1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 f2fs_build_fault_attr(sbi, 0, 0); 32 set_ckpt_flags(sbi, CP_ERROR_FLAG); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_por = !is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 93 94 lock_page(page); 95 if (unlikely(page->mapping != mapping)) { 96 f2fs_put_page(page, 1); 97 goto repeat; 98 } 99 100 if (unlikely(!PageUptodate(page))) { 101 if (page->index == sbi->metapage_eio_ofs) { 102 if (sbi->metapage_eio_cnt++ == MAX_RETRY_META_PAGE_EIO) 103 set_ckpt_flags(sbi, CP_ERROR_FLAG); 104 } else { 105 sbi->metapage_eio_ofs = page->index; 106 sbi->metapage_eio_cnt = 0; 107 } 108 f2fs_put_page(page, 1); 109 return ERR_PTR(-EIO); 110 } 111 out: 112 return page; 113 } 114 115 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, true); 118 } 119 120 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 121 { 122 struct page *page; 123 int count = 0; 124 125 retry: 126 page = __get_meta_page(sbi, index, true); 127 if (IS_ERR(page)) { 128 if (PTR_ERR(page) == -EIO && 129 ++count <= DEFAULT_RETRY_IO_COUNT) 130 goto retry; 131 f2fs_stop_checkpoint(sbi, false); 132 } 133 return page; 134 } 135 136 /* for POR only */ 137 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 138 { 139 return __get_meta_page(sbi, index, false); 140 } 141 142 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 143 int type) 144 { 145 struct seg_entry *se; 146 unsigned int segno, offset; 147 bool exist; 148 149 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 150 return true; 151 152 segno = GET_SEGNO(sbi, blkaddr); 153 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 154 se = get_seg_entry(sbi, segno); 155 156 exist = f2fs_test_bit(offset, se->cur_valid_map); 157 if (!exist && type == DATA_GENERIC_ENHANCE) { 158 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 159 blkaddr, exist); 160 set_sbi_flag(sbi, SBI_NEED_FSCK); 161 WARN_ON(1); 162 } 163 return exist; 164 } 165 166 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 167 block_t blkaddr, int type) 168 { 169 switch (type) { 170 case META_NAT: 171 break; 172 case META_SIT: 173 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 174 return false; 175 break; 176 case META_SSA: 177 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 178 blkaddr < SM_I(sbi)->ssa_blkaddr)) 179 return false; 180 break; 181 case META_CP: 182 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 183 blkaddr < __start_cp_addr(sbi))) 184 return false; 185 break; 186 case META_POR: 187 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 188 blkaddr < MAIN_BLKADDR(sbi))) 189 return false; 190 break; 191 case DATA_GENERIC: 192 case DATA_GENERIC_ENHANCE: 193 case DATA_GENERIC_ENHANCE_READ: 194 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 195 blkaddr < MAIN_BLKADDR(sbi))) { 196 f2fs_warn(sbi, "access invalid blkaddr:%u", 197 blkaddr); 198 set_sbi_flag(sbi, SBI_NEED_FSCK); 199 WARN_ON(1); 200 return false; 201 } else { 202 return __is_bitmap_valid(sbi, blkaddr, type); 203 } 204 break; 205 case META_GENERIC: 206 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 207 blkaddr >= MAIN_BLKADDR(sbi))) 208 return false; 209 break; 210 default: 211 BUG(); 212 } 213 214 return true; 215 } 216 217 /* 218 * Readahead CP/NAT/SIT/SSA/POR pages 219 */ 220 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 221 int type, bool sync) 222 { 223 struct page *page; 224 block_t blkno = start; 225 struct f2fs_io_info fio = { 226 .sbi = sbi, 227 .type = META, 228 .op = REQ_OP_READ, 229 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 230 .encrypted_page = NULL, 231 .in_list = false, 232 .is_por = (type == META_POR), 233 }; 234 struct blk_plug plug; 235 int err; 236 237 if (unlikely(type == META_POR)) 238 fio.op_flags &= ~REQ_META; 239 240 blk_start_plug(&plug); 241 for (; nrpages-- > 0; blkno++) { 242 243 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 244 goto out; 245 246 switch (type) { 247 case META_NAT: 248 if (unlikely(blkno >= 249 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 250 blkno = 0; 251 /* get nat block addr */ 252 fio.new_blkaddr = current_nat_addr(sbi, 253 blkno * NAT_ENTRY_PER_BLOCK); 254 break; 255 case META_SIT: 256 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 257 goto out; 258 /* get sit block addr */ 259 fio.new_blkaddr = current_sit_addr(sbi, 260 blkno * SIT_ENTRY_PER_BLOCK); 261 break; 262 case META_SSA: 263 case META_CP: 264 case META_POR: 265 fio.new_blkaddr = blkno; 266 break; 267 default: 268 BUG(); 269 } 270 271 page = f2fs_grab_cache_page(META_MAPPING(sbi), 272 fio.new_blkaddr, false); 273 if (!page) 274 continue; 275 if (PageUptodate(page)) { 276 f2fs_put_page(page, 1); 277 continue; 278 } 279 280 fio.page = page; 281 err = f2fs_submit_page_bio(&fio); 282 f2fs_put_page(page, err ? 1 : 0); 283 284 if (!err) 285 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 286 } 287 out: 288 blk_finish_plug(&plug); 289 return blkno - start; 290 } 291 292 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 293 unsigned int ra_blocks) 294 { 295 struct page *page; 296 bool readahead = false; 297 298 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 299 return; 300 301 page = find_get_page(META_MAPPING(sbi), index); 302 if (!page || !PageUptodate(page)) 303 readahead = true; 304 f2fs_put_page(page, 0); 305 306 if (readahead) 307 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 308 } 309 310 static int __f2fs_write_meta_page(struct page *page, 311 struct writeback_control *wbc, 312 enum iostat_type io_type) 313 { 314 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 315 316 trace_f2fs_writepage(page, META); 317 318 if (unlikely(f2fs_cp_error(sbi))) 319 goto redirty_out; 320 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 321 goto redirty_out; 322 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 323 goto redirty_out; 324 325 f2fs_do_write_meta_page(sbi, page, io_type); 326 dec_page_count(sbi, F2FS_DIRTY_META); 327 328 if (wbc->for_reclaim) 329 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 330 331 unlock_page(page); 332 333 if (unlikely(f2fs_cp_error(sbi))) 334 f2fs_submit_merged_write(sbi, META); 335 336 return 0; 337 338 redirty_out: 339 redirty_page_for_writepage(wbc, page); 340 return AOP_WRITEPAGE_ACTIVATE; 341 } 342 343 static int f2fs_write_meta_page(struct page *page, 344 struct writeback_control *wbc) 345 { 346 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 347 } 348 349 static int f2fs_write_meta_pages(struct