1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *ino_entry_slab; 24 struct kmem_cache *f2fs_inode_entry_slab; 25 26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 27 { 28 f2fs_build_fault_attr(sbi, 0, 0); 29 set_ckpt_flags(sbi, CP_ERROR_FLAG); 30 if (!end_io) 31 f2fs_flush_merged_writes(sbi); 32 } 33 34 /* 35 * We guarantee no failure on the returned page. 36 */ 37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 38 { 39 struct address_space *mapping = META_MAPPING(sbi); 40 struct page *page = NULL; 41 repeat: 42 page = f2fs_grab_cache_page(mapping, index, false); 43 if (!page) { 44 cond_resched(); 45 goto repeat; 46 } 47 f2fs_wait_on_page_writeback(page, META, true, true); 48 if (!PageUptodate(page)) 49 SetPageUptodate(page); 50 return page; 51 } 52 53 /* 54 * We guarantee no failure on the returned page. 55 */ 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_meta = is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 if (unlikely(!PageUptodate(page))) { 99 f2fs_put_page(page, 1); 100 return ERR_PTR(-EIO); 101 } 102 out: 103 return page; 104 } 105 106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 107 { 108 return __get_meta_page(sbi, index, true); 109 } 110 111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index) 112 { 113 struct page *page; 114 int count = 0; 115 116 retry: 117 page = __get_meta_page(sbi, index, true); 118 if (IS_ERR(page)) { 119 if (PTR_ERR(page) == -EIO && 120 ++count <= DEFAULT_RETRY_IO_COUNT) 121 goto retry; 122 f2fs_stop_checkpoint(sbi, false); 123 } 124 return page; 125 } 126 127 /* for POR only */ 128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 129 { 130 return __get_meta_page(sbi, index, false); 131 } 132 133 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 134 block_t blkaddr, int type) 135 { 136 switch (type) { 137 case META_NAT: 138 break; 139 case META_SIT: 140 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 141 return false; 142 break; 143 case META_SSA: 144 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 145 blkaddr < SM_I(sbi)->ssa_blkaddr)) 146 return false; 147 break; 148 case META_CP: 149 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 150 blkaddr < __start_cp_addr(sbi))) 151 return false; 152 break; 153 case META_POR: 154 case DATA_GENERIC: 155 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 156 blkaddr < MAIN_BLKADDR(sbi))) { 157 if (type == DATA_GENERIC) { 158 f2fs_msg(sbi->sb, KERN_WARNING, 159 "access invalid blkaddr:%u", blkaddr); 160 WARN_ON(1); 161 } 162 return false; 163 } 164 break; 165 case META_GENERIC: 166 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 167 blkaddr >= MAIN_BLKADDR(sbi))) 168 return false; 169 break; 170 default: 171 BUG(); 172 } 173 174 return true; 175 } 176 177 /* 178 * Readahead CP/NAT/SIT/SSA pages 179 */ 180 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 181 int type, bool sync) 182 { 183 struct page *page; 184 block_t blkno = start; 185 struct f2fs_io_info fio = { 186 .sbi = sbi, 187 .type = META, 188 .op = REQ_OP_READ, 189 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 190 .encrypted_page = NULL, 191 .in_list = false, 192 .is_meta = (type != META_POR), 193 }; 194 struct blk_plug plug; 195 196 if (unlikely(type == META_POR)) 197 fio.op_flags &= ~REQ_META; 198 199 blk_start_plug(&plug); 200 for (; nrpages-- > 0; blkno++) { 201 202 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 203 goto out; 204 205 switch (type) { 206 case META_NAT: 207 if (unlikely(blkno >= 208 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 209 blkno = 0; 210 /* get nat block addr */ 211 fio.new_blkaddr = current_nat_addr(sbi, 212 blkno * NAT_ENTRY_PER_BLOCK); 213 break; 214 case META_SIT: 215 /* get sit block addr */ 216 fio.new_blkaddr = current_sit_addr(sbi, 217 blkno * SIT_ENTRY_PER_BLOCK); 218 break; 219 case META_SSA: 220 case META_CP: 221 case META_POR: 222 fio.new_blkaddr = blkno; 223 break; 224 default: 225 BUG(); 226 } 227 228 page = f2fs_grab_cache_page(META_MAPPING(sbi), 229 fio.new_blkaddr, false); 230 if (!page) 231 continue; 232 if (PageUptodate(page)) { 233 f2fs_put_page(page, 1); 234 continue; 235 } 236 237 fio.page = page; 238 f2fs_submit_page_bio(&fio); 239 f2fs_put_page(page, 0); 240 } 241 out: 242 blk_finish_plug(&plug); 243 return blkno - start; 244 } 245 246 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 247 { 248 struct page *page; 249 bool readahead = false; 250 251 page = find_get_page(META_MAPPING(sbi), index); 252 if (!page || !PageUptodate(page)) 253 readahead = true; 254 f2fs_put_page(page, 0); 255 256 if (readahead) 257 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 258 } 259 260 static int __f2fs_write_meta_page(struct page *page, 261 struct writeback_control *wbc, 262 enum iostat_type io_type) 263 { 264 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 265 266 trace_f2fs_writepage(page, META); 267 268 if (unlikely(f2fs_cp_error(sbi))) 269 goto redirty_out; 270 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 271 goto redirty_out; 272 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 273 goto redirty_out; 274 275 f2fs_do_write_meta_page(sbi, page, io_type); 276 dec_page_count(sbi, F2FS_DIRTY_META); 277 278 if (wbc->for_reclaim) 279 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 280 281 unlock_page(page); 282 283 if (unlikely(f2fs_cp_error(sbi))) 284 f2fs_submit_merged_write(sbi, META); 285 286 return 0; 