 	__add_ino_entry(sbi, ino, type);
379 }
380 
381 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
382 {
383 	/* remove dirty ino entry from list */
384 	__remove_ino_entry(sbi, ino, type);
385 }
386 
387 /* mode should be APPEND_INO or UPDATE_INO */
388 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
389 {
390 	struct inode_management *im = &sbi->im[mode];
391 	struct ino_entry *e;
392 
393 	spin_lock(&im->ino_lock);
394 	e = radix_tree_lookup(&im->ino_root, ino);
395 	spin_unlock(&im->ino_lock);
396 	return e ? true : false;
397 }
398 
399 void release_dirty_inode(struct f2fs_sb_info *sbi)
400 {
401 	struct ino_entry *e, *tmp;
402 	int i;
403 
404 	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
405 		struct inode_management *im = &sbi->im[i];
406 
407 		spin_lock(&im->ino_lock);
408 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
409 			list_del(&e->list);
410 			radix_tree_delete(&im->ino_root, e->ino);
411 			kmem_cache_free(ino_entry_slab, e);
412 			im->ino_num--;
413 		}
414 		spin_unlock(&im->ino_lock);
415 	}
416 }
417 
418 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
419 {
420 	struct inode_management *im = &sbi->im[ORPHAN_INO];
421 	int err = 0;
422 
423 	spin_lock(&im->ino_lock);
424 	if (unlikely(im->ino_num >= sbi->max_orphans))
425 		err = -ENOSPC;
426 	else
427 		im->ino_num++;
428 	spin_unlock(&im->ino_lock);
429 
430 	return err;
431 }
432 
433 void release_orphan_inode(struct f2fs_sb_info *sbi)
434 {
435 	struct inode_management *im = &sbi->im[ORPHAN_INO];
436 
437 	spin_lock(&im->ino_lock);
438 	f2fs_bug_on(sbi, im->ino_num == 0);
439 	im->ino_num--;
440 	spin_unlock(&im->ino_lock);
441 }
442 
443 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
444 {
445 	/* add new orphan ino entry into list */
446 	__add_ino_entry(sbi, ino, ORPHAN_INO);
447 }
448 
449 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
450 {
451 	/* remove orphan entry from orphan list */
452 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
453 }
454 
455 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
456 {
457 	struct inode *inode = f2fs_iget(sbi->sb, ino);
458 	f2fs_bug_on(sbi, IS_ERR(inode));
459 	clear_nlink(inode);
460 
461 	/* truncate all the data during iput */
462 	iput(inode);
463 }
464 
465 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
466 {
467 	block_t start_blk, orphan_blocks, i, j;
468 
469 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
470 		return;
471 
472 	set_sbi_flag(sbi, SBI_POR_DOING);
473 
474 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
475 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
476 
477 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
478 
479 	for (i = 0; i < orphan_blocks; i++) {
480 		struct page *page = get_meta_page(sbi, start_blk + i);
481 		struct f2fs_orphan_block *orphan_blk;
482 
483 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
484 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
485 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
486 			recover_orphan_inode(sbi, ino);
487 		}
488 		f2fs_put_page(page, 1);
489 	}
490 	/* clear Orphan Flag */
491 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
492 	clear_sbi_flag(sbi, SBI_POR_DOING);
493 	return;
494 }
495 
496 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
497 {
498 	struct list_head *head;
499 	struct f2fs_orphan_block *orphan_blk = NULL;
500 	unsigned int nentries = 0;
501 	unsigned short index;
502 	unsigned short orphan_blocks;
503 	struct page *page = NULL;
504 	struct ino_entry *orphan = NULL;
505 	struct inode_management *im = &sbi->im[ORPHAN_INO];
506 
507 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
508 
509 	for (index = 0; index < orphan_blocks; index++)
510 		grab_meta_page(sbi, start_blk + index);
511 
512 	index = 1;
513 	spin_lock(&im->ino_lock);
514 	head = &im->ino_list;
515 
516 	/* loop for each orphan inode entry and write them in Jornal block */
517 	list_for_each_entry(orphan, head, list) {
518 		if (!page) {
519 			page = find_get_page(META_MAPPING(sbi), start_blk++);
520 			f2fs_bug_on(sbi, !page);
521 			orphan_blk =
522 				(struct f2fs_orphan_block *)page_address(page);
523 			memset(orphan_blk, 0, sizeof(*orphan_blk));
524 			f2fs_put_page(page, 0);
525 		}
526 
527 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
528 