address_space *mapping, 350 struct writeback_control *wbc) 351 { 352 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 353 long diff, written; 354 355 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 356 goto skip_write; 357 358 /* collect a number of dirty meta pages and write together */ 359 if (wbc->sync_mode != WB_SYNC_ALL && 360 get_pages(sbi, F2FS_DIRTY_META) < 361 nr_pages_to_skip(sbi, META)) 362 goto skip_write; 363 364 /* if locked failed, cp will flush dirty pages instead */ 365 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 366 goto skip_write; 367 368 trace_f2fs_writepages(mapping->host, wbc, META); 369 diff = nr_pages_to_write(sbi, META, wbc); 370 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 371 f2fs_up_write(&sbi->cp_global_sem); 372 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 373 return 0; 374 375 skip_write: 376 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 377 trace_f2fs_writepages(mapping->host, wbc, META); 378 return 0; 379 } 380 381 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 382 long nr_to_write, enum iostat_type io_type) 383 { 384 struct address_space *mapping = META_MAPPING(sbi); 385 pgoff_t index = 0, prev = ULONG_MAX; 386 struct pagevec pvec; 387 long nwritten = 0; 388 int nr_pages; 389 struct writeback_control wbc = { 390 .for_reclaim = 0, 391 }; 392 struct blk_plug plug; 393 394 pagevec_init(&pvec); 395 396 blk_start_plug(&plug); 397 398 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 399 PAGECACHE_TAG_DIRTY))) { 400 int i; 401 402 for (i = 0; i < nr_pages; i++) { 403 struct page *page = pvec.pages[i]; 404 405 if (prev == ULONG_MAX) 406 prev = page->index - 1; 407 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 408 pagevec_release(&pvec); 409 goto stop; 410 } 411 412 lock_page(page); 413 414 if (unlikely(page->mapping != mapping)) { 415 continue_unlock: 416 unlock_page(page); 417 continue; 418 } 419 if (!PageDirty(page)) { 420 /* someone wrote it for us */ 421 goto continue_unlock; 422 } 423 424 f2fs_wait_on_page_writeback(page, META, true, true); 425 426 if (!clear_page_dirty_for_io(page)) 427 goto continue_unlock; 428 429 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 430 unlock_page(page); 431 break; 432 } 433 nwritten++; 434 prev = page->index; 435 if (unlikely(nwritten >= nr_to_write)) 436 break; 437 } 438 pagevec_release(&pvec); 439 cond_resched(); 440 } 441 stop: 442 if (nwritten) 443 f2fs_submit_merged_write(sbi, type); 444 445 blk_finish_plug(&plug); 446 447 return nwritten; 448 } 449 450 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 451 struct folio *folio) 452 { 453 trace_f2fs_set_page_dirty(&folio->page, META); 454 455 if (!folio_test_uptodate(folio)) 456 folio_mark_uptodate(folio); 457 if (!folio_test_dirty(folio)) { 458 filemap_dirty_folio(mapping, folio); 459 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 460 set_page_private_reference(&folio->page); 461 return true; 462 } 463 return false; 464 } 465 466 const struct address_space_operations f2fs_meta_aops = { 467 .writepage = f2fs_write_meta_page, 468 .writepages = f2fs_write_meta_pages, 469 .dirty_folio = f2fs_dirty_meta_folio, 470 .invalidate_folio = f2fs_invalidate_folio, 471 .releasepage = f2fs_release_page, 472 #ifdef CONFIG_MIGRATION 473 .migratepage = f2fs_migrate_page, 474 #endif 475 }; 476 477 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 478 unsigned int devidx, int type) 479 { 480 struct inode_management *im = &sbi->im[type]; 481 struct ino_entry *e = NULL, *new = NULL; 482 483 if (type == FLUSH_INO) { 484 rcu_read_lock(); 485 e = radix_tree_lookup(&im->ino_root, ino); 486 rcu_read_unlock(); 487 } 488 489 retry: 490 if (!e) 491 new = f2fs_kmem_cache_alloc(ino_entry_slab, 492 GFP_NOFS, true, NULL); 493 494 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 495 496 spin_lock(&im->ino_lock); 497 e = radix_tree_lookup(&im->ino_root, ino); 498 if (!e) { 499 if (!new) { 500 spin_unlock(&im->ino_lock); 501 goto retry; 502 } 503 e = new; 504 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 505 f2fs_bug_on(sbi, 1); 506 507 memset(e, 0, sizeof(struct ino_entry)); 508 e->ino = ino; 509 510 list_add_tail(&e->list, &im->ino_list); 511 if (type != ORPHAN_INO) 512 im->ino_num++; 513 } 514 515 if (type == FLUSH_INO) 516 f2fs_set_bit(devidx, (char *)&e->dirty_device); 517 518 spin_unlock(&im->ino_lock); 519 radix_tree_preload_end(); 520 521 if (new && e != new) 522 kmem_cache_free(ino_entry_slab, new); 523 } 524 525 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 526 { 527 struct inode_management *im = &sbi->im[type]; 528 struct ino_entry *e; 529 530 spin_lock(&im->ino_lock); 531 e = radix_tree_lookup(&im->ino_root, ino); 532 if (e) { 533 list_del(&e->list); 534 radix_tree_delete(&im->ino_root, ino); 535 im->ino_num--; 536 spin_unlock(&im->ino_lock); 537 kmem_cache_free(ino_entry_slab, e); 538 return; 539 } 540 spin_unlock(&im->ino_lock); 541 } 542 543 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 544 { 545 /* add new dirty ino entry into list */ 546 __add_ino_entry(sbi, ino, 0, type); 547 } 548 549 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 550 { 551 /* remove dirty ino entry from list */ 552 __remove_ino_entry(sbi, ino, type); 553 } 554 555 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 556 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 557 { 558 struct inode_management *im = &sbi->im[mode]; 559 struct ino_entry *e; 560 561 spin_lock(&im->ino_lock); 562 e = radix_tree_lookup(&im->ino_root, ino); 563 spin_unlock(&im->ino_lock); 564 return e ? true : false; 565 } 566 567 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 568 { 569 struct ino_entry *e, *tmp; 570 int i; 571 572 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 573 struct inode_management *im = &sbi->im[i]; 574 575 spin_lock(&im->ino_lock); 576 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 577 list_del(&e->list); 578 radix_tree_delete(&im->ino_root, e->ino); 579 kmem_cache_free(ino_entry_slab, e); 580 im->ino_num--; 581 } 582 spin_unlock(&im->ino_lock); 583 } 584 } 585 586 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 587 unsigned int devidx, int type) 588 { 589 __add_ino_entry(sbi, ino, devidx, type); 590 } 591 592 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 593 unsigned int devidx, int type) 594 { 595 struct inode_management *im = &sbi->im[type]; 596 struct ino_entry *e; 597 bool is_dirty = false; 598 599 spin_lock(&im->ino_lock); 600 e = radix_tree_lookup(&im->ino_root, ino); 601 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 602 is_dirty = true; 603 spin_unlock(&im->ino_lock); 604 return is_dirty; 605 } 606 607 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 608 { 609 struct inode_management *im = &sbi->im[ORPHAN_INO]; 610 int err = 0; 611 612 spin_lock(&im->ino_lock); 613 614 if (time_to_inject(sbi, FAULT_ORPHAN)) { 615 spin_unlock(&im->ino_lock); 616 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 617 return -ENOSPC; 618 } 619 620 if (unlikely(im->ino_num >= sbi->max_orphans)) 621 err = -ENOSPC; 622 else 623 im->ino_num++; 624 spin_unlock(&im->ino_lock); 625 626 return err; 627 } 628 629 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 630 { 631 struct inode_management *im = &sbi->im[ORPHAN_INO]; 632 633 spin_lock(&im->ino_lock); 634 f2fs_bug_on(sbi, im->ino_num == 0); 635 im->ino_num--; 636 spin_unlock(&im->ino_lock); 637 } 638 639 void f2fs_add_orphan_inode(struct inode *inode) 640 { 641 /* add new orphan ino entry into list */ 642 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 643 f2fs_update_inode_page(inode); 644 } 645 646 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 647 { 648 /* remove orphan entry from orphan list */ 649 __remove_ino_entry(sbi, ino, ORPHAN_INO); 650 } 651 652 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 653 { 654 struct inode *inode; 655 struct node_info ni; 656 int err; 657 658 inode = f2fs_iget_retry(sbi->sb, ino); 659 if (IS_ERR(inode)) { 660 /* 661 * there should be a bug that we can't find the entry 662 * to orphan inode. 663 */ 664 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 665 return PTR_ERR(inode); 666 } 667 668 err = f2fs_dquot_initialize(inode); 669 if (err) { 670 iput(inode); 671 goto err_out; 672 } 673 674 clear_nlink(inode); 675 676 /* truncate all the data during iput */ 677 iput(inode); 678 679 err = f2fs_get_node_info(sbi, ino, &ni, false); 680 if (err) 681 goto err_out; 682 683 /* ENOMEM was fully retried in f2fs_evict_inode. */ 684 if (ni.blk_addr != NULL_ADDR) { 685 err = -EIO; 686 goto err_out; 687 } 688 return 0; 689 690 err_out: 691 set_sbi_flag(sbi, SBI_NEED_FSCK); 692 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 693 __func__, ino); 694 return err; 695 } 696 697 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 698 { 699 block_t start_blk, orphan_blocks, i, j; 700 unsigned int s_flags = sbi->sb->s_flags; 701 int err = 0; 702 #ifdef CONFIG_QUOTA 703 int quota_enabled; 704 #endif 705 706 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 707 return 0; 708 709 if (bdev_read_only(sbi->sb->s_bdev)) { 710 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 711 return 0; 712 } 713 714 if (s_flags & SB_RDONLY) { 715 f2fs_info(sbi, "orphan cleanup on readonly fs"); 716 sbi->sb->s_flags &= ~SB_RDONLY; 717 } 718 719 #ifdef CONFIG_QUOTA 720 /* 721 * Turn on quotas which were not enabled for read-only mounts if 722 * filesystem has quota feature, so that they are updated correctly. 723 */ 724 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 725 #endif 726 727 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 728 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 729 730 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 731 732 for (i = 0; i < orphan_blocks; i++) { 733 struct page *page; 734 struct f2fs_orphan_block *orphan_blk; 735 736 page = f2fs_get_meta_page(sbi, start_blk + i); 737 if (IS_ERR(page)) { 738 err = PTR_ERR(page); 739 goto out; 740 } 741 742 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 743 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 744 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 745 746 err = recover_orphan_inode(sbi, ino); 747 if (err) { 748 f2fs_put_page(page, 1); 749 goto out; 750 } 751 } 752 f2fs_put_page(page, 1); 753 } 754 /* clear Orphan Flag */ 755 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 756 out: 757 set_sbi_flag(sbi, SBI_IS_RECOVERED); 758 759 #ifdef CONFIG_QUOTA 760 /* Turn quotas off */ 761 if (quota_enabled) 762 f2fs_quota_off_umount(sbi->sb); 763 #endif 764 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 765 766 return err; 767 } 768 769 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 770 { 771 struct list_head *head; 772 struct f2fs_orphan_block *orphan_blk = NULL; 773 unsigned int nentries = 0; 774 unsigned short index = 1; 775 unsigned short orphan_blocks; 776 struct page *page = NULL; 777 struct ino_entry *orphan = NULL; 778 struct inode_management *im = &sbi->im[ORPHAN_INO]; 779 780 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 781 782 /* 783 * we don't need to do spin_lock(&im->ino_lock) here, since all the 784 * orphan inode operations are covered under f2fs_lock_op(). 785 * And, spin_lock should be avoided due to page operations below. 786 */ 787 head = &im->ino_list; 788 789 /* loop for each orphan inode entry and write them in Jornal block */ 790 list_for_each_entry(orphan, head, list) { 791 if (!page) { 792 page = f2fs_grab_meta_page(sbi, start_blk++); 793 orphan_blk = 794 (struct f2fs_orphan_block *)page_address(page); 795 memset(orphan_blk, 0, sizeof(*orphan_blk)); 796 } 797 798 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 799 800 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 801 /* 802 * an orphan block is full of 1020 entries, 803 * then we need to flush current orphan blocks 804 * and bring another one in memory 805 */ 806 orphan_blk->blk_addr = cpu_to_le16(index); 807 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 808 orphan_blk->entry_count = cpu_to_le32(nentries); 809 set_page_dirty(page); 810 f2fs_put_page(page, 1); 811 index++; 812 nentries = 0; 813 page = NULL; 814 } 815 } 816 817 if (page) { 818 orphan_blk->blk_addr = cpu_to_le16(index); 819 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 820 orphan_blk->entry_count = cpu_to_le32(nentries); 821 set_page_dirty(page); 822 f2fs_put_page(page, 1); 823 } 824 } 825 826 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 827 struct f2fs_checkpoint *ckpt) 828 { 829 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 830 __u32 chksum; 831 832 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 833 if (chksum_ofs < CP_CHKSUM_OFFSET) { 834 chksum_ofs += sizeof(chksum); 835 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 836 F2FS_BLKSIZE - chksum_ofs); 837 } 838 return chksum; 839 } 840 841 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 842 struct f2fs_checkpoint **cp_block, struct page **cp_page, 