1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *orphan_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = sbi->meta_inode->i_mapping; 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 42 /* We wait writeback only inside grab_meta_page() */ 43 wait_on_page_writeback(page); 44 SetPageUptodate(page); 45 return page; 46 } 47 48 /* 49 * We guarantee no failure on the returned page. 50 */ 51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 52 { 53 struct address_space *mapping = sbi->meta_inode->i_mapping; 54 struct page *page; 55 repeat: 56 page = grab_cache_page(mapping, index); 57 if (!page) { 58 cond_resched(); 59 goto repeat; 60 } 61 if (PageUptodate(page)) 62 goto out; 63 64 if (f2fs_readpage(sbi, page, index, READ_SYNC)) 65 goto repeat; 66 67 lock_page(page); 68 if (page->mapping != mapping) { 69 f2fs_put_page(page, 1); 70 goto repeat; 71 } 72 out: 73 mark_page_accessed(page); 74 return page; 75 } 76 77 static int f2fs_write_meta_page(struct page *page, 78 struct writeback_control *wbc) 79 { 80 struct inode *inode = page->mapping->host; 81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 82 83 /* Should not write any meta pages, if any IO error was occurred */ 84 if (wbc->for_reclaim || 85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) { 86 dec_page_count(sbi, F2FS_DIRTY_META); 87 wbc->pages_skipped++; 88 set_page_dirty(page); 89 return AOP_WRITEPAGE_ACTIVATE; 90 } 91 92 wait_on_page_writeback(page); 93 94 write_meta_page(sbi, page); 95 dec_page_count(sbi, F2FS_DIRTY_META); 96 unlock_page(page); 97 return 0; 98 } 99 100 static int f2fs_write_meta_pages(struct address_space *mapping, 101 struct writeback_control *wbc) 102 { 103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 104 struct block_device *bdev = sbi->sb->s_bdev; 105 long written; 106 107 if (wbc->for_kupdate) 108 return 0; 109 110 if (get_pages(sbi, F2FS_DIRTY_META) == 0) 111 return 0; 112 113 /* if mounting is failed, skip writing node pages */ 114 mutex_lock(&sbi->cp_mutex); 115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); 116 mutex_unlock(&sbi->cp_mutex); 117 wbc->nr_to_write -= written; 118 return 0; 119 } 120 121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 122 long nr_to_write) 123 { 124 struct address_space *mapping = sbi->meta_inode->i_mapping; 125 pgoff_t index = 0, end = LONG_MAX; 126 struct pagevec pvec; 127 long nwritten = 0; 128 struct writeback_control wbc = { 129 .for_reclaim = 0, 130 }; 131 132 pagevec_init(&pvec, 0); 133 134 while (index <= end) { 135 int i, nr_pages; 136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 137 PAGECACHE_TAG_DIRTY, 138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 139 if (nr_pages == 0) 140 break; 141 142 for (i = 0; i < nr_pages; i++) { 143 struct page *page = pvec.pages[i]; 144 lock_page(page); 145 BUG_ON(page->mapping != mapping); 146 BUG_ON(!PageDirty(page)); 147 clear_page_dirty_for_io(page); 148 if (f2fs_write_meta_page(page, &wbc)) { 149 unlock_page(page); 150 break; 151 } 152 if (nwritten++ >= nr_to_write) 153 break; 154 } 155 pagevec_release(&pvec); 156 cond_resched(); 157 } 158 159 if (nwritten) 160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); 161 162 return nwritten; 163 } 164 165 static int f2fs_set_meta_page_dirty(struct page *page) 166 { 167 struct address_space *mapping = page->mapping; 168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 169 170 SetPageUptodate(page); 171 if (!PageDirty(page)) { 172 __set_page_dirty_nobuffers(page); 173 inc_page_count(sbi, F2FS_DIRTY_META); 174 return 1; 175 } 176 return 0; 177 } 178 179 const struct address_space_operations f2fs_meta_aops = { 180 .writepage = f2fs_write_meta_page, 181 .writepages = f2fs_write_meta_pages, 182 .set_page_dirty = f2fs_set_meta_page_dirty, 183 }; 184 185 