1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 f2fs_build_fault_attr(sbi, 0, 0); 32 set_ckpt_flags(sbi, CP_ERROR_FLAG); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_por = !is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 93 94 lock_page(page); 95 if (unlikely(page->mapping != mapping)) { 96 f2fs_put_page(page, 1); 97 goto repeat; 98 } 99 100 if (unlikely(!PageUptodate(page))) { 101 f2fs_handle_page_eio(sbi, page->index, META); 102 f2fs_put_page(page, 1); 103 return ERR_PTR(-EIO); 104 } 105 out: 106 return page; 107 } 108 109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 115 { 116 struct page *page; 117 int count = 0; 118 119 retry: 120 page = __get_meta_page(sbi, index, true); 121 if (IS_ERR(page)) { 122 if (PTR_ERR(page) == -EIO && 123 ++count <= DEFAULT_RETRY_IO_COUNT) 124 goto retry; 125 f2fs_stop_checkpoint(sbi, false); 126 } 127 return page; 128 } 129 130 /* for POR only */ 131 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 132 { 133 return __get_meta_page(sbi, index, false); 134 } 135 136 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 137 int type) 138 { 139 struct seg_entry *se; 140 unsigned int segno, offset; 141 bool exist; 142 143 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 144 return true; 145 146 segno = GET_SEGNO(sbi, blkaddr); 147 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 148 se = get_seg_entry(sbi, segno); 149 150 exist = f2fs_test_bit(offset, se->cur_valid_map); 151 if (!exist && type == DATA_GENERIC_ENHANCE) { 152 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 153 blkaddr, exist); 154 set_sbi_flag(sbi, SBI_NEED_FSCK); 155 dump_stack(); 156 } 157 return exist; 158 } 159 160 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 161 block_t blkaddr, int type) 162 { 163 switch (type) { 164 case META_NAT: 165 break; 166 case META_SIT: 167 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 168 return false; 169 break; 170 case META_SSA: 171 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 172 blkaddr < SM_I(sbi)->ssa_blkaddr)) 173 return false; 174 break; 175 case META_CP: 176 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 177 blkaddr < __start_cp_addr(sbi))) 178 return false; 179 break; 180 case META_POR: 181 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 182 blkaddr < MAIN_BLKADDR(sbi))) 183 return false; 184 break; 185 case DATA_GENERIC: 186 case DATA_GENERIC_ENHANCE: 187 case DATA_GENERIC_ENHANCE_READ: 188 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 189 blkaddr < MAIN_BLKADDR(sbi))) { 190 f2fs_warn(sbi, "access invalid blkaddr:%u", 191 blkaddr); 192 set_sbi_flag(sbi, SBI_NEED_FSCK); 193 dump_stack(); 194 return false; 195 } else { 196 return __is_bitmap_valid(sbi, blkaddr, type); 197 } 198 break; 199 case META_GENERIC: 200 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 201 blkaddr >= MAIN_BLKADDR(sbi))) 202 return false; 203 break; 204 default: 205 BUG(); 206 } 207 208 return true; 209 } 210 211 /* 212 * Readahead CP/NAT/SIT/SSA/POR pages 213 */ 214 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 215 int type, bool sync) 216 { 217 struct page *page; 218 block_t blkno = start; 219 struct f2fs_io_info fio = { 220 .sbi = sbi, 221 .type = META, 222 .op = REQ_OP_READ, 223 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 224 .encrypted_page = NULL, 225 .in_list = false, 226 .is_por = (type == META_POR), 227 }; 228 struct blk_plug plug; 229 int err; 230 231 if (unlikely(type == META_POR)) 232 fio.op_flags &= ~REQ_META; 233 234 blk_start_plug(&plug); 235 for (; nrpages-- > 0; blkno++) { 236 237 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 238 goto out; 239 240 switch (type) { 241 case META_NAT: 242 if (unlikely(blkno >= 243 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 244 blkno = 0; 245 /* get nat block addr */ 246 fio.new_blkaddr = current_nat_addr(sbi, 247 blkno * NAT_ENTRY_PER_BLOCK); 248 break; 249 case META_SIT: 250 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 251 goto out; 252 /* get sit block addr */ 253 fio.new_blkaddr = current_sit_addr(sbi, 254 blkno * SIT_ENTRY_PER_BLOCK); 255 break; 256 case META_SSA: 257 case META_CP: 258 case META_POR: 259 fio.new_blkaddr = blkno; 260 break; 261 default: 262 BUG(); 263 } 264 265 page = f2fs_grab_cache_page(META_MAPPING(sbi), 266 fio.new_blkaddr, false); 267 if (!page) 268 continue; 269 if (PageUptodate(page)) { 270 f2fs_put_page(page, 1); 271 continue; 272 } 273 274 fio.page = page; 275 err = f2fs_submit_page_bio(&fio); 276 f2fs_put_page(page, err ? 1 : 0); 277 278 if (!err) 279 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 280 } 281 out: 282 blk_finish_plug(&plug); 283 return blkno - start; 284 } 285 286 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 287 unsigned int ra_blocks) 288 { 289 struct page *page; 290 bool readahead = false; 291 292 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 293 return; 294 295 page = find_get_page(META_MAPPING(sbi), index); 296 if (!page || !PageUptodate(page)) 297 readahead = true; 298 f2fs_put_page(page, 0); 299 300 if (readahead) 301 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 302 } 303 304 static int __f2fs_write_meta_page(struct page *page, 305 struct writeback_control *wbc, 306 enum iostat_type io_type) 307 { 308 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 309 310 trace_f2fs_writepage(page, META); 311 312 if (unlikely(f2fs_cp_error(sbi))) 313 goto redirty_out; 314 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 315 goto redirty_out; 316 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 317 goto redirty_out; 318 319 f2fs_do_write_meta_page(sbi, page, io_type); 320 dec_page_count(sbi, F2FS_DIRTY_META); 321 322 if (wbc->for_reclaim) 323 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 324 325 unlock_page(page); 326 327 if (unlikely(f2fs_cp_error(sbi))) 328 f2fs_submit_merged_write(sbi, META); 329 330 return 0; 331 332 redirty_out: 333 redirty_page_for_writepage(wbc, page); 334 return AOP_WRITEPAGE_ACTIVATE; 335 } 336 337 static int f2fs_write_meta_page(struct page *page, 338 struct writeback_control *wbc) 339 { 340 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 341 } 342 343 static int f2fs_write_meta_pages(struct address_space *mapping, 344 struct writeback_control *wbc) 345 { 346 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 347 long diff, written; 348 349 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 350 goto skip_write; 