1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 /* 30 * We guarantee no failure on the returned page. 31 */ 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 33 { 34 struct address_space *mapping = META_MAPPING(sbi); 35 struct page *page = NULL; 36 repeat: 37 page = grab_cache_page(mapping, index); 38 if (!page) { 39 cond_resched(); 40 goto repeat; 41 } 42 f2fs_wait_on_page_writeback(page, META); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = META_MAPPING(sbi); 53 struct page *page; 54 struct f2fs_io_info fio = { 55 .sbi = sbi, 56 .type = META, 57 .rw = READ_SYNC | REQ_META | REQ_PRIO, 58 .blk_addr = index, 59 .encrypted_page = NULL, 60 }; 61 repeat: 62 page = grab_cache_page(mapping, index); 63 if (!page) { 64 cond_resched(); 65 goto repeat; 66 } 67 if (PageUptodate(page)) 68 goto out; 69 70 fio.page = page; 71 72 if (f2fs_submit_page_bio(&fio)) 73 goto repeat; 74 75 lock_page(page); 76 if (unlikely(page->mapping != mapping)) { 77 f2fs_put_page(page, 1); 78 goto repeat; 79 } 80 out: 81 return page; 82 } 83 84 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 85 { 86 switch (type) { 87 case META_NAT: 88 break; 89 case META_SIT: 90 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 91 return false; 92 break; 93 case META_SSA: 94 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 95 blkaddr < SM_I(sbi)->ssa_blkaddr)) 96 return false; 97 break; 98 case META_CP: 99 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 100 blkaddr < __start_cp_addr(sbi))) 101 return false; 102 break; 103 case META_POR: 104 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 105 blkaddr < MAIN_BLKADDR(sbi))) 106 return false; 107 break; 108 default: 109 BUG(); 110 } 111 112 return true; 113 } 114 115 /* 116 * Readahead CP/NAT/SIT/SSA pages 117 */ 118 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) 119 { 120 block_t prev_blk_addr = 0; 121 struct page *page; 122 block_t blkno = start; 123 struct f2fs_io_info fio = { 124 .sbi = sbi, 125 .type = META, 126 .rw = READ_SYNC | REQ_META | REQ_PRIO, 127 .encrypted_page = NULL, 128 }; 129 130 for (; nrpages-- > 0; blkno++) { 131 132 if (!is_valid_blkaddr(sbi, blkno, type)) 133 goto out; 134 135 switch (type) { 136 case META_NAT: 137 if (unlikely(blkno >= 138 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 139 blkno = 0; 140 /* get nat block addr */ 141 fio.blk_addr = current_nat_addr(sbi, 142 blkno * NAT_ENTRY_PER_BLOCK); 143 break; 144 case META_SIT: 145 /* get sit block addr */ 146 fio.blk_addr = current_sit_addr(sbi, 147 blkno * SIT_ENTRY_PER_BLOCK); 148 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) 149 goto out; 150 prev_blk_addr = fio.blk_addr; 151 break; 152 case META_SSA: 153 case META_CP: 154 case META_POR: 155 fio.blk_addr = blkno; 156 break; 157 default: 158 BUG(); 159 } 160 161 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); 162 if (!page) 163 continue; 164 if (PageUptodate(page)) { 165 f2fs_put_page(page, 1); 166 continue; 167 } 168 169 fio.page = page; 170 f2fs_submit_page_mbio(&fio); 171 f2fs_put_page(page, 0); 172 } 173 out: 174 f2fs_submit_merged_bio(sbi, META, READ); 175 return blkno - start; 176 } 177 178 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 179 { 180 struct page *page; 181 bool readahead = false; 182 183 page = find_get_page(META_MAPPING(sbi), index); 184 if (!page || (page && !PageUptodate(page))) 185 readahead = true; 186 f2fs_put_page(page, 0); 187 188 if (readahead) 189 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); 190 } 191 192 static int f2fs_write_meta_page(struct page *page, 193 struct writeback_control *wbc) 194 { 195 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 196 197 trace_f2fs_writepage(page, META); 198 199 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 200 goto redirty_out; 201 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 202 goto redirty_out; 203 if (unlikely(f2fs_cp_error(sbi))) 204 goto redirty_out; 205 206 f2fs_wait_on_page_writeback(page, META); 207 write_meta_page(sbi, page); 208 dec_page_count(sbi, F2FS_DIRTY_META); 209 unlock_page(page); 210 211 if (wbc->for_reclaim) 212 f2fs_submit_merged_bio(sbi, META, WRITE); 213 return 0; 214 215 redirty_out: 216 redirty_page_for_writepage(wbc, page); 217 return AOP_WRITEPAGE_ACTIVATE; 218 } 219 220 static int