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 186 { 187 unsigned int max_orphans; 188 int err = 0; 189 190 /* 191 * considering 512 blocks in a segment 5 blocks are needed for cp 192 * and log segment summaries. Remaining blocks are used to keep 193 * orphan entries with the limitation one reserved segment 194 * for cp pack we can have max 1020*507 orphan entries 195 */ 196 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; 197 mutex_lock(&sbi->orphan_inode_mutex); 198 if (sbi->n_orphans >= max_orphans) 199 err = -ENOSPC; 200 else 201 sbi->n_orphans++; 202 mutex_unlock(&sbi->orphan_inode_mutex); 203 return err; 204 } 205 206 void release_orphan_inode(struct f2fs_sb_info *sbi) 207 { 208 mutex_lock(&sbi->orphan_inode_mutex); 209 sbi->n_orphans--; 210 mutex_unlock(&sbi->orphan_inode_mutex); 211 } 212 213 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 214 { 215 struct list_head *head, *this; 216 struct orphan_inode_entry *new = NULL, *orphan = NULL; 217 218 mutex_lock(&sbi->orphan_inode_mutex); 219 head = &sbi->orphan_inode_list; 220 list_for_each(this, head) { 221 orphan = list_entry(this, struct orphan_inode_entry, list); 222 if (orphan->ino == ino) 223 goto out; 224 if (orphan->ino > ino) 225 break; 226 orphan = NULL; 227 } 228 retry: 229 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 230 if (!new) { 231 cond_resched(); 232 goto retry; 233 } 234 new->ino = ino; 235 236 /* add new_oentry into list which is sorted by inode number */ 237 if (orphan) 238 list_add(&new->list, this->prev); 239 else 240 list_add_tail(&new->list, head); 241 out: 242 mutex_unlock(&sbi->orphan_inode_mutex); 243 } 244 245 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 246 { 247 struct list_head *head; 248 struct orphan_inode_entry *orphan; 249 250 mutex_lock(&sbi->orphan_inode_mutex); 251 head = &sbi->orphan_inode_list; 252 list_for_each_entry(orphan, head, list) { 253 if (orphan->ino == ino) { 254 list_del(&orphan->list); 255 kmem_cache_free(orphan_entry_slab, orphan); 256 sbi->n_orphans--; 257 break; 258 } 259 } 260 mutex_unlock(&sbi->orphan_inode_mutex); 261 } 262 263 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 264 { 265 struct inode *inode = f2fs_iget(sbi->sb, ino); 266 BUG_ON(IS_ERR(inode)); 267 clear_nlink(inode); 268 269 /* truncate all the data during iput */ 270 iput(inode); 271 } 272 273 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 274 { 275 block_t start_blk, orphan_blkaddr, i, j; 276 277 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 278 return 0; 279 280 sbi->por_doing = 1; 281 start_blk = __start_cp_addr(sbi) + 1; 282 orphan_blkaddr = __start_sum_addr(sbi) - 1; 283 284 for (i = 0; i < orphan_blkaddr; i++) { 285 struct page *page = get_meta_page(sbi, start_blk + i); 286 struct f2fs_orphan_block *orphan_blk; 287 288 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 289 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 290 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 291 recover_orphan_inode(sbi, ino); 292 } 293 f2fs_put_page(page, 1); 294 } 295 /* clear Orphan Flag */ 296 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 297 sbi->por_doing = 0; 298 return 0; 299 } 300 301 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 302 { 303 struct list_head *head, *this, *next; 304 struct f2fs_orphan_block *orphan_blk = NULL; 305 struct page *page = NULL; 306 unsigned int nentries = 0; 307 unsigned short index = 1; 308 unsigned short orphan_blocks; 309 310 orphan_blocks = (unsigned short)((sbi->n_orphans + 311 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 312 313 mutex_lock(&sbi->orphan_inode_mutex); 314 head = &sbi->orphan_inode_list; 315 316 /* loop for each orphan inode entry and write them in Jornal block */ 317 list_for_each_safe(this, next, head) { 318 struct orphan_inode_entry *orphan; 319 320 orphan = list_entry(this, struct orphan_inode_entry, list); 321 322 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 323 /* 324 * an orphan block is full of 1020 entries, 325 * then we need to flush current orphan blocks 326 * and bring another one in memory 327 */ 328 orphan_blk->blk_addr = cpu_to_le16(index); 329 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 330 orphan_blk->entry_count = cpu_to_le32(nentries); 331 set_page_dirty(page); 332 f2fs_put_page(page, 1); 333 index++; 334 start_blk++; 335 nentries = 0; 336 page = NULL; 337 } 338 if (page) 339 goto page_exist; 340 341 page = grab_meta_page(sbi, start_blk); 342 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 343 memset(orphan_blk, 0, sizeof(*orphan_blk)); 344 page_exist: 345 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 346 } 347 if (!page) 348 goto end; 349 350 orphan_blk->blk_addr = cpu_to_le16(index); 351 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 352 orphan_blk->entry_count = cpu_to_le32(nentries); 353 set_page_dirty(page); 354 f2fs_put_page(page, 1); 355 end: 356 mutex_unlock(&sbi->orphan_inode_mutex); 357 } 358 359 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 360 block_t cp_addr, unsigned long long *version) 361 { 362 struct page *cp_page_1, *cp_page_2 = NULL; 363 unsigned long blk_size = sbi->blocksize; 364 struct f2fs_checkpoint *cp_block; 365 unsigned long long cur_version = 0, pre_version = 0; 366 size_t crc_offset; 367 __u32 crc = 0; 368 369 /* Read the 1st cp block in this CP pack */ 370 cp_page_1 = get_meta_page(sbi, cp_addr); 371 372 /* get the version number */ 373 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 374 crc_offset = le32_to_cpu(cp_block->checksum_offset); 375 if (crc_offset >= blk_size) 376 goto invalid_cp1; 377 378 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 379 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 380 goto invalid_cp1; 381 382 pre_version = cur_cp_version(cp_block); 383 384 /* Read the 2nd cp block in this CP pack */ 385 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 386 cp_page_2 = get_meta_page(sbi, cp_addr); 387 388 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 389 crc_offset = le32_to_cpu(cp_block->checksum_offset); 390 if (crc_offset >= blk_size) 391 goto invalid_cp2; 392 393 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 394 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 395 goto invalid_cp2; 396 397 cur_version = cur_cp_version(cp_block); 398 399 if (cur_version == pre_version) { 400 *version = cur_version; 401 f2fs_put_page(cp_page_2, 1); 402 return cp_page_1; 403 } 404 invalid_cp2: 405 f2fs_put_page(cp_page_2, 1); 406 invalid_cp1: 407 f2fs_put_page(cp_page_1, 1); 408 return NULL; 409 } 410 411 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 412 { 413 struct f2fs_checkpoint *cp_block; 414 struct f2fs_super_block *fsb = sbi->raw_super; 415 struct page *cp1, *cp2, *cur_page; 416 unsigned long blk_size = sbi->blocksize; 417 unsigned long long cp1_version = 0, cp2_version = 0; 418 unsigned long long cp_start_blk_no; 419 420 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 421 if (!sbi->ckpt) 422 return -ENOMEM; 423 /* 424 * Finding out valid cp block involves read both 425 * sets( cp pack1 and cp pack 2) 426 */ 427 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 428 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 429 430 /* The second checkpoint pack should start at the next segment */ 431 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 432 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 433 434 if (cp1 && cp2) { 435 if (ver_after(cp2_version, cp1_version)) 436 cur_page = cp2; 437 else 438 cur_page = cp1; 439 } else if (cp1) { 440 cur_page = cp1; 441 } else if (cp2) { 442 cur_page = cp2; 443 } else { 444 goto