xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision b6bec26c)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 
24 static struct kmem_cache *orphan_entry_slab;
25 static struct kmem_cache *inode_entry_slab;
26 
27 /*
28  * We guarantee no failure on the returned page.
29  */
30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
31 {
32 	struct address_space *mapping = sbi->meta_inode->i_mapping;
33 	struct page *page = NULL;
34 repeat:
35 	page = grab_cache_page(mapping, index);
36 	if (!page) {
37 		cond_resched();
38 		goto repeat;
39 	}
40 
41 	/* We wait writeback only inside grab_meta_page() */
42 	wait_on_page_writeback(page);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 	struct address_space *mapping = sbi->meta_inode->i_mapping;
53 	struct page *page;
54 repeat:
55 	page = grab_cache_page(mapping, index);
56 	if (!page) {
57 		cond_resched();
58 		goto repeat;
59 	}
60 	if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
61 		f2fs_put_page(page, 1);
62 		goto repeat;
63 	}
64 	mark_page_accessed(page);
65 
66 	/* We do not allow returning an errorneous page */
67 	return page;
68 }
69 
70 static int f2fs_write_meta_page(struct page *page,
71 				struct writeback_control *wbc)
72 {
73 	struct inode *inode = page->mapping->host;
74 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
75 	int err;
76 
77 	wait_on_page_writeback(page);
78 
79 	err = write_meta_page(sbi, page, wbc);
80 	if (err) {
81 		wbc->pages_skipped++;
82 		set_page_dirty(page);
83 	}
84 
85 	dec_page_count(sbi, F2FS_DIRTY_META);
86 
87 	/* In this case, we should not unlock this page */
88 	if (err != AOP_WRITEPAGE_ACTIVATE)
89 		unlock_page(page);
90 	return err;
91 }
92 
93 static int f2fs_write_meta_pages(struct address_space *mapping,
94 				struct writeback_control *wbc)
95 {
96 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
97 	struct block_device *bdev = sbi->sb->s_bdev;
98 	long written;
99 
100 	if (wbc->for_kupdate)
101 		return 0;
102 
103 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
104 		return 0;
105 
106 	/* if mounting is failed, skip writing node pages */
107 	mutex_lock(&sbi->cp_mutex);
108 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
109 	mutex_unlock(&sbi->cp_mutex);
110 	wbc->nr_to_write -= written;
111 	return 0;
112 }
113 
114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
115 						long nr_to_write)
116 {
117 	struct address_space *mapping = sbi->meta_inode->i_mapping;
118 	pgoff_t index = 0, end = LONG_MAX;
119 	struct pagevec pvec;
120 	long nwritten = 0;
121 	struct writeback_control wbc = {
122 		.for_reclaim = 0,
123 	};
124 
125 	pagevec_init(&pvec, 0);
126 
127 	while (index <= end) {
128 		int i, nr_pages;
129 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
130 				PAGECACHE_TAG_DIRTY,
131 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
132 		if (nr_pages == 0)
133 			break;
134 
135 		for (i = 0; i < nr_pages; i++) {
136 			struct page *page = pvec.pages[i];
137 			lock_page(page);
138 			BUG_ON(page->mapping != mapping);
139 			BUG_ON(!PageDirty(page));
140 			clear_page_dirty_for_io(page);
141 			f2fs_write_meta_page(page, &wbc);
142 			if (nwritten++ >= nr_to_write)
143 				break;
144 		}
145 		pagevec_release(&pvec);
146 		cond_resched();
147 	}
148 
149 	if (nwritten)
150 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
151 
152 	return nwritten;
153 }
154 
155 static int f2fs_set_meta_page_dirty(struct page *page)
156 {
157 	struct address_space *mapping = page->mapping;
158 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
159 
160 	SetPageUptodate(page);
161 	if (!PageDirty(page)) {
162 		__set_page_dirty_nobuffers(page);
163 		inc_page_count(sbi, F2FS_DIRTY_META);
