1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *ino_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = META_MAPPING(sbi); 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 f2fs_wait_on_page_writeback(page, META); 42 SetPageUptodate(page); 43 return page; 44 } 45 46 /* 47 * We guarantee no failure on the returned page. 48 */ 49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 50 { 51 struct address_space *mapping = META_MAPPING(sbi); 52 struct page *page; 53 repeat: 54 page = grab_cache_page(mapping, index); 55 if (!page) { 56 cond_resched(); 57 goto repeat; 58 } 59 if (PageUptodate(page)) 60 goto out; 61 62 if (f2fs_submit_page_bio(sbi, page, index, 63 READ_SYNC | REQ_META | REQ_PRIO)) 64 goto repeat; 65 66 lock_page(page); 67 if (unlikely(page->mapping != mapping)) { 68 f2fs_put_page(page, 1); 69 goto repeat; 70 } 71 out: 72 return page; 73 } 74 75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type) 76 { 77 switch (type) { 78 case META_NAT: 79 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK; 80 case META_SIT: 81 return SIT_BLK_CNT(sbi); 82 case META_SSA: 83 case META_CP: 84 return 0; 85 default: 86 BUG(); 87 } 88 } 89 90 /* 91 * Readahead CP/NAT/SIT/SSA pages 92 */ 93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type) 94 { 95 block_t prev_blk_addr = 0; 96 struct page *page; 97 int blkno = start; 98 int max_blks = get_max_meta_blks(sbi, type); 99 100 struct f2fs_io_info fio = { 101 .type = META, 102 .rw = READ_SYNC | REQ_META | REQ_PRIO 103 }; 104 105 for (; nrpages-- > 0; blkno++) { 106 block_t blk_addr; 107 108 switch (type) { 109 case META_NAT: 110 /* get nat block addr */ 111 if (unlikely(blkno >= max_blks)) 112 blkno = 0; 113 blk_addr = current_nat_addr(sbi, 114 blkno * NAT_ENTRY_PER_BLOCK); 115 break; 116 case META_SIT: 117 /* get sit block addr */ 118 if (unlikely(blkno >= max_blks)) 119 goto out; 120 blk_addr = current_sit_addr(sbi, 121 blkno * SIT_ENTRY_PER_BLOCK); 122 if (blkno != start && prev_blk_addr + 1 != blk_addr) 123 goto out; 124 prev_blk_addr = blk_addr; 125 break; 126 case META_SSA: 127 case META_CP: 128 /* get ssa/cp block addr */ 129 blk_addr = blkno; 130 break; 131 default: 132 BUG(); 133 } 134 135 page = grab_cache_page(META_MAPPING(sbi), blk_addr); 136 if (!page) 137 continue; 138 if (PageUptodate(page)) { 139 f2fs_put_page(page, 1); 140 continue; 141 } 142 143 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio); 144 f2fs_put_page(page, 0); 145 } 146 out: 147 f2fs_submit_merged_bio(sbi, META, READ); 148 return blkno - start; 149 } 150 151 static int f2fs_write_meta_page(struct page *page, 152 struct writeback_control *wbc) 153 { 154 struct inode *inode = page->mapping->host; 155 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 156 157 trace_f2fs_writepage(page, META); 158 159 if (unlikely(sbi->por_doing)) 160 goto redirty_out; 161 if (wbc->for_reclaim) 162 goto redirty_out; 163 if (unlikely(f2fs_cp_error(sbi))) 164 goto redirty_out; 165 166 f2fs_wait_on_page_writeback(page, META); 167 write_meta_page(sbi, page); 168 dec_page_count(sbi, F2FS_DIRTY_META); 169 unlock_page(page); 170 return 0; 171 172 redirty_out: 173 redirty_page_for_writepage(wbc, page); 174 return AOP_WRITEPAGE_ACTIVATE; 175 } 176 177 static int f2fs_write_meta_pages(struct address_space *mapping, 178 struct writeback_control *wbc) 179 { 180 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 181 long diff, written; 182 183 trace_f2fs_writepages(mapping->host, wbc, META); 184 185 /* collect a number of dirty meta pages and write together */ 186 if (wbc->for_kupdate || 187 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 188 goto skip_write; 189 190 /* if mounting is failed, skip writing node pages */ 191 mutex_lock(&sbi->cp_mutex); 192 diff = nr_pages_to_write(sbi, META, wbc); 193 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 194 mutex_unlock(&sbi->cp_mutex); 195 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 196 return 0; 197 198 skip_write: 199 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 