xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision c4c11dd1)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24 
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27 
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 	struct address_space *mapping = sbi->meta_inode->i_mapping;
34 	struct page *page = NULL;
35 repeat:
36 	page = grab_cache_page(mapping, index);
37 	if (!page) {
38 		cond_resched();
39 		goto repeat;
40 	}
41 
42 	/* We wait writeback only inside grab_meta_page() */
43 	wait_on_page_writeback(page);
44 	SetPageUptodate(page);
45 	return page;
46 }
47 
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53 	struct address_space *mapping = sbi->meta_inode->i_mapping;
54 	struct page *page;
55 repeat:
56 	page = grab_cache_page(mapping, index);
57 	if (!page) {
58 		cond_resched();
59 		goto repeat;
60 	}
61 	if (PageUptodate(page))
62 		goto out;
63 
64 	if (f2fs_readpage(sbi, page, index, READ_SYNC))
65 		goto repeat;
66 
67 	lock_page(page);
68 	if (page->mapping != mapping) {
69 		f2fs_put_page(page, 1);
70 		goto repeat;
71 	}
72 out:
73 	mark_page_accessed(page);
74 	return page;
75 }
76 
77 static int f2fs_write_meta_page(struct page *page,
78 				struct writeback_control *wbc)
79 {
80 	struct inode *inode = page->mapping->host;
81 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82 
83 	/* Should not write any meta pages, if any IO error was occurred */
84 	if (wbc->for_reclaim ||
85 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 		dec_page_count(sbi, F2FS_DIRTY_META);
87 		wbc->pages_skipped++;
88 		set_page_dirty(page);
89 		return AOP_WRITEPAGE_ACTIVATE;
90 	}
91 
92 	wait_on_page_writeback(page);
93 
94 	write_meta_page(sbi, page);
95 	dec_page_count(sbi, F2FS_DIRTY_META);
96 	unlock_page(page);
97 	return 0;
98 }
99 
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101 				struct writeback_control *wbc)
102 {
103 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 	struct block_device *bdev = sbi->sb->s_bdev;
105 	long written;
106 
107 	if (wbc->for_kupdate)
108 		return 0;
109 
110 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 		return 0;
112 
113 	/* if mounting is failed, skip writing node pages */
114 	mutex_lock(&sbi->cp_mutex);
115 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 	mutex_unlock(&sbi->cp_mutex);
117 	wbc->nr_to_write -= written;
118 	return 0;
119 }
120 
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 						long nr_to_write)
123 {
124 	struct address_space *mapping = sbi->meta_inode->i_mapping;
125 	pgoff_t index = 0, end = LONG_MAX;
126 	struct pagevec pvec;
127 	long nwritten = 0;
128 	struct writeback_control wbc = {
129 		.for_reclaim = 0,
130 	};
131 
132 	pagevec_init(&pvec, 0);
133 
134 	while (index <= end) {
135 		int i, nr_pages;
136 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 				PAGECACHE_TAG_DIRTY,
138 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 		if (nr_pages == 0)
140 			break;
141 
142 		for (i = 0; i < nr_pages; i++) {
143 			struct page *page = pvec.pages[i];
144 			lock_page(page);
145 			BUG_ON(page->mapping != mapping);
146 			BUG_ON(!PageDirty(page));
147 			clear_page_dirty_for_io(page);
148 			if (f2fs_write_meta_page(page, &wbc)) {
149 				unlock_page(page);
150 				break;
151 			}
152 			if (nwritten++ >= nr_to_write)
153 				break;
154 		}
155 		pagevec_release(&pvec);
156 		cond_resched();
157 	}
158 
159 	if (nwritten)
160 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161 
162 	return nwritten;
163 }
164 
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167 	struct address_space *mapping = page->mapping;
168 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169 
170 	SetPageUptodate(page);
171 	if (!PageDirty(page)) {
172 		__set_page_dirty_nobuffers(page);
173 		inc_page_count(sbi, F2FS_DIRTY_META);
174 		return 1;
175 	}
176 	return 0;
177 }
178 
179 const struct address_space_operations f2fs_meta_aops = {
180 	.writepage	= f2fs_write_meta_page,
181 	.writepages	= f2fs_write_meta_pages,
