xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision ca481398)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_writes(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.op = REQ_OP_READ,
68 		.op_flags = REQ_META | REQ_PRIO,
69 		.old_blkaddr = index,
70 		.new_blkaddr = index,
71 		.encrypted_page = NULL,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 		.in_list = false,
166 	};
167 	struct blk_plug plug;
168 
169 	if (unlikely(type == META_POR))
170 		fio.op_flags &= ~REQ_META;
171 
172 	blk_start_plug(&plug);
173 	for (; nrpages-- > 0; blkno++) {
174 
175 		if (!is_valid_blkaddr(sbi, blkno, type))
176 			goto out;
177 
178 		switch (type) {
179 		case META_NAT:
180 			if (unlikely(blkno >=
181 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
182 				blkno = 0;
183 			/* get nat block addr */
184 			fio.new_blkaddr = current_nat_addr(sbi,
185 					blkno * NAT_ENTRY_PER_BLOCK);
186 			break;
187 		case META_SIT:
188 			/* get sit block addr */
189 			fio.new_blkaddr = current_sit_addr(sbi,
190 					blkno * SIT_ENTRY_PER_BLOCK);
191 			break;
192 		case META_SSA:
193 		case META_CP:
194 		case META_POR:
195 			fio.new_blkaddr = blkno;
196 			break;
197 		default:
198 			BUG();
199 		}
200 
201 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
202 						fio.new_blkaddr, false);
203 		if (!page)
204 			continue;
205 		if (PageUptodate(page)) {
206 			f2fs_put_page(page, 1);
207 			continue;
208 		}
209 
210 		fio.page = page;
211 		f2fs_submit_page_bio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	blk_finish_plug(&plug);
216 	return blkno - start;
217 }
218 
219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
220 {
221 	struct page *page;
222 	bool readahead = false;
223 
224 	page = find_get_page(META_MAPPING(sbi), index);
225 	if (!page || !PageUptodate(page))
226 		readahead = true;
227 	f2fs_put_page(page, 0);
228 
229 	if (readahead)
230 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
231 }
232 
233 static int __f2fs_write_meta_page(struct page *page,
234 				struct writeback_control *wbc,
235 				enum iostat_type io_type)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 
239 	trace_f2fs_writepage(page, META);
240 
241 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 		goto redirty_out;
243 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 		goto redirty_out;
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 
248 	write_meta_page(sbi, page, io_type);
249 	dec_page_count(sbi, F2FS_DIRTY_META);
250 
251 	if (wbc->for_reclaim)
252 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
253 						0, page->index, META);
254 
255 	unlock_page(page);
256 
257 	if (unlikely(f2fs_cp_error(sbi)))
258 		f2fs_submit_merged_write(sbi, META);
259 
260 	return 0;
261 
262 redirty_out:
263 	redirty_page_for_writepage(wbc, page);
264 	return AOP_WRITEPAGE_ACTIVATE;
265 }
266 
267 static int f2fs_write_meta_page(struct page *page,
268 				struct writeback_control *wbc)
269 {
270 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
271 }
272 
273 static int f2fs_write_meta_pages(struct address_space *mapping,
274 				struct writeback_control *wbc)
275 {
276 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
277 	long diff, written;
278 
279 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
280 		goto skip_write;
281 
282 	/* collect a number of dirty meta pages and write together */
283 	if (wbc->for_kupdate ||
284 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
285 		goto skip_write;
286 
287 	/* if locked failed, cp will flush dirty pages instead */
288 	if (!mutex_trylock(&sbi->cp_mutex))
289 		goto skip_write;
290 
291 	trace_f2fs_writepages(mapping->host, wbc, META);
292 	diff = nr_pages_to_write(sbi, META, wbc);
293 	written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
294 	mutex_unlock(&sbi->cp_mutex);
295 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
296 	return 0;
297 
298 skip_write:
299 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
300 	trace_f2fs_writepages(mapping->host, wbc, META);
301 	return 0;
302 }
303 
304 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
305 				long nr_to_write, enum iostat_type io_type)
306 {
307 	struct address_space *mapping = META_MAPPING(sbi);
308 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
309 	struct pagevec pvec;
310 	long nwritten = 0;
311 	struct writeback_control wbc = {
312 		.for_reclaim = 0,
313 	};
314 	struct blk_plug plug;
315 
316 	pagevec_init(&pvec, 0);
317 
318 	blk_start_plug(&plug);
319 
320 	while (index <= end) {
321 		int i, nr_pages;
