1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *orphan_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = META_MAPPING(sbi); 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 42 SetPageUptodate(page); 43 return page; 44 } 45 46 /* 47 * We guarantee no failure on the returned page. 48 */ 49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 50 { 51 struct address_space *mapping = META_MAPPING(sbi); 52 struct page *page; 53 repeat: 54 page = grab_cache_page(mapping, index); 55 if (!page) { 56 cond_resched(); 57 goto repeat; 58 } 59 if (PageUptodate(page)) 60 goto out; 61 62 if (f2fs_submit_page_bio(sbi, page, index, 63 READ_SYNC | REQ_META | REQ_PRIO)) 64 goto repeat; 65 66 lock_page(page); 67 if (unlikely(page->mapping != mapping)) { 68 f2fs_put_page(page, 1); 69 goto repeat; 70 } 71 out: 72 mark_page_accessed(page); 73 return page; 74 } 75 76 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type) 77 { 78 switch (type) { 79 case META_NAT: 80 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK; 81 case META_SIT: 82 return SIT_BLK_CNT(sbi); 83 case META_SSA: 84 case META_CP: 85 return 0; 86 default: 87 BUG(); 88 } 89 } 90 91 /* 92 * Readahead CP/NAT/SIT/SSA pages 93 */ 94 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type) 95 { 96 block_t prev_blk_addr = 0; 97 struct page *page; 98 int blkno = start; 99 int max_blks = get_max_meta_blks(sbi, type); 100 101 struct f2fs_io_info fio = { 102 .type = META, 103 .rw = READ_SYNC | REQ_META | REQ_PRIO 104 }; 105 106 for (; nrpages-- > 0; blkno++) { 107 block_t blk_addr; 108 109 switch (type) { 110 case META_NAT: 111 /* get nat block addr */ 112 if (unlikely(blkno >= max_blks)) 113 blkno = 0; 114 blk_addr = current_nat_addr(sbi, 115 blkno * NAT_ENTRY_PER_BLOCK); 116 break; 117 case META_SIT: 118 /* get sit block addr */ 119 if (unlikely(blkno >= max_blks)) 120 goto out; 121 blk_addr = current_sit_addr(sbi, 122 blkno * SIT_ENTRY_PER_BLOCK); 123 if (blkno != start && prev_blk_addr + 1 != blk_addr) 124 goto out; 125 prev_blk_addr = blk_addr; 126 break; 127 case META_SSA: 128 case META_CP: 129 /* get ssa/cp block addr */ 130 blk_addr = blkno; 131 break; 132 default: 133 BUG(); 134 } 135 136 page = grab_cache_page(META_MAPPING(sbi), blk_addr); 137 if (!page) 138 continue; 139 if (PageUptodate(page)) { 140 mark_page_accessed(page); 141 f2fs_put_page(page, 1); 142 continue; 143 } 144 145 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio); 146 mark_page_accessed(page); 147 f2fs_put_page(page, 0); 148 } 149 out: 150 f2fs_submit_merged_bio(sbi, META, READ); 151 return blkno - start; 152 } 153 154 static int f2fs_write_meta_page(struct page *page, 155 struct writeback_control *wbc) 156 { 157 struct inode *inode = page->mapping->host; 158 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 159 160 if (unlikely(sbi->por_doing)) 161 goto redirty_out; 162 if (wbc->for_reclaim) 163 goto redirty_out; 164 165 /* Should not write any meta pages, if any IO error was occurred */ 166 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG))) 167 goto no_write; 168 169 f2fs_wait_on_page_writeback(page, META); 170 write_meta_page(sbi, page); 171 no_write: 172 dec_page_count(sbi, F2FS_DIRTY_META); 173 unlock_page(page); 174 return 0; 175 176 redirty_out: 177 dec_page_count(sbi, F2FS_DIRTY_META); 178 wbc->pages_skipped++; 179 account_page_redirty(page); 180 set_page_dirty(page); 181 return AOP_WRITEPAGE_ACTIVATE; 182 } 183 184 static int f2fs_write_meta_pages(struct address_space *mapping, 185 struct writeback_control *wbc) 186 { 187 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 188 long diff, written; 189 190 /* collect a number of dirty meta pages and write together */ 191 if (wbc->for_kupdate || 192 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 193 goto skip_write; 194 195 /* if mounting is failed, skip writing node pages */ 196 mutex_lock(&sbi->cp_mutex); 197 diff = nr_pages_to_write(sbi, META, wbc); 198 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 199 mutex_unlock(&sbi->cp_mutex); 200 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 201 return 0; 202 203 skip_write: 204 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 205 return 0; 206 } 207 