843 unsigned long long *version) 844 { 845 size_t crc_offset = 0; 846 __u32 crc; 847 848 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 849 if (IS_ERR(*cp_page)) 850 return PTR_ERR(*cp_page); 851 852 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 853 854 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 855 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 856 crc_offset > CP_CHKSUM_OFFSET) { 857 f2fs_put_page(*cp_page, 1); 858 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 859 return -EINVAL; 860 } 861 862 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 863 if (crc != cur_cp_crc(*cp_block)) { 864 f2fs_put_page(*cp_page, 1); 865 f2fs_warn(sbi, "invalid crc value"); 866 return -EINVAL; 867 } 868 869 *version = cur_cp_version(*cp_block); 870 return 0; 871 } 872 873 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 874 block_t cp_addr, unsigned long long *version) 875 { 876 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 877 struct f2fs_checkpoint *cp_block = NULL; 878 unsigned long long cur_version = 0, pre_version = 0; 879 unsigned int cp_blocks; 880 int err; 881 882 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 883 &cp_page_1, version); 884 if (err) 885 return NULL; 886 887 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 888 889 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 890 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 891 le32_to_cpu(cp_block->cp_pack_total_block_count)); 892 goto invalid_cp; 893 } 894 pre_version = *version; 895 896 cp_addr += cp_blocks - 1; 897 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 898 &cp_page_2, version); 899 if (err) 900 goto invalid_cp; 901 cur_version = *version; 902 903 if (cur_version == pre_version) { 904 *version = cur_version; 905 f2fs_put_page(cp_page_2, 1); 906 return cp_page_1; 907 } 908 f2fs_put_page(cp_page_2, 1); 909 invalid_cp: 910 f2fs_put_page(cp_page_1, 1); 911 return NULL; 912 } 913 914 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 915 { 916 struct f2fs_checkpoint *cp_block; 917 struct f2fs_super_block *fsb = sbi->raw_super; 918 struct page *cp1, *cp2, *cur_page; 919 unsigned long blk_size = sbi->blocksize; 920 unsigned long long cp1_version = 0, cp2_version = 0; 921 unsigned long long cp_start_blk_no; 922 unsigned int cp_blks = 1 + __cp_payload(sbi); 923 block_t cp_blk_no; 924 int i; 925 int err; 926 927 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 928 GFP_KERNEL); 929 if (!sbi->ckpt) 930 return -ENOMEM; 931 /* 932 * Finding out valid cp block involves read both 933 * sets( cp pack 1 and cp pack 2) 934 */ 935 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 936 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 937 938 /* The second checkpoint pack should start at the next segment */ 939 cp_start_blk_no += ((unsigned long long)1) << 940 le32_to_cpu(fsb->log_blocks_per_seg); 941 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 942 943 if (cp1 && cp2) { 944 if (ver_after(cp2_version, cp1_version)) 945 cur_page = cp2; 946 else 947 cur_page = cp1; 948 } else if (cp1) { 949 cur_page = cp1; 950 } else if (cp2) { 951 cur_page = cp2; 952 } else { 953 err = -EFSCORRUPTED; 954 goto fail_no_cp; 955 } 956 957 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 958 memcpy(sbi->ckpt, cp_block, blk_size); 959 960 if (cur_page == cp1) 961 sbi->cur_cp_pack = 1; 962 else 963 sbi->cur_cp_pack = 2; 964 965 /* Sanity checking of checkpoint */ 966 if (f2fs_sanity_check_ckpt(sbi)) { 967 err = -EFSCORRUPTED; 968 goto free_fail_no_cp; 969 } 970 971 if (cp_blks <= 1) 972 goto done; 973 974 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 975 if (cur_page == cp2) 976 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 977 978 for (i = 1; i < cp_blks; i++) { 979 void *sit_bitmap_ptr; 980 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 981 982 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 983 if (IS_ERR(cur_page)) { 984 err = PTR_ERR(cur_page); 985 goto free_fail_no_cp; 986 } 987 sit_bitmap_ptr = page_address(cur_page); 988 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 989 f2fs_put_page(cur_page, 1); 990 } 991 done: 992 f2fs_put_page(cp1, 1); 993 f2fs_put_page(cp2, 1); 994 return 0; 995 996 free_fail_no_cp: 997 f2fs_put_page(cp1, 1); 998 f2fs_put_page(cp2, 1); 999 fail_no_cp: 1000 kvfree(sbi->ckpt); 1001 return err; 1002 } 1003 1004 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1005 { 1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1007 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1008 1009 if (is_inode_flag_set(inode, flag)) 1010 return; 1011 1012 set_inode_flag(inode, flag); 1013 if (!f2fs_is_volatile_file(inode)) 1014 list_add_tail(&F2FS_I(inode)->dirty_list, 1015 &sbi->inode_list[type]); 1016 stat_inc_dirty_inode(sbi, type); 1017 } 1018 1019 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1020 { 1021 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1022 1023 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1024 return; 1025 1026 list_del_init(&F2FS_I(inode)->dirty_list); 1027 clear_inode_flag(inode, flag); 1028 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1029 } 1030 1031 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1032 { 1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1034 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1035 1036 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1037 !S_ISLNK(inode->i_mode)) 1038 return; 1039 1040 spin_lock(&sbi->inode_lock[type]); 1041 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1042 __add_dirty_inode(inode, type); 1043 inode_inc_dirty_pages(inode); 1044 spin_unlock(&sbi->inode_lock[type]); 1045 1046 set_page_private_reference(&folio->page); 1047 } 1048 1049 void f2fs_remove_dirty_inode(struct inode *inode) 1050 { 1051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1052 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1053 1054 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1055 !S_ISLNK(inode->i_mode)) 1056 return; 1057 1058 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1059 return; 1060 1061 spin_lock(&sbi->inode_lock[type]); 1062 __remove_dirty_inode(inode, type); 1063 spin_unlock(&sbi->inode_lock[type]); 1064 } 1065 1066 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1067 { 1068 struct list_head *head; 1069 struct inode *inode; 1070 struct f2fs_inode_info *fi; 1071 bool is_dir = (type == DIR_INODE); 1072 unsigned long ino = 0; 1073 1074 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1075 get_pages(sbi, is_dir ? 