287 288 redirty_out: 289 redirty_page_for_writepage(wbc, page); 290 return AOP_WRITEPAGE_ACTIVATE; 291 } 292 293 static int f2fs_write_meta_page(struct page *page, 294 struct writeback_control *wbc) 295 { 296 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 297 } 298 299 static int f2fs_write_meta_pages(struct address_space *mapping, 300 struct writeback_control *wbc) 301 { 302 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 303 long diff, written; 304 305 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 306 goto skip_write; 307 308 /* collect a number of dirty meta pages and write together */ 309 if (wbc->for_kupdate || 310 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 311 goto skip_write; 312 313 /* if locked failed, cp will flush dirty pages instead */ 314 if (!mutex_trylock(&sbi->cp_mutex)) 315 goto skip_write; 316 317 trace_f2fs_writepages(mapping->host, wbc, META); 318 diff = nr_pages_to_write(sbi, META, wbc); 319 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 320 mutex_unlock(&sbi->cp_mutex); 321 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 322 return 0; 323 324 skip_write: 325 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 326 trace_f2fs_writepages(mapping->host, wbc, META); 327 return 0; 328 } 329 330 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 331 long nr_to_write, enum iostat_type io_type) 332 { 333 struct address_space *mapping = META_MAPPING(sbi); 334 pgoff_t index = 0, prev = ULONG_MAX; 335 struct pagevec pvec; 336 long nwritten = 0; 337 int nr_pages; 338 struct writeback_control wbc = { 339 .for_reclaim = 0, 340 }; 341 struct blk_plug plug; 342 343 pagevec_init(&pvec); 344 345 blk_start_plug(&plug); 346 347 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 348 PAGECACHE_TAG_DIRTY))) { 349 int i; 350 351 for (i = 0; i < nr_pages; i++) { 352 struct page *page = pvec.pages[i]; 353 354 if (prev == ULONG_MAX) 355 prev = page->index - 1; 356 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 357 pagevec_release(&pvec); 358 goto stop; 359 } 360 361 lock_page(page); 362 363 if (unlikely(page->mapping != mapping)) { 364 continue_unlock: 365 unlock_page(page); 366 continue; 367 } 368 if (!PageDirty(page)) { 369 /* someone wrote it for us */ 370 goto continue_unlock; 371 } 372 373 f2fs_wait_on_page_writeback(page, META, true, true); 374 375 if (!clear_page_dirty_for_io(page)) 376 goto continue_unlock; 377 378 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 379 unlock_page(page); 380 break; 381 } 382 nwritten++; 383 prev = page->index; 384 if (unlikely(nwritten >= nr_to_write)) 385 break; 386 } 387 pagevec_release(&pvec); 388 cond_resched(); 389 } 390 stop: 391 if (nwritten) 392 f2fs_submit_merged_write(sbi, type); 393 394 blk_finish_plug(&plug); 395 396 return nwritten; 397 } 398 399 static int f2fs_set_meta_page_dirty(struct page *page) 400 { 401 trace_f2fs_set_page_dirty(page, META); 402 403 if (!PageUptodate(page)) 404 SetPageUptodate(page); 405 if (!PageDirty(page)) { 406 __set_page_dirty_nobuffers(page); 407 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 408 SetPagePrivate(page); 409 f2fs_trace_pid(page); 410 return 1; 411 } 412 return 0; 413 } 414 415 const struct address_space_operations f2fs_meta_aops = { 416 .writepage = f2fs_write_meta_page, 417 .writepages = f2fs_write_meta_pages, 418 .set_page_dirty = f2fs_set_meta_page_dirty, 419 .invalidatepage = f2fs_invalidate_page, 420 .releasepage = f2fs_release_page, 421 #ifdef CONFIG_MIGRATION 422 .migratepage = f2fs_migrate_page, 423 #endif 424 }; 425 426 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 427 unsigned int devidx, int type) 428 { 429 struct inode_management *im = &sbi->im[type]; 430 struct ino_entry *e, *tmp; 431 432 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 433 434 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 435 436 spin_lock(&im->ino_lock); 437 e = radix_tree_lookup(&im->ino_root, ino); 438 if (!e) { 439 e = tmp; 440 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 441 f2fs_bug_on(sbi, 1); 442 443 memset(e, 0, sizeof(struct ino_entry)); 444 e->ino = ino; 445 446 list_add_tail(&e->list, &im->ino_list); 447 if (type != ORPHAN_INO) 448 im->ino_num++; 449 } 450 451 if (type == FLUSH_INO) 452 f2fs_set_bit(devidx, (char *)&e->dirty_device); 453 454 spin_unlock(&im->ino_lock); 455 radix_tree_preload_end(); 456 457 if (e != tmp) 458 kmem_cache_free(ino_entry_slab, tmp); 459 } 460 461 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 462 { 463 struct inode_management *im = &sbi->im[type]; 464 struct ino_entry *e; 465 466 spin_lock(&im->ino_lock); 467 e = radix_tree_lookup(&im->ino_root, ino); 468 if (e) { 469 list_del(&e->list); 470 radix_tree_delete(&im->ino_root, ino); 471 im->ino_num--; 472 spin_unlock(&im->ino_lock); 473 kmem_cache_free(ino_entry_slab, e); 474 return; 475 } 476 spin_unlock(&im->ino_lock); 477 } 478 479 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 480 { 481 /* add new dirty ino entry into list */ 482 __add_ino_entry(sbi, ino, 0, type); 483 } 484 485 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 486 { 487 /* remove dirty ino entry from list */ 488 __remove_ino_entry(sbi, ino, type); 489 } 490 491 /* mode should be APPEND_INO or UPDATE_INO */ 492 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 493 { 494 struct inode_management *im = &sbi->im[mode]; 495 struct ino_entry *e; 496 497 spin_lock(&im->ino_lock); 