f2fs_write_meta_pages(struct address_space *mapping, 221 struct writeback_control *wbc) 222 { 223 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 224 long diff, written; 225 226 trace_f2fs_writepages(mapping->host, wbc, META); 227 228 /* collect a number of dirty meta pages and write together */ 229 if (wbc->for_kupdate || 230 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 231 goto skip_write; 232 233 /* if mounting is failed, skip writing node pages */ 234 mutex_lock(&sbi->cp_mutex); 235 diff = nr_pages_to_write(sbi, META, wbc); 236 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 237 mutex_unlock(&sbi->cp_mutex); 238 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 239 return 0; 240 241 skip_write: 242 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 243 return 0; 244 } 245 246 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 247 long nr_to_write) 248 { 249 struct address_space *mapping = META_MAPPING(sbi); 250 pgoff_t index = 0, end = LONG_MAX; 251 struct pagevec pvec; 252 long nwritten = 0; 253 struct writeback_control wbc = { 254 .for_reclaim = 0, 255 }; 256 257 pagevec_init(&pvec, 0); 258 259 while (index <= end) { 260 int i, nr_pages; 261 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 262 PAGECACHE_TAG_DIRTY, 263 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 264 if (unlikely(nr_pages == 0)) 265 break; 266 267 for (i = 0; i < nr_pages; i++) { 268 struct page *page = pvec.pages[i]; 269 270 lock_page(page); 271 272 if (unlikely(page->mapping != mapping)) { 273 continue_unlock: 274 unlock_page(page); 275 continue; 276 } 277 if (!PageDirty(page)) { 278 /* someone wrote it for us */ 279 goto continue_unlock; 280 } 281 282 if (!clear_page_dirty_for_io(page)) 283 goto continue_unlock; 284 285 if (mapping->a_ops->writepage(page, &wbc)) { 286 unlock_page(page); 287 break; 288 } 289 nwritten++; 290 if (unlikely(nwritten >= nr_to_write)) 291 break; 292 } 293 pagevec_release(&pvec); 294 cond_resched(); 295 } 296 297 if (nwritten) 298 f2fs_submit_merged_bio(sbi, type, WRITE); 299 300 return nwritten; 301 } 302 303 static int f2fs_set_meta_page_dirty(struct page *page) 304 { 305 trace_f2fs_set_page_dirty(page, META); 306 307 SetPageUptodate(page); 308 if (!PageDirty(page)) { 309 __set_page_dirty_nobuffers(page); 310 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 311 SetPagePrivate(page); 312 f2fs_trace_pid(page); 313 return 1; 314 } 315 return 0; 316 } 317 318 const struct address_space_operations f2fs_meta_aops = { 319 .writepage = f2fs_write_meta_page, 320 .writepages = f2fs_write_meta_pages, 321 .set_page_dirty = f2fs_set_meta_page_dirty, 322 .invalidatepage = f2fs_invalidate_page, 323 .releasepage = f2fs_release_page, 324 }; 325 326 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 327 { 328 struct inode_management *im = &sbi->im[type]; 329 struct ino_entry *e; 330 retry: 331 if (radix_tree_preload(GFP_NOFS)) { 332 cond_resched(); 333 goto retry; 334 } 335 336 spin_lock(&im->ino_lock); 337 338 e = radix_tree_lookup(&im->ino_root, ino); 339 if (!e) { 340 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 341 if (!e) { 342 spin_unlock(&im->ino_lock); 343 radix_tree_preload_end(); 344 goto retry; 345 } 346 if (radix_tree_insert(&im->ino_root, ino, e)) { 347 spin_unlock(&im->ino_lock); 348 kmem_cache_free(ino_entry_slab, e); 349 radix_tree_preload_end(); 350 goto retry; 351 } 352 memset(e, 0, sizeof(struct ino_entry)); 353 e->ino = ino; 354 355 list_add_tail(&e->list, &im->ino_list); 356 if (type != ORPHAN_INO) 357 im->ino_num++; 358 } 359 spin_unlock(&im->ino_lock); 360 radix_tree_preload_end(); 361 } 362 363 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 364 { 365 struct inode_management *im = &sbi->im[type]; 366 struct ino_entry *e; 367 368 spin_lock(&im->ino_lock); 369 e = radix_tree_lookup(&im->ino_root, ino); 370 if (e) { 371 list_del(&e->list); 372 radix_tree_delete(&im->ino_root, ino); 373 im->ino_num--; 374 spin_unlock(&im->ino_lock); 375 kmem_cache_free(ino_entry_slab, e); 376 return; 377 } 378 spin_unlock(&im->ino_lock); 379 } 380 381 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 382 { 383 /* add new dirty ino entry into list */ 384 __add_ino_entry(sbi, ino, type); 385 } 386 387 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 388 { 389 /* remove dirty ino entry from list */ 390 __remove_ino_entry(sbi, ino, type); 391 } 392 393 /* mode should be APPEND_INO or UPDATE_INO */ 394 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 395 { 396 struct inode_management *im = &sbi->im[mode]; 397 struct ino_entry *e; 398 399 spin_lock(&im->ino_lock); 400 e = radix_tree_lookup(&im->ino_root, ino); 401 spin_unlock(&im->ino_lock); 402 return e ? true : false; 403 } 404 405 void release_dirty_inode(struct f2fs_sb_info *sbi) 406 { 407 struct ino_entry *e, *tmp; 408 int i; 409 410 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 411 struct inode_management *im = &sbi->im[i]; 412 413 spin_lock(&im->ino_lock); 414 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 415 list_del(&e->list); 416 radix_tree_delete(&im->ino_root, e->ino); 417 kmem_cache_free(ino_entry_slab, e); 418 im->ino_num--; 419 } 420 spin_unlock(&im->ino_lock); 421 } 422 } 423 424 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 425 { 426 struct inode_management *im = &sbi->im[ORPHAN_INO]; 427 int err = 0; 428 429 spin_lock(&im->ino_lock); 430 if (unlikely(im->ino_num >= sbi->max_orphans)) 431 err = -ENOSPC; 432 else 433 im->ino_num++; 434 spin_unlock(&im->ino_lock); 435 436 return err; 437 } 438 439 void release_orphan_inode(struct f2fs_sb_info *sbi) 440 { 441 struct inode_management *im = &sbi->im[ORPHAN_INO]; 442 443 spin_lock(&im->ino_lock); 444 f2fs_bug_on(sbi, im->ino_num == 0); 445 im->ino_num--; 446 spin_unlock(&im->ino_lock); 447 } 448 449 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 450 { 451 /* add new orphan ino entry into list */ 452 __add_ino_entry(sbi, ino, ORPHAN_INO); 453 } 454 455 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 456 { 457 /* remove orphan entry from orphan list */ 458 __remove_ino_entry(sbi, ino, ORPHAN_INO); 459 } 460 461 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 462 { 463 struct inode *inode = f2fs_iget(sbi->sb, ino); 464 f2fs_bug_on(sbi, IS_ERR(inode)); 465 clear_nlink(inode); 466 467 /* truncate all the data during iput */ 468 iput(inode); 469 } 470 471 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 472 { 473 block_t start_blk, orphan_blocks, i, j; 474 475 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 476 return; 477 478 set_sbi_flag(sbi, SBI_POR_DOING); 479 480 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 481 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 482 483 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP); 484 485 for (i = 0; i < orphan_blocks; i++) { 486 struct page *page = get_meta_page(sbi, start_blk + i); 487 struct f2fs_orphan_block *orphan_blk; 488 489 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 490 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 491 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 492 recover_orphan_inode(sbi, ino); 493 } 494 f2fs_put_page(page, 1); 495 } 496 /* clear Orphan Flag */ 497 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 498 clear_sbi_flag(sbi, SBI_POR_DOING); 499 return; 500 } 501 502 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 503 { 504 struct list_head *head; 505 struct f2fs_orphan_block *orphan_blk = NULL; 506 unsigned int nentries = 0; 507 unsigned short index; 508 unsigned short orphan_blocks; 509 struct page *page = NULL; 510 struct ino_entry *orphan = NULL; 511 struct inode_management *im = &sbi->im[ORPHAN_INO]; 512 513 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 514 515 for (index = 0; index < orphan_blocks; index++) 516 grab_meta_page(sbi, start_blk + index); 517 518 index = 1; 519 520 /* 521 * we don't need to do spin_lock(&im->ino_lock) here, since all the 522 * orphan inode operations are covered under f2fs_lock_op(). 523 * And, spin_lock should be avoided due to page operations below. 