182 	.set_page_dirty	= f2fs_set_meta_page_dirty,
183 };
184 
185 int check_orphan_space(struct f2fs_sb_info *sbi)
186 {
187 	unsigned int max_orphans;
188 	int err = 0;
189 
190 	/*
191 	 * considering 512 blocks in a segment 5 blocks are needed for cp
192 	 * and log segment summaries. Remaining blocks are used to keep
193 	 * orphan entries with the limitation one reserved segment
194 	 * for cp pack we can have max 1020*507 orphan entries
195 	 */
196 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
197 	mutex_lock(&sbi->orphan_inode_mutex);
198 	if (sbi->n_orphans >= max_orphans)
199 		err = -ENOSPC;
200 	mutex_unlock(&sbi->orphan_inode_mutex);
201 	return err;
202 }
203 
204 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
205 {
206 	struct list_head *head, *this;
207 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
208 
209 	mutex_lock(&sbi->orphan_inode_mutex);
210 	head = &sbi->orphan_inode_list;
211 	list_for_each(this, head) {
212 		orphan = list_entry(this, struct orphan_inode_entry, list);
213 		if (orphan->ino == ino)
214 			goto out;
215 		if (orphan->ino > ino)
216 			break;
217 		orphan = NULL;
218 	}
219 retry:
220 	new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
221 	if (!new) {
222 		cond_resched();
223 		goto retry;
224 	}
225 	new->ino = ino;
226 
227 	/* add new_oentry into list which is sorted by inode number */
228 	if (orphan)
229 		list_add(&new->list, this->prev);
230 	else
231 		list_add_tail(&new->list, head);
232 
233 	sbi->n_orphans++;
234 out:
235 	mutex_unlock(&sbi->orphan_inode_mutex);
236 }
237 
238 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
239 {
240 	struct list_head *this, *next, *head;
241 	struct orphan_inode_entry *orphan;
242 
243 	mutex_lock(&sbi->orphan_inode_mutex);
244 	head = &sbi->orphan_inode_list;
245 	list_for_each_safe(this, next, head) {
246 		orphan = list_entry(this, struct orphan_inode_entry, list);
247 		if (orphan->ino == ino) {
248 			list_del(&orphan->list);
249 			kmem_cache_free(orphan_entry_slab, orphan);
250 			sbi->n_orphans--;
251 			break;
252 		}
253 	}
254 	mutex_unlock(&sbi->orphan_inode_mutex);
255 }
256 
257 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
258 {
259 	struct inode *inode = f2fs_iget(sbi->sb, ino);
260 	BUG_ON(IS_ERR(inode));
261 	clear_nlink(inode);
262 
263 	/* truncate all the data during iput */
264 	iput(inode);
265 }
266 
267 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
268 {
269 	block_t start_blk, orphan_blkaddr, i, j;
270 
271 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
272 		return 0;
273 
274 	sbi->por_doing = 1;
275 	start_blk = __start_cp_addr(sbi) + 1;
276 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
277 
278 	for (i = 0; i < orphan_blkaddr; i++) {
279 		struct page *page = get_meta_page(sbi, start_blk + i);
280 		struct f2fs_orphan_block *orphan_blk;
281 
282 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
283 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
284 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
285 			recover_orphan_inode(sbi, ino);
286 		}
287 		f2fs_put_page(page, 1);
288 	}
289 	/* clear Orphan Flag */
290 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
291 	sbi->por_doing = 0;
292 	return 0;
293 }
294 
295 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
296 {
297 	struct list_head *head, *this, *next;
298 	struct f2fs_orphan_block *orphan_blk = NULL;
299 	struct page *page = NULL;
300 	unsigned int nentries = 0;
301 	unsigned short index = 1;
302 	unsigned short orphan_blocks;
303 
304 	orphan_blocks = (unsigned short)((sbi->n_orphans +
305 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
306 
307 	mutex_lock(&sbi->orphan_inode_mutex);
308 	head = &sbi->orphan_inode_list;
309 
310 	/* loop for each orphan inode entry and write them in Jornal block */
311 	list_for_each_safe(this, next, head) {
312 		struct orphan_inode_entry *orphan;
313 
314 		orphan = list_entry(this, struct orphan_inode_entry, list);
315 
316 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
317 			/*