1076 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1077 retry: 1078 if (unlikely(f2fs_cp_error(sbi))) { 1079 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1080 get_pages(sbi, is_dir ? 1081 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1082 return -EIO; 1083 } 1084 1085 spin_lock(&sbi->inode_lock[type]); 1086 1087 head = &sbi->inode_list[type]; 1088 if (list_empty(head)) { 1089 spin_unlock(&sbi->inode_lock[type]); 1090 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1091 get_pages(sbi, is_dir ? 1092 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1093 return 0; 1094 } 1095 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1096 inode = igrab(&fi->vfs_inode); 1097 spin_unlock(&sbi->inode_lock[type]); 1098 if (inode) { 1099 unsigned long cur_ino = inode->i_ino; 1100 1101 F2FS_I(inode)->cp_task = current; 1102 1103 filemap_fdatawrite(inode->i_mapping); 1104 1105 F2FS_I(inode)->cp_task = NULL; 1106 1107 iput(inode); 1108 /* We need to give cpu to another writers. */ 1109 if (ino == cur_ino) 1110 cond_resched(); 1111 else 1112 ino = cur_ino; 1113 } else { 1114 /* 1115 * We should submit bio, since it exists several 1116 * wribacking dentry pages in the freeing inode. 1117 */ 1118 f2fs_submit_merged_write(sbi, DATA); 1119 cond_resched(); 1120 } 1121 goto retry; 1122 } 1123 1124 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1125 { 1126 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1127 struct inode *inode; 1128 struct f2fs_inode_info *fi; 1129 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1130 1131 while (total--) { 1132 if (unlikely(f2fs_cp_error(sbi))) 1133 return -EIO; 1134 1135 spin_lock(&sbi->inode_lock[DIRTY_META]); 1136 if (list_empty(head)) { 1137 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1138 return 0; 1139 } 1140 fi = list_first_entry(head, struct f2fs_inode_info, 1141 gdirty_list); 1142 inode = igrab(&fi->vfs_inode); 1143 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1144 if (inode) { 1145 sync_inode_metadata(inode, 0); 1146 1147 /* it's on eviction */ 1148 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1149 f2fs_update_inode_page(inode); 1150 iput(inode); 1151 } 1152 } 1153 return 0; 1154 } 1155 1156 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1157 { 1158 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1159 struct f2fs_nm_info *nm_i = NM_I(sbi); 1160 nid_t last_nid = nm_i->next_scan_nid; 1161 1162 next_free_nid(sbi, &last_nid); 1163 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1164 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1165 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1166 ckpt->next_free_nid = cpu_to_le32(last_nid); 1167 } 1168 1169 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1170 { 1171 bool ret = false; 1172 1173 if (!is_journalled_quota(sbi)) 1174 return false; 1175 1176 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1177 return true; 1178 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1179 ret = false; 1180 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1181 ret = false; 1182 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1183 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1184 ret = true; 1185 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1186 ret = true; 1187 } 1188 f2fs_up_write(&sbi->quota_sem); 1189 return ret; 1190 } 1191 1192 /* 1193 * Freeze all the FS-operations for checkpoint. 1194 */ 1195 static int block_operations(struct f2fs_sb_info *sbi) 1196 { 1197 struct writeback_control wbc = { 1198 .sync_mode = WB_SYNC_ALL, 1199 .nr_to_write = LONG_MAX, 1200 .for_reclaim = 0, 1201 }; 1202 int err = 0, cnt = 0; 1203 1204 /* 1205 * Let's flush inline_data in dirty node pages. 1206 */ 1207 f2fs_flush_inline_data(sbi); 1208 1209 retry_flush_quotas: 1210 f2fs_lock_all(sbi); 1211 if (__need_flush_quota(sbi)) { 1212 int locked; 1213 1214 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1215 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1216 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1217 goto retry_flush_dents; 1218 } 1219 f2fs_unlock_all(sbi); 1220 1221 /* only failed during mount/umount/freeze/quotactl */ 1222 locked = down_read_trylock(&sbi->sb->s_umount); 1223 f2fs_quota_sync(sbi->sb, -1); 1224 if (locked) 1225 up_read(&sbi->sb->s_umount); 1226 cond_resched(); 1227 goto retry_flush_quotas; 1228 } 1229 1230 retry_flush_dents: 1231 /* write all the dirty dentry pages */ 1232 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1233 f2fs_unlock_all(sbi); 1234 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1235 if (err) 1236 return err; 1237 cond_resched(); 1238 goto retry_flush_quotas; 1239 } 1240 1241 /* 1242 * POR: we should ensure that there are no dirty node pages 1243 * until finishing nat/sit flush. inode->i_blocks can be updated. 1244 */ 1245 f2fs_down_write(&sbi->node_change); 1246 1247 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1248 f2fs_up_write(&sbi->node_change); 1249 f2fs_unlock_all(sbi); 1250 err = f2fs_sync_inode_meta(sbi); 1251 if (err) 1252 return err; 1253 cond_resched(); 1254 goto retry_flush_quotas; 1255 } 1256 1257 retry_flush_nodes: 1258 f2fs_down_write(&sbi->node_write); 1259 1260 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1261 f2fs_up_write(&sbi->node_write); 1262 atomic_inc(&sbi->wb_sync_req[NODE]); 1263 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1264 atomic_dec(&sbi->wb_sync_req[NODE]); 1265 if (err) { 1266 f2fs_up_write(&sbi->node_change); 1267 f2fs_unlock_all(sbi); 1268 return err; 1269 } 1270 cond_resched(); 1271 goto retry_flush_nodes; 1272 } 1273 1274 /* 1275 * sbi->node_change is used only for AIO write_begin path which produces 1276 * dirty node blocks and some checkpoint values by block allocation. 