529 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
530 			/*
531 			 * an orphan block is full of 1020 entries,
532 			 * then we need to flush current orphan blocks
533 			 * and bring another one in memory
534 			 */
535 			orphan_blk->blk_addr = cpu_to_le16(index);
536 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
537 			orphan_blk->entry_count = cpu_to_le32(nentries);
538 			set_page_dirty(page);
539 			f2fs_put_page(page, 1);
540 			index++;
541 			nentries = 0;
542 			page = NULL;
543 		}
544 	}
545 
546 	if (page) {
547 		orphan_blk->blk_addr = cpu_to_le16(index);
548 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
549 		orphan_blk->entry_count = cpu_to_le32(nentries);
550 		set_page_dirty(page);
551 		f2fs_put_page(page, 1);
552 	}
553 
554 	spin_unlock(&im->ino_lock);
555 }
556 
557 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
558 				block_t cp_addr, unsigned long long *version)
559 {
560 	struct page *cp_page_1, *cp_page_2 = NULL;
561 	unsigned long blk_size = sbi->blocksize;
562 	struct f2fs_checkpoint *cp_block;
563 	unsigned long long cur_version = 0, pre_version = 0;
564 	size_t crc_offset;
565 	__u32 crc = 0;
566 
567 	/* Read the 1st cp block in this CP pack */
568 	cp_page_1 = get_meta_page(sbi, cp_addr);
569 
570 	/* get the version number */
571 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
572 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
573 	if (crc_offset >= blk_size)
574 		goto invalid_cp1;
575 
576 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
577 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
578 		goto invalid_cp1;
579 
580 	pre_version = cur_cp_version(cp_block);
581 
582 	/* Read the 2nd cp block in this CP pack */
583 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
584 	cp_page_2 = get_meta_page(sbi, cp_addr);
585 
586 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
587 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
588 	if (crc_offset >= blk_size)
589 		goto invalid_cp2;
590 
591 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
592 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
593 		goto invalid_cp2;
594 
595 	cur_version = cur_cp_version(cp_block);
596 
597 	if (cur_version == pre_version) {
598 		*version = cur_version;
599 		f2fs_put_page(cp_page_2, 1);
600 		return cp_page_1;
601 	}
602 invalid_cp2:
603 	f2fs_put_page(cp_page_2, 1);
604 invalid_cp1:
605 	f2fs_put_page(cp_page_1, 1);
606 	return NULL;
607 }
608 
609 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
610 {
611 	struct f2fs_checkpoint *cp_block;
612 	struct f2fs_super_block *fsb = sbi->raw_super;
613 	struct page *cp1, *cp2, *cur_page;
614 	unsigned long blk_size = sbi->blocksize;
615 	unsigned long long cp1_version = 0, cp2_version = 0;
616 	unsigned long long cp_start_blk_no;
617 	unsigned int cp_blks = 1 + __cp_payload(sbi);
618 	block_t cp_blk_no;
619 	int i;
620 
621 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
622 	if (!sbi->ckpt)
623 		return -ENOMEM;
624 	/*
625 	 * Finding out valid cp block involves read both
626 	 * sets( cp pack1 and cp pack 2)
627 	 */
628 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
629 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
630 
631 	/* The second checkpoint pack should start at the next segment */
632 	cp_start_blk_no += ((unsigned long long)1) <<
633 				le32_to_cpu(fsb->log_blocks_per_seg);
634 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
635 
636 	if (cp1 && cp2) {
637 		if (ver_after(cp2_version, cp1_version))
638 			cur_page = cp2;
639 		else
640 			cur_page = cp1;
641 	} else if (cp1) {
642 		cur_page = cp1;
643 	} else if (cp2) {
644 		cur_page = cp2;
645 	} else {
646 		goto fail_no_cp;
647 	}
648 
649 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
650 	memcpy(sbi->ckpt, cp_block, blk_size);
651 
652 	if (cp_blks <= 1)
653 		goto done;
654 
655 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
656 	if (cur_page == cp2)
657 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
658 
659 	for (i = 1; i < cp_blks; i++) {
660 		void *sit_bitmap_ptr;
661 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
662 
663 		cur_page = get_meta_page(sbi, cp_blk_no + i);
664 		sit_bitmap_ptr = page_address(cur_page);
665 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
666 		f2fs_put_page(cur_page, 1);
667 	}
668 done:
669 	f2fs_put_page(cp1, 1);