351 352 /* collect a number of dirty meta pages and write together */ 353 if (wbc->sync_mode != WB_SYNC_ALL && 354 get_pages(sbi, F2FS_DIRTY_META) < 355 nr_pages_to_skip(sbi, META)) 356 goto skip_write; 357 358 /* if locked failed, cp will flush dirty pages instead */ 359 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 360 goto skip_write; 361 362 trace_f2fs_writepages(mapping->host, wbc, META); 363 diff = nr_pages_to_write(sbi, META, wbc); 364 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 365 f2fs_up_write(&sbi->cp_global_sem); 366 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 367 return 0; 368 369 skip_write: 370 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 371 trace_f2fs_writepages(mapping->host, wbc, META); 372 return 0; 373 } 374 375 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 376 long nr_to_write, enum iostat_type io_type) 377 { 378 struct address_space *mapping = META_MAPPING(sbi); 379 pgoff_t index = 0, prev = ULONG_MAX; 380 struct pagevec pvec; 381 long nwritten = 0; 382 int nr_pages; 383 struct writeback_control wbc = { 384 .for_reclaim = 0, 385 }; 386 struct blk_plug plug; 387 388 pagevec_init(&pvec); 389 390 blk_start_plug(&plug); 391 392 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 393 PAGECACHE_TAG_DIRTY))) { 394 int i; 395 396 for (i = 0; i < nr_pages; i++) { 397 struct page *page = pvec.pages[i]; 398 399 if (prev == ULONG_MAX) 400 prev = page->index - 1; 401 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 402 pagevec_release(&pvec); 403 goto stop; 404 } 405 406 lock_page(page); 407 408 if (unlikely(page->mapping != mapping)) { 409 continue_unlock: 410 unlock_page(page); 411 continue; 412 } 413 if (!PageDirty(page)) { 414 /* someone wrote it for us */ 415 goto continue_unlock; 416 } 417 418 f2fs_wait_on_page_writeback(page, META, true, true); 419 420 if (!clear_page_dirty_for_io(page)) 421 goto continue_unlock; 422 423 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 424 unlock_page(page); 425 break; 426 } 427 nwritten++; 428 prev = page->index; 429 if (unlikely(nwritten >= nr_to_write)) 430 break; 431 } 432 pagevec_release(&pvec); 433 cond_resched(); 434 } 435 stop: 436 if (nwritten) 437 f2fs_submit_merged_write(sbi, type); 438 439 blk_finish_plug(&plug); 440 441 return nwritten; 442 } 443 444 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 445 struct folio *folio) 446 { 447 trace_f2fs_set_page_dirty(&folio->page, META); 448 449 if (!folio_test_uptodate(folio)) 450 folio_mark_uptodate(folio); 451 if (!folio_test_dirty(folio)) { 452 filemap_dirty_folio(mapping, folio); 453 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 454 set_page_private_reference(&folio->page); 455 return true; 456 } 457 return false; 458 } 459 460 const struct address_space_operations f2fs_meta_aops = { 461 .writepage = f2fs_write_meta_page, 462 .writepages = f2fs_write_meta_pages, 463 .dirty_folio = f2fs_dirty_meta_folio, 464 .invalidate_folio = f2fs_invalidate_folio, 465 .release_folio = f2fs_release_folio, 466 #ifdef CONFIG_MIGRATION 467 .migratepage = f2fs_migrate_page, 468 #endif 469 }; 470 471 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 472 unsigned int devidx, int type) 473 { 474 struct inode_management *im = &sbi->im[type]; 475 struct ino_entry *e = NULL, *new = NULL; 476 477 if (type == FLUSH_INO) { 478 rcu_read_lock(); 479 e = radix_tree_lookup(&im->ino_root, ino); 480 rcu_read_unlock(); 481 } 482 483 retry: 484 if (!e) 485 new = f2fs_kmem_cache_alloc(ino_entry_slab, 486 GFP_NOFS, true, NULL); 487 488 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 489 490 spin_lock(&im->ino_lock); 491 e = radix_tree_lookup(&im->ino_root, ino); 492 if (!e) { 493 if (!new) { 494 spin_unlock(&im->ino_lock); 495 goto retry; 496 } 497 e = new; 498 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 499 f2fs_bug_on(sbi, 1); 500 501 memset(e, 0, sizeof(struct ino_entry)); 502 e->ino = ino; 503 504 list_add_tail(&e->list, &im->ino_list); 505 if (type != ORPHAN_INO) 506 im->ino_num++; 507 } 508 509 if (type == FLUSH_INO) 510 f2fs_set_bit(devidx, (char *)&e->dirty_device); 511 512 spin_unlock(&im->ino_lock); 513 radix_tree_preload_end(); 514 515 if (new && e != new) 516 kmem_cache_free(ino_entry_slab, new); 517 } 518 519 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 520 { 521 struct inode_management *im = &sbi->im[type]; 522 struct ino_entry *e; 523 524 spin_lock(&im->ino_lock); 525 e = radix_tree_lookup(&im->ino_root, ino); 526 if (e) { 527 list_del(&e->list); 528 radix_tree_delete(&im->ino_root, ino); 529 im->ino_num--; 530 spin_unlock(&im->ino_lock); 531 kmem_cache_free(ino_entry_slab, e); 532 return; 533 } 534 spin_unlock(&im->ino_lock); 535 } 536 537 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 538 { 539 /* add new dirty ino entry into list */ 540 __add_ino_entry(sbi, ino, 0, type); 541 } 542 543 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 544 { 545 /* remove dirty ino entry from list */ 546 __remove_ino_entry(sbi, ino, type); 547 } 548 549 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 550 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 551 { 552 struct inode_management *im = &sbi->im[mode]; 553 struct ino_entry *e; 554 555 spin_lock(&im->ino_lock); 556 e = radix_tree_lookup(&im->ino_root, ino); 557 spin_unlock(&im->ino_lock); 558 return e ? true : false; 559 } 560 561 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 562 { 563 struct ino_entry *e, *tmp; 564 int i; 565 566 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 567 struct inode_management *im = &sbi->im[i]; 568 569 spin_lock(&im->ino_lock); 570 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 571 list_del(&e->list); 572 radix_tree_delete(&im->ino_root, e->ino); 573 kmem_cache_free(ino_entry_slab, e); 574 im->ino_num--; 575 } 576 spin_unlock(&im->ino_lock); 577 } 578 } 579 580 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 581 unsigned int devidx, int type) 582 { 583 __add_ino_entry(sbi, ino, devidx, type); 584 } 585 586 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 587 unsigned int devidx, int type) 588 { 589 struct inode_management *im = &sbi->im[type]; 590 struct ino_entry *e; 591 bool is_dirty = false; 592 593 spin_lock(&im->ino_lock); 594 e = radix_tree_lookup(&im->ino_root, ino); 595 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 596 is_dirty = true; 597 spin_unlock(&im->ino_lock); 598 return is_dirty; 599 } 600 601 