1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *ino_entry_slab; 24 struct kmem_cache *f2fs_inode_entry_slab; 25 26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 27 { 28 f2fs_build_fault_attr(sbi, 0, 0); 29 set_ckpt_flags(sbi, CP_ERROR_FLAG); 30 if (!end_io) 31 f2fs_flush_merged_writes(sbi); 32 } 33 34 /* 35 * We guarantee no failure on the returned page. 36 */ 37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 38 { 39 struct address_space *mapping = META_MAPPING(sbi); 40 struct page *page = NULL; 41 repeat: 42 page = f2fs_grab_cache_page(mapping, index, false); 43 if (!page) { 44 cond_resched(); 45 goto repeat; 46 } 47 f2fs_wait_on_page_writeback(page, META, true, true); 48 if (!PageUptodate(page)) 49 SetPageUptodate(page); 50 return page; 51 } 52 53 /* 54 * We guarantee no failure on the returned page. 55 */ 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_meta = is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 if (unlikely(!PageUptodate(page))) { 99 f2fs_put_page(page, 1); 100 return ERR_PTR(-EIO); 101 } 102 out: 103 return page; 104 } 105 106 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 107 { 108 return __get_meta_page(sbi, index, true); 109 } 110 111 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index) 112 { 113 struct page *page; 114 int count = 0; 115 116 retry: 117 page = __get_meta_page(sbi, index, true); 118 if (IS_ERR(page)) { 119 if (PTR_ERR(page) == -EIO && 120 ++count <= DEFAULT_RETRY_IO_COUNT) 121 goto retry; 122 f2fs_stop_checkpoint(sbi, false); 123 } 124 return page; 125 } 126 127 /* for POR only */ 128 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 129 { 130 return __get_meta_page(sbi, index, false); 131 } 132 133 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 134 block_t blkaddr, int type) 135 { 136 switch (type) { 137 case META_NAT: 138 break; 139 case META_SIT: 140 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 141 return false; 142 break; 143 case META_SSA: 144 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 145 blkaddr < SM_I(sbi)->ssa_blkaddr)) 146 return false; 147 break; 148 case META_CP: 149 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 150 blkaddr < __start_cp_addr(sbi))) 151 return false; 152 break; 153 case META_POR: 154 case DATA_GENERIC: 155 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 156 blkaddr < MAIN_BLKADDR(sbi))) { 157 if (type == DATA_GENERIC) { 158 f2fs_msg(sbi->sb, KERN_WARNING, 159 "access invalid blkaddr:%u", blkaddr); 160 WARN_ON(1); 161 } 162 return false; 163 } 164 break; 165 case META_GENERIC: 166 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 167 blkaddr >= MAIN_BLKADDR(sbi))) 168 return false; 169 break; 170 default: 171 BUG(); 172 } 173 174 return true; 175 } 176 177 /* 178 * Readahead CP/NAT/SIT/SSA pages 179 */ 180 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 181 int type, bool sync) 182 { 183 struct page *page; 184 block_t blkno = start; 185 struct f2fs_io_info fio = { 186 .sbi = sbi, 187 .type = META, 188 .op = REQ_OP_READ, 189 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 190 .encrypted_page = NULL, 191 .in_list = false, 192 .is_meta = (type != META_POR), 193 }; 194 struct blk_plug plug; 195 196 if (unlikely(type == META_POR)) 197 fio.op_flags &= ~REQ_META; 198 199 blk_start_plug(&plug); 200 for (; nrpages-- > 0; blkno++) { 201 202 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 203 goto out; 204 205 switch (type) { 206 case META_NAT: 207 if (unlikely(blkno >= 208 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 209 blkno = 0; 210 /* get nat block addr */ 211 fio.new_blkaddr = current_nat_addr(sbi, 212 blkno * NAT_ENTRY_PER_BLOCK); 213 break; 214 case META_SIT: 215 /* get sit block addr */ 216 fio.new_blkaddr = current_sit_addr(sbi, 217 blkno * SIT_ENTRY_PER_BLOCK); 218 break; 219 case META_SSA: 220 case META_CP: 221 case META_POR: 222 fio.new_blkaddr = blkno; 223 break; 224 default: 225 BUG(); 226 } 227 228 page = f2fs_grab_cache_page(META_MAPPING(sbi), 229 fio.new_blkaddr, false); 230 if (!page) 231 continue; 232 if (PageUptodate(page)) { 233 f2fs_put_page(page, 1); 234 continue; 235 } 236 237 fio.page = page; 238 f2fs_submit_page_bio(&fio); 239 f2fs_put_page(page, 0); 240 } 241 out: 242 blk_finish_plug(&plug); 243 return blkno - start; 244 } 245 246 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 247 { 248 struct page *page; 249 bool readahead = false; 250 251 page = find_get_page(META_MAPPING(sbi), index); 252 if (!page || !PageUptodate(page)) 253 readahead = true; 254 f2fs_put_page(page, 0); 255 256 if (readahead) 257 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 258 } 259 260 static int __f2fs_write_meta_page(struct page *page, 261 struct writeback_control *wbc, 262 enum iostat_type io_type) 263 { 264 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 265 266 trace_f2fs_writepage(page, META); 267 268 if (unlikely(f2fs_cp_error(sbi))) 269 goto redirty_out; 270 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 271 goto redirty_out; 272 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 273 goto redirty_out; 274 275 f2fs_do_write_meta_page(sbi, page, io_type); 276 dec_page_count(sbi, F2FS_DIRTY_META); 277 278 if (wbc->for_reclaim) 279 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 280 281 unlock_page(page); 282 283 if (unlikely(f2fs_cp_error(sbi))) 284 f2fs_submit_merged_write(sbi, META); 285 286 return 0; 287 288 redirty_out: 289 