322 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
323 				PAGECACHE_TAG_DIRTY,
324 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
325 		if (unlikely(nr_pages == 0))
326 			break;
327 
328 		for (i = 0; i < nr_pages; i++) {
329 			struct page *page = pvec.pages[i];
330 
331 			if (prev == ULONG_MAX)
332 				prev = page->index - 1;
333 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
334 				pagevec_release(&pvec);
335 				goto stop;
336 			}
337 
338 			lock_page(page);
339 
340 			if (unlikely(page->mapping != mapping)) {
341 continue_unlock:
342 				unlock_page(page);
343 				continue;
344 			}
345 			if (!PageDirty(page)) {
346 				/* someone wrote it for us */
347 				goto continue_unlock;
348 			}
349 
350 			f2fs_wait_on_page_writeback(page, META, true);
351 
352 			BUG_ON(PageWriteback(page));
353 			if (!clear_page_dirty_for_io(page))
354 				goto continue_unlock;
355 
356 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
357 				unlock_page(page);
358 				break;
359 			}
360 			nwritten++;
361 			prev = page->index;
362 			if (unlikely(nwritten >= nr_to_write))
363 				break;
364 		}
365 		pagevec_release(&pvec);
366 		cond_resched();
367 	}
368 stop:
369 	if (nwritten)
370 		f2fs_submit_merged_write(sbi, type);
371 
372 	blk_finish_plug(&plug);
373 
374 	return nwritten;
375 }
376 
377 static int f2fs_set_meta_page_dirty(struct page *page)
378 {
379 	trace_f2fs_set_page_dirty(page, META);
380 
381 	if (!PageUptodate(page))
382 		SetPageUptodate(page);
383 	if (!PageDirty(page)) {
384 		f2fs_set_page_dirty_nobuffers(page);
385 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
386 		SetPagePrivate(page);
387 		f2fs_trace_pid(page);
388 		return 1;
389 	}
390 	return 0;
391 }
392 
393 const struct address_space_operations f2fs_meta_aops = {
394 	.writepage	= f2fs_write_meta_page,
395 	.writepages	= f2fs_write_meta_pages,
396 	.set_page_dirty	= f2fs_set_meta_page_dirty,
397 	.invalidatepage = f2fs_invalidate_page,
398 	.releasepage	= f2fs_release_page,
399 #ifdef CONFIG_MIGRATION
400 	.migratepage    = f2fs_migrate_page,
401 #endif
402 };
403 
404 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
405 {
406 	struct inode_management *im = &sbi->im[type];
407 	struct ino_entry *e, *tmp;
408 
409 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
410 retry:
411 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
412 
413 	spin_lock(&im->ino_lock);
414 	e = radix_tree_lookup(&im->ino_root, ino);
415 	if (!e) {
416 		e = tmp;
417 		if (radix_tree_insert(&im->ino_root, ino, e)) {
418 			spin_unlock(&im->ino_lock);
419 			radix_tree_preload_end();
420 			goto retry;
421 		}
422 		memset(e, 0, sizeof(struct ino_entry));
423 		e->ino = ino;
424 
425 		list_add_tail(&e->list, &im->ino_list);
426 		if (type != ORPHAN_INO)
427 			im->ino_num++;
428 	}
429 	spin_unlock(&im->ino_lock);
430 	radix_tree_preload_end();
431 
432 	if (e != tmp)
433 		kmem_cache_free(ino_entry_slab, tmp);
434 }
435 
436 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
437 {
438 	struct inode_management *im = &sbi->im[type];
439 	struct ino_entry *e;
440 
441 	spin_lock(&im->ino_lock);
442 	e = radix_tree_lookup(&im->ino_root, ino);
443 	if (e) {
444 		list_del(&e->list);
445 		radix_tree_delete(&im->ino_root, ino);
446 		im->ino_num--;
447 		spin_unlock(&im->ino_lock);
448 		kmem_cache_free(ino_entry_slab, e);
449 		return;
450 	}
451 	spin_unlock(&im->ino_lock);
452 }
453 
454 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
455 {
456 	/* add new dirty ino entry into list */
457 	__add_ino_entry(sbi, ino, type);
458 }
459 
460 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
461 {
462 	/* remove dirty ino entry from list */
463 	__remove_ino_entry(sbi, ino, type);
464 }
465 
466 /* mode should be APPEND_INO or UPDATE_INO */
467 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
468 {
469 	struct inode_management *im = &sbi->im[mode];
470 	struct ino_entry *e;
471 
472 	spin_lock(&im->ino_lock);
473 	e = radix_tree_lookup(&im->ino_root, ino);
474 	spin_unlock(&im->ino_lock);
475 	return e ? true : false;
476 }
477 
478 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
479 {
480 	struct ino_entry *e, *tmp;
481 	int i;
482 
483 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
484 		struct inode_management *im = &sbi->im[i];
485 
486 		spin_lock(&im->ino_lock);
487 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
488 			list_del(&e->list);
489 			radix_tree_delete(&im->ino_root, e->ino);
490 			kmem_cache_free(ino_entry_slab, e);
491 			im->ino_num--;
492 		}
493 		spin_unlock(&im->ino_lock);