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 602 { 603 struct inode_management *im = &sbi->im[ORPHAN_INO]; 604 int err = 0; 605 606 spin_lock(&im->ino_lock); 607 608 if (time_to_inject(sbi, FAULT_ORPHAN)) { 609 spin_unlock(&im->ino_lock); 610 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 611 return -ENOSPC; 612 } 613 614 if (unlikely(im->ino_num >= sbi->max_orphans)) 615 err = -ENOSPC; 616 else 617 im->ino_num++; 618 spin_unlock(&im->ino_lock); 619 620 return err; 621 } 622 623 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 624 { 625 struct inode_management *im = &sbi->im[ORPHAN_INO]; 626 627 spin_lock(&im->ino_lock); 628 f2fs_bug_on(sbi, im->ino_num == 0); 629 im->ino_num--; 630 spin_unlock(&im->ino_lock); 631 } 632 633 void f2fs_add_orphan_inode(struct inode *inode) 634 { 635 /* add new orphan ino entry into list */ 636 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 637 f2fs_update_inode_page(inode); 638 } 639 640 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 641 { 642 /* remove orphan entry from orphan list */ 643 __remove_ino_entry(sbi, ino, ORPHAN_INO); 644 } 645 646 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 647 { 648 struct inode *inode; 649 struct node_info ni; 650 int err; 651 652 inode = f2fs_iget_retry(sbi->sb, ino); 653 if (IS_ERR(inode)) { 654 /* 655 * there should be a bug that we can't find the entry 656 * to orphan inode. 657 */ 658 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 659 return PTR_ERR(inode); 660 } 661 662 err = f2fs_dquot_initialize(inode); 663 if (err) { 664 iput(inode); 665 goto err_out; 666 } 667 668 clear_nlink(inode); 669 670 /* truncate all the data during iput */ 671 iput(inode); 672 673 err = f2fs_get_node_info(sbi, ino, &ni, false); 674 if (err) 675 goto err_out; 676 677 /* ENOMEM was fully retried in f2fs_evict_inode. */ 678 if (ni.blk_addr != NULL_ADDR) { 679 err = -EIO; 680 goto err_out; 681 } 682 return 0; 683 684 err_out: 685 set_sbi_flag(sbi, SBI_NEED_FSCK); 686 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 687 __func__, ino); 688 return err; 689 } 690 691 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 692 { 693 block_t start_blk, orphan_blocks, i, j; 694 unsigned int s_flags = sbi->sb->s_flags; 695 int err = 0; 696 #ifdef CONFIG_QUOTA 697 int quota_enabled; 698 #endif 699 700 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 701 return 0; 702 703 if (bdev_read_only(sbi->sb->s_bdev)) { 704 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 705 return 0; 706 } 707 708 if (s_flags & SB_RDONLY) { 709 f2fs_info(sbi, "orphan cleanup on readonly fs"); 710 sbi->sb->s_flags &= ~SB_RDONLY; 711 } 712 713 #ifdef CONFIG_QUOTA 714 /* 715 * Turn on quotas which were not enabled for read-only mounts if 716 * filesystem has quota feature, so that they are updated correctly. 717 */ 718 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 719 #endif 720 721 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 722 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 723 724 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 725 726 for (i = 0; i < orphan_blocks; i++) { 727 struct page *page; 728 struct f2fs_orphan_block *orphan_blk; 729 730 page = f2fs_get_meta_page(sbi, start_blk + i); 731 if (IS_ERR(page)) { 732 err = PTR_ERR(page); 733 goto out; 734 } 735 736 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 737 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 738 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 739 740 err = recover_orphan_inode(sbi, ino); 741 if (err) { 742 f2fs_put_page(page, 1); 743 goto out; 744 } 745 } 746 f2fs_put_page(page, 1); 747 } 748 /* clear Orphan Flag */ 749 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 750 out: 751 set_sbi_flag(sbi, SBI_IS_RECOVERED); 752 753 #ifdef CONFIG_QUOTA 754 /* Turn quotas off */ 755 if (quota_enabled) 756 f2fs_quota_off_umount(sbi->sb); 757 #endif 758 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 759 760 return err; 761 } 762 763 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 764 { 765 struct list_head *head; 766 struct f2fs_orphan_block *orphan_blk = NULL; 767 unsigned int nentries = 0; 768 unsigned short index = 1; 769 unsigned short orphan_blocks; 770 struct page *page = NULL; 771 struct ino_entry *orphan = NULL; 772 struct inode_management *im = &sbi->im[ORPHAN_INO]; 773 774 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 775 776 /* 777 * we don't need to do spin_lock(&im->ino_lock) here, since all the 778 * orphan inode operations are covered under f2fs_lock_op(). 779 * And, spin_lock should be avoided due to page operations below. 780 */ 781 head = &im->ino_list; 782 783 /* loop for each orphan inode entry and write them in Jornal block */ 784 list_for_each_entry(orphan, head, list) { 785 if (!page) { 786 page = f2fs_grab_meta_page(sbi, start_blk++); 787 orphan_blk = 788 (struct f2fs_orphan_block *)page_address(page); 789 memset(orphan_blk, 0, sizeof(*orphan_blk)); 790 } 791 792 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 793 794 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 795 /* 796 * an orphan block is full of 1020 entries, 797 * then we need to flush current orphan blocks 798 * and bring another one in memory 799 */ 800 orphan_blk->blk_addr = cpu_to_le16(index); 801 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 802 orphan_blk->entry_count = cpu_to_le32(nentries); 803 set_page_dirty(page); 804 f2fs_put_page(page, 1); 805 index++; 806 nentries = 0; 807 page = NULL; 808 } 809 } 810 811 if (page) { 812 orphan_blk->blk_addr = cpu_to_le16(index); 813 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 814 orphan_blk->entry_count = cpu_to_le32(nentries); 815 set_page_dirty(page); 816 f2fs_put_page(page, 1); 817 } 818 } 819 820 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 821 struct f2fs_checkpoint *ckpt) 822 { 823 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 824 __u32 chksum; 825 826 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 827 if (chksum_ofs < CP_CHKSUM_OFFSET) { 828 chksum_ofs += sizeof(chksum); 829 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 830 F2FS_BLKSIZE - chksum_ofs); 831 } 832 return chksum; 833 } 834 835 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 836 struct f2fs_checkpoint **cp_block, struct page **cp_page, 837 unsigned long long *version) 838 { 839 size_t crc_offset = 0; 840 __u32 crc; 841 842 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 