318 			 * an orphan block is full of 1020 entries,
319 			 * then we need to flush current orphan blocks
320 			 * and bring another one in memory
321 			 */
322 			orphan_blk->blk_addr = cpu_to_le16(index);
323 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
324 			orphan_blk->entry_count = cpu_to_le32(nentries);
325 			set_page_dirty(page);
326 			f2fs_put_page(page, 1);
327 			index++;
328 			start_blk++;
329 			nentries = 0;
330 			page = NULL;
331 		}
332 		if (page)
333 			goto page_exist;
334 
335 		page = grab_meta_page(sbi, start_blk);
336 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
337 		memset(orphan_blk, 0, sizeof(*orphan_blk));
338 page_exist:
339 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
340 	}
341 	if (!page)
342 		goto end;
343 
344 	orphan_blk->blk_addr = cpu_to_le16(index);
345 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
346 	orphan_blk->entry_count = cpu_to_le32(nentries);
347 	set_page_dirty(page);
348 	f2fs_put_page(page, 1);
349 end:
350 	mutex_unlock(&sbi->orphan_inode_mutex);
351 }
352 
353 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
354 				block_t cp_addr, unsigned long long *version)
355 {
356 	struct page *cp_page_1, *cp_page_2 = NULL;
357 	unsigned long blk_size = sbi->blocksize;
358 	struct f2fs_checkpoint *cp_block;
359 	unsigned long long cur_version = 0, pre_version = 0;
360 	size_t crc_offset;
361 	__u32 crc = 0;
362 
363 	/* Read the 1st cp block in this CP pack */
364 	cp_page_1 = get_meta_page(sbi, cp_addr);
365 
366 	/* get the version number */
367 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
368 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
369 	if (crc_offset >= blk_size)
370 		goto invalid_cp1;
371 
372 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
373 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
374 		goto invalid_cp1;
375 
376 	pre_version = le64_to_cpu(cp_block->checkpoint_ver);
377 
378 	/* Read the 2nd cp block in this CP pack */
379 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
380 	cp_page_2 = get_meta_page(sbi, cp_addr);
381 
382 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
383 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
384 	if (crc_offset >= blk_size)
385 		goto invalid_cp2;
386 
387 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
388 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
389 		goto invalid_cp2;
390 
391 	cur_version = le64_to_cpu(cp_block->checkpoint_ver);
392 
393 	if (cur_version == pre_version) {
394 		*version = cur_version;
395 		f2fs_put_page(cp_page_2, 1);
396 		return cp_page_1;
397 	}
398 invalid_cp2:
399 	f2fs_put_page(cp_page_2, 1);
400 invalid_cp1:
401 	f2fs_put_page(cp_page_1, 1);
402 	return NULL;
403 }
404 
405 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
406 {
407 	struct f2fs_checkpoint *cp_block;
408 	struct f2fs_super_block *fsb = sbi->raw_super;
409 	struct page *cp1, *cp2, *cur_page;
410 	unsigned long blk_size = sbi->blocksize;
411 	unsigned long long cp1_version = 0, cp2_version = 0;
412 	unsigned long long cp_start_blk_no;
413 
414 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
415 	if (!sbi->ckpt)
416 		return -ENOMEM;
417 	/*
418 	 * Finding out valid cp block involves read both
419 	 * sets( cp pack1 and cp pack 2)
420 	 */
421 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
422 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
423 
424 	/* The second checkpoint pack should start at the next segment */
425 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
426 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
427 
428 	if (cp1 && cp2) {
429 		if (ver_after(cp2_version, cp1_version))
430 			cur_page = cp2;
431 		else
432 			cur_page = cp1;
433 	} else if (cp1) {
434 		cur_page = cp1;
435 	} else if (cp2) {
436 		cur_page = cp2;
437 	} else {
438 		goto fail_no_cp;
439 	}
440 
441 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
442 	memcpy(sbi->ckpt, cp_block, blk_size);
443 
444 	f2fs_put_page(cp1, 1);
445 	f2fs_put_page(cp2, 1);