200 return 0; 201 } 202 203 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 204 long nr_to_write) 205 { 206 struct address_space *mapping = META_MAPPING(sbi); 207 pgoff_t index = 0, end = LONG_MAX; 208 struct pagevec pvec; 209 long nwritten = 0; 210 struct writeback_control wbc = { 211 .for_reclaim = 0, 212 }; 213 214 pagevec_init(&pvec, 0); 215 216 while (index <= end) { 217 int i, nr_pages; 218 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 219 PAGECACHE_TAG_DIRTY, 220 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 221 if (unlikely(nr_pages == 0)) 222 break; 223 224 for (i = 0; i < nr_pages; i++) { 225 struct page *page = pvec.pages[i]; 226 227 lock_page(page); 228 229 if (unlikely(page->mapping != mapping)) { 230 continue_unlock: 231 unlock_page(page); 232 continue; 233 } 234 if (!PageDirty(page)) { 235 /* someone wrote it for us */ 236 goto continue_unlock; 237 } 238 239 if (!clear_page_dirty_for_io(page)) 240 goto continue_unlock; 241 242 if (f2fs_write_meta_page(page, &wbc)) { 243 unlock_page(page); 244 break; 245 } 246 nwritten++; 247 if (unlikely(nwritten >= nr_to_write)) 248 break; 249 } 250 pagevec_release(&pvec); 251 cond_resched(); 252 } 253 254 if (nwritten) 255 f2fs_submit_merged_bio(sbi, type, WRITE); 256 257 return nwritten; 258 } 259 260 static int f2fs_set_meta_page_dirty(struct page *page) 261 { 262 struct address_space *mapping = page->mapping; 263 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 264 265 trace_f2fs_set_page_dirty(page, META); 266 267 SetPageUptodate(page); 268 if (!PageDirty(page)) { 269 __set_page_dirty_nobuffers(page); 270 inc_page_count(sbi, F2FS_DIRTY_META); 271 return 1; 272 } 273 return 0; 274 } 275 276 const struct address_space_operations f2fs_meta_aops = { 277 .writepage = f2fs_write_meta_page, 278 .writepages = f2fs_write_meta_pages, 279 .set_page_dirty = f2fs_set_meta_page_dirty, 280 }; 281 282 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 283 { 284 struct ino_entry *e; 285 retry: 286 spin_lock(&sbi->ino_lock[type]); 287 288 e = radix_tree_lookup(&sbi->ino_root[type], ino); 289 if (!e) { 290 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 291 if (!e) { 292 spin_unlock(&sbi->ino_lock[type]); 293 goto retry; 294 } 295 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) { 296 spin_unlock(&sbi->ino_lock[type]); 297 kmem_cache_free(ino_entry_slab, e); 298 goto retry; 299 } 300 memset(e, 0, sizeof(struct ino_entry)); 301 e->ino = ino; 302 303 list_add_tail(&e->list, &sbi->ino_list[type]); 304 } 305 spin_unlock(&sbi->ino_lock[type]); 306 } 307 308 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 309 { 310 struct ino_entry *e; 311 312 spin_lock(&sbi->ino_lock[type]); 313 e = radix_tree_lookup(&sbi->ino_root[type], ino); 314 if (e) { 315 list_del(&e->list); 316 radix_tree_delete(&sbi->ino_root[type], ino); 317 if (type == ORPHAN_INO) 318 sbi->n_orphans--; 319 spin_unlock(&sbi->ino_lock[type]); 320 kmem_cache_free(ino_entry_slab, e); 321 return; 322 } 323 spin_unlock(&sbi->ino_lock[type]); 324 } 325 326 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 327 { 328 /* add new dirty ino entry into list */ 329 __add_ino_entry(sbi, ino, type); 330 } 331 332 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 333 { 334 /* remove dirty ino entry from list */ 335 __remove_ino_entry(sbi, ino, type); 336 } 337 338 /* mode should be APPEND_INO or UPDATE_INO */ 339 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 340 { 341 struct ino_entry *e; 342 spin_lock(&sbi->ino_lock[mode]); 343 e = radix_tree_lookup(&sbi->ino_root[mode], ino); 344 spin_unlock(&sbi->ino_lock[mode]); 345 return e ? true : false; 346 } 347 348 void release_dirty_inode(struct f2fs_sb_info *sbi) 349 { 350 struct ino_entry *e, *tmp; 351 int i; 352 353 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 354 spin_lock(&sbi->ino_lock[i]); 355 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) { 356 list_del(&e->list); 357 radix_tree_delete(&sbi->ino_root[i], e->ino); 