670 	f2fs_put_page(cp2, 1);
671 	return 0;
672 
673 fail_no_cp:
674 	kfree(sbi->ckpt);
675 	return -EINVAL;
676 }
677 
678 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
679 {
680 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
681 
682 	if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
683 		return -EEXIST;
684 
685 	set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
686 	F2FS_I(inode)->dirty_dir = new;
687 	list_add_tail(&new->list, &sbi->dir_inode_list);
688 	stat_inc_dirty_dir(sbi);
689 	return 0;
690 }
691 
692 void update_dirty_page(struct inode *inode, struct page *page)
693 {
694 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
695 	struct inode_entry *new;
696 	int ret = 0;
697 
698 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
699 		return;
700 
701 	if (!S_ISDIR(inode->i_mode)) {
702 		inode_inc_dirty_pages(inode);
703 		goto out;
704 	}
705 
706 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
707 	new->inode = inode;
708 	INIT_LIST_HEAD(&new->list);
709 
710 	spin_lock(&sbi->dir_inode_lock);
711 	ret = __add_dirty_inode(inode, new);
712 	inode_inc_dirty_pages(inode);
713 	spin_unlock(&sbi->dir_inode_lock);
714 
715 	if (ret)
716 		kmem_cache_free(inode_entry_slab, new);
717 out:
718 	SetPagePrivate(page);
719 	f2fs_trace_pid(page);
720 }
721 
722 void add_dirty_dir_inode(struct inode *inode)
723 {
724 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
725 	struct inode_entry *new =
726 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
727 	int ret = 0;
728 
729 	new->inode = inode;
730 	INIT_LIST_HEAD(&new->list);
731 
732 	spin_lock(&sbi->dir_inode_lock);
733 	ret = __add_dirty_inode(inode, new);
734 	spin_unlock(&sbi->dir_inode_lock);
735 
736 	if (ret)
737 		kmem_cache_free(inode_entry_slab, new);
738 }
739 
740 void remove_dirty_dir_inode(struct inode *inode)
741 {
742 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
743 	struct inode_entry *entry;
744 
745 	if (!S_ISDIR(inode->i_mode))
746 		return;
747 
748 	spin_lock(&sbi->dir_inode_lock);
749 	if (get_dirty_pages(inode) ||
750 			!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
751 		spin_unlock(&sbi->dir_inode_lock);
752 		return;
753 	}
754 
755 	entry = F2FS_I(inode)->dirty_dir;
756 	list_del(&entry->list);
757 	F2FS_I(inode)->dirty_dir = NULL;
758 	clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
759 	stat_dec_dirty_dir(sbi);
760 	spin_unlock(&sbi->dir_inode_lock);
761 	kmem_cache_free(inode_entry_slab, entry);
762 
763 	/* Only from the recovery routine */
764 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
765 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
766 		iput(inode);
767 	}
768 }
769 
770 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
771 {
772 	struct list_head *head;
773 	struct inode_entry *entry;
774 	struct inode *inode;
775 retry:
776 	if (unlikely(f2fs_cp_error(sbi)))
777 		return;
778 
779 	spin_lock(&sbi->dir_inode_lock);
780 
781 	head = &sbi->dir_inode_list;
782 	if (list_empty(head)) {
783 		spin_unlock(&sbi->dir_inode_lock);
784 		return;
785 	}
786 	entry = list_entry(head->next, struct inode_entry, list);
787 	inode = igrab(entry->inode);
788 	spin_unlock(&sbi->dir_inode_lock);
789 	if (inode) {
790 		filemap_fdatawrite(inode->i_mapping);
791 		iput(inode);
792 	} else {
793 		/*
794 		 * We should submit bio, since it exists several
795 		 * wribacking dentry pages in the freeing inode.
796 		 */
797 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
798 		cond_resched();
799 	}
800 	goto retry;
801 }
802 
803 /*
804  * Freeze all the FS-operations for checkpoint.
805  */
806 static int block_operations(struct f2fs_sb_info *sbi)
807 {
808 	struct writeback_control wbc = {
809 		.sync_mode = WB_SYNC_ALL,
810 		.nr_to_write = LONG_MAX,
811 		.for_reclaim = 0,
812 	};
813 	struct blk_plug plug;
814 	int err = 0;
815 
816 	blk_start_plug(&plug);
817 
818 retry_flush_dents:
819 	f2fs_lock_all(sbi);
820 	/* write all the dirty dentry pages */
821 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
822 		f2fs_unlock_all(sbi);
823 		sync_dirty_dir_inodes(sbi);
824 		if (unlikely(f2fs_cp_error(sbi))) {
825 			err = -EIO;
826 			goto out;
827 		}
828 		goto retry_flush_dents;
829 	}
830 
831 	/*
832 	 * POR: we should ensure that there are no dirty node pages
833 	 * until finishing nat/sit flush.