164 		F2FS_SET_SB_DIRT(sbi);
165 		return 1;
166 	}
167 	return 0;
168 }
169 
170 const struct address_space_operations f2fs_meta_aops = {
171 	.writepage	= f2fs_write_meta_page,
172 	.writepages	= f2fs_write_meta_pages,
173 	.set_page_dirty	= f2fs_set_meta_page_dirty,
174 };
175 
176 int check_orphan_space(struct f2fs_sb_info *sbi)
177 {
178 	unsigned int max_orphans;
179 	int err = 0;
180 
181 	/*
182 	 * considering 512 blocks in a segment 5 blocks are needed for cp
183 	 * and log segment summaries. Remaining blocks are used to keep
184 	 * orphan entries with the limitation one reserved segment
185 	 * for cp pack we can have max 1020*507 orphan entries
186 	 */
187 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
188 	mutex_lock(&sbi->orphan_inode_mutex);
189 	if (sbi->n_orphans >= max_orphans)
190 		err = -ENOSPC;
191 	mutex_unlock(&sbi->orphan_inode_mutex);
192 	return err;
193 }
194 
195 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
196 {
197 	struct list_head *head, *this;
198 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
199 
200 	mutex_lock(&sbi->orphan_inode_mutex);
201 	head = &sbi->orphan_inode_list;
202 	list_for_each(this, head) {
203 		orphan = list_entry(this, struct orphan_inode_entry, list);
204 		if (orphan->ino == ino)
205 			goto out;
206 		if (orphan->ino > ino)
207 			break;
208 		orphan = NULL;
209 	}
210 retry:
211 	new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
212 	if (!new) {
213 		cond_resched();
214 		goto retry;
215 	}
216 	new->ino = ino;
217 
218 	/* add new_oentry into list which is sorted by inode number */
219 	if (orphan) {
220 		struct orphan_inode_entry *prev;
221 
222 		/* get previous entry */
223 		prev = list_entry(orphan->list.prev, typeof(*prev), list);
224 		if (&prev->list != head)
225 			/* insert new orphan inode entry */
226 			list_add(&new->list, &prev->list);
227 		else
228 			list_add(&new->list, head);
229 	} else {
230 		list_add_tail(&new->list, head);
231 	}
232 	sbi->n_orphans++;
233 out:
234 	mutex_unlock(&sbi->orphan_inode_mutex);
235 }
236 
237 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
238 {
239 	struct list_head *this, *next, *head;
240 	struct orphan_inode_entry *orphan;
241 
242 	mutex_lock(&sbi->orphan_inode_mutex);
243 	head = &sbi->orphan_inode_list;
244 	list_for_each_safe(this, next, head) {
245 		orphan = list_entry(this, struct orphan_inode_entry, list);
246 		if (orphan->ino == ino) {
247 			list_del(&orphan->list);
248 			kmem_cache_free(orphan_entry_slab, orphan);
249 			sbi->n_orphans--;
250 			break;
251 		}
252 	}
253 	mutex_unlock(&sbi->orphan_inode_mutex);
254 }
255 
256 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
257 {
258 	struct inode *inode = f2fs_iget(sbi->sb, ino);
259 	BUG_ON(IS_ERR(inode));
260 	clear_nlink(inode);
261 
262 	/* truncate all the data during iput */
263 	iput(inode);
264 }
265 
266 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
267 {
268 	block_t start_blk, orphan_blkaddr, i, j;
269 
270 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
271 		return 0;
272 
273 	sbi->por_doing = 1;
274 	start_blk = __start_cp_addr(sbi) + 1;
275 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
276 
277 	for (i = 0; i < orphan_blkaddr; i++) {
278 		struct page *page = get_meta_page(sbi, start_blk + i);
279 		struct f2fs_orphan_block *orphan_blk;
280 
281 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
282 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
283 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
284 			recover_orphan_inode(sbi, ino);
285 		}
286 		f2fs_put_page(page, 1);
287 	}
288 	/* clear Orphan Flag */
289 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
290 	sbi->por_doing = 0;