358 kmem_cache_free(ino_entry_slab, e); 359 } 360 spin_unlock(&sbi->ino_lock[i]); 361 } 362 } 363 364 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 365 { 366 int err = 0; 367 368 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 369 if (unlikely(sbi->n_orphans >= sbi->max_orphans)) 370 err = -ENOSPC; 371 else 372 sbi->n_orphans++; 373 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 374 375 return err; 376 } 377 378 void release_orphan_inode(struct f2fs_sb_info *sbi) 379 { 380 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 381 f2fs_bug_on(sbi->n_orphans == 0); 382 sbi->n_orphans--; 383 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 384 } 385 386 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 387 { 388 /* add new orphan ino entry into list */ 389 __add_ino_entry(sbi, ino, ORPHAN_INO); 390 } 391 392 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 393 { 394 /* remove orphan entry from orphan list */ 395 __remove_ino_entry(sbi, ino, ORPHAN_INO); 396 } 397 398 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 399 { 400 struct inode *inode = f2fs_iget(sbi->sb, ino); 401 f2fs_bug_on(IS_ERR(inode)); 402 clear_nlink(inode); 403 404 /* truncate all the data during iput */ 405 iput(inode); 406 } 407 408 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 409 { 410 block_t start_blk, orphan_blkaddr, i, j; 411 412 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 413 return; 414 415 sbi->por_doing = true; 416 417 start_blk = __start_cp_addr(sbi) + 1 + 418 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 419 orphan_blkaddr = __start_sum_addr(sbi) - 1; 420 421 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); 422 423 for (i = 0; i < orphan_blkaddr; i++) { 424 struct page *page = get_meta_page(sbi, start_blk + i); 425 struct f2fs_orphan_block *orphan_blk; 426 427 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 428 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 429 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 430 recover_orphan_inode(sbi, ino); 431 } 432 f2fs_put_page(page, 1); 433 } 434 /* clear Orphan Flag */ 435 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 436 sbi->por_doing = false; 437 return; 438 } 439 440 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 441 { 442 struct list_head *head; 443 struct f2fs_orphan_block *orphan_blk = NULL; 444 unsigned int nentries = 0; 445 unsigned short index; 446 unsigned short orphan_blocks = 447 (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans); 448 struct page *page = NULL; 449 struct ino_entry *orphan = NULL; 450 451 for (index = 0; index < orphan_blocks; index++) 452 grab_meta_page(sbi, start_blk + index); 453 454 index = 1; 455 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 456 head = &sbi->ino_list[ORPHAN_INO]; 457 458 /* loop for each orphan inode entry and write them in Jornal block */ 459 list_for_each_entry(orphan, head, list) { 460 if (!page) { 461 page = find_get_page(META_MAPPING(sbi), start_blk++); 462 f2fs_bug_on(!page); 463 orphan_blk = 464 (struct f2fs_orphan_block *)page_address(page); 465 memset(orphan_blk, 0, sizeof(*orphan_blk)); 466 f2fs_put_page(page, 0); 467 } 468 469 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 470 471 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 472 /* 473 * an orphan block is full of 1020 entries, 474 * then we need to flush current orphan blocks 475 * and bring another one in memory 476 */ 477 orphan_blk->blk_addr = cpu_to_le16(index); 478 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 479 orphan_blk->entry_count = cpu_to_le32(nentries); 480 set_page_dirty(page); 481 f2fs_put_page(page, 1); 482 index++; 483 nentries = 0; 484 page = NULL; 485 } 486 } 487 488 if (page) { 489 orphan_blk->blk_addr = cpu_to_le16(index); 490 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 491 orphan_blk->entry_count = cpu_to_le32(nentries); 492 set_page_dirty(page); 493 f2fs_put_page(page, 1); 494 } 495 496 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 