1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .op = REQ_OP_READ, 68 .op_flags = READ_SYNC | REQ_META | REQ_PRIO, 69 .old_blkaddr = index, 70 .new_blkaddr = index, 71 .encrypted_page = NULL, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ 115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ 154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : REQ_RAHEAD, 164 .encrypted_page = NULL, 165 }; 166 struct blk_plug plug; 167 168 if (unlikely(type == META_POR)) 169 fio.op_flags &= ~REQ_META; 170 171 blk_start_plug(&plug); 172 for (; nrpages-- > 0; blkno++) { 173 174 if (!is_valid_blkaddr(sbi, blkno, type)) 175 goto out; 176 177 switch (type) { 178 case META_NAT: 179 if (unlikely(blkno >= 180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 181 blkno = 0; 182 /* get nat block addr */ 183 fio.new_blkaddr = current_nat_addr(sbi, 184 blkno * NAT_ENTRY_PER_BLOCK); 185 break; 186 case META_SIT: 187 /* get sit block addr */ 188 fio.new_blkaddr = current_sit_addr(sbi, 189 blkno * SIT_ENTRY_PER_BLOCK); 190 break; 191 case META_SSA: 192 case META_CP: 193 case META_POR: 194 fio.new_blkaddr = blkno; 195 break; 196 default: 197 BUG(); 198 } 199 200 page = f2fs_grab_cache_page(META_MAPPING(sbi), 201 fio.new_blkaddr, false); 202 if (!page) 203 continue; 204 if (PageUptodate(page)) { 205 f2fs_put_page(page, 1); 206 continue; 207 } 208 209 fio.page = page; 210 fio.old_blkaddr = fio.new_blkaddr; 211 f2fs_submit_page_mbio(&fio); 212 f2fs_put_page(page, 0); 213 } 214 out: 215 f2fs_submit_merged_bio(sbi, META, READ); 216 blk_finish_plug(&plug); 217 return blkno - start; 218 } 219 220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 221 { 222 struct page *page; 223 bool readahead = false; 224 225 page = find_get_page(META_MAPPING(sbi), index); 226 if (!page || !PageUptodate(page)) 227 readahead = true; 228 f2fs_put_page(page, 0); 229 230 if (readahead) 231 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true); 232 } 233 234 static int f2fs_write_meta_page(struct page *page, 235 struct writeback_control *wbc) 236 { 237 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 238 239 trace_f2fs_writepage(page, META); 240 241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 242 goto redirty_out; 243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 244 goto redirty_out; 245 if (unlikely(f2fs_cp_error(sbi))) 246 goto redirty_out; 247 248 write_meta_page(sbi, page); 249 dec_page_count(sbi, F2FS_DIRTY_META); 250 251 if (wbc->for_reclaim) 252 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE); 253 254 unlock_page(page); 255 256 if (unlikely(f2fs_cp_error(sbi))) 257 f2fs_submit_merged_bio(sbi, META, WRITE); 258 259 return 0; 260 261 redirty_out: 262 redirty_page_for_writepage(wbc, page); 263 return AOP_WRITEPAGE_ACTIVATE; 264 } 265 266 static int f2fs_write_meta_pages(struct address_space *mapping, 267 struct writeback_control *wbc) 268 { 269 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 270 struct blk_plug plug; 271 long diff, written; 272 273 /* collect a number of dirty meta pages and write together */ 274 if (wbc->for_kupdate || 275 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 276 goto skip_write; 277 278 trace_f2fs_writepages(mapping->host, wbc, META); 279 280 /* if mounting is failed, skip writing node pages */ 281 mutex_lock(&sbi->cp_mutex); 282 diff = nr_pages_to_write(sbi, META, wbc); 283 blk_start_plug(&plug); 284 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 285 blk_finish_plug(&plug); 286 mutex_unlock(&sbi->cp_mutex); 287 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 288 return 0; 289 290 skip_write: 291 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 292 trace_f2fs_writepages(mapping->host, wbc, META); 293 return 0; 294 } 295 296 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 297 long nr_to_write) 298 { 299 struct address_space *mapping = META_MAPPING(sbi); 300 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 301 struct pagevec pvec; 302 long nwritten = 0; 303 struct writeback_control wbc = { 304 .for_reclaim = 0, 305 }; 306 struct blk_plug plug; 307 308 pagevec_init(&pvec, 0); 309 310 blk_start_plug(&plug); 311 312 while (index <= end) { 313 int i, nr_pages; 314 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 315 PAGECACHE_TAG_DIRTY, 316 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 317 if (unlikely(nr_pages == 0)) 318 break; 319 320 for (i = 0; i < nr_pages; i++) { 321 struct page *page = pvec.pages[i]; 322 323 if (prev == ULONG_MAX) 324 prev = page->index - 1; 325 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 326 pagevec_release(&pvec); 327 goto stop; 328 } 329 330 lock_page(page); 331 332 if (unlikely(page->mapping != mapping)) { 333 continue_unlock: 334 unlock_page(page); 335 continue; 336 } 337 if (!PageDirty(page)) { 338 /* someone wrote it for us */ 339 goto continue_unlock; 340 } 341 342 f2fs_wait_on_page_writeback(page, META, true); 343 344 BUG_ON(PageWriteback(page)); 345 if (!clear_page_dirty_for_io(page)) 346 goto continue_unlock; 347 348 if (mapping->a_ops->writepage(page, &wbc)) { 349 unlock_page(page); 350 break; 351 } 352 nwritten++; 353 prev = page->index; 354 if (unlikely(nwritten >= nr_to_write)) 355 break; 356 } 357 pagevec_release(&pvec); 358 cond_resched(); 359 } 360 stop: 361 if (nwritten) 362 f2fs_submit_merged_bio(sbi, type, WRITE); 363 364 blk_finish_plug(&plug); 365 366 return nwritten; 367 } 368 369 static int f2fs_set_meta_page_dirty(struct page *page) 370 { 371 trace_f2fs_set_page_dirty(page, META); 372 373 if (!PageUptodate(page)) 374 SetPageUptodate(page); 375 if (!PageDirty(page)) { 376 f2fs_set_page_dirty_nobuffers(page); 377 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 378 SetPagePrivate(page); 379 f2fs_trace_pid(page); 380 return 1; 381 } 382 return 0; 383 } 384 385 const struct address_space_operations f2fs_meta_aops = { 386 .writepage = f2fs_write_meta_page, 387 .writepages = f2fs_write_meta_pages, 388 .set_page_dirty = f2fs_set_meta_page_dirty, 389 .invalidatepage = f2fs_invalidate_page, 390 .releasepage = f2fs_release_page, 391 }; 392 393 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 394 { 395 struct inode_management *im = &sbi->im[type]; 396 struct ino_entry *e, *tmp; 397 398 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 399 retry: 400 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 401 402 spin_lock(&im->ino_lock); 403 e = radix_tree_lookup(&im->ino_root, ino); 404 if (!e) { 405 e = tmp; 406 if (radix_tree_insert(&im->ino_root, ino, e)) { 407 spin_unlock(&im->ino_lock); 408 radix_tree_preload_end(); 409 goto retry; 410 } 411 memset(e, 0, sizeof(struct ino_entry)); 412 e->ino = ino; 413 414 list_add_tail(&e->list, &im->ino_list); 415 if (type != ORPHAN_INO) 416 im->ino_num++; 417 } 418 spin_unlock(&im->ino_lock); 419 radix_tree_preload_end(); 420 421 if (e != tmp) 422 kmem_cache_free(ino_entry_slab, tmp); 423 } 424 425 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 426 { 427 struct inode_management *im = &sbi->im[type]; 428 struct ino_entry *e; 429 430 spin_lock(&im->ino_lock); 431 e = radix_tree_lookup(&im->ino_root, ino); 432 if (e) { 433 list_del(&e->list); 434 radix_tree_delete(&im->ino_root, ino); 435 im->ino_num--; 436 spin_unlock(&im->ino_lock); 437 kmem_cache_free(ino_entry_slab, e); 438 return; 439 } 440 spin_unlock(&im->ino_lock); 441 } 442 443 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 444 { 445 /* add new dirty ino entry into list */ 446 __add_ino_entry(sbi, ino, type); 447 } 448 449 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 450 { 451 /* remove dirty ino entry from list */ 452 __remove_ino_entry(sbi, ino, type); 453 } 454 455 /* mode should be APPEND_INO or UPDATE_INO */ 456 