524 */ 525 head = &im->ino_list; 526 527 /* loop for each orphan inode entry and write them in Jornal block */ 528 list_for_each_entry(orphan, head, list) { 529 if (!page) { 530 page = find_get_page(META_MAPPING(sbi), start_blk++); 531 f2fs_bug_on(sbi, !page); 532 orphan_blk = 533 (struct f2fs_orphan_block *)page_address(page); 534 memset(orphan_blk, 0, sizeof(*orphan_blk)); 535 f2fs_put_page(page, 0); 536 } 537 538 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 539 540 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 541 /* 542 * an orphan block is full of 1020 entries, 543 * then we need to flush current orphan blocks 544 * and bring another one in memory 545 */ 546 orphan_blk->blk_addr = cpu_to_le16(index); 547 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 548 orphan_blk->entry_count = cpu_to_le32(nentries); 549 set_page_dirty(page); 550 f2fs_put_page(page, 1); 551 index++; 552 nentries = 0; 553 page = NULL; 554 } 555 } 556 557 if (page) { 558 orphan_blk->blk_addr = cpu_to_le16(index); 559 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 560 orphan_blk->entry_count = cpu_to_le32(nentries); 561 set_page_dirty(page); 562 f2fs_put_page(page, 1); 563 } 564 } 565 566 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 567 block_t cp_addr, unsigned long long *version) 568 { 569 struct page *cp_page_1, *cp_page_2 = NULL; 570 unsigned long blk_size = sbi->blocksize; 571 struct f2fs_checkpoint *cp_block; 572 unsigned long long cur_version = 0, pre_version = 0; 573 size_t crc_offset; 574 __u32 crc = 0; 575 576 /* Read the 1st cp block in this CP pack */ 577 cp_page_1 = get_meta_page(sbi, cp_addr); 578 579 /* get the version number */ 580 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 581 crc_offset = le32_to_cpu(cp_block->checksum_offset); 582 if (crc_offset >= blk_size) 583 goto invalid_cp1; 584 585 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 586 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 587 goto invalid_cp1; 588 589 pre_version = cur_cp_version(cp_block); 590 591 /* Read the 2nd cp block in this CP pack */ 592 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 593 cp_page_2 = get_meta_page(sbi, cp_addr); 594 595 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 596 crc_offset = le32_to_cpu(cp_block->checksum_offset); 597 if (crc_offset >= blk_size) 598 goto invalid_cp2; 599 600 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 601 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 602 goto invalid_cp2; 603 604 cur_version = cur_cp_version(cp_block); 605 606 if (cur_version == pre_version) { 607 *version = cur_version; 608 f2fs_put_page(cp_page_2, 1); 609 return cp_page_1; 610 } 611 invalid_cp2: 612 f2fs_put_page(cp_page_2, 1); 613 invalid_cp1: 614 f2fs_put_page(cp_page_1, 1); 615 return NULL; 616 } 617 618 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 619 { 620 struct f2fs_checkpoint *cp_block; 621 struct f2fs_super_block *fsb = sbi->raw_super; 622 struct page *cp1, *cp2, *cur_page; 623 unsigned long blk_size = sbi->blocksize; 624 unsigned long long cp1_version = 0, cp2_version = 0; 625 unsigned long long cp_start_blk_no; 626 unsigned int cp_blks = 1 + __cp_payload(sbi); 627 block_t cp_blk_no; 628 int i; 629 630 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 631 if (!sbi->ckpt) 632 return -ENOMEM; 633 /* 634 * Finding out valid cp block involves read both 635 * sets( cp pack1 and cp pack 2) 636 */ 637 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 638 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 639 640 /* The second checkpoint pack should start at the next segment */ 641 cp_start_blk_no += ((unsigned long long)1) << 642 le32_to_cpu(fsb->log_blocks_per_seg); 643 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 644 645 if (cp1 && cp2) { 646 if (ver_after(cp2_version, cp1_version)) 647 cur_page = cp2; 648 else 649 cur_page = cp1; 650 } else if (cp1) { 651 cur_page = cp1; 652 } else if (cp2) { 653 cur_page = cp2; 654 } else { 655 goto fail_no_cp; 656 } 657 658 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 659 memcpy(sbi->ckpt, cp_block, blk_size); 660 661 if (cp_blks <= 1) 662 goto done; 663 664 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 665 if (cur_page == cp2) 666 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 667 668 for (i = 1; i < cp_blks; i++) { 669 void *sit_bitmap_ptr; 670 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 671 672 cur_page = get_meta_page(sbi, cp_blk_no + i); 673 sit_bitmap_ptr = page_address(cur_page); 674 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 675 f2fs_put_page(cur_page, 1); 676 } 677 done: 678 f2fs_put_page(cp1, 1); 679 f2fs_put_page(cp2, 1); 680 return 0; 681 682 fail_no_cp: 683 kfree(sbi->ckpt); 684 return -EINVAL; 685 } 686 687 