494 	}
495 }
496 
497 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
498 {
499 	struct inode_management *im = &sbi->im[ORPHAN_INO];
500 	int err = 0;
501 
502 	spin_lock(&im->ino_lock);
503 
504 #ifdef CONFIG_F2FS_FAULT_INJECTION
505 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
506 		spin_unlock(&im->ino_lock);
507 		f2fs_show_injection_info(FAULT_ORPHAN);
508 		return -ENOSPC;
509 	}
510 #endif
511 	if (unlikely(im->ino_num >= sbi->max_orphans))
512 		err = -ENOSPC;
513 	else
514 		im->ino_num++;
515 	spin_unlock(&im->ino_lock);
516 
517 	return err;
518 }
519 
520 void release_orphan_inode(struct f2fs_sb_info *sbi)
521 {
522 	struct inode_management *im = &sbi->im[ORPHAN_INO];
523 
524 	spin_lock(&im->ino_lock);
525 	f2fs_bug_on(sbi, im->ino_num == 0);
526 	im->ino_num--;
527 	spin_unlock(&im->ino_lock);
528 }
529 
530 void add_orphan_inode(struct inode *inode)
531 {
532 	/* add new orphan ino entry into list */
533 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
534 	update_inode_page(inode);
535 }
536 
537 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
538 {
539 	/* remove orphan entry from orphan list */
540 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
541 }
542 
543 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
544 {
545 	struct inode *inode;
546 	struct node_info ni;
547 	int err = acquire_orphan_inode(sbi);
548 
549 	if (err) {
550 		set_sbi_flag(sbi, SBI_NEED_FSCK);
551 		f2fs_msg(sbi->sb, KERN_WARNING,
552 				"%s: orphan failed (ino=%x), run fsck to fix.",
553 				__func__, ino);
554 		return err;
555 	}
556 
557 	__add_ino_entry(sbi, ino, ORPHAN_INO);
558 
559 	inode = f2fs_iget_retry(sbi->sb, ino);
560 	if (IS_ERR(inode)) {
561 		/*
562 		 * there should be a bug that we can't find the entry
563 		 * to orphan inode.
564 		 */
565 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
566 		return PTR_ERR(inode);
567 	}
568 
569 	clear_nlink(inode);
570 
571 	/* truncate all the data during iput */
572 	iput(inode);
573 
574 	get_node_info(sbi, ino, &ni);
575 
576 	/* ENOMEM was fully retried in f2fs_evict_inode. */
577 	if (ni.blk_addr != NULL_ADDR) {
578 		set_sbi_flag(sbi, SBI_NEED_FSCK);
579 		f2fs_msg(sbi->sb, KERN_WARNING,
580 			"%s: orphan failed (ino=%x) by kernel, retry mount.",
581 				__func__, ino);
582 		return -EIO;
583 	}
584 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
585 	return 0;
586 }
587 
588 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
589 {
590 	block_t start_blk, orphan_blocks, i, j;
591 	unsigned int s_flags = sbi->sb->s_flags;
592 	int err = 0;
593 
594 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
595 		return 0;
596 
597 	if (s_flags & MS_RDONLY) {
598 		f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
599 		sbi->sb->s_flags &= ~MS_RDONLY;
600 	}
601 
602 #ifdef CONFIG_QUOTA
603 	/* Needed for iput() to work correctly and not trash data */
604 	sbi->sb->s_flags |= MS_ACTIVE;
605 	/* Turn on quotas so that they are updated correctly */
606 	f2fs_enable_quota_files(sbi);
607 #endif
608 
609 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
610 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
611 
612 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
613 
614 	for (i = 0; i < orphan_blocks; i++) {
615 		struct page *page = get_meta_page(sbi, start_blk + i);
616 		struct f2fs_orphan_block *orphan_blk;
617 
618 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
619 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
620 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
621 			err = recover_orphan_inode(sbi, ino);
622 			if (err) {
623 				f2fs_put_page(page, 1);
624 				goto out;
625 			}
626 		}
627 		f2fs_put_page(page, 1);
628 	}
629 	/* clear Orphan Flag */
630 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
631 out:
632 #ifdef CONFIG_QUOTA
633 	/* Turn quotas off */
634 	f2fs_quota_off_umount(sbi->sb);
635 #endif
636 	sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
637 
638 	return err;
639 }
640 
641 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
642 {
643 	struct list_head *head;
644 	struct f2fs_orphan_block *orphan_blk = NULL;
645 	unsigned int nentries = 0;
646 	unsigned short index = 1;
647 	unsigned short orphan_blocks;
648 	struct page *page = NULL;
649 	struct ino_entry *orphan = NULL;
650 	struct inode_management *im = &sbi->im[ORPHAN_INO];
651 
652 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
653 
654 	/*
655 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
656 	 * orphan inode operations are covered under f2fs_lock_op().