498 e = radix_tree_lookup(&im->ino_root, ino); 499 spin_unlock(&im->ino_lock); 500 return e ? true : false; 501 } 502 503 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 504 { 505 struct ino_entry *e, *tmp; 506 int i; 507 508 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 509 struct inode_management *im = &sbi->im[i]; 510 511 spin_lock(&im->ino_lock); 512 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 513 list_del(&e->list); 514 radix_tree_delete(&im->ino_root, e->ino); 515 kmem_cache_free(ino_entry_slab, e); 516 im->ino_num--; 517 } 518 spin_unlock(&im->ino_lock); 519 } 520 } 521 522 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 523 unsigned int devidx, int type) 524 { 525 __add_ino_entry(sbi, ino, devidx, type); 526 } 527 528 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 529 unsigned int devidx, int type) 530 { 531 struct inode_management *im = &sbi->im[type]; 532 struct ino_entry *e; 533 bool is_dirty = false; 534 535 spin_lock(&im->ino_lock); 536 e = radix_tree_lookup(&im->ino_root, ino); 537 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 538 is_dirty = true; 539 spin_unlock(&im->ino_lock); 540 return is_dirty; 541 } 542 543 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 544 { 545 struct inode_management *im = &sbi->im[ORPHAN_INO]; 546 int err = 0; 547 548 spin_lock(&im->ino_lock); 549 550 if (time_to_inject(sbi, FAULT_ORPHAN)) { 551 spin_unlock(&im->ino_lock); 552 f2fs_show_injection_info(FAULT_ORPHAN); 553 return -ENOSPC; 554 } 555 556 if (unlikely(im->ino_num >= sbi->max_orphans)) 557 err = -ENOSPC; 558 else 559 im->ino_num++; 560 spin_unlock(&im->ino_lock); 561 562 return err; 563 } 564 565 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 566 { 567 struct inode_management *im = &sbi->im[ORPHAN_INO]; 568 569 spin_lock(&im->ino_lock); 570 f2fs_bug_on(sbi, im->ino_num == 0); 571 im->ino_num--; 572 spin_unlock(&im->ino_lock); 573 } 574 575 void f2fs_add_orphan_inode(struct inode *inode) 576 { 577 /* add new orphan ino entry into list */ 578 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 579 f2fs_update_inode_page(inode); 580 } 581 582 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 583 { 584 /* remove orphan entry from orphan list */ 585 __remove_ino_entry(sbi, ino, ORPHAN_INO); 586 } 587 588 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 589 { 590 struct inode *inode; 591 struct node_info ni; 592 int err; 593 594 inode = f2fs_iget_retry(sbi->sb, ino); 595 if (IS_ERR(inode)) { 596 /* 597 * there should be a bug that we can't find the entry 598 * to orphan inode. 599 */ 600 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 601 return PTR_ERR(inode); 602 } 603 604 err = dquot_initialize(inode); 605 if (err) { 606 iput(inode); 607 goto err_out; 608 } 609 610 clear_nlink(inode); 611 612 /* truncate all the data during iput */ 613 iput(inode); 614 615 err = f2fs_get_node_info(sbi, ino, &ni); 616 if (err) 617 goto err_out; 618 619 /* ENOMEM was fully retried in f2fs_evict_inode. */ 620 if (ni.blk_addr != NULL_ADDR) { 621 err = -EIO; 622 goto err_out; 623 } 624 return 0; 625 626 err_out: 627 set_sbi_flag(sbi, SBI_NEED_FSCK); 628 f2fs_msg(sbi->sb, KERN_WARNING, 629 "%s: orphan failed (ino=%x), run fsck to fix.", 630 __func__, ino); 631 return err; 632 } 633 634 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 635 { 636 block_t start_blk, orphan_blocks, i, j; 637 unsigned int s_flags = sbi->sb->s_flags; 638 int err = 0; 639 #ifdef CONFIG_QUOTA 640 int quota_enabled; 641 #endif 642 643 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 644 return 0; 645 646 if (s_flags & SB_RDONLY) { 647 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 648 sbi->sb->s_flags &= ~SB_RDONLY; 649 } 650 651 #ifdef CONFIG_QUOTA 652 /* Needed for iput() to work correctly and not trash data */ 653 sbi->sb->s_flags |= SB_ACTIVE; 654 655 /* 656 * Turn on quotas which were not enabled for read-only mounts if 657 * filesystem has quota feature, so that they are updated correctly. 658 */ 659 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 660 #endif 661 662 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 663 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 664 665 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 666 667 for (i = 0; i < orphan_blocks; i++) { 668 struct page *page; 669 struct f2fs_orphan_block *orphan_blk; 670 671 page = f2fs_get_meta_page(sbi, start_blk + i); 672 if (IS_ERR(page)) { 673 err = PTR_ERR(page); 674 goto out; 675 } 676 677 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 678 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 679 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 680 err = recover_orphan_inode(sbi, ino); 681 if (err) { 682 f2fs_put_page(page, 1); 683 goto out; 684 } 685 } 686 f2fs_put_page(page, 1); 687 } 688 /* clear Orphan Flag */ 689 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 690 out: 691 set_sbi_flag(sbi, SBI_IS_RECOVERED); 692 693 #ifdef CONFIG_QUOTA 694 /* Turn quotas off */ 695 if (quota_enabled) 696 f2fs_quota_off_umount(sbi->sb); 697 #endif 698 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 699 700 return err; 701 } 702 703 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 704 { 705 struct list_head *head; 706 struct f2fs_orphan_block *orphan_blk = NULL; 707 unsigned int nentries = 0; 708 unsigned short index = 1; 709 unsigned short orphan_blocks; 710 struct page *page = NULL; 711 struct ino_entry *orphan = NULL; 712 struct inode_management *im = &sbi->im[ORPHAN_INO]; 713 714 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 715 716 /* 717 * we don't need to do spin_lock(&im->ino_lock) here, since all the 718 * orphan inode operations are covered under f2fs_lock_op(). 