843 if (IS_ERR(*cp_page)) 844 return PTR_ERR(*cp_page); 845 846 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 847 848 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 849 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 850 crc_offset > CP_CHKSUM_OFFSET) { 851 f2fs_put_page(*cp_page, 1); 852 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 853 return -EINVAL; 854 } 855 856 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 857 if (crc != cur_cp_crc(*cp_block)) { 858 f2fs_put_page(*cp_page, 1); 859 f2fs_warn(sbi, "invalid crc value"); 860 return -EINVAL; 861 } 862 863 *version = cur_cp_version(*cp_block); 864 return 0; 865 } 866 867 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 868 block_t cp_addr, unsigned long long *version) 869 { 870 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 871 struct f2fs_checkpoint *cp_block = NULL; 872 unsigned long long cur_version = 0, pre_version = 0; 873 unsigned int cp_blocks; 874 int err; 875 876 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 877 &cp_page_1, version); 878 if (err) 879 return NULL; 880 881 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 882 883 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 884 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 885 le32_to_cpu(cp_block->cp_pack_total_block_count)); 886 goto invalid_cp; 887 } 888 pre_version = *version; 889 890 cp_addr += cp_blocks - 1; 891 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 892 &cp_page_2, version); 893 if (err) 894 goto invalid_cp; 895 cur_version = *version; 896 897 if (cur_version == pre_version) { 898 *version = cur_version; 899 f2fs_put_page(cp_page_2, 1); 900 return cp_page_1; 901 } 902 f2fs_put_page(cp_page_2, 1); 903 invalid_cp: 904 f2fs_put_page(cp_page_1, 1); 905 return NULL; 906 } 907 908 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 909 { 910 struct f2fs_checkpoint *cp_block; 911 struct f2fs_super_block *fsb = sbi->raw_super; 912 struct page *cp1, *cp2, *cur_page; 913 unsigned long blk_size = sbi->blocksize; 914 unsigned long long cp1_version = 0, cp2_version = 0; 915 unsigned long long cp_start_blk_no; 916 unsigned int cp_blks = 1 + __cp_payload(sbi); 917 block_t cp_blk_no; 918 int i; 919 int err; 920 921 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 922 GFP_KERNEL); 923 if (!sbi->ckpt) 924 return -ENOMEM; 925 /* 926 * Finding out valid cp block involves read both 927 * sets( cp pack 1 and cp pack 2) 928 */ 929 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 930 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 931 932 /* The second checkpoint pack should start at the next segment */ 933 cp_start_blk_no += ((unsigned long long)1) << 934 le32_to_cpu(fsb->log_blocks_per_seg); 935 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 936 937 if (cp1 && cp2) { 938 if (ver_after(cp2_version, cp1_version)) 939 cur_page = cp2; 940 else 941 cur_page = cp1; 942 } else if (cp1) { 943 cur_page = cp1; 944 } else if (cp2) { 945 cur_page = cp2; 946 } else { 947 err = -EFSCORRUPTED; 948 goto fail_no_cp; 949 } 950 951 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 952 memcpy(sbi->ckpt, cp_block, blk_size); 953 954 if (cur_page == cp1) 955 sbi->cur_cp_pack = 1; 956 else 957 sbi->cur_cp_pack = 2; 958 959 /* Sanity checking of checkpoint */ 960 if (f2fs_sanity_check_ckpt(sbi)) { 961 err = -EFSCORRUPTED; 962 goto free_fail_no_cp; 963 } 964 965 if (cp_blks <= 1) 966 goto done; 967 968 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 969 if (cur_page == cp2) 970 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 971 972 for (i = 1; i < cp_blks; i++) { 973 void *sit_bitmap_ptr; 974 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 975 976 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 977 if (IS_ERR(cur_page)) { 978 err = PTR_ERR(cur_page); 979 goto free_fail_no_cp; 980 } 981 sit_bitmap_ptr = page_address(cur_page); 982 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 983 f2fs_put_page(cur_page, 1); 984 } 985 done: 986 f2fs_put_page(cp1, 1); 987 f2fs_put_page(cp2, 1); 988 return 0; 989 990 free_fail_no_cp: 991 f2fs_put_page(cp1, 1); 992 f2fs_put_page(cp2, 1); 993 fail_no_cp: 994 kvfree(sbi->ckpt); 995 return err; 996 } 997 998 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 999 { 1000 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1001 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1002 1003 if (is_inode_flag_set(inode, flag)) 1004 return; 1005 1006 set_inode_flag(inode, flag); 1007 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1008 stat_inc_dirty_inode(sbi, type); 1009 } 1010 1011 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1012 { 1013 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1014 1015 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1016 return; 1017 1018 list_del_init(&F2FS_I(inode)->dirty_list); 1019 clear_inode_flag(inode, flag); 1020 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1021 } 1022 1023 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1024 { 1025 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1026 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1027 1028 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1029 !S_ISLNK(inode->i_mode)) 1030 return; 1031 1032 spin_lock(&sbi->inode_lock[type]); 1033 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1034 __add_dirty_inode(inode, type); 1035 inode_inc_dirty_pages(inode); 1036 spin_unlock(&sbi->inode_lock[type]); 1037 1038 set_page_private_reference(&folio->page); 1039 } 1040 1041 void f2fs_remove_dirty_inode(struct inode *inode) 1042 { 1043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1044 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1045 1046 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1047 !S_ISLNK(inode->i_mode)) 1048 return; 1049 1050 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1051 return; 1052 1053 spin_lock(&sbi->inode_lock[type]); 1054 __remove_dirty_inode(inode, type); 1055 spin_unlock(&sbi->inode_lock[type]); 1056 } 1057 1058 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1059 { 1060 struct list_head *head; 1061 struct inode *inode; 1062 struct f2fs_inode_info *fi; 1063 bool is_dir = (type == DIR_INODE); 1064 unsigned long ino = 0; 1065 1066 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1067 get_pages(sbi, is_dir ? 1068 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1069 retry: 1070 if (unlikely(f2fs_cp_error(sbi))) { 1071 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1072 get_pages(sbi, is_dir ? 