208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 209 long nr_to_write) 210 { 211 struct address_space *mapping = META_MAPPING(sbi); 212 pgoff_t index = 0, end = LONG_MAX; 213 struct pagevec pvec; 214 long nwritten = 0; 215 struct writeback_control wbc = { 216 .for_reclaim = 0, 217 }; 218 219 pagevec_init(&pvec, 0); 220 221 while (index <= end) { 222 int i, nr_pages; 223 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 224 PAGECACHE_TAG_DIRTY, 225 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 226 if (unlikely(nr_pages == 0)) 227 break; 228 229 for (i = 0; i < nr_pages; i++) { 230 struct page *page = pvec.pages[i]; 231 232 lock_page(page); 233 234 if (unlikely(page->mapping != mapping)) { 235 continue_unlock: 236 unlock_page(page); 237 continue; 238 } 239 if (!PageDirty(page)) { 240 /* someone wrote it for us */ 241 goto continue_unlock; 242 } 243 244 if (!clear_page_dirty_for_io(page)) 245 goto continue_unlock; 246 247 if (f2fs_write_meta_page(page, &wbc)) { 248 unlock_page(page); 249 break; 250 } 251 nwritten++; 252 if (unlikely(nwritten >= nr_to_write)) 253 break; 254 } 255 pagevec_release(&pvec); 256 cond_resched(); 257 } 258 259 if (nwritten) 260 f2fs_submit_merged_bio(sbi, type, WRITE); 261 262 return nwritten; 263 } 264 265 static int f2fs_set_meta_page_dirty(struct page *page) 266 { 267 struct address_space *mapping = page->mapping; 268 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 269 270 trace_f2fs_set_page_dirty(page, META); 271 272 SetPageUptodate(page); 273 if (!PageDirty(page)) { 274 __set_page_dirty_nobuffers(page); 275 inc_page_count(sbi, F2FS_DIRTY_META); 276 return 1; 277 } 278 return 0; 279 } 280 281 const struct address_space_operations f2fs_meta_aops = { 282 .writepage = f2fs_write_meta_page, 283 .writepages = f2fs_write_meta_pages, 284 .set_page_dirty = f2fs_set_meta_page_dirty, 285 }; 286 287 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 288 { 289 int err = 0; 290 291 spin_lock(&sbi->orphan_inode_lock); 292 if (unlikely(sbi->n_orphans >= sbi->max_orphans)) 293 err = -ENOSPC; 294 else 295 sbi->n_orphans++; 296 spin_unlock(&sbi->orphan_inode_lock); 297 298 return err; 299 } 300 301 void release_orphan_inode(struct f2fs_sb_info *sbi) 302 { 303 spin_lock(&sbi->orphan_inode_lock); 304 f2fs_bug_on(sbi->n_orphans == 0); 305 sbi->n_orphans--; 306 spin_unlock(&sbi->orphan_inode_lock); 307 } 308 309 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 310 { 311 struct list_head *head; 312 struct orphan_inode_entry *new, *orphan; 313 314 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 315 new->ino = ino; 316 317 spin_lock(&sbi->orphan_inode_lock); 318 head = &sbi->orphan_inode_list; 319 list_for_each_entry(orphan, head, list) { 320 if (orphan->ino == ino) { 321 spin_unlock(&sbi->orphan_inode_lock); 322 kmem_cache_free(orphan_entry_slab, new); 323 return; 324 } 325 326 if (orphan->ino > ino) 327 break; 328 } 329 330 /* add new orphan entry into list which is sorted by inode number */ 331 list_add_tail(&new->list, &orphan->list); 332 spin_unlock(&sbi->orphan_inode_lock); 333 } 334 335 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 336 { 337 struct list_head *head; 338 struct orphan_inode_entry *orphan; 339 340 spin_lock(&sbi->orphan_inode_lock); 341 head = &sbi->orphan_inode_list; 342 list_for_each_entry(orphan, head, list) { 343 if (orphan->ino == ino) { 344 list_del(&orphan->list); 345 f2fs_bug_on(sbi->n_orphans == 0); 346 sbi->n_orphans--; 347 spin_unlock(&sbi->orphan_inode_lock); 348 kmem_cache_free(orphan_entry_slab, orphan); 349 return; 350 } 351 } 352 spin_unlock(&sbi->orphan_inode_lock); 353 } 354 355 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 356 { 357 struct inode *inode = f2fs_iget(sbi->sb, ino); 358 f2fs_bug_on(IS_ERR(inode)); 359 clear_nlink(inode); 360 361 /* truncate all the data during iput */ 362 iput(inode); 363 } 364 365 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 366 { 367 block_t start_blk, orphan_blkaddr, i, j; 368 369 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 370 return; 371 372 sbi->por_doing = true; 373 start_blk = __start_cp_addr(sbi) + 1; 374 orphan_blkaddr = __start_sum_addr(sbi) - 1; 375 376 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); 