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) 688 { 689 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 690 691 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 692 return -EEXIST; 693 694 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 695 F2FS_I(inode)->dirty_dir = new; 696 list_add_tail(&new->list, &sbi->dir_inode_list); 697 stat_inc_dirty_dir(sbi); 698 return 0; 699 } 700 701 void update_dirty_page(struct inode *inode, struct page *page) 702 { 703 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 704 struct inode_entry *new; 705 int ret = 0; 706 707 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 708 return; 709 710 if (!S_ISDIR(inode->i_mode)) { 711 inode_inc_dirty_pages(inode); 712 goto out; 713 } 714 715 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 716 new->inode = inode; 717 INIT_LIST_HEAD(&new->list); 718 719 spin_lock(&sbi->dir_inode_lock); 720 ret = __add_dirty_inode(inode, new); 721 inode_inc_dirty_pages(inode); 722 spin_unlock(&sbi->dir_inode_lock); 723 724 if (ret) 725 kmem_cache_free(inode_entry_slab, new); 726 out: 727 SetPagePrivate(page); 728 f2fs_trace_pid(page); 729 } 730 731 void add_dirty_dir_inode(struct inode *inode) 732 { 733 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 734 struct inode_entry *new = 735 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 736 int ret = 0; 737 738 new->inode = inode; 739 INIT_LIST_HEAD(&new->list); 740 741 spin_lock(&sbi->dir_inode_lock); 742 ret = __add_dirty_inode(inode, new); 743 spin_unlock(&sbi->dir_inode_lock); 744 745 if (ret) 746 kmem_cache_free(inode_entry_slab, new); 747 } 748 749 void remove_dirty_dir_inode(struct inode *inode) 750 { 751 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 752 struct inode_entry *entry; 753 754 if (!S_ISDIR(inode->i_mode)) 755 return; 756 757 spin_lock(&sbi->dir_inode_lock); 758 if (get_dirty_pages(inode) || 759 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 760 spin_unlock(&sbi->dir_inode_lock); 761 return; 762 } 763 764 entry = F2FS_I(inode)->dirty_dir; 765 list_del(&entry->list); 766 F2FS_I(inode)->dirty_dir = NULL; 767 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 768 stat_dec_dirty_dir(sbi); 769 spin_unlock(&sbi->dir_inode_lock); 770 kmem_cache_free(inode_entry_slab, entry); 771 772 /* Only from the recovery routine */ 773 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 774 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 775 iput(inode); 776 } 777 } 778 779 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 780 { 781 struct list_head *head; 782 struct inode_entry *entry; 783 struct inode *inode; 784 retry: 785 if (unlikely(f2fs_cp_error(sbi))) 786 return; 787 788 spin_lock(&sbi->dir_inode_lock); 789 790 head = &sbi->dir_inode_list; 791 if (list_empty(head)) { 792 spin_unlock(&sbi->dir_inode_lock); 793 return; 794 } 795 entry = list_entry(head->next, struct inode_entry, list); 796 inode = igrab(entry->inode); 797 spin_unlock(&sbi->dir_inode_lock); 798 if (inode) { 799 filemap_fdatawrite(inode->i_mapping); 800 iput(inode); 801 } else { 802 /* 803 * We should submit bio, since it exists several 804 * wribacking dentry pages in the freeing inode. 805 */ 806 f2fs_submit_merged_bio(sbi, DATA, WRITE); 807 cond_resched(); 808 } 809 goto retry; 810 } 811 812 /* 813 * Freeze all the FS-operations for checkpoint. 814 */ 815 static int block_operations(struct f2fs_sb_info *sbi) 816 { 817 struct writeback_control wbc = { 818 .sync_mode = WB_SYNC_ALL, 819 .nr_to_write = LONG_MAX, 820 .for_reclaim = 0, 821 }; 822 struct blk_plug plug; 823 int err = 0; 824 825 blk_start_plug(&plug); 826 827 retry_flush_dents: 828 f2fs_lock_all(sbi); 829 /* write all the dirty dentry pages */ 830 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 831 f2fs_unlock_all(sbi); 832 sync_dirty_dir_inodes(sbi); 833 if (unlikely(f2fs_cp_error(sbi))) { 834 err = -EIO; 835 goto out; 836 } 837 goto retry_flush_dents; 838 } 839 840 /* 841 * POR: we should ensure that there are no dirty node pages 842 * until finishing nat/sit flush. 