1277 */ 1278 __prepare_cp_block(sbi); 1279 f2fs_up_write(&sbi->node_change); 1280 return err; 1281 } 1282 1283 static void unblock_operations(struct f2fs_sb_info *sbi) 1284 { 1285 f2fs_up_write(&sbi->node_write); 1286 f2fs_unlock_all(sbi); 1287 } 1288 1289 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1290 { 1291 DEFINE_WAIT(wait); 1292 1293 for (;;) { 1294 if (!get_pages(sbi, type)) 1295 break; 1296 1297 if (unlikely(f2fs_cp_error(sbi))) 1298 break; 1299 1300 if (type == F2FS_DIRTY_META) 1301 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1302 FS_CP_META_IO); 1303 else if (type == F2FS_WB_CP_DATA) 1304 f2fs_submit_merged_write(sbi, DATA); 1305 1306 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1307 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1308 } 1309 finish_wait(&sbi->cp_wait, &wait); 1310 } 1311 1312 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1313 { 1314 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1315 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1316 unsigned long flags; 1317 1318 if (cpc->reason & CP_UMOUNT) { 1319 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1320 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1321 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1322 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1323 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1324 f2fs_nat_bitmap_enabled(sbi)) { 1325 f2fs_enable_nat_bits(sbi); 1326 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1327 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1328 } 1329 } 1330 1331 spin_lock_irqsave(&sbi->cp_lock, flags); 1332 1333 if (cpc->reason & CP_TRIMMED) 1334 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1335 else 1336 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1337 1338 if (cpc->reason & CP_UMOUNT) 1339 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1340 else 1341 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1342 1343 if (cpc->reason & CP_FASTBOOT) 1344 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1345 else 1346 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1347 1348 if (orphan_num) 1349 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1350 else 1351 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1352 1353 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1354 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1355 1356 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1357 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1358 else 1359 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1360 1361 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1362 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1363 else 1364 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1365 1366 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1367 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1368 else 1369 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1370 1371 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1372 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1373 else 1374 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1375 1376 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1377 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1378 1379 /* set this flag to activate crc|cp_ver for recovery */ 1380 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1381 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1382 1383 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1384 } 1385 1386 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1387 void *src, block_t blk_addr) 1388 { 1389 struct writeback_control wbc = { 1390 .for_reclaim = 0, 1391 }; 1392 1393 /* 1394 * pagevec_lookup_tag and lock_page again will take 1395 * some extra time. Therefore, f2fs_update_meta_pages and 1396 * f2fs_sync_meta_pages are combined in this function. 1397 */ 1398 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1399 int err; 1400 1401 f2fs_wait_on_page_writeback(page, META, true, true); 1402 1403 memcpy(page_address(page), src, PAGE_SIZE); 1404 1405 set_page_dirty(page); 1406 if (unlikely(!clear_page_dirty_for_io(page))) 1407 f2fs_bug_on(sbi, 1); 1408 1409 /* writeout cp pack 2 page */ 1410 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1411 if (unlikely(err && f2fs_cp_error(sbi))) { 1412 f2fs_put_page(page, 1); 1413 return; 1414 } 1415 1416 f2fs_bug_on(sbi, err); 1417 f2fs_put_page(page, 0); 1418 1419 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1420 f2fs_submit_merged_write(sbi, META_FLUSH); 1421 } 1422 1423 static inline u64 get_sectors_written(struct block_device *bdev) 1424 { 1425 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1426 } 1427 1428 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1429 { 1430 if (f2fs_is_multi_device(sbi)) { 1431 u64 sectors = 0; 1432 int i; 1433 1434 for (i = 0; i < sbi->s_ndevs; i++) 1435 sectors += get_sectors_written(FDEV(i).bdev); 1436 1437 return sectors; 1438 } 1439 1440 return get_sectors_written(sbi->sb->s_bdev); 1441 } 1442 1443 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1444 { 1445 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1446 struct f2fs_nm_info *nm_i = NM_I(sbi); 1447 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1448 block_t start_blk; 1449 unsigned int data_sum_blocks, orphan_blocks; 1450 __u32 crc32 = 0; 1451 int i; 1452 int cp_payload_blks = __cp_payload(sbi); 1453 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1454 u64 kbytes_written; 1455 int err; 1456 1457 /* Flush all the NAT/SIT pages */ 1458 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1459 1460 /* start to update checkpoint, cp ver is already updated previously */ 1461 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1462 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1463 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1464 ckpt->cur_node_segno[i] = 1465 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1466 ckpt->cur_node_blkoff[i] = 1467 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1468 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1469 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1470 } 1471 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1472 ckpt->cur_data_segno[i] = 1473 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1474 ckpt->cur_data_blkoff[i] = 1475 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1476 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1477 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1478 } 1479 1480 /* 2 cp + n data seg summary + orphan inode blocks */ 1481 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1482 spin_lock_irqsave(&sbi->cp_lock, flags); 1483 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1484 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1485 else 1486 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1487 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1488 1489 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1490 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1491 orphan_blocks); 1492 1493 if (__remain_node_summaries(cpc->reason)) 1494 