1073 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1074 return -EIO; 1075 } 1076 1077 spin_lock(&sbi->inode_lock[type]); 1078 1079 head = &sbi->inode_list[type]; 1080 if (list_empty(head)) { 1081 spin_unlock(&sbi->inode_lock[type]); 1082 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1083 get_pages(sbi, is_dir ? 1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1085 return 0; 1086 } 1087 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1088 inode = igrab(&fi->vfs_inode); 1089 spin_unlock(&sbi->inode_lock[type]); 1090 if (inode) { 1091 unsigned long cur_ino = inode->i_ino; 1092 1093 F2FS_I(inode)->cp_task = current; 1094 1095 filemap_fdatawrite(inode->i_mapping); 1096 1097 F2FS_I(inode)->cp_task = NULL; 1098 1099 iput(inode); 1100 /* We need to give cpu to another writers. */ 1101 if (ino == cur_ino) 1102 cond_resched(); 1103 else 1104 ino = cur_ino; 1105 } else { 1106 /* 1107 * We should submit bio, since it exists several 1108 * wribacking dentry pages in the freeing inode. 1109 */ 1110 f2fs_submit_merged_write(sbi, DATA); 1111 cond_resched(); 1112 } 1113 goto retry; 1114 } 1115 1116 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1117 { 1118 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1119 struct inode *inode; 1120 struct f2fs_inode_info *fi; 1121 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1122 1123 while (total--) { 1124 if (unlikely(f2fs_cp_error(sbi))) 1125 return -EIO; 1126 1127 spin_lock(&sbi->inode_lock[DIRTY_META]); 1128 if (list_empty(head)) { 1129 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1130 return 0; 1131 } 1132 fi = list_first_entry(head, struct f2fs_inode_info, 1133 gdirty_list); 1134 inode = igrab(&fi->vfs_inode); 1135 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1136 if (inode) { 1137 sync_inode_metadata(inode, 0); 1138 1139 /* it's on eviction */ 1140 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1141 f2fs_update_inode_page(inode); 1142 iput(inode); 1143 } 1144 } 1145 return 0; 1146 } 1147 1148 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1149 { 1150 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1151 struct f2fs_nm_info *nm_i = NM_I(sbi); 1152 nid_t last_nid = nm_i->next_scan_nid; 1153 1154 next_free_nid(sbi, &last_nid); 1155 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1156 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1157 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1158 ckpt->next_free_nid = cpu_to_le32(last_nid); 1159 } 1160 1161 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1162 { 1163 bool ret = false; 1164 1165 if (!is_journalled_quota(sbi)) 1166 return false; 1167 1168 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1169 return true; 1170 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1171 ret = false; 1172 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1173 ret = false; 1174 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1175 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1176 ret = true; 1177 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1178 ret = true; 1179 } 1180 f2fs_up_write(&sbi->quota_sem); 1181 return ret; 1182 } 1183 1184 /* 1185 * Freeze all the FS-operations for checkpoint. 1186 */ 1187 static int block_operations(struct f2fs_sb_info *sbi) 1188 { 1189 struct writeback_control wbc = { 1190 .sync_mode = WB_SYNC_ALL, 1191 .nr_to_write = LONG_MAX, 1192 .for_reclaim = 0, 1193 }; 1194 int err = 0, cnt = 0; 1195 1196 /* 1197 * Let's flush inline_data in dirty node pages. 1198 */ 1199 f2fs_flush_inline_data(sbi); 1200 1201 retry_flush_quotas: 1202 f2fs_lock_all(sbi); 1203 if (__need_flush_quota(sbi)) { 1204 int locked; 1205 1206 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1207 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1208 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1209 goto retry_flush_dents; 1210 } 1211 f2fs_unlock_all(sbi); 1212 1213 /* only failed during mount/umount/freeze/quotactl */ 1214 locked = down_read_trylock(&sbi->sb->s_umount); 1215 f2fs_quota_sync(sbi->sb, -1); 1216 if (locked) 1217 up_read(&sbi->sb->s_umount); 1218 cond_resched(); 1219 goto retry_flush_quotas; 1220 } 1221 1222 retry_flush_dents: 1223 /* write all the dirty dentry pages */ 1224 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1225 f2fs_unlock_all(sbi); 1226 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1227 if (err) 1228 return err; 1229 cond_resched(); 1230 goto retry_flush_quotas; 1231 } 1232 1233 /* 1234 * POR: we should ensure that there are no dirty node pages 1235 * until finishing nat/sit flush. inode->i_blocks can be updated. 1236 */ 1237 f2fs_down_write(&sbi->node_change); 1238 1239 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1240 f2fs_up_write(&sbi->node_change); 1241 f2fs_unlock_all(sbi); 1242 err = f2fs_sync_inode_meta(sbi); 1243 if (err) 1244 return err; 1245 cond_resched(); 1246 goto retry_flush_quotas; 1247 } 1248 1249 retry_flush_nodes: 1250 f2fs_down_write(&sbi->node_write); 1251 1252 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1253 f2fs_up_write(&sbi->node_write); 1254 atomic_inc(&sbi->wb_sync_req[NODE]); 1255 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1256 atomic_dec(&sbi->wb_sync_req[NODE]); 1257 if (err) { 1258 f2fs_up_write(&sbi->node_change); 1259 f2fs_unlock_all(sbi); 1260 return err; 1261 } 1262 cond_resched(); 1263 goto retry_flush_nodes; 1264 } 1265 1266 /* 1267 * sbi->node_change is used only for AIO write_begin path which produces 1268 * dirty node blocks and some checkpoint values by block allocation. 