fail_no_cp; 445 } 446 447 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 448 memcpy(sbi->ckpt, cp_block, blk_size); 449 450 f2fs_put_page(cp1, 1); 451 f2fs_put_page(cp2, 1); 452 return 0; 453 454 fail_no_cp: 455 kfree(sbi->ckpt); 456 return -EINVAL; 457 } 458 459 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 460 { 461 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 462 struct list_head *head = &sbi->dir_inode_list; 463 struct list_head *this; 464 465 list_for_each(this, head) { 466 struct dir_inode_entry *entry; 467 entry = list_entry(this, struct dir_inode_entry, list); 468 if (entry->inode == inode) 469 return -EEXIST; 470 } 471 list_add_tail(&new->list, head); 472 #ifdef CONFIG_F2FS_STAT_FS 473 sbi->n_dirty_dirs++; 474 #endif 475 return 0; 476 } 477 478 void set_dirty_dir_page(struct inode *inode, struct page *page) 479 { 480 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 481 struct dir_inode_entry *new; 482 483 if (!S_ISDIR(inode->i_mode)) 484 return; 485 retry: 486 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 487 if (!new) { 488 cond_resched(); 489 goto retry; 490 } 491 new->inode = inode; 492 INIT_LIST_HEAD(&new->list); 493 494 spin_lock(&sbi->dir_inode_lock); 495 if (__add_dirty_inode(inode, new)) 496 kmem_cache_free(inode_entry_slab, new); 497 498 inc_page_count(sbi, F2FS_DIRTY_DENTS); 499 inode_inc_dirty_dents(inode); 500 SetPagePrivate(page); 501 spin_unlock(&sbi->dir_inode_lock); 502 } 503 504 void add_dirty_dir_inode(struct inode *inode) 505 { 506 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 507 struct dir_inode_entry *new; 508 retry: 509 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 510 if (!new) { 511 cond_resched(); 512 goto retry; 513 } 514 new->inode = inode; 515 INIT_LIST_HEAD(&new->list); 516 517 spin_lock(&sbi->dir_inode_lock); 518 if (__add_dirty_inode(inode, new)) 519 kmem_cache_free(inode_entry_slab, new); 520 spin_unlock(&sbi->dir_inode_lock); 521 } 522 523 void remove_dirty_dir_inode(struct inode *inode) 524 { 525 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 526 struct list_head *head = &sbi->dir_inode_list; 527 struct list_head *this; 528 529 if (!S_ISDIR(inode->i_mode)) 530 return; 531 532 spin_lock(&sbi->dir_inode_lock); 533 if (atomic_read(&F2FS_I(inode)->dirty_dents)) { 534 spin_unlock(&sbi->dir_inode_lock); 535 return; 536 } 537 538 list_for_each(this, head) { 539 struct dir_inode_entry *entry; 540 entry = list_entry(this, struct dir_inode_entry, list); 541 if (entry->inode == inode) { 542 list_del(&entry->list); 543 kmem_cache_free(inode_entry_slab, entry); 544 #ifdef CONFIG_F2FS_STAT_FS 545 sbi->n_dirty_dirs--; 546 #endif 547 break; 548 } 549 } 550 spin_unlock(&sbi->dir_inode_lock); 551 552 /* Only from the recovery routine */ 553 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 554 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 555 iput(inode); 556 } 557 } 558 559 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) 560 { 561 struct list_head *head = &sbi->dir_inode_list; 562 struct list_head *this; 563 struct inode *inode = NULL; 564 565 spin_lock(&sbi->dir_inode_lock); 566 list_for_each(this, head) { 567 struct dir_inode_entry *entry; 568 entry = list_entry(this, struct dir_inode_entry, list); 569 if (entry->inode->i_ino == ino) { 570 inode = entry->inode; 571 break; 572 } 573 } 574 spin_unlock(&sbi->dir_inode_lock); 575 return inode; 576 } 577 578 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 579 { 580 struct list_head *head = &sbi->dir_inode_list; 581 struct dir_inode_entry *entry; 582 struct inode *inode; 583 retry: 584 spin_lock(&sbi->dir_inode_lock); 585 if (list_empty(head)) { 586 spin_unlock(&sbi->dir_inode_lock); 587 return; 588 } 589 entry = list_entry(head->next, struct dir_inode_entry, list); 590 inode = igrab(entry->inode); 591 spin_unlock(&sbi->dir_inode_lock); 592 if (inode) { 593 filemap_flush(inode->i_mapping); 594 iput(inode); 595 } else { 596 /* 597 * We should submit bio, since it exists several 598 * wribacking dentry pages in the freeing inode. 