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1495 cp_payload_blks + data_sum_blocks + 1496 orphan_blocks + NR_CURSEG_NODE_TYPE); 1497 else 1498 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1499 cp_payload_blks + data_sum_blocks + 1500 orphan_blocks); 1501 1502 /* update ckpt flag for checkpoint */ 1503 update_ckpt_flags(sbi, cpc); 1504 1505 /* update SIT/NAT bitmap */ 1506 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1507 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1508 1509 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1510 *((__le32 *)((unsigned char *)ckpt + 1511 le32_to_cpu(ckpt->checksum_offset))) 1512 = cpu_to_le32(crc32); 1513 1514 start_blk = __start_cp_next_addr(sbi); 1515 1516 /* write nat bits */ 1517 if ((cpc->reason & CP_UMOUNT) && 1518 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1519 __u64 cp_ver = cur_cp_version(ckpt); 1520 block_t blk; 1521 1522 cp_ver |= ((__u64)crc32 << 32); 1523 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1524 1525 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1526 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1527 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1528 (i << F2FS_BLKSIZE_BITS), blk + i); 1529 } 1530 1531 /* write out checkpoint buffer at block 0 */ 1532 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1533 1534 for (i = 1; i < 1 + cp_payload_blks; i++) 1535 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1536 start_blk++); 1537 1538 if (orphan_num) { 1539 write_orphan_inodes(sbi, start_blk); 1540 start_blk += orphan_blocks; 1541 } 1542 1543 f2fs_write_data_summaries(sbi, start_blk); 1544 start_blk += data_sum_blocks; 1545 1546 /* Record write statistics in the hot node summary */ 1547 kbytes_written = sbi->kbytes_written; 1548 kbytes_written += (f2fs_get_sectors_written(sbi) - 1549 sbi->sectors_written_start) >> 1; 1550 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1551 1552 if (__remain_node_summaries(cpc->reason)) { 1553 f2fs_write_node_summaries(sbi, start_blk); 1554 start_blk += NR_CURSEG_NODE_TYPE; 1555 } 1556 1557 /* update user_block_counts */ 1558 sbi->last_valid_block_count = sbi->total_valid_block_count; 1559 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1560 percpu_counter_set(&sbi->rf_node_block_count, 0); 1561 1562 /* Here, we have one bio having CP pack except cp pack 2 page */ 1563 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1564 /* Wait for all dirty meta pages to be submitted for IO */ 1565 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1566 1567 /* wait for previous submitted meta pages writeback */ 1568 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1569 1570 /* flush all device cache */ 1571 err = f2fs_flush_device_cache(sbi); 1572 if (err) 1573 return err; 1574 1575 /* barrier and flush checkpoint cp pack 2 page if it can */ 1576 commit_checkpoint(sbi, ckpt, start_blk); 1577 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1578 1579 /* 1580 * invalidate intermediate page cache borrowed from meta inode which are 1581 * used for migration of encrypted, verity or compressed inode's blocks. 1582 */ 1583 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1584 f2fs_sb_has_compression(sbi)) 1585 invalidate_mapping_pages(META_MAPPING(sbi), 1586 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1587 1588 f2fs_release_ino_entry(sbi, false); 1589 1590 f2fs_reset_fsync_node_info(sbi); 1591 1592 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1593 clear_sbi_flag(sbi, SBI_NEED_CP); 1594 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1595 1596 spin_lock(&sbi->stat_lock); 1597 sbi->unusable_block_count = 0; 1598 spin_unlock(&sbi->stat_lock); 1599 1600 __set_cp_next_pack(sbi); 1601 1602 /* 1603 * redirty superblock if metadata like node page or inode cache is 1604 * updated during writing checkpoint. 1605 */ 1606 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1607 get_pages(sbi, F2FS_DIRTY_IMETA)) 1608 set_sbi_flag(sbi, SBI_IS_DIRTY); 1609 1610 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1611 1612 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1613 } 1614 1615 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1616 { 1617 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1618 unsigned long long ckpt_ver; 1619 int err = 0; 1620 1621 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1622 return -EROFS; 1623 1624 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1625 if (cpc->reason != CP_PAUSE) 1626 return 0; 1627 f2fs_warn(sbi, "Start checkpoint disabled!"); 1628 } 1629 if (cpc->reason != CP_RESIZE) 1630 f2fs_down_write(&sbi->cp_global_sem); 1631 1632 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1633 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1634 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1635 goto out; 1636 if (unlikely(f2fs_cp_error(sbi))) { 1637 err = -EIO; 1638 goto out; 1639 } 1640 1641 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1642 1643 err = block_operations(sbi); 1644 if (err) 1645 goto out; 1646 1647 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1648 1649 f2fs_flush_merged_writes(sbi); 1650 1651 /* this is the case of multiple fstrims without any changes */ 1652 if (cpc->reason & CP_DISCARD) { 1653 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1654 unblock_operations(sbi); 1655 goto out; 1656 } 1657 1658 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1659 SIT_I(sbi)->dirty_sentries == 0 && 1660 prefree_segments(sbi) == 0) { 1661 f2fs_flush_sit_entries(sbi, cpc); 1662 f2fs_clear_prefree_segments(sbi, cpc); 1663 unblock_operations(sbi); 1664 goto out; 1665 } 1666 } 1667 1668 /* 1669 * update checkpoint pack index 1670 * Increase the version number so that 1671 * SIT entries and seg summaries are written at correct place 1672 */ 1673 ckpt_ver = cur_cp_version(ckpt); 1674 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1675 1676 /* write cached NAT/SIT entries to NAT/SIT area */ 1677 err = f2fs_flush_nat_entries(sbi, cpc); 1678 if (err) { 1679 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1680 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1681 goto stop; 1682 } 1683 1684 f2fs_flush_sit_entries(sbi, cpc); 1685 1686 /* save inmem log status */ 1687 f2fs_save_inmem_curseg(sbi); 1688 1689 err = do_checkpoint(sbi, cpc); 1690 if (err) { 1691 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1692 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1693 f2fs_release_discard_addrs(sbi); 