redirty_page_for_writepage(wbc, page); 290 return AOP_WRITEPAGE_ACTIVATE; 291 } 292 293 static int f2fs_write_meta_page(struct page *page, 294 struct writeback_control *wbc) 295 { 296 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 297 } 298 299 static int f2fs_write_meta_pages(struct address_space *mapping, 300 struct writeback_control *wbc) 301 { 302 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 303 long diff, written; 304 305 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 306 goto skip_write; 307 308 /* collect a number of dirty meta pages and write together */ 309 if (wbc->sync_mode != WB_SYNC_ALL && 310 get_pages(sbi, F2FS_DIRTY_META) < 311 nr_pages_to_skip(sbi, META)) 312 goto skip_write; 313 314 /* if locked failed, cp will flush dirty pages instead */ 315 if (!mutex_trylock(&sbi->cp_mutex)) 316 goto skip_write; 317 318 trace_f2fs_writepages(mapping->host, wbc, META); 319 diff = nr_pages_to_write(sbi, META, wbc); 320 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 321 mutex_unlock(&sbi->cp_mutex); 322 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 323 return 0; 324 325 skip_write: 326 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 327 trace_f2fs_writepages(mapping->host, wbc, META); 328 return 0; 329 } 330 331 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 332 long nr_to_write, enum iostat_type io_type) 333 { 334 struct address_space *mapping = META_MAPPING(sbi); 335 pgoff_t index = 0, prev = ULONG_MAX; 336 struct pagevec pvec; 337 long nwritten = 0; 338 int nr_pages; 339 struct writeback_control wbc = { 340 .for_reclaim = 0, 341 }; 342 struct blk_plug plug; 343 344 pagevec_init(&pvec); 345 346 blk_start_plug(&plug); 347 348 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 349 PAGECACHE_TAG_DIRTY))) { 350 int i; 351 352 for (i = 0; i < nr_pages; i++) { 353 struct page *page = pvec.pages[i]; 354 355 if (prev == ULONG_MAX) 356 prev = page->index - 1; 357 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 358 pagevec_release(&pvec); 359 goto stop; 360 } 361 362 lock_page(page); 363 364 if (unlikely(page->mapping != mapping)) { 365 continue_unlock: 366 unlock_page(page); 367 continue; 368 } 369 if (!PageDirty(page)) { 370 /* someone wrote it for us */ 371 goto continue_unlock; 372 } 373 374 f2fs_wait_on_page_writeback(page, META, true, true); 375 376 if (!clear_page_dirty_for_io(page)) 377 goto continue_unlock; 378 379 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 380 unlock_page(page); 381 break; 382 } 383 nwritten++; 384 prev = page->index; 385 if (unlikely(nwritten >= nr_to_write)) 386 break; 387 } 388 pagevec_release(&pvec); 389 cond_resched(); 390 } 391 stop: 392 if (nwritten) 393 f2fs_submit_merged_write(sbi, type); 394 395 blk_finish_plug(&plug); 396 397 return nwritten; 398 } 399 400 static int f2fs_set_meta_page_dirty(struct page *page) 401 { 402 trace_f2fs_set_page_dirty(page, META); 403 404 if (!PageUptodate(page)) 405 SetPageUptodate(page); 406 if (!PageDirty(page)) { 407 __set_page_dirty_nobuffers(page); 408 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 409 f2fs_set_page_private(page, 0); 410 f2fs_trace_pid(page); 411 return 1; 412 } 413 return 0; 414 } 415 416 const struct address_space_operations f2fs_meta_aops = { 417 .writepage = f2fs_write_meta_page, 418 .writepages = f2fs_write_meta_pages, 419 .set_page_dirty = f2fs_set_meta_page_dirty, 420 .invalidatepage = f2fs_invalidate_page, 421 .releasepage = f2fs_release_page, 422 #ifdef CONFIG_MIGRATION 423 .migratepage = f2fs_migrate_page, 424 #endif 425 }; 426 427 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 428 unsigned int devidx, int type) 429 { 430 struct inode_management *im = &sbi->im[type]; 431 struct ino_entry *e, *tmp; 432 433 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 434 435 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 436 437 spin_lock(&im->ino_lock); 438 e = radix_tree_lookup(&im->ino_root, ino); 439 if (!e) { 440 e = tmp; 441 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 442 f2fs_bug_on(sbi, 1); 443 444 memset(e, 0, sizeof(struct ino_entry)); 445 e->ino = ino; 446 447 list_add_tail(&e->list, &im->ino_list); 448 if (type != ORPHAN_INO) 449 im->ino_num++; 450 } 451 452 if (type == FLUSH_INO) 453 f2fs_set_bit(devidx, (char *)&e->dirty_device); 454 455 spin_unlock(&im->ino_lock); 456 radix_tree_preload_end(); 457 458 if (e != tmp) 459 kmem_cache_free(ino_entry_slab, tmp); 460 } 461 462 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 463 { 464 struct inode_management *im = &sbi->im[type]; 465 struct ino_entry *e; 466 467 spin_lock(&im->ino_lock); 468 e = radix_tree_lookup(&im->ino_root, ino); 469 if (e) { 470 list_del(&e->list); 471 radix_tree_delete(&im->ino_root, ino); 472 im->ino_num--; 473 spin_unlock(&im->ino_lock); 474 kmem_cache_free(ino_entry_slab, e); 475 return; 476 } 477 spin_unlock(&im->ino_lock); 478 } 479 480 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 481 { 482 /* add new dirty ino entry into list */ 483 __add_ino_entry(sbi, ino, 0, type); 484 } 485 486 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 487 { 488 /* remove dirty ino entry from list */ 489 __remove_ino_entry(sbi, ino, type); 490 } 491 492 /* mode should be APPEND_INO or UPDATE_INO */ 493 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 494 { 495 struct inode_management *im = &sbi->im[mode]; 496 struct ino_entry *e; 497 498 spin_lock(&im->ino_lock); 499 e = radix_tree_lookup(&im->ino_root, ino); 