291 	return 0;
292 }
293 
294 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
295 {
296 	struct list_head *head, *this, *next;
297 	struct f2fs_orphan_block *orphan_blk = NULL;
298 	struct page *page = NULL;
299 	unsigned int nentries = 0;
300 	unsigned short index = 1;
301 	unsigned short orphan_blocks;
302 
303 	orphan_blocks = (unsigned short)((sbi->n_orphans +
304 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
305 
306 	mutex_lock(&sbi->orphan_inode_mutex);
307 	head = &sbi->orphan_inode_list;
308 
309 	/* loop for each orphan inode entry and write them in Jornal block */
310 	list_for_each_safe(this, next, head) {
311 		struct orphan_inode_entry *orphan;
312 
313 		orphan = list_entry(this, struct orphan_inode_entry, list);
314 
315 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
316 			/*
317 			 * an orphan block is full of 1020 entries,
318 			 * then we need to flush current orphan blocks
319 			 * and bring another one in memory
320 			 */
321 			orphan_blk->blk_addr = cpu_to_le16(index);
322 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
323 			orphan_blk->entry_count = cpu_to_le32(nentries);
324 			set_page_dirty(page);
325 			f2fs_put_page(page, 1);
326 			index++;
327 			start_blk++;
328 			nentries = 0;
329 			page = NULL;
330 		}
331 		if (page)
332 			goto page_exist;
333 
334 		page = grab_meta_page(sbi, start_blk);
335 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
336 		memset(orphan_blk, 0, sizeof(*orphan_blk));
337 page_exist:
338 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
339 	}
340 	if (!page)
341 		goto end;
342 
343 	orphan_blk->blk_addr = cpu_to_le16(index);
344 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
345 	orphan_blk->entry_count = cpu_to_le32(nentries);
346 	set_page_dirty(page);
347 	f2fs_put_page(page, 1);
348 end:
349 	mutex_unlock(&sbi->orphan_inode_mutex);
350 }
351 
352 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
353 				block_t cp_addr, unsigned long long *version)
354 {
355 	struct page *cp_page_1, *cp_page_2 = NULL;
356 	unsigned long blk_size = sbi->blocksize;
357 	struct f2fs_checkpoint *cp_block;
358 	unsigned long long cur_version = 0, pre_version = 0;
359 	unsigned int crc = 0;
360 	size_t crc_offset;
361 
362 	/* Read the 1st cp block in this CP pack */
363 	cp_page_1 = get_meta_page(sbi, cp_addr);
364 
365 	/* get the version number */
366 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
367 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
368 	if (crc_offset >= blk_size)
369 		goto invalid_cp1;
370 
371 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
372 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
373 		goto invalid_cp1;
374 
375 	pre_version = le64_to_cpu(cp_block->checkpoint_ver);
376 
377 	/* Read the 2nd cp block in this CP pack */
378 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
379 	cp_page_2 = get_meta_page(sbi, cp_addr);
380 
381 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
382 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
383 	if (crc_offset >= blk_size)
384 		goto invalid_cp2;
385 
386 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
387 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
388 		goto invalid_cp2;
389 
390 	cur_version = le64_to_cpu(cp_block->checkpoint_ver);
391 
392 	if (cur_version == pre_version) {
393 		*version = cur_version;
394 		f2fs_put_page(cp_page_2, 1);
395 		return cp_page_1;
396 	}
397 invalid_cp2:
398 	f2fs_put_page(cp_page_2, 1);
399 invalid_cp1:
400 	f2fs_put_page(cp_page_1, 1);
401 	return NULL;
402 }
403 
404 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
405 {
406 	struct f2fs_checkpoint *cp_block;
407 	struct f2fs_super_block *fsb = sbi->raw_super;