657 	 * And, spin_lock should be avoided due to page operations below.
658 	 */
659 	head = &im->ino_list;
660 
661 	/* loop for each orphan inode entry and write them in Jornal block */
662 	list_for_each_entry(orphan, head, list) {
663 		if (!page) {
664 			page = grab_meta_page(sbi, start_blk++);
665 			orphan_blk =
666 				(struct f2fs_orphan_block *)page_address(page);
667 			memset(orphan_blk, 0, sizeof(*orphan_blk));
668 		}
669 
670 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
671 
672 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
673 			/*
674 			 * an orphan block is full of 1020 entries,
675 			 * then we need to flush current orphan blocks
676 			 * and bring another one in memory
677 			 */
678 			orphan_blk->blk_addr = cpu_to_le16(index);
679 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
680 			orphan_blk->entry_count = cpu_to_le32(nentries);
681 			set_page_dirty(page);
682 			f2fs_put_page(page, 1);
683 			index++;
684 			nentries = 0;
685 			page = NULL;
686 		}
687 	}
688 
689 	if (page) {
690 		orphan_blk->blk_addr = cpu_to_le16(index);
691 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
692 		orphan_blk->entry_count = cpu_to_le32(nentries);
693 		set_page_dirty(page);
694 		f2fs_put_page(page, 1);
695 	}
696 }
697 
698 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
699 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
700 		unsigned long long *version)
701 {
702 	unsigned long blk_size = sbi->blocksize;
703 	size_t crc_offset = 0;
704 	__u32 crc = 0;
705 
706 	*cp_page = get_meta_page(sbi, cp_addr);
707 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
708 
709 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
710 	if (crc_offset > (blk_size - sizeof(__le32))) {
711 		f2fs_msg(sbi->sb, KERN_WARNING,
712 			"invalid crc_offset: %zu", crc_offset);
713 		return -EINVAL;
714 	}
715 
716 	crc = cur_cp_crc(*cp_block);
717 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
718 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
719 		return -EINVAL;
720 	}
721 
722 	*version = cur_cp_version(*cp_block);
723 	return 0;
724 }
725 
726 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
727 				block_t cp_addr, unsigned long long *version)
728 {
729 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
730 	struct f2fs_checkpoint *cp_block = NULL;
731 	unsigned long long cur_version = 0, pre_version = 0;
732 	int err;
733 
734 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
735 					&cp_page_1, version);
736 	if (err)
737 		goto invalid_cp1;
738 	pre_version = *version;
739 
740 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
741 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
742 					&cp_page_2, version);
743 	if (err)
744 		goto invalid_cp2;
745 	cur_version = *version;
746 
747 	if (cur_version == pre_version) {
748 		*version = cur_version;
749 		f2fs_put_page(cp_page_2, 1);
750 		return cp_page_1;
751 	}
752 invalid_cp2:
753 	f2fs_put_page(cp_page_2, 1);
754 invalid_cp1:
755 	f2fs_put_page(cp_page_1, 1);
756 	return NULL;
757 }
758 
759 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
760 {
761 	struct f2fs_checkpoint *cp_block;
762 	struct f2fs_super_block *fsb = sbi->raw_super;
763 	struct page *cp1, *cp2, *cur_page;
764 	unsigned long blk_size = sbi->blocksize;
765 	unsigned long long cp1_version = 0, cp2_version = 0;
766 	unsigned long long cp_start_blk_no;
767 	unsigned int cp_blks = 1 + __cp_payload(sbi);
768 	block_t cp_blk_no;
769 	int i;
770 
771 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
772 	if (!sbi->ckpt)
773 		return -ENOMEM;
774 	/*
775 	 * Finding out valid cp block involves read both
776 	 * sets( cp pack1 and cp pack 2)
777 	 */
778 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
779 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
780 
781 	/* The second checkpoint pack should start at the next segment */
782 	cp_start_blk_no += ((unsigned long long)1) <<
783 				le32_to_cpu(fsb->log_blocks_per_seg);
784 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
785 
786 	if (cp1 && cp2) {
787 		if (ver_after(cp2_version, cp1_version))
788 			cur_page = cp2;
789 		else
790 			cur_page = cp1;
791 	} else if (cp1) {
792 		cur_page = cp1;
793 	} else if (cp2) {
794 		cur_page = cp2;
795 	} else {
796 		goto fail_no_cp;
797 	}
798 