500 spin_unlock(&im->ino_lock); 501 return e ? true : false; 502 } 503 504 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 505 { 506 struct ino_entry *e, *tmp; 507 int i; 508 509 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 510 struct inode_management *im = &sbi->im[i]; 511 512 spin_lock(&im->ino_lock); 513 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 514 list_del(&e->list); 515 radix_tree_delete(&im->ino_root, e->ino); 516 kmem_cache_free(ino_entry_slab, e); 517 im->ino_num--; 518 } 519 spin_unlock(&im->ino_lock); 520 } 521 } 522 523 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 524 unsigned int devidx, int type) 525 { 526 __add_ino_entry(sbi, ino, devidx, type); 527 } 528 529 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 530 unsigned int devidx, int type) 531 { 532 struct inode_management *im = &sbi->im[type]; 533 struct ino_entry *e; 534 bool is_dirty = false; 535 536 spin_lock(&im->ino_lock); 537 e = radix_tree_lookup(&im->ino_root, ino); 538 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 539 is_dirty = true; 540 spin_unlock(&im->ino_lock); 541 return is_dirty; 542 } 543 544 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 545 { 546 struct inode_management *im = &sbi->im[ORPHAN_INO]; 547 int err = 0; 548 549 spin_lock(&im->ino_lock); 550 551 if (time_to_inject(sbi, FAULT_ORPHAN)) { 552 spin_unlock(&im->ino_lock); 553 f2fs_show_injection_info(FAULT_ORPHAN); 554 return -ENOSPC; 555 } 556 557 if (unlikely(im->ino_num >= sbi->max_orphans)) 558 err = -ENOSPC; 559 else 560 im->ino_num++; 561 spin_unlock(&im->ino_lock); 562 563 return err; 564 } 565 566 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 567 { 568 struct inode_management *im = &sbi->im[ORPHAN_INO]; 569 570 spin_lock(&im->ino_lock); 571 f2fs_bug_on(sbi, im->ino_num == 0); 572 im->ino_num--; 573 spin_unlock(&im->ino_lock); 574 } 575 576 void f2fs_add_orphan_inode(struct inode *inode) 577 { 578 /* add new orphan ino entry into list */ 579 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 580 f2fs_update_inode_page(inode); 581 } 582 583 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 584 { 585 /* remove orphan entry from orphan list */ 586 __remove_ino_entry(sbi, ino, ORPHAN_INO); 587 } 588 589 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 590 { 591 struct inode *inode; 592 struct node_info ni; 593 int err; 594 595 inode = f2fs_iget_retry(sbi->sb, ino); 596 if (IS_ERR(inode)) { 597 /* 598 * there should be a bug that we can't find the entry 599 * to orphan inode. 600 */ 601 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 602 return PTR_ERR(inode); 603 } 604 605 err = dquot_initialize(inode); 606 if (err) { 607 iput(inode); 608 goto err_out; 609 } 610 611 clear_nlink(inode); 612 613 /* truncate all the data during iput */ 614 iput(inode); 615 616 err = f2fs_get_node_info(sbi, ino, &ni); 617 if (err) 618 goto err_out; 619 620 /* ENOMEM was fully retried in f2fs_evict_inode. */ 621 if (ni.blk_addr != NULL_ADDR) { 622 err = -EIO; 623 goto err_out; 624 } 625 return 0; 626 627 err_out: 628 set_sbi_flag(sbi, SBI_NEED_FSCK); 629 f2fs_msg(sbi->sb, KERN_WARNING, 630 "%s: orphan failed (ino=%x), run fsck to fix.", 631 __func__, ino); 632 return err; 633 } 634 635 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 636 { 637 block_t start_blk, orphan_blocks, i, j; 638 unsigned int s_flags = sbi->sb->s_flags; 639 int err = 0; 640 #ifdef CONFIG_QUOTA 641 int quota_enabled; 642 #endif 643 644 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 645 return 0; 646 647 if (s_flags & SB_RDONLY) { 648 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 649 sbi->sb->s_flags &= ~SB_RDONLY; 650 } 651 652 #ifdef CONFIG_QUOTA 653 /* Needed for iput() to work correctly and not trash data */ 654 sbi->sb->s_flags |= SB_ACTIVE; 655 656 /* 657 * Turn on quotas which were not enabled for read-only mounts if 658 * filesystem has quota feature, so that they are updated correctly. 659 */ 660 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 661 #endif 662 663 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 664 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 665 666 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 667 668 for (i = 0; i < orphan_blocks; i++) { 669 struct page *page; 670 struct f2fs_orphan_block *orphan_blk; 671 672 page = f2fs_get_meta_page(sbi, start_blk + i); 673 if (IS_ERR(page)) { 674 err = PTR_ERR(page); 675 goto out; 676 } 677 678 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 679 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 680 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 681 err = recover_orphan_inode(sbi, ino); 682 if (err) { 683 f2fs_put_page(page, 1); 684 goto out; 685 } 686 } 687 f2fs_put_page(page, 1); 688 } 689 /* clear Orphan Flag */ 690 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 691 out: 692 set_sbi_flag(sbi, SBI_IS_RECOVERED); 693 694 #ifdef CONFIG_QUOTA 695 /* Turn quotas off */ 696 if (quota_enabled) 697 f2fs_quota_off_umount(sbi->sb); 698 #endif 699 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 700 701 return err; 702 } 703 704 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 705 { 706 struct list_head *head; 707 struct f2fs_orphan_block *orphan_blk = NULL; 708 unsigned int nentries = 0; 709 unsigned short index = 1; 710 unsigned short orphan_blocks; 711 struct page *page = NULL; 712 struct ino_entry *orphan = NULL; 713 struct inode_management *im = &sbi->im[ORPHAN_INO]; 714 715 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 716 717 /* 718 * we don't need to do spin_lock(&im->ino_lock) here, since all the 719 * orphan inode operations are covered under f2fs_lock_op(). 