408 	struct page *cp1, *cp2, *cur_page;
409 	unsigned long blk_size = sbi->blocksize;
410 	unsigned long long cp1_version = 0, cp2_version = 0;
411 	unsigned long long cp_start_blk_no;
412 
413 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
414 	if (!sbi->ckpt)
415 		return -ENOMEM;
416 	/*
417 	 * Finding out valid cp block involves read both
418 	 * sets( cp pack1 and cp pack 2)
419 	 */
420 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
421 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
422 
423 	/* The second checkpoint pack should start at the next segment */
424 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
425 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
426 
427 	if (cp1 && cp2) {
428 		if (ver_after(cp2_version, cp1_version))
429 			cur_page = cp2;
430 		else
431 			cur_page = cp1;
432 	} else if (cp1) {
433 		cur_page = cp1;
434 	} else if (cp2) {
435 		cur_page = cp2;
436 	} else {
437 		goto fail_no_cp;
438 	}
439 
440 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
441 	memcpy(sbi->ckpt, cp_block, blk_size);
442 
443 	f2fs_put_page(cp1, 1);
444 	f2fs_put_page(cp2, 1);
445 	return 0;
446 
447 fail_no_cp:
448 	kfree(sbi->ckpt);
449 	return -EINVAL;
450 }
451 
452 void set_dirty_dir_page(struct inode *inode, struct page *page)
453 {
454 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
455 	struct list_head *head = &sbi->dir_inode_list;
456 	struct dir_inode_entry *new;
457 	struct list_head *this;
458 
459 	if (!S_ISDIR(inode->i_mode))
460 		return;
461 retry:
462 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
463 	if (!new) {
464 		cond_resched();
465 		goto retry;
466 	}
467 	new->inode = inode;
468 	INIT_LIST_HEAD(&new->list);
469 
470 	spin_lock(&sbi->dir_inode_lock);
471 	list_for_each(this, head) {
472 		struct dir_inode_entry *entry;
473 		entry = list_entry(this, struct dir_inode_entry, list);
474 		if (entry->inode == inode) {
475 			kmem_cache_free(inode_entry_slab, new);
476 			goto out;
477 		}
478 	}
479 	list_add_tail(&new->list, head);
480 	sbi->n_dirty_dirs++;
481 
482 	BUG_ON(!S_ISDIR(inode->i_mode));
483 out:
484 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
485 	inode_inc_dirty_dents(inode);
486 	SetPagePrivate(page);
487 
488 	spin_unlock(&sbi->dir_inode_lock);
489 }
490 
491 void remove_dirty_dir_inode(struct inode *inode)
492 {
493 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
494 	struct list_head *head = &sbi->dir_inode_list;
495 	struct list_head *this;
496 
497 	if (!S_ISDIR(inode->i_mode))
498 		return;
499 
500 	spin_lock(&sbi->dir_inode_lock);
501 	if (atomic_read(&F2FS_I(inode)->dirty_dents))
502 		goto out;
503 
504 	list_for_each(this, head) {
505 		struct dir_inode_entry *entry;
506 		entry = list_entry(this, struct dir_inode_entry, list);
507 		if (entry->inode == inode) {
508 			list_del(&entry->list);
509 			kmem_cache_free(inode_entry_slab, entry);
510 			sbi->n_dirty_dirs--;
511 			break;
512 		}
513 	}
514 out:
515 	spin_unlock(&sbi->dir_inode_lock);
516 }
517 
518 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
519 {
520 	struct list_head *head = &sbi->dir_inode_list;
521 	struct dir_inode_entry *entry;
522 	struct inode *inode;
523 retry:
524 	spin_lock(&sbi->dir_inode_lock);
525 	if (list_empty(head)) {
526 		spin_unlock(&sbi->dir_inode_lock);
527 		return;
528 	}
529 	entry = list_entry(head->next, struct dir_inode_entry, list);
530 	inode = igrab(entry->inode);
531 	spin_unlock(&sbi->dir_inode_lock);
532 	if (inode) {
533 		filemap_flush(inode->i_mapping);
534 		iput(inode);
535 	} else {
536 		/*
537 		 * We should submit bio, since it exists several
538 		 * wribacking dentry pages in the freeing inode.