599 */ 600 f2fs_submit_bio(sbi, DATA, true); 601 } 602 goto retry; 603 } 604 605 /* 606 * Freeze all the FS-operations for checkpoint. 607 */ 608 static void block_operations(struct f2fs_sb_info *sbi) 609 { 610 struct writeback_control wbc = { 611 .sync_mode = WB_SYNC_ALL, 612 .nr_to_write = LONG_MAX, 613 .for_reclaim = 0, 614 }; 615 struct blk_plug plug; 616 617 blk_start_plug(&plug); 618 619 retry_flush_dents: 620 mutex_lock_all(sbi); 621 622 /* write all the dirty dentry pages */ 623 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 624 mutex_unlock_all(sbi); 625 sync_dirty_dir_inodes(sbi); 626 goto retry_flush_dents; 627 } 628 629 /* 630 * POR: we should ensure that there is no dirty node pages 631 * until finishing nat/sit flush. 632 */ 633 retry_flush_nodes: 634 mutex_lock(&sbi->node_write); 635 636 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 637 mutex_unlock(&sbi->node_write); 638 sync_node_pages(sbi, 0, &wbc); 639 goto retry_flush_nodes; 640 } 641 blk_finish_plug(&plug); 642 } 643 644 static void unblock_operations(struct f2fs_sb_info *sbi) 645 { 646 mutex_unlock(&sbi->node_write); 647 mutex_unlock_all(sbi); 648 } 649 650 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 651 { 652 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 653 nid_t last_nid = 0; 654 block_t start_blk; 655 struct page *cp_page; 656 unsigned int data_sum_blocks, orphan_blocks; 657 __u32 crc32 = 0; 658 void *kaddr; 659 int i; 660 661 /* Flush all the NAT/SIT pages */ 662 while (get_pages(sbi, F2FS_DIRTY_META)) 663 sync_meta_pages(sbi, META, LONG_MAX); 664 665 next_free_nid(sbi, &last_nid); 666 667 /* 668 * modify checkpoint 669 * version number is already updated 670 */ 671 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 672 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 673 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 674 for (i = 0; i < 3; i++) { 675 ckpt->cur_node_segno[i] = 676 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 677 ckpt->cur_node_blkoff[i] = 678 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 679 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 680 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 681 } 682 for (i = 0; i < 3; i++) { 683 ckpt->cur_data_segno[i] = 684 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 685 ckpt->cur_data_blkoff[i] = 686 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 687 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 688 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 689 } 690 691 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 692 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 693 ckpt->next_free_nid = cpu_to_le32(last_nid); 694 695 /* 2 cp + n data seg summary + orphan inode blocks */ 696 data_sum_blocks = npages_for_summary_flush(sbi); 697 if (data_sum_blocks < 3) 698 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 699 else 700 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 701 702 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 703 / F2FS_ORPHANS_PER_BLOCK; 704 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 705 706 if (is_umount) { 707 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 708 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 709 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 710 } else { 711 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 712 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 713 data_sum_blocks + orphan_blocks); 714 } 715 716 if (sbi->n_orphans) 717 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 