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 457 { 458 struct inode_management *im = &sbi->im[mode]; 459 struct ino_entry *e; 460 461 spin_lock(&im->ino_lock); 462 e = radix_tree_lookup(&im->ino_root, ino); 463 spin_unlock(&im->ino_lock); 464 return e ? true : false; 465 } 466 467 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 468 { 469 struct ino_entry *e, *tmp; 470 int i; 471 472 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 473 struct inode_management *im = &sbi->im[i]; 474 475 spin_lock(&im->ino_lock); 476 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 477 list_del(&e->list); 478 radix_tree_delete(&im->ino_root, e->ino); 479 kmem_cache_free(ino_entry_slab, e); 480 im->ino_num--; 481 } 482 spin_unlock(&im->ino_lock); 483 } 484 } 485 486 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 487 { 488 struct inode_management *im = &sbi->im[ORPHAN_INO]; 489 int err = 0; 490 491 spin_lock(&im->ino_lock); 492 493 #ifdef CONFIG_F2FS_FAULT_INJECTION 494 if (time_to_inject(FAULT_ORPHAN)) { 495 spin_unlock(&im->ino_lock); 496 return -ENOSPC; 497 } 498 #endif 499 if (unlikely(im->ino_num >= sbi->max_orphans)) 500 err = -ENOSPC; 501 else 502 im->ino_num++; 503 spin_unlock(&im->ino_lock); 504 505 return err; 506 } 507 508 void release_orphan_inode(struct f2fs_sb_info *sbi) 509 { 510 struct inode_management *im = &sbi->im[ORPHAN_INO]; 511 512 spin_lock(&im->ino_lock); 513 f2fs_bug_on(sbi, im->ino_num == 0); 514 im->ino_num--; 515 spin_unlock(&im->ino_lock); 516 } 517 518 void add_orphan_inode(struct inode *inode) 519 { 520 /* add new orphan ino entry into list */ 521 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 522 update_inode_page(inode); 523 } 524 525 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 526 { 527 /* remove orphan entry from orphan list */ 528 __remove_ino_entry(sbi, ino, ORPHAN_INO); 529 } 530 531 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 532 { 533 struct inode *inode; 534 535 inode = f2fs_iget(sbi->sb, ino); 536 if (IS_ERR(inode)) { 537 /* 538 * there should be a bug that we can't find the entry 539 * to orphan inode. 540 */ 541 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 542 return PTR_ERR(inode); 543 } 544 545 clear_nlink(inode); 546 547 /* truncate all the data during iput */ 548 iput(inode); 549 return 0; 550 } 551 552 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 553 { 554 block_t start_blk, orphan_blocks, i, j; 555 int err; 556 557 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 558 return 0; 559 560 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 561 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 562 563 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 564 565 for (i = 0; i < orphan_blocks; i++) { 566 struct page *page = get_meta_page(sbi, start_blk + i); 567 struct f2fs_orphan_block *orphan_blk; 568 569 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 570 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 571 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 572 err = recover_orphan_inode(sbi, ino); 573 if (err) { 574 f2fs_put_page(page, 1); 575 return err; 576 } 577 } 578 f2fs_put_page(page, 1); 579 } 580 /* clear Orphan Flag */ 581 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 582 return 0; 583 } 584 585 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 586 { 587 struct list_head *head; 588 struct f2fs_orphan_block *orphan_blk = NULL; 589 unsigned int nentries = 0; 590 unsigned short index = 1; 591 unsigned short orphan_blocks; 592 struct page *page = NULL; 593 struct ino_entry *orphan = NULL; 594 struct inode_management *im = &sbi->im[ORPHAN_INO]; 595 596 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 597 598 /* 599 * we don't need to do spin_lock(&im->ino_lock) here, since all the 600 * orphan inode operations are covered under f2fs_lock_op(). 