539 		 */
540 		f2fs_submit_bio(sbi, DATA, true);
541 	}
542 	goto retry;
543 }
544 
545 /*
546  * Freeze all the FS-operations for checkpoint.
547  */
548 void block_operations(struct f2fs_sb_info *sbi)
549 {
550 	int t;
551 	struct writeback_control wbc = {
552 		.sync_mode = WB_SYNC_ALL,
553 		.nr_to_write = LONG_MAX,
554 		.for_reclaim = 0,
555 	};
556 
557 	/* Stop renaming operation */
558 	mutex_lock_op(sbi, RENAME);
559 	mutex_lock_op(sbi, DENTRY_OPS);
560 
561 retry_dents:
562 	/* write all the dirty dentry pages */
563 	sync_dirty_dir_inodes(sbi);
564 
565 	mutex_lock_op(sbi, DATA_WRITE);
566 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
567 		mutex_unlock_op(sbi, DATA_WRITE);
568 		goto retry_dents;
569 	}
570 
571 	/* block all the operations */
572 	for (t = DATA_NEW; t <= NODE_TRUNC; t++)
573 		mutex_lock_op(sbi, t);
574 
575 	mutex_lock(&sbi->write_inode);
576 
577 	/*
578 	 * POR: we should ensure that there is no dirty node pages
579 	 * until finishing nat/sit flush.
580 	 */
581 retry:
582 	sync_node_pages(sbi, 0, &wbc);
583 
584 	mutex_lock_op(sbi, NODE_WRITE);
585 
586 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
587 		mutex_unlock_op(sbi, NODE_WRITE);
588 		goto retry;
589 	}
590 	mutex_unlock(&sbi->write_inode);
591 }
592 
593 static void unblock_operations(struct f2fs_sb_info *sbi)
594 {
595 	int t;
596 	for (t = NODE_WRITE; t >= RENAME; t--)
597 		mutex_unlock_op(sbi, t);
598 }
599 
600 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
601 {
602 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
603 	nid_t last_nid = 0;
604 	block_t start_blk;
605 	struct page *cp_page;
606 	unsigned int data_sum_blocks, orphan_blocks;
607 	unsigned int crc32 = 0;
608 	void *kaddr;
609 	int i;
610 
611 	/* Flush all the NAT/SIT pages */
612 	while (get_pages(sbi, F2FS_DIRTY_META))
613 		sync_meta_pages(sbi, META, LONG_MAX);
614 
615 	next_free_nid(sbi, &last_nid);
616 
617 	/*
618 	 * modify checkpoint
619 	 * version number is already updated
620 	 */
621 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
622 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
623 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
624 	for (i = 0; i < 3; i++) {
625 		ckpt->cur_node_segno[i] =
626 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
627 		ckpt->cur_node_blkoff[i] =
628 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
629 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
630 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
631 	}
632 	for (i = 0; i < 3; i++) {
633 		ckpt->cur_data_segno[i] =
634 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
635 		ckpt->cur_data_blkoff[i] =
636 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
637 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
638 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
639 	}
640 
641 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
642 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
643 	ckpt->next_free_nid = cpu_to_le32(last_nid);
644 
645 	/* 2 cp  + n data seg summary + orphan inode blocks */
646 	data_sum_blocks = npages_for_summary_flush(sbi);
647 	if (data_sum_blocks < 3)
648 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
649 	else
650 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
651 
652 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
653 					/ F2FS_ORPHANS_PER_BLOCK;
654 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
655 
656 	if (is_umount) {
657 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
658 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
659 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
660 	} else {
661 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
662 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
663 			data_sum_blocks + orphan_blocks);
664 	}
665 
666 	if (sbi->n_orphans)
667 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