1269 */ 1270 __prepare_cp_block(sbi); 1271 f2fs_up_write(&sbi->node_change); 1272 return err; 1273 } 1274 1275 static void unblock_operations(struct f2fs_sb_info *sbi) 1276 { 1277 f2fs_up_write(&sbi->node_write); 1278 f2fs_unlock_all(sbi); 1279 } 1280 1281 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1282 { 1283 DEFINE_WAIT(wait); 1284 1285 for (;;) { 1286 if (!get_pages(sbi, type)) 1287 break; 1288 1289 if (unlikely(f2fs_cp_error(sbi))) 1290 break; 1291 1292 if (type == F2FS_DIRTY_META) 1293 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1294 FS_CP_META_IO); 1295 else if (type == F2FS_WB_CP_DATA) 1296 f2fs_submit_merged_write(sbi, DATA); 1297 1298 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1299 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1300 } 1301 finish_wait(&sbi->cp_wait, &wait); 1302 } 1303 1304 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1305 { 1306 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1307 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1308 unsigned long flags; 1309 1310 if (cpc->reason & CP_UMOUNT) { 1311 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1312 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1313 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1314 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1315 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1316 f2fs_nat_bitmap_enabled(sbi)) { 1317 f2fs_enable_nat_bits(sbi); 1318 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1319 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1320 } 1321 } 1322 1323 spin_lock_irqsave(&sbi->cp_lock, flags); 1324 1325 if (cpc->reason & CP_TRIMMED) 1326 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1327 else 1328 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1329 1330 if (cpc->reason & CP_UMOUNT) 1331 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1332 else 1333 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1334 1335 if (cpc->reason & CP_FASTBOOT) 1336 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1337 else 1338 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1339 1340 if (orphan_num) 1341 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1342 else 1343 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1344 1345 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1346 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1347 1348 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1349 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1350 else 1351 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1352 1353 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1354 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1355 else 1356 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1357 1358 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1359 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1360 else 1361 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1362 1363 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1364 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1365 else 1366 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1367 1368 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1369 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1370 1371 /* set this flag to activate crc|cp_ver for recovery */ 1372 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1373 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1374 1375 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1376 } 1377 1378 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1379 void *src, block_t blk_addr) 1380 { 1381 struct writeback_control wbc = { 1382 .for_reclaim = 0, 1383 }; 1384 1385 /* 1386 * pagevec_lookup_tag and lock_page again will take 1387 * some extra time. Therefore, f2fs_update_meta_pages and 1388 * f2fs_sync_meta_pages are combined in this function. 1389 */ 1390 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1391 int err; 1392 1393 f2fs_wait_on_page_writeback(page, META, true, true); 1394 1395 memcpy(page_address(page), src, PAGE_SIZE); 1396 1397 set_page_dirty(page); 1398 if (unlikely(!clear_page_dirty_for_io(page))) 1399 f2fs_bug_on(sbi, 1); 1400 1401 /* writeout cp pack 2 page */ 1402 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1403 if (unlikely(err && f2fs_cp_error(sbi))) { 1404 f2fs_put_page(page, 1); 1405 return; 1406 } 1407 1408 f2fs_bug_on(sbi, err); 1409 f2fs_put_page(page, 0); 1410 1411 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1412 f2fs_submit_merged_write(sbi, META_FLUSH); 1413 } 1414 1415 static inline u64 get_sectors_written(struct block_device *bdev) 1416 { 1417 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1418 } 1419 1420 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1421 { 1422 if (f2fs_is_multi_device(sbi)) { 1423 u64 sectors = 0; 1424 int i; 1425 1426 for (i = 0; i < sbi->s_ndevs; i++) 1427 sectors += get_sectors_written(FDEV(i).bdev); 1428 1429 return sectors; 1430 } 1431 1432 return get_sectors_written(sbi->sb->s_bdev); 1433 } 1434 1435 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1436 { 1437 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1438 struct f2fs_nm_info *nm_i = NM_I(sbi); 1439 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1440 block_t start_blk; 1441 unsigned int data_sum_blocks, orphan_blocks; 1442 __u32 crc32 = 0; 1443 int i; 1444 int cp_payload_blks = __cp_payload(sbi); 1445 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1446 u64 kbytes_written; 1447 int err; 1448 1449 /* Flush all the NAT/SIT pages */ 1450 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1451 1452 /* start to update checkpoint, cp ver is already updated previously */ 1453 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1454 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1455 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1456 ckpt->cur_node_segno[i] = 1457 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1458 ckpt->cur_node_blkoff[i] = 1459 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1460 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1461 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1462 } 1463 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1464 ckpt->cur_data_segno[i] = 1465 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1466 ckpt->cur_data_blkoff[i] = 1467 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1468 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1469 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1470 } 1471 1472 /* 2 cp + n data seg summary + orphan inode blocks */ 1473 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1474 spin_lock_irqsave(&sbi->cp_lock, flags); 1475 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1476 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1477 else 1478 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1479 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1480 1481 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1482 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1483 orphan_blocks); 1484 1485 if (__remain_node_summaries(cpc->reason)) 1486 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1487 cp_payload_blks + data_sum_blocks + 1488 orphan_blocks + NR_CURSEG_NODE_TYPE); 1489 else 1490 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1491 cp_payload_blks + data_sum_blocks + 1492 orphan_blocks); 1493 1494 /* update ckpt flag for checkpoint */ 1495 update_ckpt_flags(sbi, cpc); 1496 1497 /* update SIT/NAT bitmap */ 1498 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1499 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1500 1501 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1502 *((__le32 *)((unsigned char *)ckpt + 1503 le32_to_cpu(ckpt->checksum_offset))) 1504 = cpu_to_le32(crc32); 1505 1506 start_blk = __start_cp_next_addr(sbi); 1507 1508 /* write nat bits */ 1509 if ((cpc->reason & CP_UMOUNT) && 1510 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1511 __u64 cp_ver = cur_cp_version(ckpt); 1512 block_t blk; 1513 1514 cp_ver |= ((__u64)crc32 << 32); 1515 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1516 1517 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1518 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1519 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1520 (i << F2FS_BLKSIZE_BITS), blk + i); 1521 } 1522 1523 /* write out checkpoint buffer at block 0 */ 1524 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1525 1526 for (i = 1; i < 1 + cp_payload_blks; i++) 1527 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1528 start_blk++); 1529 1530 if (orphan_num) { 1531 write_orphan_inodes(sbi, start_blk); 1532 start_blk += orphan_blocks; 1533 } 1534 1535 f2fs_write_data_summaries(sbi, start_blk); 1536 start_blk += data_sum_blocks; 1537 1538 /* Record write statistics in the hot node summary */ 1539 kbytes_written = sbi->kbytes_written; 1540 kbytes_written += (f2fs_get_sectors_written(sbi) - 1541 sbi->sectors_written_start) >> 1; 1542 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1543 1544 if (__remain_node_summaries(cpc->reason)) { 1545 f2fs_write_node_summaries(sbi, start_blk); 1546 start_blk += NR_CURSEG_NODE_TYPE; 1547 } 1548 1549 /* update user_block_counts */ 1550 sbi->last_valid_block_count = sbi->total_valid_block_count; 1551 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1552 percpu_counter_set(&sbi->rf_node_block_count, 0); 1553 1554 /* Here, we have one bio having CP pack except cp pack 2 page */ 1555 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1556 /* Wait for all dirty meta pages to be submitted for IO */ 1557 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1558 1559 /* wait for previous submitted meta pages writeback */ 1560 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1561 1562 /* flush all device cache */ 1563 err = f2fs_flush_device_cache(sbi); 1564 if (err) 1565 return err; 1566 1567 /* barrier and flush checkpoint cp pack 2 page if it can */ 1568 commit_checkpoint(sbi, ckpt, start_blk); 1569 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1570 1571 /* 1572 * invalidate intermediate page cache borrowed from meta inode which are 1573 * used for migration of encrypted, verity or compressed inode's blocks. 1574 */ 1575 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1576 f2fs_sb_has_compression(sbi)) 1577 invalidate_mapping_pages(META_MAPPING(sbi), 1578 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1579 1580 f2fs_release_ino_entry(sbi, false); 1581 1582 f2fs_reset_fsync_node_info(sbi); 1583 1584 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1585 clear_sbi_flag(sbi, SBI_NEED_CP); 1586 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1587 1588 spin_lock(&sbi->stat_lock); 1589 sbi->unusable_block_count = 0; 1590 spin_unlock(&sbi->stat_lock); 1591 1592 __set_cp_next_pack(sbi); 1593 1594 /* 1595 * redirty superblock if metadata like node page or inode cache is 1596 * updated during writing checkpoint. 1597 */ 1598 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1599 get_pages(sbi, F2FS_DIRTY_IMETA)) 1600 set_sbi_flag(sbi, SBI_IS_DIRTY); 1601 1602 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1603 1604 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1605 } 1606 1607 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1608 { 1609 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1610 unsigned long long ckpt_ver; 1611 int err = 0; 1612 1613 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1614 return -EROFS; 1615 1616 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1617 if (cpc->reason != CP_PAUSE) 1618 return 0; 1619 f2fs_warn(sbi, "Start checkpoint disabled!"); 1620 } 1621 if (cpc->reason != CP_RESIZE) 1622 f2fs_down_write(&sbi->cp_global_sem); 1623 1624 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1625 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1626 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1627 goto out; 1628 if (unlikely(f2fs_cp_error(sbi))) { 1629 err = -EIO; 1630 goto out; 1631 } 1632 1633 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1634 1635 err = block_operations(sbi); 1636 if (err) 1637 goto out; 1638 1639 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1640 1641 f2fs_flush_merged_writes(sbi); 1642 1643 /* this is the case of multiple fstrims without any changes */ 1644 if (cpc->reason & CP_DISCARD) { 1645 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1646 unblock_operations(sbi); 1647 goto out; 1648 } 1649 1650 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1651 SIT_I(sbi)->dirty_sentries == 0 && 1652 prefree_segments(sbi) == 0) { 1653 f2fs_flush_sit_entries(sbi, cpc); 1654 f2fs_clear_prefree_segments(sbi, cpc); 1655 unblock_operations(sbi); 1656 goto out; 1657 } 1658 } 1659 1660 /* 1661 * update checkpoint pack index 1662 * Increase the version number so that 1663 * SIT entries and seg summaries are written at correct place 1664 */ 1665 ckpt_ver = cur_cp_version(ckpt); 1666 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1667 1668 /* write cached NAT/SIT entries to NAT/SIT area */ 1669 err = f2fs_flush_nat_entries(sbi, cpc); 1670 if (err) { 1671 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1672 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1673 goto stop; 1674 } 1675 1676 f2fs_flush_sit_entries(sbi, cpc); 1677 1678 /* save inmem log status */ 1679 f2fs_save_inmem_curseg(sbi); 1680 1681 err = do_checkpoint(sbi, cpc); 1682 if (err) { 1683 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1684 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1685 f2fs_release_discard_addrs(sbi); 1686 } else { 1687 f2fs_clear_prefree_segments(sbi, cpc); 