719 * And, spin_lock should be avoided due to page operations below. 720 */ 721 head = &im->ino_list; 722 723 /* loop for each orphan inode entry and write them in Jornal block */ 724 list_for_each_entry(orphan, head, list) { 725 if (!page) { 726 page = f2fs_grab_meta_page(sbi, start_blk++); 727 orphan_blk = 728 (struct f2fs_orphan_block *)page_address(page); 729 memset(orphan_blk, 0, sizeof(*orphan_blk)); 730 } 731 732 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 733 734 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 735 /* 736 * an orphan block is full of 1020 entries, 737 * then we need to flush current orphan blocks 738 * and bring another one in memory 739 */ 740 orphan_blk->blk_addr = cpu_to_le16(index); 741 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 742 orphan_blk->entry_count = cpu_to_le32(nentries); 743 set_page_dirty(page); 744 f2fs_put_page(page, 1); 745 index++; 746 nentries = 0; 747 page = NULL; 748 } 749 } 750 751 if (page) { 752 orphan_blk->blk_addr = cpu_to_le16(index); 753 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 754 orphan_blk->entry_count = cpu_to_le32(nentries); 755 set_page_dirty(page); 756 f2fs_put_page(page, 1); 757 } 758 } 759 760 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 761 struct f2fs_checkpoint **cp_block, struct page **cp_page, 762 unsigned long long *version) 763 { 764 unsigned long blk_size = sbi->blocksize; 765 size_t crc_offset = 0; 766 __u32 crc = 0; 767 768 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 769 if (IS_ERR(*cp_page)) 770 return PTR_ERR(*cp_page); 771 772 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 773 774 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 775 if (crc_offset > (blk_size - sizeof(__le32))) { 776 f2fs_put_page(*cp_page, 1); 777 f2fs_msg(sbi->sb, KERN_WARNING, 778 "invalid crc_offset: %zu", crc_offset); 779 return -EINVAL; 780 } 781 782 crc = cur_cp_crc(*cp_block); 783 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 784 f2fs_put_page(*cp_page, 1); 785 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 786 return -EINVAL; 787 } 788 789 *version = cur_cp_version(*cp_block); 790 return 0; 791 } 792 793 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 794 block_t cp_addr, unsigned long long *version) 795 { 796 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 797 struct f2fs_checkpoint *cp_block = NULL; 798 unsigned long long cur_version = 0, pre_version = 0; 799 int err; 800 801 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 802 &cp_page_1, version); 803 if (err) 804 return NULL; 805 806 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 807 sbi->blocks_per_seg) { 808 f2fs_msg(sbi->sb, KERN_WARNING, 809 "invalid cp_pack_total_block_count:%u", 810 le32_to_cpu(cp_block->cp_pack_total_block_count)); 811 goto invalid_cp; 812 } 813 pre_version = *version; 814 815 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 816 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 817 &cp_page_2, version); 818 if (err) 819 goto invalid_cp; 820 cur_version = *version; 821 822 if (cur_version == pre_version) { 823 *version = cur_version; 824 f2fs_put_page(cp_page_2, 1); 825 return cp_page_1; 826 } 827 f2fs_put_page(cp_page_2, 1); 828 invalid_cp: 829 f2fs_put_page(cp_page_1, 1); 830 return NULL; 831 } 832 833 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 834 { 835 struct f2fs_checkpoint *cp_block; 836 struct f2fs_super_block *fsb = sbi->raw_super; 837 struct page *cp1, *cp2, *cur_page; 838 unsigned long blk_size = sbi->blocksize; 839 unsigned long long cp1_version = 0, cp2_version = 0; 840 unsigned long long cp_start_blk_no; 841 unsigned int cp_blks = 1 + __cp_payload(sbi); 842 block_t cp_blk_no; 843 int i; 844 845 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks), 846 GFP_KERNEL); 847 if (!sbi->ckpt) 848 return -ENOMEM; 849 /* 850 * Finding out valid cp block involves read both 851 * sets( cp pack1 and cp pack 2) 852 */ 853 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 854 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 855 856 /* The second checkpoint pack should start at the next segment */ 857 cp_start_blk_no += ((unsigned long long)1) << 858 le32_to_cpu(fsb->log_blocks_per_seg); 859 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 860 861 if (cp1 && cp2) { 862 if (ver_after(cp2_version, cp1_version)) 863 cur_page = cp2; 864 else 865 cur_page = cp1; 866 } else if (cp1) { 867 cur_page = cp1; 868 } else if (cp2) { 869 cur_page = cp2; 870 } else { 871 goto fail_no_cp; 872 } 873 874 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 875 memcpy(sbi->ckpt, cp_block, blk_size); 876 877 if (cur_page == cp1) 878 sbi->cur_cp_pack = 1; 879 else 880 sbi->cur_cp_pack = 2; 881 882 /* Sanity checking of checkpoint */ 883 if (f2fs_sanity_check_ckpt(sbi)) 884 goto free_fail_no_cp; 885 886 if (cp_blks <= 1) 887 goto done; 888 889 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 890 if (cur_page == cp2) 891 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 892 893 for (i = 1; i < cp_blks; i++) { 894 void *sit_bitmap_ptr; 