601 * And, spin_lock should be avoided due to page operations below. 602 */ 603 head = &im->ino_list; 604 605 /* loop for each orphan inode entry and write them in Jornal block */ 606 list_for_each_entry(orphan, head, list) { 607 if (!page) { 608 page = grab_meta_page(sbi, start_blk++); 609 orphan_blk = 610 (struct f2fs_orphan_block *)page_address(page); 611 memset(orphan_blk, 0, sizeof(*orphan_blk)); 612 } 613 614 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 615 616 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 617 /* 618 * an orphan block is full of 1020 entries, 619 * then we need to flush current orphan blocks 620 * and bring another one in memory 621 */ 622 orphan_blk->blk_addr = cpu_to_le16(index); 623 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 624 orphan_blk->entry_count = cpu_to_le32(nentries); 625 set_page_dirty(page); 626 f2fs_put_page(page, 1); 627 index++; 628 nentries = 0; 629 page = NULL; 630 } 631 } 632 633 if (page) { 634 orphan_blk->blk_addr = cpu_to_le16(index); 635 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 636 orphan_blk->entry_count = cpu_to_le32(nentries); 637 set_page_dirty(page); 638 f2fs_put_page(page, 1); 639 } 640 } 641 642 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 643 block_t cp_addr, unsigned long long *version) 644 { 645 struct page *cp_page_1, *cp_page_2 = NULL; 646 unsigned long blk_size = sbi->blocksize; 647 struct f2fs_checkpoint *cp_block; 648 unsigned long long cur_version = 0, pre_version = 0; 649 size_t crc_offset; 650 __u32 crc = 0; 651 652 /* Read the 1st cp block in this CP pack */ 653 cp_page_1 = get_meta_page(sbi, cp_addr); 654 655 /* get the version number */ 656 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 657 crc_offset = le32_to_cpu(cp_block->checksum_offset); 658 if (crc_offset >= blk_size) 659 goto invalid_cp1; 660 661 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 662 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 663 goto invalid_cp1; 664 665 pre_version = cur_cp_version(cp_block); 666 667 /* Read the 2nd cp block in this CP pack */ 668 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 669 cp_page_2 = get_meta_page(sbi, cp_addr); 670 671 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 672 crc_offset = le32_to_cpu(cp_block->checksum_offset); 673 if (crc_offset >= blk_size) 674 goto invalid_cp2; 675 676 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 677 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 678 goto invalid_cp2; 679 680 cur_version = cur_cp_version(cp_block); 681 682 if (cur_version == pre_version) { 683 *version = cur_version; 684 f2fs_put_page(cp_page_2, 1); 685 return cp_page_1; 686 } 687 invalid_cp2: 688 f2fs_put_page(cp_page_2, 1); 689 invalid_cp1: 690 f2fs_put_page(cp_page_1, 1); 691 return NULL; 692 } 693 694 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 695 { 696 struct f2fs_checkpoint *cp_block; 697 struct f2fs_super_block *fsb = sbi->raw_super; 698 struct page *cp1, *cp2, *cur_page; 699 unsigned long blk_size = sbi->blocksize; 700 unsigned long long cp1_version = 0, cp2_version = 0; 701 unsigned long long cp_start_blk_no; 702 unsigned int cp_blks = 1 + __cp_payload(sbi); 703 block_t cp_blk_no; 704 int i; 705 706 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 707 if (!sbi->ckpt) 708 return -ENOMEM; 709 /* 710 * Finding out valid cp block involves read both 711 * sets( cp pack1 and cp pack 2) 712 */ 713 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 714 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 715 716 /* The second checkpoint pack should start at the next segment */ 717 cp_start_blk_no += ((unsigned long long)1) << 718 le32_to_cpu(fsb->log_blocks_per_seg); 719 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 720 721 if (cp1 && cp2) { 722 if (ver_after(cp2_version, cp1_version)) 723 cur_page = cp2; 