799 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
800 	memcpy(sbi->ckpt, cp_block, blk_size);
801 
802 	/* Sanity checking of checkpoint */
803 	if (sanity_check_ckpt(sbi))
804 		goto free_fail_no_cp;
805 
806 	if (cur_page == cp1)
807 		sbi->cur_cp_pack = 1;
808 	else
809 		sbi->cur_cp_pack = 2;
810 
811 	if (cp_blks <= 1)
812 		goto done;
813 
814 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
815 	if (cur_page == cp2)
816 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
817 
818 	for (i = 1; i < cp_blks; i++) {
819 		void *sit_bitmap_ptr;
820 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
821 
822 		cur_page = get_meta_page(sbi, cp_blk_no + i);
823 		sit_bitmap_ptr = page_address(cur_page);
824 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
825 		f2fs_put_page(cur_page, 1);
826 	}
827 done:
828 	f2fs_put_page(cp1, 1);
829 	f2fs_put_page(cp2, 1);
830 	return 0;
831 
832 free_fail_no_cp:
833 	f2fs_put_page(cp1, 1);
834 	f2fs_put_page(cp2, 1);
835 fail_no_cp:
836 	kfree(sbi->ckpt);
837 	return -EINVAL;
838 }
839 
840 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
841 {
842 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
844 
845 	if (is_inode_flag_set(inode, flag))
846 		return;
847 
848 	set_inode_flag(inode, flag);
849 	if (!f2fs_is_volatile_file(inode))
850 		list_add_tail(&F2FS_I(inode)->dirty_list,
851 						&sbi->inode_list[type]);
852 	stat_inc_dirty_inode(sbi, type);
853 }
854 
855 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
856 {
857 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
858 
859 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
860 		return;
861 
862 	list_del_init(&F2FS_I(inode)->dirty_list);
863 	clear_inode_flag(inode, flag);
864 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
865 }
866 
867 void update_dirty_page(struct inode *inode, struct page *page)
868 {
869 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
870 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
871 
872 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
873 			!S_ISLNK(inode->i_mode))
874 		return;
875 
876 	spin_lock(&sbi->inode_lock[type]);
877 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
878 		__add_dirty_inode(inode, type);
879 	inode_inc_dirty_pages(inode);
880 	spin_unlock(&sbi->inode_lock[type]);
881 
882 	SetPagePrivate(page);
883 	f2fs_trace_pid(page);
884 }
885 
886 void remove_dirty_inode(struct inode *inode)
887 {
888 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
889 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
890 
891 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
892 			!S_ISLNK(inode->i_mode))
893 		return;
894 
895 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
896 		return;
897 
898 	spin_lock(&sbi->inode_lock[type]);
899 	__remove_dirty_inode(inode, type);
900 	spin_unlock(&sbi->inode_lock[type]);
901 }
902 
903 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
904 {
905 	struct list_head *head;
906 	struct inode *inode;
907 	struct f2fs_inode_info *fi;
908 	bool is_dir = (type == DIR_INODE);
909 	unsigned long ino = 0;
910 
911 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
912 				get_pages(sbi, is_dir ?
913 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
914 retry:
915 	if (unlikely(f2fs_cp_error(sbi)))
916 		return -EIO;
917 
918 	spin_lock(&sbi->inode_lock[type]);
919 
920 	head = &sbi->inode_list[type];
921 	if (list_empty(head)) {
922 		spin_unlock(&sbi->inode_lock[type]);
923 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
924 				get_pages(sbi, is_dir ?
925 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
926 		return 0;
927 	}
928 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
929 	inode = igrab(&fi->vfs_inode);
930 	spin_unlock(&sbi->inode_lock[type]);
931 	if (inode) {
932 		unsigned long cur_ino = inode->i_ino;
933 
934 		if (is_dir)
935 			F2FS_I(inode)->cp_task = current;
936 
937 		filemap_fdatawrite(inode->i_mapping);
938 
939 		if (is_dir)
940 			F2FS_I(inode)->cp_task = NULL;
941 
942 		iput(inode);
943 		/* We need to give cpu to another writers. */
944 		if (ino == cur_ino) {
945 			congestion_wait(BLK_RW_ASYNC, HZ/50);
946 			cond_resched();
947 		} else {
948 			ino = cur_ino;
949 		}
950 	} else {
951 		/*
952 		 * We should submit bio, since it exists several
953 		 * wribacking dentry pages in the freeing inode.