377 378 for (i = 0; i < orphan_blkaddr; i++) { 379 struct page *page = get_meta_page(sbi, start_blk + i); 380 struct f2fs_orphan_block *orphan_blk; 381 382 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 383 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 384 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 385 recover_orphan_inode(sbi, ino); 386 } 387 f2fs_put_page(page, 1); 388 } 389 /* clear Orphan Flag */ 390 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 391 sbi->por_doing = false; 392 return; 393 } 394 395 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 396 { 397 struct list_head *head; 398 struct f2fs_orphan_block *orphan_blk = NULL; 399 unsigned int nentries = 0; 400 unsigned short index; 401 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans + 402 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 403 struct page *page = NULL; 404 struct orphan_inode_entry *orphan = NULL; 405 406 for (index = 0; index < orphan_blocks; index++) 407 grab_meta_page(sbi, start_blk + index); 408 409 index = 1; 410 spin_lock(&sbi->orphan_inode_lock); 411 head = &sbi->orphan_inode_list; 412 413 /* loop for each orphan inode entry and write them in Jornal block */ 414 list_for_each_entry(orphan, head, list) { 415 if (!page) { 416 page = find_get_page(META_MAPPING(sbi), start_blk++); 417 f2fs_bug_on(!page); 418 orphan_blk = 419 (struct f2fs_orphan_block *)page_address(page); 420 memset(orphan_blk, 0, sizeof(*orphan_blk)); 421 f2fs_put_page(page, 0); 422 } 423 424 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 425 426 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 427 /* 428 * an orphan block is full of 1020 entries, 429 * then we need to flush current orphan blocks 430 * and bring another one in memory 431 */ 432 orphan_blk->blk_addr = cpu_to_le16(index); 433 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 434 orphan_blk->entry_count = cpu_to_le32(nentries); 435 set_page_dirty(page); 436 f2fs_put_page(page, 1); 437 index++; 438 nentries = 0; 439 page = NULL; 440 } 441 } 442 443 if (page) { 444 orphan_blk->blk_addr = cpu_to_le16(index); 445 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 446 orphan_blk->entry_count = cpu_to_le32(nentries); 447 set_page_dirty(page); 448 f2fs_put_page(page, 1); 449 } 450 451 spin_unlock(&sbi->orphan_inode_lock); 452 } 453 454 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 455 block_t cp_addr, unsigned long long *version) 456 { 457 struct page *cp_page_1, *cp_page_2 = NULL; 458 unsigned long blk_size = sbi->blocksize; 459 struct f2fs_checkpoint *cp_block; 460 unsigned long long cur_version = 0, pre_version = 0; 461 size_t crc_offset; 462 __u32 crc = 0; 463 464 /* Read the 1st cp block in this CP pack */ 465 cp_page_1 = get_meta_page(sbi, cp_addr); 466 467 /* get the version number */ 468 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 469 crc_offset = le32_to_cpu(cp_block->checksum_offset); 470 if (crc_offset >= blk_size) 471 goto invalid_cp1; 472 473 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 474 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 475 goto invalid_cp1; 476 477 pre_version = cur_cp_version(cp_block); 478 479 /* Read the 2nd cp block in this CP pack */ 480 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 481 cp_page_2 = get_meta_page(sbi, cp_addr); 482 483 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 484 crc_offset = le32_to_cpu(cp_block->checksum_offset); 485 if (crc_offset >= blk_size) 486 goto invalid_cp2; 487 488 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 489 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 490 goto invalid_cp2; 491 492 cur_version = cur_cp_version(cp_block); 493 494 if (cur_version == pre_version) { 495 *version = cur_version; 496 f2fs_put_page(cp_page_2, 1); 497 return cp_page_1; 498 } 499 invalid_cp2: 500 f2fs_put_page(cp_page_2, 1); 501 invalid_cp1: 502 f2fs_put_page(cp_page_1, 1); 503 return NULL; 504 } 505 506 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 507 { 508 struct f2fs_checkpoint *cp_block; 509 struct f2fs_super_block *fsb = sbi->raw_super; 510 struct page *cp1, *cp2, *cur_page; 511 unsigned long blk_size = sbi->blocksize; 