724 else 725 cur_page = cp1; 726 } else if (cp1) { 727 cur_page = cp1; 728 } else if (cp2) { 729 cur_page = cp2; 730 } else { 731 goto fail_no_cp; 732 } 733 734 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 735 memcpy(sbi->ckpt, cp_block, blk_size); 736 737 /* Sanity checking of checkpoint */ 738 if (sanity_check_ckpt(sbi)) 739 goto fail_no_cp; 740 741 if (cp_blks <= 1) 742 goto done; 743 744 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 745 if (cur_page == cp2) 746 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 747 748 for (i = 1; i < cp_blks; i++) { 749 void *sit_bitmap_ptr; 750 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 751 752 cur_page = get_meta_page(sbi, cp_blk_no + i); 753 sit_bitmap_ptr = page_address(cur_page); 754 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 755 f2fs_put_page(cur_page, 1); 756 } 757 done: 758 f2fs_put_page(cp1, 1); 759 f2fs_put_page(cp2, 1); 760 return 0; 761 762 fail_no_cp: 763 kfree(sbi->ckpt); 764 return -EINVAL; 765 } 766 767 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 768 { 769 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 770 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 771 772 if (is_inode_flag_set(inode, flag)) 773 return; 774 775 set_inode_flag(inode, flag); 776 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 777 stat_inc_dirty_inode(sbi, type); 778 } 779 780 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 781 { 782 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 783 784 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 785 return; 786 787 list_del_init(&F2FS_I(inode)->dirty_list); 788 clear_inode_flag(inode, flag); 789 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 790 } 791 792 void update_dirty_page(struct inode *inode, struct page *page) 793 { 794 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 795 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 796 797 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 798 !S_ISLNK(inode->i_mode)) 799 return; 800 801 spin_lock(&sbi->inode_lock[type]); 802 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 803 __add_dirty_inode(inode, type); 804 inode_inc_dirty_pages(inode); 805 spin_unlock(&sbi->inode_lock[type]); 806 807 SetPagePrivate(page); 808 f2fs_trace_pid(page); 809 } 810 811 void remove_dirty_inode(struct inode *inode) 812 { 813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 814 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 815 816 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 817 !S_ISLNK(inode->i_mode)) 818 return; 819 820 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 821 return; 822 823 spin_lock(&sbi->inode_lock[type]); 824 __remove_dirty_inode(inode, type); 825 spin_unlock(&sbi->inode_lock[type]); 826 } 827 828 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 829 { 830 struct list_head *head; 831 struct inode *inode; 832 struct f2fs_inode_info *fi; 833 bool is_dir = (type == DIR_INODE); 834 835 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 836 get_pages(sbi, is_dir ? 837 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 838 retry: 839 if (unlikely(f2fs_cp_error(sbi))) 840 return -EIO; 841 842 spin_lock(&sbi->inode_lock[type]); 843 844 head = &sbi->inode_list[type]; 845 if (list_empty(head)) { 846 spin_unlock(&sbi->inode_lock[type]); 847 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 848 get_pages(sbi, is_dir ? 849 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 850 return 0; 851 } 852 fi = list_entry(head->next, struct f2fs_inode_info, dirty_list); 853 inode = igrab(&fi->vfs_inode); 854 spin_unlock(&sbi->inode_lock[type]); 855 if (inode) { 856 filemap_fdatawrite(inode->i_mapping); 857 iput(inode); 858 } else { 859 /* 860 * We should submit bio, since it exists several 861 * wribacking dentry pages in the freeing inode. 