720 * And, spin_lock should be avoided due to page operations below. 721 */ 722 head = &im->ino_list; 723 724 /* loop for each orphan inode entry and write them in Jornal block */ 725 list_for_each_entry(orphan, head, list) { 726 if (!page) { 727 page = f2fs_grab_meta_page(sbi, start_blk++); 728 orphan_blk = 729 (struct f2fs_orphan_block *)page_address(page); 730 memset(orphan_blk, 0, sizeof(*orphan_blk)); 731 } 732 733 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 734 735 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 736 /* 737 * an orphan block is full of 1020 entries, 738 * then we need to flush current orphan blocks 739 * and bring another one in memory 740 */ 741 orphan_blk->blk_addr = cpu_to_le16(index); 742 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 743 orphan_blk->entry_count = cpu_to_le32(nentries); 744 set_page_dirty(page); 745 f2fs_put_page(page, 1); 746 index++; 747 nentries = 0; 748 page = NULL; 749 } 750 } 751 752 if (page) { 753 orphan_blk->blk_addr = cpu_to_le16(index); 754 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 755 orphan_blk->entry_count = cpu_to_le32(nentries); 756 set_page_dirty(page); 757 f2fs_put_page(page, 1); 758 } 759 } 760 761 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 762 struct f2fs_checkpoint **cp_block, struct page **cp_page, 763 unsigned long long *version) 764 { 765 unsigned long blk_size = sbi->blocksize; 766 size_t crc_offset = 0; 767 __u32 crc = 0; 768 769 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 770 if (IS_ERR(*cp_page)) 771 return PTR_ERR(*cp_page); 772 773 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 774 775 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 776 if (crc_offset > (blk_size - sizeof(__le32))) { 777 f2fs_put_page(*cp_page, 1); 778 f2fs_msg(sbi->sb, KERN_WARNING, 779 "invalid crc_offset: %zu", crc_offset); 780 return -EINVAL; 781 } 782 783 crc = cur_cp_crc(*cp_block); 784 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 785 f2fs_put_page(*cp_page, 1); 786 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 787 return -EINVAL; 788 } 789 790 *version = cur_cp_version(*cp_block); 791 return 0; 792 } 793 794 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 795 block_t cp_addr, unsigned long long *version) 796 { 797 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 798 struct f2fs_checkpoint *cp_block = NULL; 799 unsigned long long cur_version = 0, pre_version = 0; 800 int err; 801 802 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 803 &cp_page_1, version); 804 if (err) 805 return NULL; 806 807 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 808 sbi->blocks_per_seg) { 809 f2fs_msg(sbi->sb, KERN_WARNING, 810 "invalid cp_pack_total_block_count:%u", 811 le32_to_cpu(cp_block->cp_pack_total_block_count)); 812 goto invalid_cp; 813 } 814 pre_version = *version; 815 816 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 817 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 818 &cp_page_2, version); 819 if (err) 820 goto invalid_cp; 821 cur_version = *version; 822 823 if (cur_version == pre_version) { 824 *version = cur_version; 825 f2fs_put_page(cp_page_2, 1); 826 return cp_page_1; 827 } 828 f2fs_put_page(cp_page_2, 1); 829 invalid_cp: 830 f2fs_put_page(cp_page_1, 1); 831 return NULL; 832 } 833 834 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 835 { 836 struct f2fs_checkpoint *cp_block; 837 struct f2fs_super_block *fsb = sbi->raw_super; 838 struct page *cp1, *cp2, *cur_page; 839 unsigned long blk_size = sbi->blocksize; 840 unsigned long long cp1_version = 0, cp2_version = 0; 841 unsigned long long cp_start_blk_no; 842 unsigned int cp_blks = 1 + __cp_payload(sbi); 843 block_t cp_blk_no; 844 int i; 845 846 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks), 847 GFP_KERNEL); 848 if (!sbi->ckpt) 849 return -ENOMEM; 850 /* 851 * Finding out valid cp block involves read both 852 * sets( cp pack1 and cp pack 2) 853 */ 854 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 855 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 856 857 /* The second checkpoint pack should start at the next segment */ 858 cp_start_blk_no += ((unsigned long long)1) << 859 le32_to_cpu(fsb->log_blocks_per_seg); 860 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 861 862 if (cp1 && cp2) { 863 if (ver_after(cp2_version, cp1_version)) 864 cur_page = cp2; 865 else 866 cur_page = cp1; 867 } else if (cp1) { 868 cur_page = cp1; 869 } else if (cp2) { 870 cur_page = cp2; 871 } else { 872 goto fail_no_cp; 873 } 874 875 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 876 memcpy(sbi->ckpt, cp_block, blk_size); 877 878 if (cur_page == cp1) 879 sbi->cur_cp_pack = 1; 880 else 881 sbi->cur_cp_pack = 2; 882 883 /* Sanity checking of checkpoint */ 884 if (f2fs_sanity_check_ckpt(sbi)) 885 goto free_fail_no_cp; 886 887 if (cp_blks <= 1) 888 goto done; 889 890 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 891 if (cur_page == cp2) 892 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 893 894 for (i = 1; i < cp_blks; i++) { 895 void *sit_bitmap_ptr; 896 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 897 898 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 