446 	return 0;
447 
448 fail_no_cp:
449 	kfree(sbi->ckpt);
450 	return -EINVAL;
451 }
452 
453 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
454 {
455 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
456 	struct list_head *head = &sbi->dir_inode_list;
457 	struct list_head *this;
458 
459 	list_for_each(this, head) {
460 		struct dir_inode_entry *entry;
461 		entry = list_entry(this, struct dir_inode_entry, list);
462 		if (entry->inode == inode)
463 			return -EEXIST;
464 	}
465 	list_add_tail(&new->list, head);
466 #ifdef CONFIG_F2FS_STAT_FS
467 	sbi->n_dirty_dirs++;
468 #endif
469 	return 0;
470 }
471 
472 void set_dirty_dir_page(struct inode *inode, struct page *page)
473 {
474 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
475 	struct dir_inode_entry *new;
476 
477 	if (!S_ISDIR(inode->i_mode))
478 		return;
479 retry:
480 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
481 	if (!new) {
482 		cond_resched();
483 		goto retry;
484 	}
485 	new->inode = inode;
486 	INIT_LIST_HEAD(&new->list);
487 
488 	spin_lock(&sbi->dir_inode_lock);
489 	if (__add_dirty_inode(inode, new))
490 		kmem_cache_free(inode_entry_slab, new);
491 
492 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
493 	inode_inc_dirty_dents(inode);
494 	SetPagePrivate(page);
495 	spin_unlock(&sbi->dir_inode_lock);
496 }
497 
498 void add_dirty_dir_inode(struct inode *inode)
499 {
500 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
501 	struct dir_inode_entry *new;
502 retry:
503 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
504 	if (!new) {
505 		cond_resched();
506 		goto retry;
507 	}
508 	new->inode = inode;
509 	INIT_LIST_HEAD(&new->list);
510 
511 	spin_lock(&sbi->dir_inode_lock);
512 	if (__add_dirty_inode(inode, new))
513 		kmem_cache_free(inode_entry_slab, new);
514 	spin_unlock(&sbi->dir_inode_lock);
515 }
516 
517 void remove_dirty_dir_inode(struct inode *inode)
518 {
519 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
520 	struct list_head *head = &sbi->dir_inode_list;
521 	struct list_head *this;
522 
523 	if (!S_ISDIR(inode->i_mode))
524 		return;
525 
526 	spin_lock(&sbi->dir_inode_lock);
527 	if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
528 		spin_unlock(&sbi->dir_inode_lock);
529 		return;
530 	}
531 
532 	list_for_each(this, head) {
533 		struct dir_inode_entry *entry;
534 		entry = list_entry(this, struct dir_inode_entry, list);
535 		if (entry->inode == inode) {
536 			list_del(&entry->list);
537 			kmem_cache_free(inode_entry_slab, entry);
538 #ifdef CONFIG_F2FS_STAT_FS
539 			sbi->n_dirty_dirs--;
540 #endif
541 			break;
542 		}
543 	}
544 	spin_unlock(&sbi->dir_inode_lock);
545 
546 	/* Only from the recovery routine */
547 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
548 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
549 		iput(inode);
550 	}
551 }
552 
553 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
554 {
555 	struct list_head *head = &sbi->dir_inode_list;
556 	struct list_head *this;
557 	struct inode *inode = NULL;
558 
559 	spin_lock(&sbi->dir_inode_lock);
560 	list_for_each(this, head) {
561 		struct dir_inode_entry *entry;
562 		entry = list_entry(this, struct dir_inode_entry, list);
563 		if (entry->inode->i_ino == ino) {
564 			inode = entry->inode;
565 			break;
566 		}
567 	}
568 	spin_unlock(&sbi->dir_inode_lock);
569 	return inode;
570 }
571 
572 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
573 {
574 	struct list_head *head = &sbi->dir_inode_list;
575 	struct dir_inode_entry *entry;
576 	struct inode *inode;
577 retry:
578 	spin_lock(&sbi->dir_inode_lock);
579 	if (list_empty(head)) {
580 		spin_unlock(&sbi->dir_inode_lock);
581 		return;
582 	}
583 	entry = list_entry(head->next, struct dir_inode_entry, list);
584 	inode = igrab(entry->inode);
585 	spin_unlock(&sbi->dir_inode_lock);
586 	if (inode) {
587 		filemap_flush(inode->i_mapping);
588 		iput(inode);
589 	} else {
590 		/*
591 		 * We should submit bio, since it exists several
592 		 * wribacking dentry pages in the freeing inode.
