1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 24 static struct kmem_cache *orphan_entry_slab; 25 static struct kmem_cache *inode_entry_slab; 26 27 /* 28 * We guarantee no failure on the returned page. 29 */ 30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 31 { 32 struct address_space *mapping = sbi->meta_inode->i_mapping; 33 struct page *page = NULL; 34 repeat: 35 page = grab_cache_page(mapping, index); 36 if (!page) { 37 cond_resched(); 38 goto repeat; 39 } 40 41 /* We wait writeback only inside grab_meta_page() */ 42 wait_on_page_writeback(page); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = sbi->meta_inode->i_mapping; 53 struct page *page; 54 repeat: 55 page = grab_cache_page(mapping, index); 56 if (!page) { 57 cond_resched(); 58 goto repeat; 59 } 60 if (f2fs_readpage(sbi, page, index, READ_SYNC)) { 61 f2fs_put_page(page, 1); 62 goto repeat; 63 } 64 mark_page_accessed(page); 65 66 /* We do not allow returning an errorneous page */ 67 return page; 68 } 69 70 static int f2fs_write_meta_page(struct page *page, 71 struct writeback_control *wbc) 72 { 73 struct inode *inode = page->mapping->host; 74 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 75 int err; 76 77 wait_on_page_writeback(page); 78 79 err = write_meta_page(sbi, page, wbc); 80 if (err) { 81 wbc->pages_skipped++; 82 set_page_dirty(page); 83 } 84 85 dec_page_count(sbi, F2FS_DIRTY_META); 86 87 /* In this case, we should not unlock this page */ 88 if (err != AOP_WRITEPAGE_ACTIVATE) 89 unlock_page(page); 90 return err; 91 } 92 93 static int f2fs_write_meta_pages(struct address_space *mapping, 94 struct writeback_control *wbc) 95 { 96 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 97 struct block_device *bdev = sbi->sb->s_bdev; 98 long written; 99 100 if (wbc->for_kupdate) 101 return 0; 102 103 if (get_pages(sbi, F2FS_DIRTY_META) == 0) 104 return 0; 105 106 /* if mounting is failed, skip writing node pages */ 107 mutex_lock(&sbi->cp_mutex); 108 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); 109 mutex_unlock(&sbi->cp_mutex); 110 wbc->nr_to_write -= written; 111 return 0; 112 } 113 114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 115 long nr_to_write) 116 { 117 struct address_space *mapping = sbi->meta_inode->i_mapping; 118 pgoff_t index = 0, end = LONG_MAX; 119 struct pagevec pvec; 120 long nwritten = 0; 121 struct writeback_control wbc = { 122 .for_reclaim = 0, 123 }; 124 125 pagevec_init(&pvec, 0); 126 127 while (index <= end) { 128 int i, nr_pages; 129 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 130 PAGECACHE_TAG_DIRTY, 131 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 132 if (nr_pages == 0) 133 break; 134 135 for (i = 0; i < nr_pages; i++) { 136 struct page *page = pvec.pages[i]; 137 lock_page(page); 138 BUG_ON(page->mapping != mapping); 139 BUG_ON(!PageDirty(page)); 140 clear_page_dirty_for_io(page); 141 f2fs_write_meta_page(page, &wbc); 142 if (nwritten++ >= nr_to_write) 143 break; 144 } 145 pagevec_release(&pvec); 146 cond_resched(); 147 } 148 149 if (nwritten) 150 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); 151 152 return nwritten; 153 } 154 155 static int f2fs_set_meta_page_dirty(struct page *page) 156 { 157 struct address_space *mapping = page->mapping; 158 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 159 160 SetPageUptodate(page); 161 if (!PageDirty(page)) { 162 __set_page_dirty_nobuffers(page); 163 inc_page_count(sbi, F2FS_DIRTY_META); 164 F2FS_SET_SB_DIRT(sbi); 165 return 1; 166 } 167 return 0; 168 } 169 170 const struct address_space_operations f2fs_meta_aops = { 171 .writepage = f2fs_write_meta_page, 172 .writepages = f2fs_write_meta_pages, 173 .set_page_dirty = f2fs_set_meta_page_dirty, 174 }; 175 176 int check_orphan_space(struct f2fs_sb_info *sbi) 177 { 178 unsigned int max_orphans; 179 int err = 0; 180 181 /* 182 * considering 512 blocks in a segment 5 blocks are needed for cp 183 * and log segment summaries. Remaining blocks are used to keep 184 * orphan entries with the limitation one reserved segment 185 * for cp pack we can have max 1020*507 orphan entries 186 */ 187 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; 188 mutex_lock(&sbi->orphan_inode_mutex); 189 if (sbi->n_orphans >= max_orphans) 190 err = -ENOSPC; 191 mutex_unlock(&sbi->orphan_inode_mutex); 192 return err; 193 } 194 195 