512 unsigned long long cp1_version = 0, cp2_version = 0; 513 unsigned long long cp_start_blk_no; 514 515 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 516 if (!sbi->ckpt) 517 return -ENOMEM; 518 /* 519 * Finding out valid cp block involves read both 520 * sets( cp pack1 and cp pack 2) 521 */ 522 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 523 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 524 525 /* The second checkpoint pack should start at the next segment */ 526 cp_start_blk_no += ((unsigned long long)1) << 527 le32_to_cpu(fsb->log_blocks_per_seg); 528 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 529 530 if (cp1 && cp2) { 531 if (ver_after(cp2_version, cp1_version)) 532 cur_page = cp2; 533 else 534 cur_page = cp1; 535 } else if (cp1) { 536 cur_page = cp1; 537 } else if (cp2) { 538 cur_page = cp2; 539 } else { 540 goto fail_no_cp; 541 } 542 543 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 544 memcpy(sbi->ckpt, cp_block, blk_size); 545 546 f2fs_put_page(cp1, 1); 547 f2fs_put_page(cp2, 1); 548 return 0; 549 550 fail_no_cp: 551 kfree(sbi->ckpt); 552 return -EINVAL; 553 } 554 555 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 556 { 557 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 558 struct list_head *head = &sbi->dir_inode_list; 559 struct dir_inode_entry *entry; 560 561 list_for_each_entry(entry, head, list) 562 if (unlikely(entry->inode == inode)) 563 return -EEXIST; 564 565 list_add_tail(&new->list, head); 566 stat_inc_dirty_dir(sbi); 567 return 0; 568 } 569 570 void set_dirty_dir_page(struct inode *inode, struct page *page) 571 { 572 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 573 struct dir_inode_entry *new; 574 int ret = 0; 575 576 if (!S_ISDIR(inode->i_mode)) 577 return; 578 579 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 580 new->inode = inode; 581 INIT_LIST_HEAD(&new->list); 582 583 spin_lock(&sbi->dir_inode_lock); 584 ret = __add_dirty_inode(inode, new); 585 inode_inc_dirty_dents(inode); 586 SetPagePrivate(page); 587 spin_unlock(&sbi->dir_inode_lock); 588 589 if (ret) 590 kmem_cache_free(inode_entry_slab, new); 591 } 592 593 void add_dirty_dir_inode(struct inode *inode) 594 { 595 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 596 struct dir_inode_entry *new = 597 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 598 int ret = 0; 599 600 new->inode = inode; 601 INIT_LIST_HEAD(&new->list); 602 603 spin_lock(&sbi->dir_inode_lock); 604 ret = __add_dirty_inode(inode, new); 605 spin_unlock(&sbi->dir_inode_lock); 606 607 if (ret) 608 kmem_cache_free(inode_entry_slab, new); 609 } 610 611 void remove_dirty_dir_inode(struct inode *inode) 612 { 613 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 614 struct list_head *head; 615 struct dir_inode_entry *entry; 616 617 if (!S_ISDIR(inode->i_mode)) 618 return; 619 620 spin_lock(&sbi->dir_inode_lock); 621 if (get_dirty_dents(inode)) { 622 spin_unlock(&sbi->dir_inode_lock); 623 return; 624 } 625 626 head = &sbi->dir_inode_list; 627 list_for_each_entry(entry, head, list) { 628 if (entry->inode == inode) { 629 list_del(&entry->list); 630 stat_dec_dirty_dir(sbi); 631 spin_unlock(&sbi->dir_inode_lock); 632 kmem_cache_free(inode_entry_slab, entry); 633 goto done; 634 } 635 } 636 spin_unlock(&sbi->dir_inode_lock); 637 638 done: 639 /* Only from the recovery routine */ 640 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 641 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 642 iput(inode); 643 } 644 } 645 646 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) 647 { 648 649 struct list_head *head; 650 struct inode *inode = NULL; 651 struct dir_inode_entry *entry; 652 653 spin_lock(&sbi->dir_inode_lock); 654 655 head = &sbi->dir_inode_list; 656 list_for_each_entry(entry, head, list) { 657 if (entry->inode->i_ino == ino) { 658 inode = entry->inode; 659 break; 660 } 661 } 662 spin_unlock(&sbi->dir_inode_lock); 663 return inode; 664 } 665 666 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 667 { 668 struct list_head *head; 669 struct dir_inode_entry *entry; 670 struct inode *inode; 671 retry: 672 spin_lock(&sbi->dir_inode_lock); 673 674 head = &sbi->dir_inode_list; 675 if (list_empty(head)) { 676 spin_unlock(&sbi->dir_inode_lock); 677 return; 678 } 679 entry = list_entry(head->next, struct dir_inode_entry, list); 680 inode = igrab(entry->inode); 681 spin_unlock(&sbi->dir_inode_lock); 682 if (inode) { 683 filemap_fdatawrite(inode->i_mapping); 684 iput(inode); 685 } else { 686 /* 687 * We should submit bio, since it exists several 688 * wribacking dentry pages in the freeing inode. 