895 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 896 897 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 898 if (IS_ERR(cur_page)) 899 goto free_fail_no_cp; 900 sit_bitmap_ptr = page_address(cur_page); 901 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 902 f2fs_put_page(cur_page, 1); 903 } 904 done: 905 f2fs_put_page(cp1, 1); 906 f2fs_put_page(cp2, 1); 907 return 0; 908 909 free_fail_no_cp: 910 f2fs_put_page(cp1, 1); 911 f2fs_put_page(cp2, 1); 912 fail_no_cp: 913 kvfree(sbi->ckpt); 914 return -EINVAL; 915 } 916 917 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 918 { 919 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 920 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 921 922 if (is_inode_flag_set(inode, flag)) 923 return; 924 925 set_inode_flag(inode, flag); 926 if (!f2fs_is_volatile_file(inode)) 927 list_add_tail(&F2FS_I(inode)->dirty_list, 928 &sbi->inode_list[type]); 929 stat_inc_dirty_inode(sbi, type); 930 } 931 932 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 933 { 934 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 935 936 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 937 return; 938 939 list_del_init(&F2FS_I(inode)->dirty_list); 940 clear_inode_flag(inode, flag); 941 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 942 } 943 944 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 945 { 946 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 947 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 948 949 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 950 !S_ISLNK(inode->i_mode)) 951 return; 952 953 spin_lock(&sbi->inode_lock[type]); 954 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 955 __add_dirty_inode(inode, type); 956 inode_inc_dirty_pages(inode); 957 spin_unlock(&sbi->inode_lock[type]); 958 959 SetPagePrivate(page); 960 f2fs_trace_pid(page); 961 } 962 963 void f2fs_remove_dirty_inode(struct inode *inode) 964 { 965 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 966 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 967 968 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 969 !S_ISLNK(inode->i_mode)) 970 return; 971 972 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 973 return; 974 975 spin_lock(&sbi->inode_lock[type]); 976 __remove_dirty_inode(inode, type); 977 spin_unlock(&sbi->inode_lock[type]); 978 } 979 980 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 981 { 982 struct list_head *head; 983 struct inode *inode; 984 struct f2fs_inode_info *fi; 985 bool is_dir = (type == DIR_INODE); 986 unsigned long ino = 0; 987 988 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 989 get_pages(sbi, is_dir ? 990 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 991 retry: 992 if (unlikely(f2fs_cp_error(sbi))) 993 return -EIO; 994 995 spin_lock(&sbi->inode_lock[type]); 996 997 head = &sbi->inode_list[type]; 998 if (list_empty(head)) { 999 spin_unlock(&sbi->inode_lock[type]); 1000 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1001 get_pages(sbi, is_dir ? 1002 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1003 return 0; 1004 } 1005 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1006 inode = igrab(&fi->vfs_inode); 1007 spin_unlock(&sbi->inode_lock[type]); 1008 if (inode) { 1009 unsigned long cur_ino = inode->i_ino; 1010 1011 if (is_dir) 1012 F2FS_I(inode)->cp_task = current; 1013 1014 filemap_fdatawrite(inode->i_mapping); 1015 1016 if (is_dir) 1017 F2FS_I(inode)->cp_task = NULL; 1018 1019 iput(inode); 1020 /* We need to give cpu to another writers. */ 1021 if (ino == cur_ino) 1022 cond_resched(); 1023 else 1024 ino = cur_ino; 1025 } else { 1026 /* 1027 * We should submit bio, since it exists several 1028 * wribacking dentry pages in the freeing inode. 1029 */ 1030 f2fs_submit_merged_write(sbi, DATA); 1031 cond_resched(); 1032 } 1033 goto retry; 1034 } 1035 1036 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1037 { 1038 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1039 struct inode *inode; 1040 struct f2fs_inode_info *fi; 1041 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1042 1043 while (total--) { 1044 if (unlikely(f2fs_cp_error(sbi))) 1045 return -EIO; 1046 1047 spin_lock(&sbi->inode_lock[DIRTY_META]); 1048 if (list_empty(head)) { 1049 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1050 return 0; 1051 } 1052 fi = list_first_entry(head, struct f2fs_inode_info, 1053 gdirty_list); 1054 inode = igrab(&fi->vfs_inode); 1055 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1056 if (inode) { 1057 sync_inode_metadata(inode, 0); 1058 1059 /* it's on eviction */ 1060 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1061 f2fs_update_inode_page(inode); 1062 iput(inode); 1063 } 1064 } 1065 return 0; 1066 } 1067 1068 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1069 { 1070 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1071 struct f2fs_nm_info *nm_i = NM_I(sbi); 1072 nid_t last_nid = nm_i->next_scan_nid; 1073 1074 next_free_nid(sbi, &last_nid); 1075 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1076 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1077 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1078 ckpt->next_free_nid = cpu_to_le32(last_nid); 1079 } 1080 1081 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1082 { 1083 if (!is_journalled_quota(sbi)) 1084 return false; 1085 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1086 return false; 1087 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1088 return false; 1089 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) 1090 return true; 1091 if (get_pages(sbi, F2FS_DIRTY_QDATA)) 1092 return true; 1093 return false; 1094 } 1095 1096 /* 1097 * Freeze all the FS-operations for checkpoint. 