843 */ 844 retry_flush_nodes: 845 down_write(&sbi->node_write); 846 847 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 848 up_write(&sbi->node_write); 849 sync_node_pages(sbi, 0, &wbc); 850 if (unlikely(f2fs_cp_error(sbi))) { 851 f2fs_unlock_all(sbi); 852 err = -EIO; 853 goto out; 854 } 855 goto retry_flush_nodes; 856 } 857 out: 858 blk_finish_plug(&plug); 859 return err; 860 } 861 862 static void unblock_operations(struct f2fs_sb_info *sbi) 863 { 864 up_write(&sbi->node_write); 865 f2fs_unlock_all(sbi); 866 } 867 868 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 869 { 870 DEFINE_WAIT(wait); 871 872 for (;;) { 873 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 874 875 if (!get_pages(sbi, F2FS_WRITEBACK)) 876 break; 877 878 io_schedule(); 879 } 880 finish_wait(&sbi->cp_wait, &wait); 881 } 882 883 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 884 { 885 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 886 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 887 struct f2fs_nm_info *nm_i = NM_I(sbi); 888 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 889 nid_t last_nid = nm_i->next_scan_nid; 890 block_t start_blk; 891 unsigned int data_sum_blocks, orphan_blocks; 892 __u32 crc32 = 0; 893 int i; 894 int cp_payload_blks = __cp_payload(sbi); 895 896 /* 897 * This avoids to conduct wrong roll-forward operations and uses 898 * metapages, so should be called prior to sync_meta_pages below. 899 */ 900 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 901 902 /* Flush all the NAT/SIT pages */ 903 while (get_pages(sbi, F2FS_DIRTY_META)) { 904 sync_meta_pages(sbi, META, LONG_MAX); 905 if (unlikely(f2fs_cp_error(sbi))) 906 return; 907 } 908 909 next_free_nid(sbi, &last_nid); 910 911 /* 912 * modify checkpoint 913 * version number is already updated 914 */ 915 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 916 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 917 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 918 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 919 ckpt->cur_node_segno[i] = 920 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 921 ckpt->cur_node_blkoff[i] = 922 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 923 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 924 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 925 } 926 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 927 ckpt->cur_data_segno[i] = 928 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 929 ckpt->cur_data_blkoff[i] = 930 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 931 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 932 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 933 } 934 935 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 936 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 937 ckpt->next_free_nid = cpu_to_le32(last_nid); 938 939 /* 2 cp + n data seg summary + orphan inode blocks */ 940 data_sum_blocks = npages_for_summary_flush(sbi, false); 941 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 942 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 943 else 944 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 945 946 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 947 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 948 orphan_blocks); 949 950 if (__remain_node_summaries(cpc->reason)) 951 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 952 cp_payload_blks + data_sum_blocks + 953 orphan_blocks + NR_CURSEG_NODE_TYPE); 954 else 955 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 956 cp_payload_blks + data_sum_blocks + 957 orphan_blocks); 958 959 if (cpc->reason == CP_UMOUNT) 960 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 961 else 962 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 963 964 if (cpc->reason == CP_FASTBOOT) 965 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 966 else 967 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 968 969 if (orphan_num) 970 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 971 else 972 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 973 974 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 975 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 976 977 /* update SIT/NAT bitmap */ 978 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 979 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 980 981 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 982 *((__le32 *)((unsigned char *)ckpt + 983 le32_to_cpu(ckpt->checksum_offset))) 984 = cpu_to_le32(crc32); 985 