954 		 */
955 		f2fs_submit_merged_write(sbi, DATA);
956 		cond_resched();
957 	}
958 	goto retry;
959 }
960 
961 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
962 {
963 	struct list_head *head = &sbi->inode_list[DIRTY_META];
964 	struct inode *inode;
965 	struct f2fs_inode_info *fi;
966 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
967 
968 	while (total--) {
969 		if (unlikely(f2fs_cp_error(sbi)))
970 			return -EIO;
971 
972 		spin_lock(&sbi->inode_lock[DIRTY_META]);
973 		if (list_empty(head)) {
974 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
975 			return 0;
976 		}
977 		fi = list_first_entry(head, struct f2fs_inode_info,
978 							gdirty_list);
979 		inode = igrab(&fi->vfs_inode);
980 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
981 		if (inode) {
982 			sync_inode_metadata(inode, 0);
983 
984 			/* it's on eviction */
985 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
986 				update_inode_page(inode);
987 			iput(inode);
988 		}
989 	};
990 	return 0;
991 }
992 
993 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
994 {
995 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
996 	struct f2fs_nm_info *nm_i = NM_I(sbi);
997 	nid_t last_nid = nm_i->next_scan_nid;
998 
999 	next_free_nid(sbi, &last_nid);
1000 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1001 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1002 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1003 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1004 }
1005 
1006 /*
1007  * Freeze all the FS-operations for checkpoint.
1008  */
1009 static int block_operations(struct f2fs_sb_info *sbi)
1010 {
1011 	struct writeback_control wbc = {
1012 		.sync_mode = WB_SYNC_ALL,
1013 		.nr_to_write = LONG_MAX,
1014 		.for_reclaim = 0,
1015 	};
1016 	struct blk_plug plug;
1017 	int err = 0;
1018 
1019 	blk_start_plug(&plug);
1020 
1021 retry_flush_dents:
1022 	f2fs_lock_all(sbi);
1023 	/* write all the dirty dentry pages */
1024 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1025 		f2fs_unlock_all(sbi);
1026 		err = sync_dirty_inodes(sbi, DIR_INODE);
1027 		if (err)
1028 			goto out;
1029 		cond_resched();
1030 		goto retry_flush_dents;
1031 	}
1032 
1033 	/*
1034 	 * POR: we should ensure that there are no dirty node pages
1035 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1036 	 */
1037 	down_write(&sbi->node_change);
1038 
1039 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1040 		up_write(&sbi->node_change);
1041 		f2fs_unlock_all(sbi);
1042 		err = f2fs_sync_inode_meta(sbi);
1043 		if (err)
1044 			goto out;
1045 		cond_resched();
1046 		goto retry_flush_dents;
1047 	}
1048 
1049 retry_flush_nodes:
1050 	down_write(&sbi->node_write);
1051 
1052 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1053 		up_write(&sbi->node_write);
1054 		err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1055 		if (err) {
1056 			up_write(&sbi->node_change);
1057 			f2fs_unlock_all(sbi);
1058 			goto out;
1059 		}
1060 		cond_resched();
1061 		goto retry_flush_nodes;
1062 	}
1063 
1064 	/*
1065 	 * sbi->node_change is used only for AIO write_begin path which produces
1066 	 * dirty node blocks and some checkpoint values by block allocation.