593 		 */
594 		f2fs_submit_bio(sbi, DATA, true);
595 	}
596 	goto retry;
597 }
598 
599 /*
600  * Freeze all the FS-operations for checkpoint.
601  */
602 static void block_operations(struct f2fs_sb_info *sbi)
603 {
604 	struct writeback_control wbc = {
605 		.sync_mode = WB_SYNC_ALL,
606 		.nr_to_write = LONG_MAX,
607 		.for_reclaim = 0,
608 	};
609 	struct blk_plug plug;
610 
611 	blk_start_plug(&plug);
612 
613 retry_flush_dents:
614 	mutex_lock_all(sbi);
615 
616 	/* write all the dirty dentry pages */
617 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
618 		mutex_unlock_all(sbi);
619 		sync_dirty_dir_inodes(sbi);
620 		goto retry_flush_dents;
621 	}
622 
623 	/*
624 	 * POR: we should ensure that there is no dirty node pages
625 	 * until finishing nat/sit flush.
626 	 */
627 retry_flush_nodes:
628 	mutex_lock(&sbi->node_write);
629 
630 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
631 		mutex_unlock(&sbi->node_write);
632 		sync_node_pages(sbi, 0, &wbc);
633 		goto retry_flush_nodes;
634 	}
635 	blk_finish_plug(&plug);
636 }
637 
638 static void unblock_operations(struct f2fs_sb_info *sbi)
639 {
640 	mutex_unlock(&sbi->node_write);
641 	mutex_unlock_all(sbi);
642 }
643 
644 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
645 {
646 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
647 	nid_t last_nid = 0;
648 	block_t start_blk;
649 	struct page *cp_page;
650 	unsigned int data_sum_blocks, orphan_blocks;
651 	__u32 crc32 = 0;
652 	void *kaddr;
653 	int i;
654 
655 	/* Flush all the NAT/SIT pages */
656 	while (get_pages(sbi, F2FS_DIRTY_META))
657 		sync_meta_pages(sbi, META, LONG_MAX);
658 
659 	next_free_nid(sbi, &last_nid);
660 
661 	/*
662 	 * modify checkpoint
663 	 * version number is already updated
664 	 */
665 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
666 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
667 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
668 	for (i = 0; i < 3; i++) {
669 		ckpt->cur_node_segno[i] =
670 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
671 		ckpt->cur_node_blkoff[i] =
672 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
673 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
674 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
675 	}
676 	for (i = 0; i < 3; i++) {
677 		ckpt->cur_data_segno[i] =
678 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
679 		ckpt->cur_data_blkoff[i] =
680 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
681 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
682 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
683 	}
684 
685 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
686 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
687 	ckpt->next_free_nid = cpu_to_le32(last_nid);
688 
689 	/* 2 cp  + n data seg summary + orphan inode blocks */
690 	data_sum_blocks = npages_for_summary_flush(sbi);
691 	if (data_sum_blocks < 3)
692 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
693 	else
694 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
695 
696 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
697 					/ F2FS_ORPHANS_PER_BLOCK;
698 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
699 
700 	if (is_umount) {
701 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
702 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
703 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
704 	} else {
705 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
706 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
707 			data_sum_blocks + orphan_blocks);
708 	}
709 
710 	if (sbi->n_orphans)
711 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
712 	else
713 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
714 
715 	/* update SIT/NAT bitmap */