1694 } else { 1695 f2fs_clear_prefree_segments(sbi, cpc); 1696 } 1697 1698 f2fs_restore_inmem_curseg(sbi); 1699 stop: 1700 unblock_operations(sbi); 1701 stat_inc_cp_count(sbi->stat_info); 1702 1703 if (cpc->reason & CP_RECOVERY) 1704 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1705 1706 /* update CP_TIME to trigger checkpoint periodically */ 1707 f2fs_update_time(sbi, CP_TIME); 1708 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1709 out: 1710 if (cpc->reason != CP_RESIZE) 1711 f2fs_up_write(&sbi->cp_global_sem); 1712 return err; 1713 } 1714 1715 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1716 { 1717 int i; 1718 1719 for (i = 0; i < MAX_INO_ENTRY; i++) { 1720 struct inode_management *im = &sbi->im[i]; 1721 1722 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1723 spin_lock_init(&im->ino_lock); 1724 INIT_LIST_HEAD(&im->ino_list); 1725 im->ino_num = 0; 1726 } 1727 1728 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1729 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1730 F2FS_ORPHANS_PER_BLOCK; 1731 } 1732 1733 int __init f2fs_create_checkpoint_caches(void) 1734 { 1735 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1736 sizeof(struct ino_entry)); 1737 if (!ino_entry_slab) 1738 return -ENOMEM; 1739 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1740 sizeof(struct inode_entry)); 1741 if (!f2fs_inode_entry_slab) { 1742 kmem_cache_destroy(ino_entry_slab); 1743 return -ENOMEM; 1744 } 1745 return 0; 1746 } 1747 1748 void f2fs_destroy_checkpoint_caches(void) 1749 { 1750 kmem_cache_destroy(ino_entry_slab); 1751 kmem_cache_destroy(f2fs_inode_entry_slab); 1752 } 1753 1754 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1755 { 1756 struct cp_control cpc = { .reason = CP_SYNC, }; 1757 int err; 1758 1759 f2fs_down_write(&sbi->gc_lock); 1760 err = f2fs_write_checkpoint(sbi, &cpc); 1761 f2fs_up_write(&sbi->gc_lock); 1762 1763 return err; 1764 } 1765 1766 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1767 { 1768 struct ckpt_req_control *cprc = &sbi->cprc_info; 1769 struct ckpt_req *req, *next; 1770 struct llist_node *dispatch_list; 1771 u64 sum_diff = 0, diff, count = 0; 1772 int ret; 1773 1774 dispatch_list = llist_del_all(&cprc->issue_list); 1775 if (!dispatch_list) 1776 return; 1777 dispatch_list = llist_reverse_order(dispatch_list); 1778 1779 ret = __write_checkpoint_sync(sbi); 1780 atomic_inc(&cprc->issued_ckpt); 1781 1782 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1783 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1784 req->ret = ret; 1785 complete(&req->wait); 1786 1787 sum_diff += diff; 1788 count++; 1789 } 1790 atomic_sub(count, &cprc->queued_ckpt); 1791 atomic_add(count, &cprc->total_ckpt); 1792 1793 spin_lock(&cprc->stat_lock); 1794 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1795 if (cprc->peak_time < cprc->cur_time) 1796 cprc->peak_time = cprc->cur_time; 1797 spin_unlock(&cprc->stat_lock); 1798 } 1799 1800 static int issue_checkpoint_thread(void *data) 1801 { 1802 struct f2fs_sb_info *sbi = data; 1803 struct ckpt_req_control *cprc = &sbi->cprc_info; 1804 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1805 repeat: 1806 if (kthread_should_stop()) 1807 return 0; 1808 1809 if (!llist_empty(&cprc->issue_list)) 1810 __checkpoint_and_complete_reqs(sbi); 1811 1812 wait_event_interruptible(*q, 1813 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1814 goto repeat; 1815 } 1816 1817 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1818 struct ckpt_req *wait_req) 1819 { 1820 struct ckpt_req_control *cprc = &sbi->cprc_info; 1821 1822 if (!llist_empty(&cprc->issue_list)) { 1823 __checkpoint_and_complete_reqs(sbi); 1824 } else { 1825 /* already dispatched by issue_checkpoint_thread */ 1826 if (wait_req) 1827 wait_for_completion(&wait_req->wait); 1828 } 1829 } 1830 1831 static void init_ckpt_req(struct ckpt_req *req) 1832 { 1833 memset(req, 0, sizeof(struct ckpt_req)); 1834 1835 init_completion(&req->wait); 1836 req->queue_time = ktime_get(); 1837 } 1838 1839 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1840 { 1841 struct ckpt_req_control *cprc = &sbi->cprc_info; 1842 struct ckpt_req req; 1843 struct cp_control cpc; 1844 1845 cpc.reason = __get_cp_reason(sbi); 1846 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1847 int ret; 1848 1849 f2fs_down_write(&sbi->gc_lock); 1850 ret = f2fs_write_checkpoint(sbi, &cpc); 1851 f2fs_up_write(&sbi->gc_lock); 1852 1853 return ret; 1854 } 1855 1856 if (!cprc->f2fs_issue_ckpt) 1857 return __write_checkpoint_sync(sbi); 1858 1859 init_ckpt_req(&req); 1860 1861 llist_add(&req.llnode, &cprc->issue_list); 1862 atomic_inc(&cprc->queued_ckpt); 1863 1864 /* 1865 * update issue_list before we wake up issue_checkpoint thread, 1866 * this smp_mb() pairs with another barrier in ___wait_event(), 1867 * see more details in comments of waitqueue_active(). 1868 */ 1869 smp_mb(); 1870 1871 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1872 wake_up(&cprc->ckpt_wait_queue); 1873 1874 if (cprc->f2fs_issue_ckpt) 1875 wait_for_completion(&req.wait); 1876 else 1877 flush_remained_ckpt_reqs(sbi, &req); 1878 1879 return req.ret; 1880 } 1881 1882 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1883 { 1884 dev_t dev = sbi->sb->s_bdev->bd_dev; 1885 struct ckpt_req_control *cprc = &sbi->cprc_info; 1886 1887 if (cprc->f2fs_issue_ckpt) 1888 return 0; 1889 1890 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1891 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1892 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1893 cprc->f2fs_issue_ckpt = NULL; 1894 return -ENOMEM; 1895 } 1896 1897 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1898 1899 return 0; 1900 } 1901 1902 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1903 { 1904 struct ckpt_req_control *cprc = &sbi->cprc_info; 1905 1906 if (cprc->f2fs_issue_ckpt) { 1907 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt; 1908 1909 cprc->f2fs_issue_ckpt = NULL; 1910 kthread_stop(ckpt_task); 1911 1912 flush_remained_ckpt_reqs(sbi, NULL); 1913 } 1914 } 1915 1916 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1917 { 1918 struct ckpt_req_control *cprc = &sbi->cprc_info; 1919 1920 atomic_set(&cprc->issued_ckpt, 0); 1921 atomic_set(&cprc->total_ckpt, 0); 1922 atomic_set(&cprc->queued_ckpt, 0); 1923 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1924 init_waitqueue_head(&cprc->ckpt_wait_queue); 1925 init_llist_head(&cprc->issue_list); 1926 spin_lock_init(&cprc->stat_lock); 1927 } 1928