497 } 498 499 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 500 block_t cp_addr, unsigned long long *version) 501 { 502 struct page *cp_page_1, *cp_page_2 = NULL; 503 unsigned long blk_size = sbi->blocksize; 504 struct f2fs_checkpoint *cp_block; 505 unsigned long long cur_version = 0, pre_version = 0; 506 size_t crc_offset; 507 __u32 crc = 0; 508 509 /* Read the 1st cp block in this CP pack */ 510 cp_page_1 = get_meta_page(sbi, cp_addr); 511 512 /* get the version number */ 513 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 514 crc_offset = le32_to_cpu(cp_block->checksum_offset); 515 if (crc_offset >= blk_size) 516 goto invalid_cp1; 517 518 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 519 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 520 goto invalid_cp1; 521 522 pre_version = cur_cp_version(cp_block); 523 524 /* Read the 2nd cp block in this CP pack */ 525 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 526 cp_page_2 = get_meta_page(sbi, cp_addr); 527 528 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 529 crc_offset = le32_to_cpu(cp_block->checksum_offset); 530 if (crc_offset >= blk_size) 531 goto invalid_cp2; 532 533 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 534 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 535 goto invalid_cp2; 536 537 cur_version = cur_cp_version(cp_block); 538 539 if (cur_version == pre_version) { 540 *version = cur_version; 541 f2fs_put_page(cp_page_2, 1); 542 return cp_page_1; 543 } 544 invalid_cp2: 545 f2fs_put_page(cp_page_2, 1); 546 invalid_cp1: 547 f2fs_put_page(cp_page_1, 1); 548 return NULL; 549 } 550 551 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 552 { 553 struct f2fs_checkpoint *cp_block; 554 struct f2fs_super_block *fsb = sbi->raw_super; 555 struct page *cp1, *cp2, *cur_page; 556 unsigned long blk_size = sbi->blocksize; 557 unsigned long long cp1_version = 0, cp2_version = 0; 558 unsigned long long cp_start_blk_no; 559 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 560 block_t cp_blk_no; 561 int i; 562 563 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 564 if (!sbi->ckpt) 565 return -ENOMEM; 566 /* 567 * Finding out valid cp block involves read both 568 * sets( cp pack1 and cp pack 2) 569 */ 570 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 571 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 572 573 /* The second checkpoint pack should start at the next segment */ 574 cp_start_blk_no += ((unsigned long long)1) << 575 le32_to_cpu(fsb->log_blocks_per_seg); 576 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 577 578 if (cp1 && cp2) { 579 if (ver_after(cp2_version, cp1_version)) 580 cur_page = cp2; 581 else 582 cur_page = cp1; 583 } else if (cp1) { 584 cur_page = cp1; 585 } else if (cp2) { 586 cur_page = cp2; 587 } else { 588 goto fail_no_cp; 589 } 590 591 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 592 memcpy(sbi->ckpt, cp_block, blk_size); 593 594 if (cp_blks <= 1) 595 goto done; 596 597 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 598 if (cur_page == cp2) 599 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 600 601 for (i = 1; i < cp_blks; i++) { 602 void *sit_bitmap_ptr; 603 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 604 605 cur_page = get_meta_page(sbi, cp_blk_no + i); 606 sit_bitmap_ptr = page_address(cur_page); 607 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 608 f2fs_put_page(cur_page, 1); 609 } 610 done: 611 f2fs_put_page(cp1, 1); 612 f2fs_put_page(cp2, 1); 613 return 0; 614 615 fail_no_cp: 616 kfree(sbi->ckpt); 617 return -EINVAL; 618 } 619 620 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 621 { 622 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 623 624 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 625 return -EEXIST; 626 627 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 628 F2FS_I(inode)->dirty_dir = new; 629 list_add_tail(&new->list, &sbi->dir_inode_list); 630 stat_inc_dirty_dir(sbi); 631 