834 	 */
835 retry_flush_nodes:
836 	down_write(&sbi->node_write);
837 
838 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
839 		up_write(&sbi->node_write);
840 		sync_node_pages(sbi, 0, &wbc);
841 		if (unlikely(f2fs_cp_error(sbi))) {
842 			f2fs_unlock_all(sbi);
843 			err = -EIO;
844 			goto out;
845 		}
846 		goto retry_flush_nodes;
847 	}
848 out:
849 	blk_finish_plug(&plug);
850 	return err;
851 }
852 
853 static void unblock_operations(struct f2fs_sb_info *sbi)
854 {
855 	up_write(&sbi->node_write);
856 	f2fs_unlock_all(sbi);
857 }
858 
859 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
860 {
861 	DEFINE_WAIT(wait);
862 
863 	for (;;) {
864 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
865 
866 		if (!get_pages(sbi, F2FS_WRITEBACK))
867 			break;
868 
869 		io_schedule();
870 	}
871 	finish_wait(&sbi->cp_wait, &wait);
872 }
873 
874 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
875 {
876 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
877 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
878 	struct f2fs_nm_info *nm_i = NM_I(sbi);
879 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
880 	nid_t last_nid = nm_i->next_scan_nid;
881 	block_t start_blk;
882 	struct page *cp_page;
883 	unsigned int data_sum_blocks, orphan_blocks;
884 	__u32 crc32 = 0;
885 	void *kaddr;
886 	int i;
887 	int cp_payload_blks = __cp_payload(sbi);
888 
889 	/*
890 	 * This avoids to conduct wrong roll-forward operations and uses
891 	 * metapages, so should be called prior to sync_meta_pages below.
892 	 */
893 	discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
894 
895 	/* Flush all the NAT/SIT pages */
896 	while (get_pages(sbi, F2FS_DIRTY_META)) {
897 		sync_meta_pages(sbi, META, LONG_MAX);
898 		if (unlikely(f2fs_cp_error(sbi)))
899 			return;
900 	}
901 
902 	next_free_nid(sbi, &last_nid);
903 
904 	/*
905 	 * modify checkpoint
906 	 * version number is already updated
907 	 */
908 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
909 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
910 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
911 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
912 		ckpt->cur_node_segno[i] =
913 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
914 		ckpt->cur_node_blkoff[i] =
915 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
916 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
917 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
918 	}
919 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
920 		ckpt->cur_data_segno[i] =
921 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
922 		ckpt->cur_data_blkoff[i] =
923 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
924 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
925 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
926 	}
927 
928 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
929 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
930 	ckpt->next_free_nid = cpu_to_le32(last_nid);
931 
932 	/* 2 cp  + n data seg summary + orphan inode blocks */
933 	data_sum_blocks = npages_for_summary_flush(sbi, false);
934 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
935 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
936 	else
937 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
938 
939 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
940 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
941 			orphan_blocks);
942 
943 	if (__remain_node_summaries(cpc->reason))
944 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
945 				cp_payload_blks + data_sum_blocks +
946 				orphan_blocks + NR_CURSEG_NODE_TYPE);
947 	else
948 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
949 				cp_payload_blks + data_sum_blocks +
950 				orphan_blocks);
951 
952 	if (cpc->reason == CP_UMOUNT)
953 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
954 	else
955 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
956 
957 	if (cpc->reason == CP_FASTBOOT)
958 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
959 	else
960 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
961 
962 	if (orphan_num)
963 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
964 	else
965 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
966 
967 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
968 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
969 
970 	/* update SIT/NAT bitmap */
971 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
972 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
973 
974 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
975 	*((__le32 *)((unsigned char *)ckpt +
976 				le32_to_cpu(ckpt->checksum_offset)))
977 				= cpu_to_le32(crc32);
978 
979 	start_blk = __start_cp_addr(sbi);