716 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
717 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
718 
719 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
720 	*((__le32 *)((unsigned char *)ckpt +
721 				le32_to_cpu(ckpt->checksum_offset)))
722 				= cpu_to_le32(crc32);
723 
724 	start_blk = __start_cp_addr(sbi);
725 
726 	/* write out checkpoint buffer at block 0 */
727 	cp_page = grab_meta_page(sbi, start_blk++);
728 	kaddr = page_address(cp_page);
729 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
730 	set_page_dirty(cp_page);
731 	f2fs_put_page(cp_page, 1);
732 
733 	if (sbi->n_orphans) {
734 		write_orphan_inodes(sbi, start_blk);
735 		start_blk += orphan_blocks;
736 	}
737 
738 	write_data_summaries(sbi, start_blk);
739 	start_blk += data_sum_blocks;
740 	if (is_umount) {
741 		write_node_summaries(sbi, start_blk);
742 		start_blk += NR_CURSEG_NODE_TYPE;
743 	}
744 
745 	/* writeout checkpoint block */
746 	cp_page = grab_meta_page(sbi, start_blk);
747 	kaddr = page_address(cp_page);
748 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
749 	set_page_dirty(cp_page);
750 	f2fs_put_page(cp_page, 1);
751 
752 	/* wait for previous submitted node/meta pages writeback */
753 	while (get_pages(sbi, F2FS_WRITEBACK))
754 		congestion_wait(BLK_RW_ASYNC, HZ / 50);
755 
756 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
757 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
758 
759 	/* update user_block_counts */
760 	sbi->last_valid_block_count = sbi->total_valid_block_count;
761 	sbi->alloc_valid_block_count = 0;
762 
763 	/* Here, we only have one bio having CP pack */
764 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
765 
766 	if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
767 		clear_prefree_segments(sbi);
768 		F2FS_RESET_SB_DIRT(sbi);
769 	}
770 }
771 
772 /*
773  * We guarantee that this checkpoint procedure should not fail.
774  */
775 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
776 {
777 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
778 	unsigned long long ckpt_ver;
779 
780 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
781 
782 	mutex_lock(&sbi->cp_mutex);
783 	block_operations(sbi);
784 
785 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
786 
787 	f2fs_submit_bio(sbi, DATA, true);
788 	f2fs_submit_bio(sbi, NODE, true);
789 	f2fs_submit_bio(sbi, META, true);
790 
791 	/*
792 	 * update checkpoint pack index
793 	 * Increase the version number so that
794 	 * SIT entries and seg summaries are written at correct place
795 	 */
796 	ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
797 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
798 
799 	/* write cached NAT/SIT entries to NAT/SIT area */
800 	flush_nat_entries(sbi);
801 	flush_sit_entries(sbi);
802 
803 	/* unlock all the fs_lock[] in do_checkpoint() */
804 	do_checkpoint(sbi, is_umount);
805 
806 	unblock_operations(sbi);
807 	mutex_unlock(&sbi->cp_mutex);
808 
809 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
810 }
811 
812 void init_orphan_info(struct f2fs_sb_info *sbi)
813 {
814 	mutex_init(&sbi->orphan_inode_mutex);
815 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
816 	sbi->n_orphans = 0;
817 }
818 
819 int __init create_checkpoint_caches(void)
820 {
821 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
822 			sizeof(struct orphan_inode_entry), NULL);
823 	if (unlikely(!orphan_entry_slab))
824 		return -ENOMEM;
825 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
826 			sizeof(struct dir_inode_entry), NULL);
827 	if (unlikely(!inode_entry_slab)) {
828 		kmem_cache_destroy(orphan_entry_slab);
829 		return -ENOMEM;
830 	}
831 	return 0;
832 }
833 
834 void destroy_checkpoint_caches(void)
835 {
836 	kmem_cache_destroy(orphan_entry_slab);
837 	kmem_cache_destroy(inode_entry_slab);
838 }
839