1688 } 1689 1690 f2fs_restore_inmem_curseg(sbi); 1691 stop: 1692 unblock_operations(sbi); 1693 stat_inc_cp_count(sbi->stat_info); 1694 1695 if (cpc->reason & CP_RECOVERY) 1696 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1697 1698 /* update CP_TIME to trigger checkpoint periodically */ 1699 f2fs_update_time(sbi, CP_TIME); 1700 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1701 out: 1702 if (cpc->reason != CP_RESIZE) 1703 f2fs_up_write(&sbi->cp_global_sem); 1704 return err; 1705 } 1706 1707 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1708 { 1709 int i; 1710 1711 for (i = 0; i < MAX_INO_ENTRY; i++) { 1712 struct inode_management *im = &sbi->im[i]; 1713 1714 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1715 spin_lock_init(&im->ino_lock); 1716 INIT_LIST_HEAD(&im->ino_list); 1717 im->ino_num = 0; 1718 } 1719 1720 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1721 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1722 F2FS_ORPHANS_PER_BLOCK; 1723 } 1724 1725 int __init f2fs_create_checkpoint_caches(void) 1726 { 1727 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1728 sizeof(struct ino_entry)); 1729 if (!ino_entry_slab) 1730 return -ENOMEM; 1731 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1732 sizeof(struct inode_entry)); 1733 if (!f2fs_inode_entry_slab) { 1734 kmem_cache_destroy(ino_entry_slab); 1735 return -ENOMEM; 1736 } 1737 return 0; 1738 } 1739 1740 void f2fs_destroy_checkpoint_caches(void) 1741 { 1742 kmem_cache_destroy(ino_entry_slab); 1743 kmem_cache_destroy(f2fs_inode_entry_slab); 1744 } 1745 1746 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1747 { 1748 struct cp_control cpc = { .reason = CP_SYNC, }; 1749 int err; 1750 1751 f2fs_down_write(&sbi->gc_lock); 1752 err = f2fs_write_checkpoint(sbi, &cpc); 1753 f2fs_up_write(&sbi->gc_lock); 1754 1755 return err; 1756 } 1757 1758 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1759 { 1760 struct ckpt_req_control *cprc = &sbi->cprc_info; 1761 struct ckpt_req *req, *next; 1762 struct llist_node *dispatch_list; 1763 u64 sum_diff = 0, diff, count = 0; 1764 int ret; 1765 1766 dispatch_list = llist_del_all(&cprc->issue_list); 1767 if (!dispatch_list) 1768 return; 1769 dispatch_list = llist_reverse_order(dispatch_list); 1770 1771 ret = __write_checkpoint_sync(sbi); 1772 atomic_inc(&cprc->issued_ckpt); 1773 1774 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1775 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1776 req->ret = ret; 1777 complete(&req->wait); 1778 1779 sum_diff += diff; 1780 count++; 1781 } 1782 atomic_sub(count, &cprc->queued_ckpt); 1783 atomic_add(count, &cprc->total_ckpt); 1784 1785 spin_lock(&cprc->stat_lock); 1786 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1787 if (cprc->peak_time < cprc->cur_time) 1788 cprc->peak_time = cprc->cur_time; 1789 spin_unlock(&cprc->stat_lock); 1790 } 1791 1792 static int issue_checkpoint_thread(void *data) 1793 { 1794 struct f2fs_sb_info *sbi = data; 1795 struct ckpt_req_control *cprc = &sbi->cprc_info; 1796 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1797 repeat: 1798 if (kthread_should_stop()) 1799 return 0; 1800 1801 if (!llist_empty(&cprc->issue_list)) 1802 __checkpoint_and_complete_reqs(sbi); 1803 1804 wait_event_interruptible(*q, 1805 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1806 goto repeat; 1807 } 1808 1809 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1810 struct ckpt_req *wait_req) 1811 { 1812 struct ckpt_req_control *cprc = &sbi->cprc_info; 1813 1814 if (!llist_empty(&cprc->issue_list)) { 1815 __checkpoint_and_complete_reqs(sbi); 1816 } else { 1817 /* already dispatched by issue_checkpoint_thread */ 1818 if (wait_req) 1819 wait_for_completion(&wait_req->wait); 1820 } 1821 } 1822 1823 static void init_ckpt_req(struct ckpt_req *req) 1824 { 1825 memset(req, 0, sizeof(struct ckpt_req)); 1826 1827 init_completion(&req->wait); 1828 req->queue_time = ktime_get(); 1829 } 1830 1831 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1832 { 1833 struct ckpt_req_control *cprc = &sbi->cprc_info; 1834 struct ckpt_req req; 1835 struct cp_control cpc; 1836 1837 cpc.reason = __get_cp_reason(sbi); 1838 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1839 int ret; 1840 1841 f2fs_down_write(&sbi->gc_lock); 1842 ret = f2fs_write_checkpoint(sbi, &cpc); 1843 f2fs_up_write(&sbi->gc_lock); 1844 1845 return ret; 1846 } 1847 1848 if (!cprc->f2fs_issue_ckpt) 1849 return __write_checkpoint_sync(sbi); 1850 1851 init_ckpt_req(&req); 1852 1853 llist_add(&req.llnode, &cprc->issue_list); 1854 atomic_inc(&cprc->queued_ckpt); 1855 1856 /* 1857 * update issue_list before we wake up issue_checkpoint thread, 1858 * this smp_mb() pairs with another barrier in ___wait_event(), 1859 * see more details in comments of waitqueue_active(). 1860 */ 1861 smp_mb(); 1862 1863 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1864 wake_up(&cprc->ckpt_wait_queue); 1865 1866 if (cprc->f2fs_issue_ckpt) 1867 wait_for_completion(&req.wait); 1868 else 1869 flush_remained_ckpt_reqs(sbi, &req); 1870 1871 return req.ret; 1872 } 1873 1874 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1875 { 1876 dev_t dev = sbi->sb->s_bdev->bd_dev; 1877 struct ckpt_req_control *cprc = &sbi->cprc_info; 1878 1879 if (cprc->f2fs_issue_ckpt) 1880 return 0; 1881 1882 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1883 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1884 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1885 cprc->f2fs_issue_ckpt = NULL; 1886 return -ENOMEM; 1887 } 1888 1889 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1890 1891 return 0; 1892 } 1893 1894 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1895 { 1896 struct ckpt_req_control *cprc = &sbi->cprc_info; 1897 1898 if (cprc->f2fs_issue_ckpt) { 1899 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt; 1900 1901 cprc->f2fs_issue_ckpt = NULL; 1902 kthread_stop(ckpt_task); 1903 1904 flush_remained_ckpt_reqs(sbi, NULL); 1905 } 1906 } 1907 1908 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1909 { 1910 struct ckpt_req_control *cprc = &sbi->cprc_info; 1911 1912 atomic_set(&cprc->issued_ckpt, 0); 1913 atomic_set(&cprc->total_ckpt, 0); 1914 atomic_set(&cprc->queued_ckpt, 0); 1915 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1916 init_waitqueue_head(&cprc->ckpt_wait_queue); 1917 init_llist_head(&cprc->issue_list); 1918 spin_lock_init(&cprc->stat_lock); 1919 } 1920