return 0; 632 } 633 634 void set_dirty_dir_page(struct inode *inode, struct page *page) 635 { 636 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 637 struct dir_inode_entry *new; 638 int ret = 0; 639 640 if (!S_ISDIR(inode->i_mode)) 641 return; 642 643 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 644 new->inode = inode; 645 INIT_LIST_HEAD(&new->list); 646 647 spin_lock(&sbi->dir_inode_lock); 648 ret = __add_dirty_inode(inode, new); 649 inode_inc_dirty_dents(inode); 650 SetPagePrivate(page); 651 spin_unlock(&sbi->dir_inode_lock); 652 653 if (ret) 654 kmem_cache_free(inode_entry_slab, new); 655 } 656 657 void add_dirty_dir_inode(struct inode *inode) 658 { 659 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 660 struct dir_inode_entry *new = 661 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 662 int ret = 0; 663 664 new->inode = inode; 665 INIT_LIST_HEAD(&new->list); 666 667 spin_lock(&sbi->dir_inode_lock); 668 ret = __add_dirty_inode(inode, new); 669 spin_unlock(&sbi->dir_inode_lock); 670 671 if (ret) 672 kmem_cache_free(inode_entry_slab, new); 673 } 674 675 void remove_dirty_dir_inode(struct inode *inode) 676 { 677 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 678 struct dir_inode_entry *entry; 679 680 if (!S_ISDIR(inode->i_mode)) 681 return; 682 683 spin_lock(&sbi->dir_inode_lock); 684 if (get_dirty_dents(inode) || 685 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 686 spin_unlock(&sbi->dir_inode_lock); 687 return; 688 } 689 690 entry = F2FS_I(inode)->dirty_dir; 691 list_del(&entry->list); 692 F2FS_I(inode)->dirty_dir = NULL; 693 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 694 stat_dec_dirty_dir(sbi); 695 spin_unlock(&sbi->dir_inode_lock); 696 kmem_cache_free(inode_entry_slab, entry); 697 698 /* Only from the recovery routine */ 699 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 700 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 701 iput(inode); 702 } 703 } 704 705 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 706 { 707 struct list_head *head; 708 struct dir_inode_entry *entry; 709 struct inode *inode; 710 retry: 711 spin_lock(&sbi->dir_inode_lock); 712 713 head = &sbi->dir_inode_list; 714 if (list_empty(head)) { 715 spin_unlock(&sbi->dir_inode_lock); 716 return; 717 } 718 entry = list_entry(head->next, struct dir_inode_entry, list); 719 inode = igrab(entry->inode); 720 spin_unlock(&sbi->dir_inode_lock); 721 if (inode) { 722 filemap_fdatawrite(inode->i_mapping); 723 iput(inode); 724 } else { 725 /* 726 * We should submit bio, since it exists several 727 * wribacking dentry pages in the freeing inode. 728 */ 729 f2fs_submit_merged_bio(sbi, DATA, WRITE); 730 } 731 goto retry; 732 } 733 734 /* 735 * Freeze all the FS-operations for checkpoint. 736 */ 737 static int block_operations(struct f2fs_sb_info *sbi) 738 { 739 struct writeback_control wbc = { 740 .sync_mode = WB_SYNC_ALL, 741 .nr_to_write = LONG_MAX, 742 .for_reclaim = 0, 743 }; 744 struct blk_plug plug; 745 int err = 0; 746 747 blk_start_plug(&plug); 748 749 retry_flush_dents: 750 f2fs_lock_all(sbi); 751 /* write all the dirty dentry pages */ 752 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 753 f2fs_unlock_all(sbi); 754 sync_dirty_dir_inodes(sbi); 755 if (unlikely(f2fs_cp_error(sbi))) { 756 err = -EIO; 757 goto out; 758 } 759 goto retry_flush_dents; 760 } 761 762 /* 763 * POR: we should ensure that there are no dirty node pages 764 * until finishing nat/sit flush. 