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 196 { 197 struct list_head *head, *this; 198 struct orphan_inode_entry *new = NULL, *orphan = NULL; 199 200 mutex_lock(&sbi->orphan_inode_mutex); 201 head = &sbi->orphan_inode_list; 202 list_for_each(this, head) { 203 orphan = list_entry(this, struct orphan_inode_entry, list); 204 if (orphan->ino == ino) 205 goto out; 206 if (orphan->ino > ino) 207 break; 208 orphan = NULL; 209 } 210 retry: 211 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 212 if (!new) { 213 cond_resched(); 214 goto retry; 215 } 216 new->ino = ino; 217 218 /* add new_oentry into list which is sorted by inode number */ 219 if (orphan) { 220 struct orphan_inode_entry *prev; 221 222 /* get previous entry */ 223 prev = list_entry(orphan->list.prev, typeof(*prev), list); 224 if (&prev->list != head) 225 /* insert new orphan inode entry */ 226 list_add(&new->list, &prev->list); 227 else 228 list_add(&new->list, head); 229 } else { 230 list_add_tail(&new->list, head); 231 } 232 sbi->n_orphans++; 233 out: 234 mutex_unlock(&sbi->orphan_inode_mutex); 235 } 236 237 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 238 { 239 struct list_head *this, *next, *head; 240 struct orphan_inode_entry *orphan; 241 242 mutex_lock(&sbi->orphan_inode_mutex); 243 head = &sbi->orphan_inode_list; 244 list_for_each_safe(this, next, head) { 245 orphan = list_entry(this, struct orphan_inode_entry, list); 246 if (orphan->ino == ino) { 247 list_del(&orphan->list); 248 kmem_cache_free(orphan_entry_slab, orphan); 249 sbi->n_orphans--; 250 break; 251 } 252 } 253 mutex_unlock(&sbi->orphan_inode_mutex); 254 } 255 256 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 257 { 258 struct inode *inode = f2fs_iget(sbi->sb, ino); 259 BUG_ON(IS_ERR(inode)); 260 clear_nlink(inode); 261 262 /* truncate all the data during iput */ 263 iput(inode); 264 } 265 266 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 267 { 268 block_t start_blk, orphan_blkaddr, i, j; 269 270 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 271 return 0; 272 273 sbi->por_doing = 1; 274 start_blk = __start_cp_addr(sbi) + 1; 275 orphan_blkaddr = __start_sum_addr(sbi) - 1; 276 277 for (i = 0; i < orphan_blkaddr; i++) { 278 struct page *page = get_meta_page(sbi, start_blk + i); 279 struct f2fs_orphan_block *orphan_blk; 280 281 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 282 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 283 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 284 recover_orphan_inode(sbi, ino); 285 } 286 f2fs_put_page(page, 1); 287 } 288 /* clear Orphan Flag */ 289 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 290 sbi->por_doing = 0; 291 return 0; 292 } 293 294 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 295 { 296 struct list_head *head, *this, *next; 297 struct f2fs_orphan_block *orphan_blk = NULL; 298 struct page *page = NULL; 299 unsigned int nentries = 0; 300 unsigned short index = 1; 301 unsigned short orphan_blocks; 302 303 orphan_blocks = (unsigned short)((sbi->n_orphans + 304 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 305 306 mutex_lock(&sbi->orphan_inode_mutex); 307 head = &sbi->orphan_inode_list; 308 309 /* loop for each orphan inode entry and write them in Jornal block */ 310 list_for_each_safe(this, next, head) { 311 struct orphan_inode_entry *orphan; 312 313 orphan = list_entry(this, struct orphan_inode_entry, list); 314 315 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 316 /* 317 * an orphan block is full of 1020 entries, 318 * then we need to flush current orphan blocks 319 * and bring another one in memory 320 */ 321 orphan_blk->blk_addr = cpu_to_le16(index); 322 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 323 orphan_blk->entry_count = cpu_to_le32(nentries); 324 set_page_dirty(page); 325 f2fs_put_page(page, 1); 326 index++; 327 start_blk++; 328 nentries = 0; 329 page = NULL; 330 } 331 if (page) 332 goto page_exist; 333 334 page = grab_meta_page(sbi, start_blk); 335 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 336 memset(orphan_blk, 0, sizeof(*orphan_blk)); 337 page_exist: 338 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 339 } 340 if (!page) 341 goto end; 342 343 orphan_blk->blk_addr = cpu_to_le16(index); 344 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 345 orphan_blk->entry_count = cpu_to_le32(nentries); 346 set_page_dirty(page); 347 f2fs_put_page(page, 1); 348 end: 349 mutex_unlock(&sbi->orphan_inode_mutex); 350 } 351 352 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 353 block_t cp_addr, unsigned long long *version) 354 { 355 struct page *cp_page_1, *cp_page_2 = NULL; 356 unsigned long blk_size = sbi->blocksize; 357 struct f2fs_checkpoint *cp_block; 358 unsigned long long cur_version = 0, pre_version = 0; 359 unsigned int crc = 0; 360 size_t crc_offset; 361 362 /* Read the 1st cp block in this CP pack */ 363 cp_page_1 = get_meta_page(sbi, cp_addr); 364 365 /* get the version number */ 366 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 367 crc_offset = le32_to_cpu(cp_block->checksum_offset); 368 if (crc_offset >= blk_size) 369 goto invalid_cp1; 370 371 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); 372 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 373 goto invalid_cp1; 374 375 pre_version = le64_to_cpu(cp_block->checkpoint_ver); 376 377 /* Read the 2nd cp block in this CP pack */ 378 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 379 cp_page_2 = get_meta_page(sbi, cp_addr); 380 381 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 382 crc_offset = le32_to_cpu(cp_block->checksum_offset); 383 if (crc_offset >= blk_size) 384 goto invalid_cp2; 385 386 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); 387 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 388 goto invalid_cp2; 389 390 cur_version = le64_to_cpu(cp_block->checkpoint_ver); 391 392 if (cur_version == pre_version) { 393 *version = cur_version; 394 f2fs_put_page(cp_page_2, 1); 395 return cp_page_1; 396 } 397 invalid_cp2: 398 f2fs_put_page(cp_page_2, 1); 399 invalid_cp1: 400 f2fs_put_page(cp_page_1, 1); 401 return NULL; 402 } 403 404 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 405 { 406 struct f2fs_checkpoint *cp_block; 407 struct f2fs_super_block *fsb = sbi->raw_super; 408 struct page *cp1, *cp2, *cur_page; 409 unsigned long blk_size = sbi->blocksize; 410 unsigned long long cp1_version = 0, cp2_version = 0; 411 unsigned long long cp_start_blk_no; 412 413 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 414 if (!sbi->ckpt) 415 return -ENOMEM; 416 /* 417 * Finding out valid cp block involves read both 418 * sets( cp pack1 and cp pack 2) 419 */ 420 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 421 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 422 423 /* The second checkpoint pack should start at the next segment */ 424 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 425 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 426 427 if (cp1 && cp2) { 428 if (ver_after(cp2_version, cp1_version)) 429 cur_page = cp2; 430 else 431 cur_page = cp1; 432 } else if (cp1) { 433 cur_page = cp1; 434 } else if (cp2) { 435 cur_page = cp2; 436 } else { 437 goto fail_no_cp; 438 } 439 440 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 441 memcpy(sbi->ckpt, cp_block, blk_size); 442 443 f2fs_put_page(cp1, 1); 444 f2fs_put_page(cp2, 1); 445 return 0; 446 447 fail_no_cp: 448 kfree(sbi->ckpt); 449 return -EINVAL; 450 } 451 452 void set_dirty_dir_page(struct inode *inode, struct page *page) 453 { 454 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 455 struct list_head *head = &sbi->dir_inode_list; 456 struct dir_inode_entry *new; 457 struct list_head *this; 458 459 if (!S_ISDIR(inode->i_mode)) 460 return; 461 retry: 462 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 463 if (!new) { 464 cond_resched(); 465 goto retry; 466 } 467 new->inode = inode; 468 INIT_LIST_HEAD(&new->list); 469 470 spin_lock(&sbi->dir_inode_lock); 471 list_for_each(this, head) { 472 struct dir_inode_entry *entry; 473 entry = list_entry(this, struct dir_inode_entry, list); 474 if (entry->inode == inode) { 475 kmem_cache_free(inode_entry_slab, new); 476 goto out; 477 } 478 } 479 list_add_tail(&new->list, head); 480 sbi->n_dirty_dirs++; 481 482 BUG_ON(!S_ISDIR(inode->i_mode)); 483 out: 484 inc_page_count(sbi, F2FS_DIRTY_DENTS); 485 inode_inc_dirty_dents(inode); 486 SetPagePrivate(page); 487 488 spin_unlock(&sbi->dir_inode_lock); 489 } 490 491 void remove_dirty_dir_inode(struct inode *inode) 492 { 493 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 494 struct list_head *head = &sbi->dir_inode_list; 495 struct list_head *this; 496 497 