1067 	 */
1068 	__prepare_cp_block(sbi);
1069 	up_write(&sbi->node_change);
1070 out:
1071 	blk_finish_plug(&plug);
1072 	return err;
1073 }
1074 
1075 static void unblock_operations(struct f2fs_sb_info *sbi)
1076 {
1077 	up_write(&sbi->node_write);
1078 	f2fs_unlock_all(sbi);
1079 }
1080 
1081 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1082 {
1083 	DEFINE_WAIT(wait);
1084 
1085 	for (;;) {
1086 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1087 
1088 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1089 			break;
1090 
1091 		io_schedule_timeout(5*HZ);
1092 	}
1093 	finish_wait(&sbi->cp_wait, &wait);
1094 }
1095 
1096 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1097 {
1098 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1099 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1100 	unsigned long flags;
1101 
1102 	spin_lock_irqsave(&sbi->cp_lock, flags);
1103 
1104 	if ((cpc->reason & CP_UMOUNT) &&
1105 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1106 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1107 		disable_nat_bits(sbi, false);
1108 
1109 	if (cpc->reason & CP_TRIMMED)
1110 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1111 
1112 	if (cpc->reason & CP_UMOUNT)
1113 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1114 	else
1115 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1116 
1117 	if (cpc->reason & CP_FASTBOOT)
1118 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1119 	else
1120 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1121 
1122 	if (orphan_num)
1123 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1124 	else
1125 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1126 
1127 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1128 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1129 
1130 	/* set this flag to activate crc|cp_ver for recovery */
1131 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1132 
1133 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1134 }
1135 
1136 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1137 {
1138 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1139 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1140 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1141 	block_t start_blk;
1142 	unsigned int data_sum_blocks, orphan_blocks;
1143 	__u32 crc32 = 0;
1144 	int i;
1145 	int cp_payload_blks = __cp_payload(sbi);
1146 	struct super_block *sb = sbi->sb;
1147 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1148 	u64 kbytes_written;
1149 
1150 	/* Flush all the NAT/SIT pages */
1151 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1152 		sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1153 		if (unlikely(f2fs_cp_error(sbi)))
1154 			return -EIO;
1155 	}
1156 
1157 	/*
1158 	 * modify checkpoint
1159 	 * version number is already updated
1160 	 */
1161 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1162 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1163 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1164 		ckpt->cur_node_segno[i] =
1165 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1166 		ckpt->cur_node_blkoff[i] =
1167 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1168 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1169 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1170 	}
1171 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1172 		ckpt->cur_data_segno[i] =
1173 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1174 		ckpt->cur_data_blkoff[i] =
1175 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1176 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1177 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1178 	}
1179 
1180 	/* 2 cp  + n data seg summary + orphan inode blocks */
1181 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1182 	spin_lock_irqsave(&sbi->cp_lock, flags);
1183 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1184 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1185 	else
1186 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1187 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1188 
1189 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1190 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1191 			orphan_blocks);
1192 
1193 	if (__remain_node_summaries(cpc->reason))
1194 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1195 				cp_payload_blks + data_sum_blocks +
1196 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1197 	else
1198 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1199 				cp_payload_blks + data_sum_blocks +
1200 				orphan_blocks);
1201 
1202 	/* update ckpt flag for checkpoint */
1203 	update_ckpt_flags(sbi, cpc);
1204 
1205 	/* update SIT/NAT bitmap */
1206 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1207 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1208 
1209 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1210 	*((__le32 *)((unsigned char *)ckpt +
1211 				le32_to_cpu(ckpt->checksum_offset)))
1212 				= cpu_to_le32(crc32);
1213 
1214 	start_blk = __start_cp_next_addr(sbi);
1215 
1216 	/* write nat bits */
1217 	if (enabled_nat_bits(sbi, cpc)) {
1218 		__u64 cp_ver = cur_cp_version(ckpt);
1219 		block_t blk;
1220 
1221 		cp_ver |= ((__u64)crc32 << 32);
1222 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1223 
1224 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1225 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1226 			update_meta_page(sbi, nm_i->nat_bits +
1227 					(i << F2FS_BLKSIZE_BITS), blk + i);
1228 
1229 		/* Flush all the NAT BITS pages */
1230 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1231 			sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1232 			if (unlikely(f2fs_cp_error(sbi)))
1233 				return -EIO;
1234 		}
1235 	}
1236 
1237 	/* need to wait for end_io results */
1238 	wait_on_all_pages_writeback(sbi);
1239 	if (unlikely(f2fs_cp_error(sbi)))
1240 		return -EIO;
1241 
1242 	/* write out checkpoint buffer at block 0 */
1243 	update_meta_page(sbi, ckpt, start_blk++);
1244 
1245 	for (i = 1; i < 1 + cp_payload_blks; i++)
1246 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1247 							start_blk++);
1248 
1249 	if (orphan_num) {
1250 		write_orphan_inodes(sbi, start_blk);
1251 		start_blk += orphan_blocks;
1252 	}
1253 
1254 	write_data_summaries(sbi, start_blk);
1255 	start_blk += data_sum_blocks;
1256 
1257 	/* Record write statistics in the hot node summary */
1258 	kbytes_written = sbi->kbytes_written;
1259 	if (sb->s_bdev->bd_part)
1260 		kbytes_written += BD_PART_WRITTEN(sbi);
1261 
1262 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1263 
1264 	if (__remain_node_summaries(cpc->reason)) {
1265 		write_node_summaries(sbi, start_blk);
1266 		start_blk += NR_CURSEG_NODE_TYPE;
1267 	}
1268 
1269 	/* writeout checkpoint block */
1270 	update_meta_page(sbi, ckpt, start_blk);
1271 
1272 	/* wait for previous submitted node/meta pages writeback */
1273 	wait_on_all_pages_writeback(sbi);
1274 
1275 	if (unlikely(f2fs_cp_error(sbi)))
1276 		return -EIO;
1277 
1278 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1279 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1280 
1281 	/* update user_block_counts */
1282 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1283 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1284 
1285 	/* Here, we only have one bio having CP pack */
1286 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1287 
1288 	/* wait for previous submitted meta pages writeback */
1289 	wait_on_all_pages_writeback(sbi);
1290 
1291 	release_ino_entry(sbi, false);
1292 
1293 	if (unlikely(f2fs_cp_error(sbi)))
1294 		return -EIO;
1295 
1296 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1297 	clear_sbi_flag(sbi, SBI_NEED_CP);
1298 	__set_cp_next_pack(sbi);
1299 
1300 	/*
1301 	 * redirty superblock if metadata like node page or inode cache is
1302 	 * updated during writing checkpoint.