899 if (IS_ERR(cur_page)) 900 goto free_fail_no_cp; 901 sit_bitmap_ptr = page_address(cur_page); 902 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 903 f2fs_put_page(cur_page, 1); 904 } 905 done: 906 f2fs_put_page(cp1, 1); 907 f2fs_put_page(cp2, 1); 908 return 0; 909 910 free_fail_no_cp: 911 f2fs_put_page(cp1, 1); 912 f2fs_put_page(cp2, 1); 913 fail_no_cp: 914 kvfree(sbi->ckpt); 915 return -EINVAL; 916 } 917 918 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 919 { 920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 921 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 922 923 if (is_inode_flag_set(inode, flag)) 924 return; 925 926 set_inode_flag(inode, flag); 927 if (!f2fs_is_volatile_file(inode)) 928 list_add_tail(&F2FS_I(inode)->dirty_list, 929 &sbi->inode_list[type]); 930 stat_inc_dirty_inode(sbi, type); 931 } 932 933 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 934 { 935 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 936 937 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 938 return; 939 940 list_del_init(&F2FS_I(inode)->dirty_list); 941 clear_inode_flag(inode, flag); 942 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 943 } 944 945 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 946 { 947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 948 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 949 950 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 951 !S_ISLNK(inode->i_mode)) 952 return; 953 954 spin_lock(&sbi->inode_lock[type]); 955 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 956 __add_dirty_inode(inode, type); 957 inode_inc_dirty_pages(inode); 958 spin_unlock(&sbi->inode_lock[type]); 959 960 f2fs_set_page_private(page, 0); 961 f2fs_trace_pid(page); 962 } 963 964 void f2fs_remove_dirty_inode(struct inode *inode) 965 { 966 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 967 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 968 969 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 970 !S_ISLNK(inode->i_mode)) 971 return; 972 973 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 974 return; 975 976 spin_lock(&sbi->inode_lock[type]); 977 __remove_dirty_inode(inode, type); 978 spin_unlock(&sbi->inode_lock[type]); 979 } 980 981 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 982 { 983 struct list_head *head; 984 struct inode *inode; 985 struct f2fs_inode_info *fi; 986 bool is_dir = (type == DIR_INODE); 987 unsigned long ino = 0; 988 989 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 990 get_pages(sbi, is_dir ? 991 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 992 retry: 993 if (unlikely(f2fs_cp_error(sbi))) 994 return -EIO; 995 996 spin_lock(&sbi->inode_lock[type]); 997 998 head = &sbi->inode_list[type]; 999 if (list_empty(head)) { 1000 spin_unlock(&sbi->inode_lock[type]); 1001 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1002 get_pages(sbi, is_dir ? 1003 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1004 return 0; 1005 } 1006 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1007 inode = igrab(&fi->vfs_inode); 1008 spin_unlock(&sbi->inode_lock[type]); 1009 if (inode) { 1010 unsigned long cur_ino = inode->i_ino; 1011 1012 if (is_dir) 1013 F2FS_I(inode)->cp_task = current; 1014 1015 filemap_fdatawrite(inode->i_mapping); 1016 1017 if (is_dir) 1018 F2FS_I(inode)->cp_task = NULL; 1019 1020 iput(inode); 1021 /* We need to give cpu to another writers. */ 1022 if (ino == cur_ino) 1023 cond_resched(); 1024 else 1025 ino = cur_ino; 1026 } else { 1027 /* 1028 * We should submit bio, since it exists several 1029 * wribacking dentry pages in the freeing inode. 1030 */ 1031 f2fs_submit_merged_write(sbi, DATA); 1032 cond_resched(); 1033 } 1034 goto retry; 1035 } 1036 1037 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1038 { 1039 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1040 struct inode *inode; 1041 struct f2fs_inode_info *fi; 1042 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1043 1044 while (total--) { 1045 if (unlikely(f2fs_cp_error(sbi))) 1046 return -EIO; 1047 1048 spin_lock(&sbi->inode_lock[DIRTY_META]); 1049 if (list_empty(head)) { 1050 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1051 return 0; 1052 } 1053 fi = list_first_entry(head, struct f2fs_inode_info, 1054 gdirty_list); 1055 inode = igrab(&fi->vfs_inode); 1056 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1057 if (inode) { 1058 sync_inode_metadata(inode, 0); 1059 1060 /* it's on eviction */ 1061 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1062 f2fs_update_inode_page(inode); 1063 iput(inode); 1064 } 1065 } 1066 return 0; 1067 } 1068 1069 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1070 { 1071 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1072 struct f2fs_nm_info *nm_i = NM_I(sbi); 1073 nid_t last_nid = nm_i->next_scan_nid; 1074 1075 next_free_nid(sbi, &last_nid); 1076 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1077 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1078 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1079 ckpt->next_free_nid = cpu_to_le32(last_nid); 1080 } 1081 1082 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1083 { 1084 if (!is_journalled_quota(sbi)) 1085 return false; 1086 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1087 return false; 1088 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1089 return false; 1090 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) 1091 return true; 1092 if (get_pages(sbi, F2FS_DIRTY_QDATA)) 1093 return true; 1094 return false; 1095 } 1096 1097 /* 1098 * Freeze all the FS-operations for checkpoint. 