if (!S_ISDIR(inode->i_mode)) 498 return; 499 500 spin_lock(&sbi->dir_inode_lock); 501 if (atomic_read(&F2FS_I(inode)->dirty_dents)) 502 goto out; 503 504 list_for_each(this, head) { 505 struct dir_inode_entry *entry; 506 entry = list_entry(this, struct dir_inode_entry, list); 507 if (entry->inode == inode) { 508 list_del(&entry->list); 509 kmem_cache_free(inode_entry_slab, entry); 510 sbi->n_dirty_dirs--; 511 break; 512 } 513 } 514 out: 515 spin_unlock(&sbi->dir_inode_lock); 516 } 517 518 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 519 { 520 struct list_head *head = &sbi->dir_inode_list; 521 struct dir_inode_entry *entry; 522 struct inode *inode; 523 retry: 524 spin_lock(&sbi->dir_inode_lock); 525 if (list_empty(head)) { 526 spin_unlock(&sbi->dir_inode_lock); 527 return; 528 } 529 entry = list_entry(head->next, struct dir_inode_entry, list); 530 inode = igrab(entry->inode); 531 spin_unlock(&sbi->dir_inode_lock); 532 if (inode) { 533 filemap_flush(inode->i_mapping); 534 iput(inode); 535 } else { 536 /* 537 * We should submit bio, since it exists several 538 * wribacking dentry pages in the freeing inode. 539 */ 540 f2fs_submit_bio(sbi, DATA, true); 541 } 542 goto retry; 543 } 544 545 /* 546 * Freeze all the FS-operations for checkpoint. 547 */ 548 void block_operations(struct f2fs_sb_info *sbi) 549 { 550 int t; 551 struct writeback_control wbc = { 552 .sync_mode = WB_SYNC_ALL, 553 .nr_to_write = LONG_MAX, 554 .for_reclaim = 0, 555 }; 556 557 /* Stop renaming operation */ 558 mutex_lock_op(sbi, RENAME); 559 mutex_lock_op(sbi, DENTRY_OPS); 560 561 retry_dents: 562 /* write all the dirty dentry pages */ 563 sync_dirty_dir_inodes(sbi); 564 565 mutex_lock_op(sbi, DATA_WRITE); 566 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 567 mutex_unlock_op(sbi, DATA_WRITE); 568 goto retry_dents; 569 } 570 571 /* block all the operations */ 572 for (t = DATA_NEW; t <= NODE_TRUNC; t++) 573 mutex_lock_op(sbi, t); 574 575 mutex_lock(&sbi->write_inode); 576 577 /* 578 * POR: we should ensure that there is no dirty node pages 579 * until finishing nat/sit flush. 580 */ 581 retry: 582 sync_node_pages(sbi, 0, &wbc); 583 584 mutex_lock_op(sbi, NODE_WRITE); 585 586 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 587 mutex_unlock_op(sbi, NODE_WRITE); 588 goto retry; 589 } 590 mutex_unlock(&sbi->write_inode); 591 } 592 593 static void unblock_operations(struct f2fs_sb_info *sbi) 594 { 595 int t; 596 for (t = NODE_WRITE; t >= RENAME; t--) 597 mutex_unlock_op(sbi, t); 598 } 599 600 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 601 { 602 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 603 nid_t last_nid = 0; 604 block_t start_blk; 605 struct page *cp_page; 606 unsigned int data_sum_blocks, orphan_blocks; 607 unsigned int crc32 = 0; 608 void *kaddr; 609 int i; 610 611 /* Flush all the NAT/SIT pages */ 612 while (get_pages(sbi, F2FS_DIRTY_META)) 613 sync_meta_pages(sbi, META, LONG_MAX); 614 615 next_free_nid(sbi, &last_nid); 616 617 /* 618 * modify checkpoint 619 * version number is already updated 620 */ 621 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 622 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 623 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 624 for (i = 0; i < 3; i++) { 625 ckpt->cur_node_segno[i] = 626 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 627 ckpt->cur_node_blkoff[i] = 628 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 629 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 630 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 631 } 632 for (i = 0; i < 3; i++) { 633 ckpt->cur_data_segno[i] = 634 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 635 ckpt->cur_data_blkoff[i] = 636 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 637 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 638 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 639 } 640 641 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 642 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 643 ckpt->next_free_nid = cpu_to_le32(last_nid); 644 645 /* 2 cp + n data seg summary + orphan inode blocks */ 646 data_sum_blocks = npages_for_summary_flush(sbi); 647 if (data_sum_blocks < 3) 648 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 649 else 650 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 651 652 