862 */ 863 f2fs_submit_merged_bio(sbi, DATA, WRITE); 864 cond_resched(); 865 } 866 goto retry; 867 } 868 869 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 870 { 871 struct list_head *head = &sbi->inode_list[DIRTY_META]; 872 struct inode *inode; 873 struct f2fs_inode_info *fi; 874 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 875 876 while (total--) { 877 if (unlikely(f2fs_cp_error(sbi))) 878 return -EIO; 879 880 spin_lock(&sbi->inode_lock[DIRTY_META]); 881 if (list_empty(head)) { 882 spin_unlock(&sbi->inode_lock[DIRTY_META]); 883 return 0; 884 } 885 fi = list_entry(head->next, struct f2fs_inode_info, 886 gdirty_list); 887 inode = igrab(&fi->vfs_inode); 888 spin_unlock(&sbi->inode_lock[DIRTY_META]); 889 if (inode) { 890 update_inode_page(inode); 891 iput(inode); 892 } 893 }; 894 return 0; 895 } 896 897 /* 898 * Freeze all the FS-operations for checkpoint. 899 */ 900 static int block_operations(struct f2fs_sb_info *sbi) 901 { 902 struct writeback_control wbc = { 903 .sync_mode = WB_SYNC_ALL, 904 .nr_to_write = LONG_MAX, 905 .for_reclaim = 0, 906 }; 907 struct blk_plug plug; 908 int err = 0; 909 910 blk_start_plug(&plug); 911 912 retry_flush_dents: 913 f2fs_lock_all(sbi); 914 /* write all the dirty dentry pages */ 915 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 916 f2fs_unlock_all(sbi); 917 err = sync_dirty_inodes(sbi, DIR_INODE); 918 if (err) 919 goto out; 920 goto retry_flush_dents; 921 } 922 923 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 924 f2fs_unlock_all(sbi); 925 err = f2fs_sync_inode_meta(sbi); 926 if (err) 927 goto out; 928 goto retry_flush_dents; 929 } 930 931 /* 932 * POR: we should ensure that there are no dirty node pages 933 * until finishing nat/sit flush. 934 */ 935 retry_flush_nodes: 936 down_write(&sbi->node_write); 937 938 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 939 up_write(&sbi->node_write); 940 err = sync_node_pages(sbi, &wbc); 941 if (err) { 942 f2fs_unlock_all(sbi); 943 goto out; 944 } 945 goto retry_flush_nodes; 946 } 947 out: 948 blk_finish_plug(&plug); 949 return err; 950 } 951 952 static void unblock_operations(struct f2fs_sb_info *sbi) 953 { 954 up_write(&sbi->node_write); 955 956 build_free_nids(sbi); 957 f2fs_unlock_all(sbi); 958 } 959 960 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 961 { 962 DEFINE_WAIT(wait); 963 964 for (;;) { 965 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 966 967 if (!atomic_read(&sbi->nr_wb_bios)) 968 break; 969 970 io_schedule_timeout(5*HZ); 971 } 972 finish_wait(&sbi->cp_wait, &wait); 973 } 974 975 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 976 { 977 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 978 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 979 struct f2fs_nm_info *nm_i = NM_I(sbi); 980 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 981 nid_t last_nid = nm_i->next_scan_nid; 982 block_t start_blk; 983 unsigned int data_sum_blocks, orphan_blocks; 984 __u32 crc32 = 0; 985 int i; 986 int cp_payload_blks = __cp_payload(sbi); 987 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg); 988 bool invalidate = false; 989 struct super_block *sb = sbi->sb; 990 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 991 u64 kbytes_written; 992 993 /* 994 * This avoids to conduct wrong roll-forward operations and uses 995 * metapages, so should be called prior to sync_meta_pages below. 