1099 */ 1100 static int block_operations(struct f2fs_sb_info *sbi) 1101 { 1102 struct writeback_control wbc = { 1103 .sync_mode = WB_SYNC_ALL, 1104 .nr_to_write = LONG_MAX, 1105 .for_reclaim = 0, 1106 }; 1107 struct blk_plug plug; 1108 int err = 0, cnt = 0; 1109 1110 blk_start_plug(&plug); 1111 1112 retry_flush_quotas: 1113 if (__need_flush_quota(sbi)) { 1114 int locked; 1115 1116 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1117 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1118 f2fs_lock_all(sbi); 1119 goto retry_flush_dents; 1120 } 1121 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1122 1123 /* only failed during mount/umount/freeze/quotactl */ 1124 locked = down_read_trylock(&sbi->sb->s_umount); 1125 f2fs_quota_sync(sbi->sb, -1); 1126 if (locked) 1127 up_read(&sbi->sb->s_umount); 1128 } 1129 1130 f2fs_lock_all(sbi); 1131 if (__need_flush_quota(sbi)) { 1132 f2fs_unlock_all(sbi); 1133 cond_resched(); 1134 goto retry_flush_quotas; 1135 } 1136 1137 retry_flush_dents: 1138 /* write all the dirty dentry pages */ 1139 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1140 f2fs_unlock_all(sbi); 1141 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1142 if (err) 1143 goto out; 1144 cond_resched(); 1145 goto retry_flush_quotas; 1146 } 1147 1148 /* 1149 * POR: we should ensure that there are no dirty node pages 1150 * until finishing nat/sit flush. inode->i_blocks can be updated. 1151 */ 1152 down_write(&sbi->node_change); 1153 1154 if (__need_flush_quota(sbi)) { 1155 up_write(&sbi->node_change); 1156 f2fs_unlock_all(sbi); 1157 goto retry_flush_quotas; 1158 } 1159 1160 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1161 up_write(&sbi->node_change); 1162 f2fs_unlock_all(sbi); 1163 err = f2fs_sync_inode_meta(sbi); 1164 if (err) 1165 goto out; 1166 cond_resched(); 1167 goto retry_flush_quotas; 1168 } 1169 1170 retry_flush_nodes: 1171 down_write(&sbi->node_write); 1172 1173 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1174 up_write(&sbi->node_write); 1175 atomic_inc(&sbi->wb_sync_req[NODE]); 1176 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1177 atomic_dec(&sbi->wb_sync_req[NODE]); 1178 if (err) { 1179 up_write(&sbi->node_change); 1180 f2fs_unlock_all(sbi); 1181 goto out; 1182 } 1183 cond_resched(); 1184 goto retry_flush_nodes; 1185 } 1186 1187 /* 1188 * sbi->node_change is used only for AIO write_begin path which produces 1189 * dirty node blocks and some checkpoint values by block allocation. 1190 */ 1191 __prepare_cp_block(sbi); 1192 up_write(&sbi->node_change); 1193 out: 1194 blk_finish_plug(&plug); 1195 return err; 1196 } 1197 1198 static void unblock_operations(struct f2fs_sb_info *sbi) 1199 { 1200 up_write(&sbi->node_write); 1201 f2fs_unlock_all(sbi); 1202 } 1203 1204 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1205 { 1206 DEFINE_WAIT(wait); 1207 1208 for (;;) { 1209 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1210 1211 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1212 break; 1213 1214 if (unlikely(f2fs_cp_error(sbi))) 1215 break; 1216 1217 io_schedule_timeout(5*HZ); 1218 } 1219 finish_wait(&sbi->cp_wait, &wait); 1220 } 1221 1222 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1223 { 1224 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1225 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1226 unsigned long flags; 1227 1228 spin_lock_irqsave(&sbi->cp_lock, flags); 1229 1230 if ((cpc->reason & CP_UMOUNT) && 1231 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1232 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1233 disable_nat_bits(sbi, false); 1234 1235 if (cpc->reason & CP_TRIMMED) 1236 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1237 else 1238 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1239 1240 if (cpc->reason & CP_UMOUNT) 1241 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1242 else 1243 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1244 1245 if (cpc->reason & CP_FASTBOOT) 1246 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1247 else 1248 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1249 1250 if (orphan_num) 1251 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1252 else 1253 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1254 1255 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1256 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1257 1258 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1259 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1260 else 1261 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1262 1263 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1264 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1265 else 1266 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1267 1268 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1269 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1270 /* 1271 * TODO: we count on fsck.f2fs to clear this flag until we figure out 1272 * missing cases which clear it incorrectly. 