718 else 719 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 720 721 /* update SIT/NAT bitmap */ 722 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 723 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 724 725 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 726 *((__le32 *)((unsigned char *)ckpt + 727 le32_to_cpu(ckpt->checksum_offset))) 728 = cpu_to_le32(crc32); 729 730 start_blk = __start_cp_addr(sbi); 731 732 /* write out checkpoint buffer at block 0 */ 733 cp_page = grab_meta_page(sbi, start_blk++); 734 kaddr = page_address(cp_page); 735 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 736 set_page_dirty(cp_page); 737 f2fs_put_page(cp_page, 1); 738 739 if (sbi->n_orphans) { 740 write_orphan_inodes(sbi, start_blk); 741 start_blk += orphan_blocks; 742 } 743 744 write_data_summaries(sbi, start_blk); 745 start_blk += data_sum_blocks; 746 if (is_umount) { 747 write_node_summaries(sbi, start_blk); 748 start_blk += NR_CURSEG_NODE_TYPE; 749 } 750 751 /* writeout checkpoint block */ 752 cp_page = grab_meta_page(sbi, start_blk); 753 kaddr = page_address(cp_page); 754 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 755 set_page_dirty(cp_page); 756 f2fs_put_page(cp_page, 1); 757 758 /* wait for previous submitted node/meta pages writeback */ 759 while (get_pages(sbi, F2FS_WRITEBACK)) 760 congestion_wait(BLK_RW_ASYNC, HZ / 50); 761 762 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); 763 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); 764 765 /* update user_block_counts */ 766 sbi->last_valid_block_count = sbi->total_valid_block_count; 767 sbi->alloc_valid_block_count = 0; 768 769 /* Here, we only have one bio having CP pack */ 770 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 771 772 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { 773 clear_prefree_segments(sbi); 774 F2FS_RESET_SB_DIRT(sbi); 775 } 776 } 777 778 /* 779 * We guarantee that this checkpoint procedure should not fail. 780 */ 781 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 782 { 783 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 784 unsigned long long ckpt_ver; 785 786 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 787 788 mutex_lock(&sbi->cp_mutex); 789 block_operations(sbi); 790 791 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 792 793 f2fs_submit_bio(sbi, DATA, true); 794 f2fs_submit_bio(sbi, NODE, true); 795 f2fs_submit_bio(sbi, META, true); 796 797 /* 798 * update checkpoint pack index 799 * Increase the version number so that 800 * SIT entries and seg summaries are written at correct place 801 */ 802 ckpt_ver = cur_cp_version(ckpt); 803 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 804 805 /* write cached NAT/SIT entries to NAT/SIT area */ 806 flush_nat_entries(sbi); 807 flush_sit_entries(sbi); 808 809 /* unlock all the fs_lock[] in do_checkpoint() */ 810 do_checkpoint(sbi, is_umount); 811 812 unblock_operations(sbi); 813 mutex_unlock(&sbi->cp_mutex); 814 815 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 816 } 817 818 void init_orphan_info(struct f2fs_sb_info *sbi) 819 { 820 mutex_init(&sbi->orphan_inode_mutex); 821 INIT_LIST_HEAD(&sbi->orphan_inode_list); 822 sbi->n_orphans = 0; 823 } 824 825 int __init create_checkpoint_caches(void) 826 { 827 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 828 sizeof(struct orphan_inode_entry), NULL); 829 if (unlikely(!orphan_entry_slab)) 830 return -ENOMEM; 831 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 832 sizeof(struct dir_inode_entry), NULL); 833 if (unlikely(!inode_entry_slab)) { 834 kmem_cache_destroy(orphan_entry_slab); 835 return -ENOMEM; 836 } 837 return 0; 838 } 839 840 void destroy_checkpoint_caches(void) 841 { 842 kmem_cache_destroy(orphan_entry_slab); 843 kmem_cache_destroy(inode_entry_slab); 844 } 845