986 start_blk = __start_cp_addr(sbi); 987 988 /* write out checkpoint buffer at block 0 */ 989 update_meta_page(sbi, ckpt, start_blk++); 990 991 for (i = 1; i < 1 + cp_payload_blks; i++) 992 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 993 start_blk++); 994 995 if (orphan_num) { 996 write_orphan_inodes(sbi, start_blk); 997 start_blk += orphan_blocks; 998 } 999 1000 write_data_summaries(sbi, start_blk); 1001 start_blk += data_sum_blocks; 1002 if (__remain_node_summaries(cpc->reason)) { 1003 write_node_summaries(sbi, start_blk); 1004 start_blk += NR_CURSEG_NODE_TYPE; 1005 } 1006 1007 /* writeout checkpoint block */ 1008 update_meta_page(sbi, ckpt, start_blk); 1009 1010 /* wait for previous submitted node/meta pages writeback */ 1011 wait_on_all_pages_writeback(sbi); 1012 1013 if (unlikely(f2fs_cp_error(sbi))) 1014 return; 1015 1016 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 1017 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 1018 1019 /* update user_block_counts */ 1020 sbi->last_valid_block_count = sbi->total_valid_block_count; 1021 sbi->alloc_valid_block_count = 0; 1022 1023 /* Here, we only have one bio having CP pack */ 1024 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1025 1026 /* wait for previous submitted meta pages writeback */ 1027 wait_on_all_pages_writeback(sbi); 1028 1029 release_dirty_inode(sbi); 1030 1031 if (unlikely(f2fs_cp_error(sbi))) 1032 return; 1033 1034 clear_prefree_segments(sbi, cpc); 1035 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1036 } 1037 1038 /* 1039 * We guarantee that this checkpoint procedure will not fail. 1040 */ 1041 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1042 { 1043 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1044 unsigned long long ckpt_ver; 1045 1046 mutex_lock(&sbi->cp_mutex); 1047 1048 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1049 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1050 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1051 goto out; 1052 if (unlikely(f2fs_cp_error(sbi))) 1053 goto out; 1054 if (f2fs_readonly(sbi->sb)) 1055 goto out; 1056 1057 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1058 1059 if (block_operations(sbi)) 1060 goto out; 1061 1062 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1063 1064 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1065 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1066 f2fs_submit_merged_bio(sbi, META, WRITE); 1067 1068 /* 1069 * update checkpoint pack index 1070 * Increase the version number so that 1071 * SIT entries and seg summaries are written at correct place 1072 */ 1073 ckpt_ver = cur_cp_version(ckpt); 1074 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1075 1076 /* write cached NAT/SIT entries to NAT/SIT area */ 1077 flush_nat_entries(sbi); 1078 flush_sit_entries(sbi, cpc); 1079 1080 /* unlock all the fs_lock[] in do_checkpoint() */ 1081 do_checkpoint(sbi, cpc); 1082 1083 unblock_operations(sbi); 1084 stat_inc_cp_count(sbi->stat_info); 1085 1086 if (cpc->reason == CP_RECOVERY) 1087 f2fs_msg(sbi->sb, KERN_NOTICE, 1088 "checkpoint: version = %llx", ckpt_ver); 1089 out: 1090 mutex_unlock(&sbi->cp_mutex); 1091 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1092 } 1093 1094 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1095 { 1096 int i; 1097 1098 for (i = 0; i < MAX_INO_ENTRY; i++) { 1099 struct inode_management *im = &sbi->im[i]; 1100 1101 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1102 spin_lock_init(&im->ino_lock); 1103 INIT_LIST_HEAD(&im->ino_list); 1104 im->ino_num = 0; 1105 } 1106 1107 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1108 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1109 F2FS_ORPHANS_PER_BLOCK; 1110 } 1111 1112 int __init create_checkpoint_caches(void) 1113 { 1114 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1115 sizeof(struct ino_entry)); 1116 if (!ino_entry_slab) 1117 return -ENOMEM; 1118 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1119 sizeof(struct inode_entry)); 1120 if (!inode_entry_slab) { 1121 kmem_cache_destroy(ino_entry_slab); 1122 return -ENOMEM; 1123 } 1124 return 0; 1125 } 1126 1127 void destroy_checkpoint_caches(void) 1128 { 1129 kmem_cache_destroy(ino_entry_slab); 1130 kmem_cache_destroy(inode_entry_slab); 1131 } 1132