1273 */ 1274 1275 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1276 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1277 1278 /* set this flag to activate crc|cp_ver for recovery */ 1279 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1280 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1281 1282 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1283 } 1284 1285 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1286 void *src, block_t blk_addr) 1287 { 1288 struct writeback_control wbc = { 1289 .for_reclaim = 0, 1290 }; 1291 1292 /* 1293 * pagevec_lookup_tag and lock_page again will take 1294 * some extra time. Therefore, f2fs_update_meta_pages and 1295 * f2fs_sync_meta_pages are combined in this function. 1296 */ 1297 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1298 int err; 1299 1300 f2fs_wait_on_page_writeback(page, META, true, true); 1301 1302 memcpy(page_address(page), src, PAGE_SIZE); 1303 1304 set_page_dirty(page); 1305 if (unlikely(!clear_page_dirty_for_io(page))) 1306 f2fs_bug_on(sbi, 1); 1307 1308 /* writeout cp pack 2 page */ 1309 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1310 if (unlikely(err && f2fs_cp_error(sbi))) { 1311 f2fs_put_page(page, 1); 1312 return; 1313 } 1314 1315 f2fs_bug_on(sbi, err); 1316 f2fs_put_page(page, 0); 1317 1318 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1319 f2fs_submit_merged_write(sbi, META_FLUSH); 1320 } 1321 1322 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1323 { 1324 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1325 struct f2fs_nm_info *nm_i = NM_I(sbi); 1326 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1327 block_t start_blk; 1328 unsigned int data_sum_blocks, orphan_blocks; 1329 __u32 crc32 = 0; 1330 int i; 1331 int cp_payload_blks = __cp_payload(sbi); 1332 struct super_block *sb = sbi->sb; 1333 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1334 u64 kbytes_written; 1335 int err; 1336 1337 /* Flush all the NAT/SIT pages */ 1338 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1339 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) && 1340 !f2fs_cp_error(sbi)); 1341 1342 /* 1343 * modify checkpoint 1344 * version number is already updated 1345 */ 1346 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1347 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1348 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1349 ckpt->cur_node_segno[i] = 1350 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1351 ckpt->cur_node_blkoff[i] = 1352 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1353 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1354 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1355 } 1356 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1357 ckpt->cur_data_segno[i] = 1358 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1359 ckpt->cur_data_blkoff[i] = 1360 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1361 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1362 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1363 } 1364 1365 /* 2 cp + n data seg summary + orphan inode blocks */ 1366 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1367 spin_lock_irqsave(&sbi->cp_lock, flags); 1368 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1369 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1370 else 1371 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1372 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1373 1374 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1375 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1376 orphan_blocks); 1377 1378 if (__remain_node_summaries(cpc->reason)) 1379 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1380 cp_payload_blks + data_sum_blocks + 1381 orphan_blocks + NR_CURSEG_NODE_TYPE); 1382 else 1383 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1384 cp_payload_blks + data_sum_blocks + 1385 orphan_blocks); 1386 1387 /* update ckpt flag for checkpoint */ 1388 update_ckpt_flags(sbi, cpc); 1389 1390 /* update SIT/NAT bitmap */ 1391 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1392 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1393 1394 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1395 *((__le32 *)((unsigned char *)ckpt + 1396 le32_to_cpu(ckpt->checksum_offset))) 1397 = cpu_to_le32(crc32); 1398 1399 start_blk = __start_cp_next_addr(sbi); 1400 1401 /* write nat bits */ 1402 if (enabled_nat_bits(sbi, cpc)) { 1403 __u64 cp_ver = cur_cp_version(ckpt); 1404 block_t blk; 1405 1406 cp_ver |= ((__u64)crc32 << 32); 1407 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1408 1409 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1410 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1411 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1412 (i << F2FS_BLKSIZE_BITS), blk + i); 1413 } 1414 1415 /* write out checkpoint buffer at block 0 */ 1416 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1417 1418 for (i = 1; i < 1 + cp_payload_blks; i++) 1419 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1420 start_blk++); 1421 1422 if (orphan_num) { 1423 write_orphan_inodes(sbi, start_blk); 1424 start_blk += orphan_blocks; 1425 } 1426 1427 f2fs_write_data_summaries(sbi, start_blk); 1428 start_blk += data_sum_blocks; 1429 1430 /* Record write statistics in the hot node summary */ 1431 kbytes_written = sbi->kbytes_written; 1432 if (sb->s_bdev->bd_part) 1433 kbytes_written += BD_PART_WRITTEN(sbi); 1434 1435 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1436 1437 if (__remain_node_summaries(cpc->reason)) { 1438 f2fs_write_node_summaries(sbi, start_blk); 1439 start_blk += NR_CURSEG_NODE_TYPE; 1440 } 1441 1442 /* update