996 */ 997 if (!test_opt(sbi, LFS) && discard_next_dnode(sbi, discard_blk)) 998 invalidate = true; 999 1000 /* Flush all the NAT/SIT pages */ 1001 while (get_pages(sbi, F2FS_DIRTY_META)) { 1002 sync_meta_pages(sbi, META, LONG_MAX); 1003 if (unlikely(f2fs_cp_error(sbi))) 1004 return -EIO; 1005 } 1006 1007 next_free_nid(sbi, &last_nid); 1008 1009 /* 1010 * modify checkpoint 1011 * version number is already updated 1012 */ 1013 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1014 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1015 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1016 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1017 ckpt->cur_node_segno[i] = 1018 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1019 ckpt->cur_node_blkoff[i] = 1020 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1021 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1022 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1023 } 1024 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1025 ckpt->cur_data_segno[i] = 1026 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1027 ckpt->cur_data_blkoff[i] = 1028 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1029 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1030 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1031 } 1032 1033 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1034 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1035 ckpt->next_free_nid = cpu_to_le32(last_nid); 1036 1037 /* 2 cp + n data seg summary + orphan inode blocks */ 1038 data_sum_blocks = npages_for_summary_flush(sbi, false); 1039 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1040 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1041 else 1042 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1043 1044 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1045 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1046 orphan_blocks); 1047 1048 if (__remain_node_summaries(cpc->reason)) 1049 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1050 cp_payload_blks + data_sum_blocks + 1051 orphan_blocks + NR_CURSEG_NODE_TYPE); 1052 else 1053 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1054 cp_payload_blks + data_sum_blocks + 1055 orphan_blocks); 1056 1057 if (cpc->reason == CP_UMOUNT) 1058 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1059 else 1060 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1061 1062 if (cpc->reason == CP_FASTBOOT) 1063 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1064 else 1065 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1066 1067 if (orphan_num) 1068 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1069 else 1070 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1071 1072 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1073 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1074 1075 /* update SIT/NAT bitmap */ 1076 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1077 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1078 1079 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1080 *((__le32 *)((unsigned char *)ckpt + 1081 le32_to_cpu(ckpt->checksum_offset))) 1082 = cpu_to_le32(crc32); 1083 1084 start_blk = __start_cp_addr(sbi); 1085 1086 /* need to wait for end_io results */ 1087 wait_on_all_pages_writeback(sbi); 1088 if (unlikely(f2fs_cp_error(sbi))) 1089 return -EIO; 1090 1091 /* write out checkpoint buffer at block 0 */ 1092 update_meta_page(sbi, ckpt, start_blk++); 1093 1094 for (i = 1; i < 1 + cp_payload_blks; i++) 1095 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1096 start_blk++); 1097 1098 if (orphan_num) { 1099 write_orphan_inodes(sbi, start_blk); 1100 start_blk += orphan_blocks; 1101 } 1102 1103 write_data_summaries(sbi, start_blk); 1104 start_blk += data_sum_blocks; 1105 1106 /* Record write statistics in the hot node summary */ 1107 kbytes_written = sbi->kbytes_written; 1108 if (sb->s_bdev->bd_part) 1109 kbytes_written += BD_PART_WRITTEN(sbi); 1110 1111 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1112 1113 if (__remain_node_summaries(cpc->reason)) { 1114 write_node_summaries(sbi, start_blk); 1115 start_blk += NR_CURSEG_NODE_TYPE; 1116 } 1117 1118 /* writeout checkpoint block */ 1119 update_meta_page(sbi, ckpt, start_blk); 1120 1121 /* wait for previous submitted node/meta pages writeback */ 1122 wait_on_all_pages_writeback(sbi); 1123 1124 if (unlikely(f2fs_cp_error(sbi))) 1125 return -EIO; 1126 1127 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1128 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1129 1130 /* update user_block_counts */ 1131 sbi->last_valid_block_count = sbi->total_valid_block_count; 1132 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1133 1134 /* Here, we only have one bio having CP pack */ 1135 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1136 1137 /* wait for previous submitted meta pages writeback */ 1138 wait_on_all_pages_writeback(sbi); 1139 1140 /* 1141 * invalidate meta page which is used temporarily for zeroing out 1142 * block at the end of warm node chain. 1143 */ 1144 if (invalidate) 1145 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk, 1146 discard_blk); 1147 1148 release_ino_entry(sbi, false); 1149 1150 if (unlikely(f2fs_cp_error(sbi))) 1151 return -EIO; 1152 1153 clear_prefree_segments(sbi, cpc); 1154 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * We guarantee that this checkpoint procedure will not fail. 1161 */ 1162 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1163 { 1164 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1165 unsigned long long ckpt_ver; 1166 int err = 0; 1167 1168 mutex_lock(&sbi->cp_mutex); 1169 1170 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1171 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1172 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1173 goto out; 1174 if (unlikely(f2fs_cp_error(sbi))) { 1175 err = -EIO; 1176 goto out; 1177 } 1178 if (f2fs_readonly(sbi->sb)) { 1179 err = -EROFS; 1180 goto out; 1181 } 1182 1183 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1184 1185 err = block_operations(sbi); 1186 if (err) 1187 goto out; 1188 1189 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1190 1191 f2fs_flush_merged_bios(sbi); 1192 1193 /* 1194 * update checkpoint pack index 1195 * Increase the version number so that 1196 * SIT entries and seg summaries are written at correct place 1197 */ 1198 ckpt_ver = cur_cp_version(ckpt); 1199 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1200 1201 /* write cached NAT/SIT entries to NAT/SIT area */ 1202 flush_nat_entries(sbi); 1203 flush_sit_entries(sbi, cpc); 1204 1205 /* unlock all the fs_lock[] in do_checkpoint() */ 1206 err = do_checkpoint(sbi, cpc); 1207 1208 unblock_operations(sbi); 1209 stat_inc_cp_count(sbi->stat_info); 1210 1211 if (cpc->reason == CP_RECOVERY) 1212 f2fs_msg(sbi->sb, KERN_NOTICE, 1213 "checkpoint: version = %llx", ckpt_ver); 1214 1215 /* do checkpoint periodically */ 1216 f2fs_update_time(sbi, CP_TIME); 1217 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1218 out: 1219 mutex_unlock(&sbi->cp_mutex); 1220 return err; 1221 } 1222 1223 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1224 { 1225 int i; 1226 1227 for (i = 0; i < MAX_INO_ENTRY; i++) { 1228 struct inode_management *im = &sbi->im[i]; 1229 1230 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1231 spin_lock_init(&im->ino_lock); 1232 INIT_LIST_HEAD(&im->ino_list); 1233 im->ino_num = 0; 1234 } 1235 1236 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1237 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1238 F2FS_ORPHANS_PER_BLOCK; 1239 } 1240 1241 int __init create_checkpoint_caches(void) 1242 { 1243 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1244 sizeof(struct ino_entry)); 1245 if (!ino_entry_slab) 1246 return -ENOMEM; 1247 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1248 sizeof(struct inode_entry)); 1249 if (!inode_entry_slab) { 1250 kmem_cache_destroy(ino_entry_slab); 1251 return -ENOMEM; 1252 } 1253 return 0; 1254 } 1255 1256 void destroy_checkpoint_caches(void) 1257 { 1258 kmem_cache_destroy(ino_entry_slab); 1259 kmem_cache_destroy(inode_entry_slab); 1260 } 1261