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 653 / F2FS_ORPHANS_PER_BLOCK; 654 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 655 656 if (is_umount) { 657 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 658 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 659 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 660 } else { 661 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 662 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 663 data_sum_blocks + orphan_blocks); 664 } 665 666 if (sbi->n_orphans) 667 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 668 else 669 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 670 671 /* update SIT/NAT bitmap */ 672 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 673 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 674 675 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 676 *(__le32 *)((unsigned char *)ckpt + 677 le32_to_cpu(ckpt->checksum_offset)) 678 = cpu_to_le32(crc32); 679 680 start_blk = __start_cp_addr(sbi); 681 682 /* write out checkpoint buffer at block 0 */ 683 cp_page = grab_meta_page(sbi, start_blk++); 684 kaddr = page_address(cp_page); 685 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 686 set_page_dirty(cp_page); 687 f2fs_put_page(cp_page, 1); 688 689 if (sbi->n_orphans) { 690 write_orphan_inodes(sbi, start_blk); 691 start_blk += orphan_blocks; 692 } 693 694 write_data_summaries(sbi, start_blk); 695 start_blk += data_sum_blocks; 696 if (is_umount) { 697 write_node_summaries(sbi, start_blk); 698 start_blk += NR_CURSEG_NODE_TYPE; 699 } 700 701 /* writeout checkpoint block */ 702 cp_page = grab_meta_page(sbi, start_blk); 703 kaddr = page_address(cp_page); 704 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 705 set_page_dirty(cp_page); 706 f2fs_put_page(cp_page, 1); 707 708 /* wait for previous submitted node/meta pages writeback */ 709 while (get_pages(sbi, F2FS_WRITEBACK)) 710 congestion_wait(BLK_RW_ASYNC, HZ / 50); 711 712 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); 713 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); 714 715 /* update user_block_counts */ 716 sbi->last_valid_block_count = sbi->total_valid_block_count; 717 sbi->alloc_valid_block_count = 0; 718 719 /* Here, we only have one bio having CP pack */ 720 if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) 721 sbi->sb->s_flags |= MS_RDONLY; 722 else 723 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 724 725 clear_prefree_segments(sbi); 726 F2FS_RESET_SB_DIRT(sbi); 727 } 728 729 /* 730 * We guarantee that this checkpoint procedure should not fail. 731 */ 732 void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount) 733 { 734 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 735 unsigned long long ckpt_ver; 736 737 if (!blocked) { 738 mutex_lock(&sbi->cp_mutex); 739 block_operations(sbi); 740 } 741 742 f2fs_submit_bio(sbi, DATA, true); 743 f2fs_submit_bio(sbi, NODE, true); 744 f2fs_submit_bio(sbi, META, true); 745 746 /* 747 * update checkpoint pack index 748 * Increase the version number so that 749 * SIT entries and seg summaries are written at correct place 750 */ 751 ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver); 752 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 753 754 /* write cached NAT/SIT entries to NAT/SIT area */ 755 flush_nat_entries(sbi); 756 flush_sit_entries(sbi); 757 758 reset_victim_segmap(sbi); 759 760 /* unlock all the fs_lock[] in do_checkpoint() */ 761 do_checkpoint(sbi, is_umount); 762 763 unblock_operations(sbi); 764 mutex_unlock(&sbi->cp_mutex); 765 } 766 767 void init_orphan_info(struct f2fs_sb_info *sbi) 768 { 769 mutex_init(&sbi->orphan_inode_mutex); 770 INIT_LIST_HEAD(&sbi->orphan_inode_list); 771 sbi->n_orphans = 0; 772 } 773 774 int __init create_checkpoint_caches(void) 775 { 776 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 777 sizeof(struct orphan_inode_entry), NULL); 778 if (unlikely(!orphan_entry_slab)) 779 return -ENOMEM; 780 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 781 sizeof(struct dir_inode_entry), NULL); 782 if (unlikely(!inode_entry_slab)) { 783 kmem_cache_destroy(orphan_entry_slab); 784 return -ENOMEM; 785 } 786 return 0; 787 } 788 789 void destroy_checkpoint_caches(void) 790 { 791 kmem_cache_destroy(orphan_entry_slab); 792 kmem_cache_destroy(inode_entry_slab); 793 } 794