689 */ 690 f2fs_submit_merged_bio(sbi, DATA, WRITE); 691 } 692 goto retry; 693 } 694 695 /* 696 * Freeze all the FS-operations for checkpoint. 697 */ 698 static void block_operations(struct f2fs_sb_info *sbi) 699 { 700 struct writeback_control wbc = { 701 .sync_mode = WB_SYNC_ALL, 702 .nr_to_write = LONG_MAX, 703 .for_reclaim = 0, 704 }; 705 struct blk_plug plug; 706 707 blk_start_plug(&plug); 708 709 retry_flush_dents: 710 f2fs_lock_all(sbi); 711 /* write all the dirty dentry pages */ 712 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 713 f2fs_unlock_all(sbi); 714 sync_dirty_dir_inodes(sbi); 715 goto retry_flush_dents; 716 } 717 718 /* 719 * POR: we should ensure that there is no dirty node pages 720 * until finishing nat/sit flush. 721 */ 722 retry_flush_nodes: 723 mutex_lock(&sbi->node_write); 724 725 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 726 mutex_unlock(&sbi->node_write); 727 sync_node_pages(sbi, 0, &wbc); 728 goto retry_flush_nodes; 729 } 730 blk_finish_plug(&plug); 731 } 732 733 static void unblock_operations(struct f2fs_sb_info *sbi) 734 { 735 mutex_unlock(&sbi->node_write); 736 f2fs_unlock_all(sbi); 737 } 738 739 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 740 { 741 DEFINE_WAIT(wait); 742 743 for (;;) { 744 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 745 746 if (!get_pages(sbi, F2FS_WRITEBACK)) 747 break; 748 749 io_schedule(); 750 } 751 finish_wait(&sbi->cp_wait, &wait); 752 } 753 754 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 755 { 756 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 757 nid_t last_nid = 0; 758 block_t start_blk; 759 struct page *cp_page; 760 unsigned int data_sum_blocks, orphan_blocks; 761 __u32 crc32 = 0; 762 void *kaddr; 763 int i; 764 765 /* Flush all the NAT/SIT pages */ 766 while (get_pages(sbi, F2FS_DIRTY_META)) 767 sync_meta_pages(sbi, META, LONG_MAX); 768 769 next_free_nid(sbi, &last_nid); 770 771 /* 772 * modify checkpoint 773 * version number is already updated 774 */ 775 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 776 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 777 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 778 for (i = 0; i < 3; i++) { 779 ckpt->cur_node_segno[i] = 780 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 781 ckpt->cur_node_blkoff[i] = 782 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 783 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 784 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 785 } 786 for (i = 0; i < 3; i++) { 787 ckpt->cur_data_segno[i] = 788 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 789 ckpt->cur_data_blkoff[i] = 790 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 791 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 792 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 793 } 794 795 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 796 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 797 ckpt->next_free_nid = cpu_to_le32(last_nid); 798 799 /* 2 cp + n data seg summary + orphan inode blocks */ 800 data_sum_blocks = npages_for_summary_flush(sbi); 801 if (data_sum_blocks < 3) 802 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 803 else 804 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 805 806 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 807 / F2FS_ORPHANS_PER_BLOCK; 808 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 809 810 if (is_umount) { 811 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 812 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 813 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 814 } else { 815 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 816 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 817 data_sum_blocks + orphan_blocks); 818 } 819 820 if (sbi->n_orphans) 