1303 	 */
1304 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1305 			get_pages(sbi, F2FS_DIRTY_IMETA))
1306 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1307 
1308 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1309 
1310 	return 0;
1311 }
1312 
1313 /*
1314  * We guarantee that this checkpoint procedure will not fail.
1315  */
1316 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1317 {
1318 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1319 	unsigned long long ckpt_ver;
1320 	int err = 0;
1321 
1322 	mutex_lock(&sbi->cp_mutex);
1323 
1324 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1325 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1326 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1327 		goto out;
1328 	if (unlikely(f2fs_cp_error(sbi))) {
1329 		err = -EIO;
1330 		goto out;
1331 	}
1332 	if (f2fs_readonly(sbi->sb)) {
1333 		err = -EROFS;
1334 		goto out;
1335 	}
1336 
1337 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1338 
1339 	err = block_operations(sbi);
1340 	if (err)
1341 		goto out;
1342 
1343 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1344 
1345 	f2fs_flush_merged_writes(sbi);
1346 
1347 	/* this is the case of multiple fstrims without any changes */
1348 	if (cpc->reason & CP_DISCARD) {
1349 		if (!exist_trim_candidates(sbi, cpc)) {
1350 			unblock_operations(sbi);
1351 			goto out;
1352 		}
1353 
1354 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1355 				SIT_I(sbi)->dirty_sentries == 0 &&
1356 				prefree_segments(sbi) == 0) {
1357 			flush_sit_entries(sbi, cpc);
1358 			clear_prefree_segments(sbi, cpc);
1359 			unblock_operations(sbi);
1360 			goto out;
1361 		}
1362 	}
1363 
1364 	/*
1365 	 * update checkpoint pack index
1366 	 * Increase the version number so that
1367 	 * SIT entries and seg summaries are written at correct place
1368 	 */
1369 	ckpt_ver = cur_cp_version(ckpt);
1370 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1371 
1372 	/* write cached NAT/SIT entries to NAT/SIT area */
1373 	flush_nat_entries(sbi, cpc);
1374 	flush_sit_entries(sbi, cpc);
1375 
1376 	/* unlock all the fs_lock[] in do_checkpoint() */
1377 	err = do_checkpoint(sbi, cpc);
1378 	if (err)
1379 		release_discard_addrs(sbi);
1380 	else
1381 		clear_prefree_segments(sbi, cpc);
1382 
1383 	unblock_operations(sbi);
1384 	stat_inc_cp_count(sbi->stat_info);
1385 
1386 	if (cpc->reason & CP_RECOVERY)
1387 		f2fs_msg(sbi->sb, KERN_NOTICE,
1388 			"checkpoint: version = %llx", ckpt_ver);
1389 
1390 	/* do checkpoint periodically */
1391 	f2fs_update_time(sbi, CP_TIME);
1392 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1393 out:
1394 	mutex_unlock(&sbi->cp_mutex);
1395 	return err;
1396 }
1397 
1398 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1399 {
1400 	int i;
1401 
1402 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1403 		struct inode_management *im = &sbi->im[i];
1404 
1405 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1406 		spin_lock_init(&im->ino_lock);
1407 		INIT_LIST_HEAD(&im->ino_list);
1408 		im->ino_num = 0;
1409 	}
1410 
1411 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1412 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1413 				F2FS_ORPHANS_PER_BLOCK;
1414 }
1415 
1416 int __init create_checkpoint_caches(void)
1417 {
1418 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1419 			sizeof(struct ino_entry));
1420 	if (!ino_entry_slab)
1421 		return -ENOMEM;
1422 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1423 			sizeof(struct inode_entry));
1424 	if (!inode_entry_slab) {
1425 		kmem_cache_destroy(ino_entry_slab);
1426 		return -ENOMEM;
1427 	}
1428 	return 0;
1429 }
1430 
1431 void destroy_checkpoint_caches(void)
1432 {
1433 	kmem_cache_destroy(ino_entry_slab);
1434 	kmem_cache_destroy(inode_entry_slab);
1435 }
1436