user_block_counts */ 1443 sbi->last_valid_block_count = sbi->total_valid_block_count; 1444 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1445 1446 /* Here, we have one bio having CP pack except cp pack 2 page */ 1447 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1448 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) && 1449 !f2fs_cp_error(sbi)); 1450 1451 /* wait for previous submitted meta pages writeback */ 1452 f2fs_wait_on_all_pages_writeback(sbi); 1453 1454 /* flush all device cache */ 1455 err = f2fs_flush_device_cache(sbi); 1456 if (err) 1457 return err; 1458 1459 /* barrier and flush checkpoint cp pack 2 page if it can */ 1460 commit_checkpoint(sbi, ckpt, start_blk); 1461 f2fs_wait_on_all_pages_writeback(sbi); 1462 1463 /* 1464 * invalidate intermediate page cache borrowed from meta inode 1465 * which are used for migration of encrypted inode's blocks. 1466 */ 1467 if (f2fs_sb_has_encrypt(sbi)) 1468 invalidate_mapping_pages(META_MAPPING(sbi), 1469 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1470 1471 f2fs_release_ino_entry(sbi, false); 1472 1473 f2fs_reset_fsync_node_info(sbi); 1474 1475 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1476 clear_sbi_flag(sbi, SBI_NEED_CP); 1477 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1478 sbi->unusable_block_count = 0; 1479 __set_cp_next_pack(sbi); 1480 1481 /* 1482 * redirty superblock if metadata like node page or inode cache is 1483 * updated during writing checkpoint. 1484 */ 1485 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1486 get_pages(sbi, F2FS_DIRTY_IMETA)) 1487 set_sbi_flag(sbi, SBI_IS_DIRTY); 1488 1489 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1490 1491 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1492 } 1493 1494 /* 1495 * We guarantee that this checkpoint procedure will not fail. 1496 */ 1497 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1498 { 1499 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1500 unsigned long long ckpt_ver; 1501 int err = 0; 1502 1503 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1504 if (cpc->reason != CP_PAUSE) 1505 return 0; 1506 f2fs_msg(sbi->sb, KERN_WARNING, 1507 "Start checkpoint disabled!"); 1508 } 1509 mutex_lock(&sbi->cp_mutex); 1510 1511 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1512 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1513 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1514 goto out; 1515 if (unlikely(f2fs_cp_error(sbi))) { 1516 err = -EIO; 1517 goto out; 1518 } 1519 if (f2fs_readonly(sbi->sb)) { 1520 err = -EROFS; 1521 goto out; 1522 } 1523 1524 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1525 1526 err = block_operations(sbi); 1527 if (err) 1528 goto out; 1529 1530 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1531 1532 f2fs_flush_merged_writes(sbi); 1533 1534 /* this is the case of multiple fstrims without any changes */ 1535 if (cpc->reason & CP_DISCARD) { 1536 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1537 unblock_operations(sbi); 1538 goto out; 1539 } 1540 1541 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1542 SIT_I(sbi)->dirty_sentries == 0 && 1543 prefree_segments(sbi) == 0) { 1544 f2fs_flush_sit_entries(sbi, cpc); 1545 f2fs_clear_prefree_segments(sbi, cpc); 1546 unblock_operations(sbi); 1547 goto out; 1548 } 1549 } 1550 1551 /* 1552 * update checkpoint pack index 1553 * Increase the version number so that 1554 * SIT entries and seg summaries are written at correct place 1555 */ 1556 ckpt_ver = cur_cp_version(ckpt); 1557 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1558 1559 /* write cached NAT/SIT entries to NAT/SIT area */ 1560 err = f2fs_flush_nat_entries(sbi, cpc); 1561 if (err) 1562 goto stop; 1563 1564 f2fs_flush_sit_entries(sbi, cpc); 1565 1566 /* unlock all the fs_lock[] in do_checkpoint() */ 1567 err = do_checkpoint(sbi, cpc); 1568 if (err) 1569 f2fs_release_discard_addrs(sbi); 1570 else 1571 f2fs_clear_prefree_segments(sbi, cpc); 1572 stop: 1573 unblock_operations(sbi); 1574 stat_inc_cp_count(sbi->stat_info); 1575 1576 if (cpc->reason & CP_RECOVERY) 1577 f2fs_msg(sbi->sb, KERN_NOTICE, 1578 "checkpoint: version = %llx", ckpt_ver); 1579 1580 /* do checkpoint periodically */ 1581 f2fs_update_time(sbi, CP_TIME); 1582 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1583 out: 1584 mutex_unlock(&sbi->cp_mutex); 1585 return err; 1586 } 1587 1588 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1589 { 1590 int i; 1591 1592 for (i = 0; i < MAX_INO_ENTRY; i++) { 1593 struct inode_management *im = &sbi->im[i]; 1594 1595 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1596 spin_lock_init(&im->ino_lock); 1597 INIT_LIST_HEAD(&im->ino_list); 1598 im->ino_num = 0; 1599 } 1600 1601 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1602 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1603 F2FS_ORPHANS_PER_BLOCK; 1604 } 1605 1606 int __init f2fs_create_checkpoint_caches(void) 1607 { 1608 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1609 sizeof(struct ino_entry)); 1610 if (!ino_entry_slab) 1611 return -ENOMEM; 1612 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1613 sizeof(struct inode_entry)); 1614 if (!f2fs_inode_entry_slab) { 1615 kmem_cache_destroy(ino_entry_slab); 1616 return -ENOMEM; 1617 } 1618 return 0; 1619 } 1620 1621 void f2fs_destroy_checkpoint_caches(void) 1622 { 1623 kmem_cache_destroy(ino_entry_slab); 1624 kmem_cache_destroy(f2fs_inode_entry_slab); 1625 } 1626