765 */ 766 retry_flush_nodes: 767 down_write(&sbi->node_write); 768 769 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 770 up_write(&sbi->node_write); 771 sync_node_pages(sbi, 0, &wbc); 772 if (unlikely(f2fs_cp_error(sbi))) { 773 f2fs_unlock_all(sbi); 774 err = -EIO; 775 goto out; 776 } 777 goto retry_flush_nodes; 778 } 779 out: 780 blk_finish_plug(&plug); 781 return err; 782 } 783 784 static void unblock_operations(struct f2fs_sb_info *sbi) 785 { 786 up_write(&sbi->node_write); 787 f2fs_unlock_all(sbi); 788 } 789 790 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 791 { 792 DEFINE_WAIT(wait); 793 794 for (;;) { 795 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 796 797 if (!get_pages(sbi, F2FS_WRITEBACK)) 798 break; 799 800 io_schedule(); 801 } 802 finish_wait(&sbi->cp_wait, &wait); 803 } 804 805 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 806 { 807 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 808 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 809 nid_t last_nid = 0; 810 block_t start_blk; 811 struct page *cp_page; 812 unsigned int data_sum_blocks, orphan_blocks; 813 __u32 crc32 = 0; 814 void *kaddr; 815 int i; 816 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 817 818 /* 819 * This avoids to conduct wrong roll-forward operations and uses 820 * metapages, so should be called prior to sync_meta_pages below. 821 */ 822 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 823 824 /* Flush all the NAT/SIT pages */ 825 while (get_pages(sbi, F2FS_DIRTY_META)) { 826 sync_meta_pages(sbi, META, LONG_MAX); 827 if (unlikely(f2fs_cp_error(sbi))) 828 return; 829 } 830 831 next_free_nid(sbi, &last_nid); 832 833 /* 834 * modify checkpoint 835 * version number is already updated 836 */ 837 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 838 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 839 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 840 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 841 ckpt->cur_node_segno[i] = 842 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 843 ckpt->cur_node_blkoff[i] = 844 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 845 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 846 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 847 } 848 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 849 ckpt->cur_data_segno[i] = 850 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 851 ckpt->cur_data_blkoff[i] = 852 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 853 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 854 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 855 } 856 857 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 858 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 859 ckpt->next_free_nid = cpu_to_le32(last_nid); 860 861 /* 2 cp + n data seg summary + orphan inode blocks */ 862 data_sum_blocks = npages_for_summary_flush(sbi); 863 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 864 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 865 else 866 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 867 868 orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans); 869 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 870 orphan_blocks); 871 872 if (is_umount) { 873 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 874 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 875 cp_payload_blks + data_sum_blocks + 876 orphan_blocks + NR_CURSEG_NODE_TYPE); 877 } else { 878 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 879 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 880 cp_payload_blks + data_sum_blocks + 881 orphan_blocks); 882 } 883 884 if (sbi->n_orphans) 885 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 886 else 887 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 888 889 /* update SIT/NAT bitmap */ 890 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 891 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 892 893 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 894 *((__le32 *)((unsigned char *)ckpt + 895 le32_to_cpu(ckpt->checksum_offset))) 896 = cpu_to_le32(crc32); 897 898 start_blk = __start_cp_addr(sbi); 899 900 /* write out checkpoint buffer at block 0 */ 901 cp_page = grab_meta_page(sbi, start_blk++); 902 kaddr = page_address(cp_page); 903 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 904 set_page_dirty(cp_page); 905 f2fs_put_page(cp_page, 1); 906 907 for (i = 1; i < 1 + cp_payload_blks; i++) { 908 cp_page = grab_meta_page(sbi, start_blk++); 909 kaddr = page_address(cp_page); 910 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, 911 (1 << sbi->log_blocksize)); 912 set_page_dirty(cp_page); 913 f2fs_put_page(cp_page, 1); 914 } 915 916 if (sbi->n_orphans) { 917 write_orphan_inodes(sbi, start_blk); 918 start_blk += orphan_blocks; 919 } 920 921 write_data_summaries(sbi, start_blk); 922 start_blk += data_sum_blocks; 923 if (is_umount) { 924 write_node_summaries(sbi, start_blk); 925 start_blk += NR_CURSEG_NODE_TYPE; 926 } 927 928 /* writeout checkpoint block */ 929 cp_page = grab_meta_page(sbi, start_blk); 930 kaddr = page_address(cp_page); 931 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 932 set_page_dirty(cp_page); 933 f2fs_put_page(cp_page, 1); 934 935 /* wait for previous submitted node/meta pages writeback */ 936 wait_on_all_pages_writeback(sbi); 937 938 if (unlikely(f2fs_cp_error(sbi))) 939 return; 940 941 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 942 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 943 944 /* update user_block_counts */ 945 sbi->last_valid_block_count = sbi->total_valid_block_count; 946 sbi->alloc_valid_block_count = 0; 947 948 /* Here, we only have one bio having CP pack */ 949 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 950 951 release_dirty_inode(sbi); 952 953 if (unlikely(f2fs_cp_error(sbi))) 954 return; 955 956 clear_prefree_segments(sbi); 957 F2FS_RESET_SB_DIRT(sbi); 958 } 959 960 /* 961 * We guarantee that this checkpoint procedure will not fail. 962 */ 963 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 964 { 965 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 966 unsigned long long ckpt_ver; 967 968 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 969 970 mutex_lock(&sbi->cp_mutex); 971 972 if (!sbi->s_dirty) 973 goto out; 974 if (unlikely(f2fs_cp_error(sbi))) 975 goto out; 976 if (block_operations(sbi)) 977 goto out; 978 979 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 980 981 f2fs_submit_merged_bio(sbi, DATA, WRITE); 982 f2fs_submit_merged_bio(sbi, NODE, WRITE); 983 f2fs_submit_merged_bio(sbi, META, WRITE); 984 985 /* 986 * update checkpoint pack index 987 * Increase the version number so that 988 * SIT entries and seg summaries are written at correct place 989 */ 990 ckpt_ver = cur_cp_version(ckpt); 991 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 992 993 /* write cached NAT/SIT entries to NAT/SIT area */ 994 flush_nat_entries(sbi); 995 flush_sit_entries(sbi); 996 997 /* unlock all the fs_lock[] in do_checkpoint() */ 998 do_checkpoint(sbi, is_umount); 999 1000 unblock_operations(sbi); 1001 stat_inc_cp_count(sbi->stat_info); 1002 out: 1003 mutex_unlock(&sbi->cp_mutex); 1004 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 1005 } 1006 1007 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1008 { 1009 int i; 1010 1011 for (i = 0; i < MAX_INO_ENTRY; i++) { 1012 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC); 1013 spin_lock_init(&sbi->ino_lock[i]); 1014 INIT_LIST_HEAD(&sbi->ino_list[i]); 1015 } 1016 1017 /* 1018 * considering 512 blocks in a segment 8 blocks are needed for cp 1019 * and log segment summaries. Remaining blocks are used to keep 1020 * orphan entries with the limitation one reserved segment 1021 * for cp pack we can have max 1020*504 orphan entries 1022 */ 1023 sbi->n_orphans = 0; 1024 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1025 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK; 1026 } 1027 1028 int __init create_checkpoint_caches(void) 1029 { 1030 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1031 sizeof(struct ino_entry)); 1032 if (!ino_entry_slab) 1033 return -ENOMEM; 1034 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 1035 sizeof(struct dir_inode_entry)); 1036 if (!inode_entry_slab) { 1037 kmem_cache_destroy(ino_entry_slab); 1038 return -ENOMEM; 1039 } 1040 return 0; 1041 } 1042 1043 void destroy_checkpoint_caches(void) 1044 { 1045 kmem_cache_destroy(ino_entry_slab); 1046 kmem_cache_destroy(inode_entry_slab); 1047 } 1048