668 	else
669 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
670 
671 	/* update SIT/NAT bitmap */
672 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
673 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
674 
675 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
676 	*(__le32 *)((unsigned char *)ckpt +
677 				le32_to_cpu(ckpt->checksum_offset))
678 				= cpu_to_le32(crc32);
679 
680 	start_blk = __start_cp_addr(sbi);
681 
682 	/* write out checkpoint buffer at block 0 */
683 	cp_page = grab_meta_page(sbi, start_blk++);
684 	kaddr = page_address(cp_page);
685 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
686 	set_page_dirty(cp_page);
687 	f2fs_put_page(cp_page, 1);
688 
689 	if (sbi->n_orphans) {
690 		write_orphan_inodes(sbi, start_blk);
691 		start_blk += orphan_blocks;
692 	}
693 
694 	write_data_summaries(sbi, start_blk);
695 	start_blk += data_sum_blocks;
696 	if (is_umount) {
697 		write_node_summaries(sbi, start_blk);
698 		start_blk += NR_CURSEG_NODE_TYPE;
699 	}
700 
701 	/* writeout checkpoint block */
702 	cp_page = grab_meta_page(sbi, start_blk);
703 	kaddr = page_address(cp_page);
704 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
705 	set_page_dirty(cp_page);
706 	f2fs_put_page(cp_page, 1);
707 
708 	/* wait for previous submitted node/meta pages writeback */
709 	while (get_pages(sbi, F2FS_WRITEBACK))
710 		congestion_wait(BLK_RW_ASYNC, HZ / 50);
711 
712 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
713 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
714 
715 	/* update user_block_counts */
716 	sbi->last_valid_block_count = sbi->total_valid_block_count;
717 	sbi->alloc_valid_block_count = 0;
718 
719 	/* Here, we only have one bio having CP pack */
720 	if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))
721 		sbi->sb->s_flags |= MS_RDONLY;
722 	else
723 		sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
724 
725 	clear_prefree_segments(sbi);
726 	F2FS_RESET_SB_DIRT(sbi);
727 }
728 
729 /*
730  * We guarantee that this checkpoint procedure should not fail.
731  */
732 void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
733 {
734 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
735 	unsigned long long ckpt_ver;
736 
737 	if (!blocked) {
738 		mutex_lock(&sbi->cp_mutex);
739 		block_operations(sbi);
740 	}
741 
742 	f2fs_submit_bio(sbi, DATA, true);
743 	f2fs_submit_bio(sbi, NODE, true);
744 	f2fs_submit_bio(sbi, META, true);
745 
746 	/*
747 	 * update checkpoint pack index
748 	 * Increase the version number so that
749 	 * SIT entries and seg summaries are written at correct place
750 	 */
751 	ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
752 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
753 
754 	/* write cached NAT/SIT entries to NAT/SIT area */
755 	flush_nat_entries(sbi);
756 	flush_sit_entries(sbi);
757 
758 	reset_victim_segmap(sbi);
759 
760 	/* unlock all the fs_lock[] in do_checkpoint() */
761 	do_checkpoint(sbi, is_umount);
762 
763 	unblock_operations(sbi);
764 	mutex_unlock(&sbi->cp_mutex);
765 }
766 
767 void init_orphan_info(struct f2fs_sb_info *sbi)
768 {
769 	mutex_init(&sbi->orphan_inode_mutex);
770 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
771 	sbi->n_orphans = 0;
772 }
773 
774 int __init create_checkpoint_caches(void)
775 {
776 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
777 			sizeof(struct orphan_inode_entry), NULL);
778 	if (unlikely(!orphan_entry_slab))
779 		return -ENOMEM;
780 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
781 			sizeof(struct dir_inode_entry), NULL);
782 	if (unlikely(!inode_entry_slab)) {
783 		kmem_cache_destroy(orphan_entry_slab);
784 		return -ENOMEM;
785 	}
786 	return 0;
787 }
788 
789 void destroy_checkpoint_caches(void)
790 {
791 	kmem_cache_destroy(orphan_entry_slab);
792 	kmem_cache_destroy(inode_entry_slab);
793 }
794