980 
981 	/* write out checkpoint buffer at block 0 */
982 	cp_page = grab_meta_page(sbi, start_blk++);
983 	kaddr = page_address(cp_page);
984 	memcpy(kaddr, ckpt, F2FS_BLKSIZE);
985 	set_page_dirty(cp_page);
986 	f2fs_put_page(cp_page, 1);
987 
988 	for (i = 1; i < 1 + cp_payload_blks; i++) {
989 		cp_page = grab_meta_page(sbi, start_blk++);
990 		kaddr = page_address(cp_page);
991 		memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, F2FS_BLKSIZE);
992 		set_page_dirty(cp_page);
993 		f2fs_put_page(cp_page, 1);
994 	}
995 
996 	if (orphan_num) {
997 		write_orphan_inodes(sbi, start_blk);
998 		start_blk += orphan_blocks;
999 	}
1000 
1001 	write_data_summaries(sbi, start_blk);
1002 	start_blk += data_sum_blocks;
1003 	if (__remain_node_summaries(cpc->reason)) {
1004 		write_node_summaries(sbi, start_blk);
1005 		start_blk += NR_CURSEG_NODE_TYPE;
1006 	}
1007 
1008 	/* writeout checkpoint block */
1009 	cp_page = grab_meta_page(sbi, start_blk);
1010 	kaddr = page_address(cp_page);
1011 	memcpy(kaddr, ckpt, F2FS_BLKSIZE);
1012 	set_page_dirty(cp_page);
1013 	f2fs_put_page(cp_page, 1);
1014 
1015 	/* wait for previous submitted node/meta pages writeback */
1016 	wait_on_all_pages_writeback(sbi);
1017 
1018 	if (unlikely(f2fs_cp_error(sbi)))
1019 		return;
1020 
1021 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1022 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1023 
1024 	/* update user_block_counts */
1025 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1026 	sbi->alloc_valid_block_count = 0;
1027 
1028 	/* Here, we only have one bio having CP pack */
1029 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1030 
1031 	/* wait for previous submitted meta pages writeback */
1032 	wait_on_all_pages_writeback(sbi);
1033 
1034 	release_dirty_inode(sbi);
1035 
1036 	if (unlikely(f2fs_cp_error(sbi)))
1037 		return;
1038 
1039 	clear_prefree_segments(sbi);
1040 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1041 }
1042 
1043 /*
1044  * We guarantee that this checkpoint procedure will not fail.
1045  */
1046 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1047 {
1048 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1049 	unsigned long long ckpt_ver;
1050 
1051 	mutex_lock(&sbi->cp_mutex);
1052 
1053 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1054 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC))
1055 		goto out;
1056 	if (unlikely(f2fs_cp_error(sbi)))
1057 		goto out;
1058 	if (f2fs_readonly(sbi->sb))
1059 		goto out;
1060 
1061 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1062 
1063 	if (block_operations(sbi))
1064 		goto out;
1065 
1066 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1067 
1068 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
1069 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1070 	f2fs_submit_merged_bio(sbi, META, WRITE);
1071 
1072 	/*
1073 	 * update checkpoint pack index
1074 	 * Increase the version number so that
1075 	 * SIT entries and seg summaries are written at correct place
1076 	 */
1077 	ckpt_ver = cur_cp_version(ckpt);
1078 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1079 
1080 	/* write cached NAT/SIT entries to NAT/SIT area */
1081 	flush_nat_entries(sbi);
1082 	flush_sit_entries(sbi, cpc);
1083 
1084 	/* unlock all the fs_lock[] in do_checkpoint() */
1085 	do_checkpoint(sbi, cpc);
1086 
1087 	unblock_operations(sbi);
1088 	stat_inc_cp_count(sbi->stat_info);
1089 
1090 	if (cpc->reason == CP_RECOVERY)
1091 		f2fs_msg(sbi->sb, KERN_NOTICE,
1092 			"checkpoint: version = %llx", ckpt_ver);
1093 out:
1094 	mutex_unlock(&sbi->cp_mutex);
1095 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1096 }
1097 
1098 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1099 {
1100 	int i;
1101 
1102 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1103 		struct inode_management *im = &sbi->im[i];
1104 
1105 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1106 		spin_lock_init(&im->ino_lock);
1107 		INIT_LIST_HEAD(&im->ino_list);
1108 		im->ino_num = 0;
1109 	}
1110 
1111 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1112 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1113 				F2FS_ORPHANS_PER_BLOCK;
1114 }
1115 
1116 int __init create_checkpoint_caches(void)
1117 {
1118 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1119 			sizeof(struct ino_entry));
1120 	if (!ino_entry_slab)
1121 		return -ENOMEM;
1122 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1123 			sizeof(struct inode_entry));
1124 	if (!inode_entry_slab) {
1125 		kmem_cache_destroy(ino_entry_slab);
1126 		return -ENOMEM;
1127 	}
1128 	return 0;
1129 }
1130 
1131 void destroy_checkpoint_caches(void)
1132 {
1133 	kmem_cache_destroy(ino_entry_slab);
1134 	kmem_cache_destroy(inode_entry_slab);
1135 }
1136