1098 */ 1099 static int block_operations(struct f2fs_sb_info *sbi) 1100 { 1101 struct writeback_control wbc = { 1102 .sync_mode = WB_SYNC_ALL, 1103 .nr_to_write = LONG_MAX, 1104 .for_reclaim = 0, 1105 }; 1106 struct blk_plug plug; 1107 int err = 0, cnt = 0; 1108 1109 blk_start_plug(&plug); 1110 1111 retry_flush_quotas: 1112 if (__need_flush_quota(sbi)) { 1113 int locked; 1114 1115 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1116 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1117 f2fs_lock_all(sbi); 1118 goto retry_flush_dents; 1119 } 1120 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1121 1122 /* only failed during mount/umount/freeze/quotactl */ 1123 locked = down_read_trylock(&sbi->sb->s_umount); 1124 f2fs_quota_sync(sbi->sb, -1); 1125 if (locked) 1126 up_read(&sbi->sb->s_umount); 1127 } 1128 1129 f2fs_lock_all(sbi); 1130 if (__need_flush_quota(sbi)) { 1131 f2fs_unlock_all(sbi); 1132 cond_resched(); 1133 goto retry_flush_quotas; 1134 } 1135 1136 retry_flush_dents: 1137 /* write all the dirty dentry pages */ 1138 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1139 f2fs_unlock_all(sbi); 1140 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1141 if (err) 1142 goto out; 1143 cond_resched(); 1144 goto retry_flush_quotas; 1145 } 1146 1147 /* 1148 * POR: we should ensure that there are no dirty node pages 1149 * until finishing nat/sit flush. inode->i_blocks can be updated. 1150 */ 1151 down_write(&sbi->node_change); 1152 1153 if (__need_flush_quota(sbi)) { 1154 up_write(&sbi->node_change); 1155 f2fs_unlock_all(sbi); 1156 goto retry_flush_quotas; 1157 } 1158 1159 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1160 up_write(&sbi->node_change); 1161 f2fs_unlock_all(sbi); 1162 err = f2fs_sync_inode_meta(sbi); 1163 if (err) 1164 goto out; 1165 cond_resched(); 1166 goto retry_flush_quotas; 1167 } 1168 1169 retry_flush_nodes: 1170 down_write(&sbi->node_write); 1171 1172 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1173 up_write(&sbi->node_write); 1174 atomic_inc(&sbi->wb_sync_req[NODE]); 1175 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1176 atomic_dec(&sbi->wb_sync_req[NODE]); 1177 if (err) { 1178 up_write(&sbi->node_change); 1179 f2fs_unlock_all(sbi); 1180 goto out; 1181 } 1182 cond_resched(); 1183 goto retry_flush_nodes; 1184 } 1185 1186 /* 1187 * sbi->node_change is used only for AIO write_begin path which produces 1188 * dirty node blocks and some checkpoint values by block allocation. 1189 */ 1190 __prepare_cp_block(sbi); 1191 up_write(&sbi->node_change); 1192 out: 1193 blk_finish_plug(&plug); 1194 return err; 1195 } 1196 1197 static void unblock_operations(struct f2fs_sb_info *sbi) 1198 { 1199 up_write(&sbi->node_write); 1200 f2fs_unlock_all(sbi); 1201 } 1202 1203 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1204 { 1205 DEFINE_WAIT(wait); 1206 1207 for (;;) { 1208 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1209 1210 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1211 break; 1212 1213 if (unlikely(f2fs_cp_error(sbi))) 1214 break; 1215 1216 io_schedule_timeout(5*HZ); 1217 } 1218 finish_wait(&sbi->cp_wait, &wait); 1219 } 1220 1221 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1222 { 1223 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1224 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1225 unsigned long flags; 1226 1227 spin_lock_irqsave(&sbi->cp_lock, flags); 1228 1229 if ((cpc->reason & CP_UMOUNT) && 1230 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1231 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1232 disable_nat_bits(sbi, false); 1233 1234 if (cpc->reason & CP_TRIMMED) 1235 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1236 else 1237 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1238 1239 if (cpc->reason & CP_UMOUNT) 1240 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1241 else 1242 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1243 1244 if (cpc->reason & CP_FASTBOOT) 1245 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1246 else 1247 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1248 1249 if (orphan_num) 1250 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1251 else 1252 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1253 1254 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1255 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1256 1257 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1258 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1259 else 1260 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1261 1262 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1263 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1264 else 1265 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1266 1267 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1268 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1269 1270 /* set this flag to activate crc|cp_ver for recovery */ 1271 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1272 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1273 1274 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1275 } 1276 1277 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1278 void *src, block_t blk_addr) 1279 { 1280 struct writeback_control wbc = { 1281 .for_reclaim = 0, 1282 }; 1283 1284 /* 1285 * pagevec_lookup_tag and lock_page again will take 1286 * some extra time. Therefore, f2fs_update_meta_pages and 1287 * f2fs_sync_meta_pages are combined in this function. 