821 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 822 else 823 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 824 825 /* update SIT/NAT bitmap */ 826 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 827 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 828 829 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 830 *((__le32 *)((unsigned char *)ckpt + 831 le32_to_cpu(ckpt->checksum_offset))) 832 = cpu_to_le32(crc32); 833 834 start_blk = __start_cp_addr(sbi); 835 836 /* write out checkpoint buffer at block 0 */ 837 cp_page = grab_meta_page(sbi, start_blk++); 838 kaddr = page_address(cp_page); 839 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 840 set_page_dirty(cp_page); 841 f2fs_put_page(cp_page, 1); 842 843 if (sbi->n_orphans) { 844 write_orphan_inodes(sbi, start_blk); 845 start_blk += orphan_blocks; 846 } 847 848 write_data_summaries(sbi, start_blk); 849 start_blk += data_sum_blocks; 850 if (is_umount) { 851 write_node_summaries(sbi, start_blk); 852 start_blk += NR_CURSEG_NODE_TYPE; 853 } 854 855 /* writeout checkpoint block */ 856 cp_page = grab_meta_page(sbi, start_blk); 857 kaddr = page_address(cp_page); 858 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 859 set_page_dirty(cp_page); 860 f2fs_put_page(cp_page, 1); 861 862 /* wait for previous submitted node/meta pages writeback */ 863 wait_on_all_pages_writeback(sbi); 864 865 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 866 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 867 868 /* update user_block_counts */ 869 sbi->last_valid_block_count = sbi->total_valid_block_count; 870 sbi->alloc_valid_block_count = 0; 871 872 /* Here, we only have one bio having CP pack */ 873 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 874 875 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) { 876 clear_prefree_segments(sbi); 877 F2FS_RESET_SB_DIRT(sbi); 878 } 879 } 880 881 /* 882 * We guarantee that this checkpoint procedure should not fail. 883 */ 884 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 885 { 886 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 887 unsigned long long ckpt_ver; 888 889 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 890 891 mutex_lock(&sbi->cp_mutex); 892 block_operations(sbi); 893 894 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 895 896 f2fs_submit_merged_bio(sbi, DATA, WRITE); 897 f2fs_submit_merged_bio(sbi, NODE, WRITE); 898 f2fs_submit_merged_bio(sbi, META, WRITE); 899 900 /* 901 * update checkpoint pack index 902 * Increase the version number so that 903 * SIT entries and seg summaries are written at correct place 904 */ 905 ckpt_ver = cur_cp_version(ckpt); 906 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 907 908 /* write cached NAT/SIT entries to NAT/SIT area */ 909 flush_nat_entries(sbi); 910 flush_sit_entries(sbi); 911 912 /* unlock all the fs_lock[] in do_checkpoint() */ 913 do_checkpoint(sbi, is_umount); 914 915 unblock_operations(sbi); 916 mutex_unlock(&sbi->cp_mutex); 917 918 stat_inc_cp_count(sbi->stat_info); 919 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 920 } 921 922 void init_orphan_info(struct f2fs_sb_info *sbi) 923 { 924 spin_lock_init(&sbi->orphan_inode_lock); 925 INIT_LIST_HEAD(&sbi->orphan_inode_list); 926 sbi->n_orphans = 0; 927 /* 928 * considering 512 blocks in a segment 8 blocks are needed for cp 929 * and log segment summaries. Remaining blocks are used to keep 930 * orphan entries with the limitation one reserved segment 931 * for cp pack we can have max 1020*504 orphan entries 932 */ 933 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE) 934 * F2FS_ORPHANS_PER_BLOCK; 935 } 936 937 int __init create_checkpoint_caches(void) 938 { 939 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 940 sizeof(struct orphan_inode_entry)); 941 if (!orphan_entry_slab) 942 return -ENOMEM; 943 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 944 sizeof(struct dir_inode_entry)); 945 if (!inode_entry_slab) { 946 kmem_cache_destroy(orphan_entry_slab); 947 return -ENOMEM; 948 } 949 return 0; 950 } 951 952 void destroy_checkpoint_caches(void) 953 { 954 kmem_cache_destroy(orphan_entry_slab); 955 kmem_cache_destroy(inode_entry_slab); 956 } 957