1288 */ 1289 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1290 int err; 1291 1292 f2fs_wait_on_page_writeback(page, META, true, true); 1293 1294 memcpy(page_address(page), src, PAGE_SIZE); 1295 1296 set_page_dirty(page); 1297 if (unlikely(!clear_page_dirty_for_io(page))) 1298 f2fs_bug_on(sbi, 1); 1299 1300 /* writeout cp pack 2 page */ 1301 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1302 if (unlikely(err && f2fs_cp_error(sbi))) { 1303 f2fs_put_page(page, 1); 1304 return; 1305 } 1306 1307 f2fs_bug_on(sbi, err); 1308 f2fs_put_page(page, 0); 1309 1310 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1311 f2fs_submit_merged_write(sbi, META_FLUSH); 1312 } 1313 1314 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1315 { 1316 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1317 struct f2fs_nm_info *nm_i = NM_I(sbi); 1318 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1319 block_t start_blk; 1320 unsigned int data_sum_blocks, orphan_blocks; 1321 __u32 crc32 = 0; 1322 int i; 1323 int cp_payload_blks = __cp_payload(sbi); 1324 struct super_block *sb = sbi->sb; 1325 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1326 u64 kbytes_written; 1327 int err; 1328 1329 /* Flush all the NAT/SIT pages */ 1330 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1331 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) && 1332 !f2fs_cp_error(sbi)); 1333 1334 /* 1335 * modify checkpoint 1336 * version number is already updated 1337 */ 1338 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1339 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1340 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1341 ckpt->cur_node_segno[i] = 1342 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1343 ckpt->cur_node_blkoff[i] = 1344 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1345 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1346 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1347 } 1348 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1349 ckpt->cur_data_segno[i] = 1350 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1351 ckpt->cur_data_blkoff[i] = 1352 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1353 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1354 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1355 } 1356 1357 /* 2 cp + n data seg summary + orphan inode blocks */ 1358 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1359 spin_lock_irqsave(&sbi->cp_lock, flags); 1360 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1361 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1362 else 1363 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1364 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1365 1366 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1367 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1368 orphan_blocks); 1369 1370 if (__remain_node_summaries(cpc->reason)) 1371 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1372 cp_payload_blks + data_sum_blocks + 1373 orphan_blocks + NR_CURSEG_NODE_TYPE); 1374 else 1375 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1376 cp_payload_blks + data_sum_blocks + 1377 orphan_blocks); 1378 1379 /* update ckpt flag for checkpoint */ 1380 update_ckpt_flags(sbi, cpc); 1381 1382 /* update SIT/NAT bitmap */ 1383 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1384 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1385 1386 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1387 *((__le32 *)((unsigned char *)ckpt + 1388 le32_to_cpu(ckpt->checksum_offset))) 1389 = cpu_to_le32(crc32); 1390 1391 start_blk = __start_cp_next_addr(sbi); 1392 1393 /* write nat bits */ 1394 if (enabled_nat_bits(sbi, cpc)) { 1395 __u64 cp_ver = cur_cp_version(ckpt); 1396 block_t blk; 1397 1398 cp_ver |= ((__u64)crc32 << 32); 1399 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1400 1401 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1402 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1403 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1404 (i << F2FS_BLKSIZE_BITS), blk + i); 1405 } 1406 1407 /* write out checkpoint buffer at block 0 */ 1408 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1409 1410 for (i = 1; i < 1 + cp_payload_blks; i++) 1411 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1412 start_blk++); 1413 1414 if (orphan_num) { 1415 write_orphan_inodes(sbi, start_blk); 1416 start_blk += orphan_blocks; 1417 } 1418 1419 f2fs_write_data_summaries(sbi, start_blk); 1420 start_blk += data_sum_blocks; 1421 1422 /* Record write statistics in the hot node summary */ 1423 kbytes_written = sbi->kbytes_written; 1424 if (sb->s_bdev->bd_part) 1425 kbytes_written += BD_PART_WRITTEN(sbi); 1426 1427 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1428 1429 if (__remain_node_summaries(cpc->reason)) { 1430 f2fs_write_node_summaries(sbi, start_blk); 1431 start_blk += NR_CURSEG_NODE_TYPE; 1432 } 1433 1434 /* update user_block_counts */ 1435 sbi->last_valid_block_count = sbi->total_valid_block_count; 1436 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1437 1438 /* Here, we have one bio having CP pack except cp pack 2 page */ 1439 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1440 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) && 1441 !f2fs_cp_error(sbi)); 1442 1443 /* wait for previous submitted meta pages writeback */ 1444 f2fs_wait_on_all_pages_writeback(sbi); 1445 1446 /* flush all device cache */ 1447 err = f2fs_flush_device_cache(sbi); 1448 if (err) 1449 return err; 1450 1451 /* barrier and flush checkpoint cp pack 2 page if it can */ 1452 commit_checkpoint(sbi, ckpt, start_blk); 1453 f2fs_wait_on_all_pages_writeback(sbi); 1454 1455 /* 1456 * invalidate intermediate page cache borrowed from meta inode 1457 * which are used for migration of encrypted inode's blocks. 1458 */ 1459 if (f2fs_sb_has_encrypt(sbi)) 1460 invalidate_mapping_pages(META_MAPPING(sbi), 1461 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1462 1463 f2fs_release_ino_entry(sbi, false); 1464 1465 f2fs_reset_fsync_node_info(sbi); 1466 1467 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1468 clear_sbi_flag(sbi, SBI_NEED_CP); 1469 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1470 sbi->unusable_block_count = 0; 1471 __set_cp_next_pack(sbi); 1472 1473 /* 1474 * redirty superblock if metadata like node page or inode cache is 1475 * updated during writing checkpoint. 1476 */ 1477 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1478 get_pages(sbi, F2FS_DIRTY_IMETA)) 1479 set_sbi_flag(sbi, SBI_IS_DIRTY); 1480 1481 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1482 1483 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1484 } 1485 1486 /* 1487 * We guarantee that this checkpoint procedure will not fail. 1488 */ 1489 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1490 { 1491 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1492 unsigned long long ckpt_ver; 1493 int err = 0; 1494 1495 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1496 if (cpc->reason != CP_PAUSE) 1497 return 0; 1498 f2fs_msg(sbi->sb, KERN_WARNING, 1499 "Start checkpoint disabled!"); 1500 } 1501 mutex_lock(&sbi->cp_mutex); 1502 1503 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1504 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1505 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1506 goto out; 1507 if (unlikely(f2fs_cp_error(sbi))) { 1508 err = -EIO; 1509 goto out; 1510 } 1511 if (f2fs_readonly(sbi->sb)) { 1512 err = -EROFS; 1513 goto out; 1514 } 1515 1516 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1517 1518 err = block_operations(sbi); 1519 if (err) 1520 goto out; 1521 1522 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1523 1524 f2fs_flush_merged_writes(sbi); 1525 1526 /* this is the case of multiple fstrims without any changes */ 1527 if (cpc->reason & CP_DISCARD) { 1528 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1529 unblock_operations(sbi); 1530 goto out; 1531 } 1532 1533 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1534 SIT_I(sbi)->dirty_sentries == 0 && 1535 prefree_segments(sbi) == 0) { 1536 f2fs_flush_sit_entries(sbi, cpc); 1537 f2fs_clear_prefree_segments(sbi, cpc); 1538 unblock_operations(sbi); 1539 goto out; 1540 } 1541 } 1542 1543 /* 1544 * update checkpoint pack index 1545 * Increase the version number so that 1546 * SIT entries and seg summaries are written at correct place 1547 */ 1548 ckpt_ver = cur_cp_version(ckpt); 1549 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1550 1551 /* write cached NAT/SIT entries to NAT/SIT area */ 1552 err = f2fs_flush_nat_entries(sbi, cpc); 1553 if (err) 1554 goto stop; 1555 1556 f2fs_flush_sit_entries(sbi, cpc); 1557 1558 /* unlock all the fs_lock[] in do_checkpoint() */ 1559 err = do_checkpoint(sbi, cpc); 1560 if (err) 1561 f2fs_release_discard_addrs(sbi); 1562 else 1563 f2fs_clear_prefree_segments(sbi, cpc); 1564 stop: 1565 unblock_operations(sbi); 1566 stat_inc_cp_count(sbi->stat_info); 1567 1568 if (cpc->reason & CP_RECOVERY) 1569 f2fs_msg(sbi->sb, KERN_NOTICE, 1570 "checkpoint: version = %llx", ckpt_ver); 1571 1572 /* do checkpoint periodically */ 1573 f2fs_update_time(sbi, CP_TIME); 1574 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1575 out: 1576 mutex_unlock(&sbi->cp_mutex); 1577 return err; 1578 } 1579 1580 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1581 { 1582 int i; 1583 1584 for (i = 0; i < MAX_INO_ENTRY; i++) { 1585 struct inode_management *im = &sbi->im[i]; 1586 1587 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1588 spin_lock_init(&im->ino_lock); 1589 INIT_LIST_HEAD(&im->ino_list); 1590 im->ino_num = 0; 1591 } 1592 1593 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1594 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1595 F2FS_ORPHANS_PER_BLOCK; 1596 } 1597 1598 int __init f2fs_create_checkpoint_caches(void) 1599 { 1600 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1601 sizeof(struct ino_entry)); 1602 if (!ino_entry_slab) 1603 return -ENOMEM; 1604 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1605 sizeof(struct inode_entry)); 1606 if (!f2fs_inode_entry_slab) { 1607 kmem_cache_destroy(ino_entry_slab); 1608 return -ENOMEM; 1609 } 1610 return 0; 1611 } 1612 1613 void f2fs_destroy_checkpoint_caches(void) 1614 { 1615 kmem_cache_destroy(ino_entry_slab); 1616 kmem_cache_destroy(f2fs_inode_entry_slab); 1617 } 1618