1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 set_ckpt_flags(sbi, CP_ERROR_FLAG); 34 if (!end_io) { 35 f2fs_flush_merged_writes(sbi); 36 37 f2fs_handle_stop(sbi, reason); 38 } 39 } 40 41 /* 42 * We guarantee no failure on the returned page. 43 */ 44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 45 { 46 struct address_space *mapping = META_MAPPING(sbi); 47 struct page *page; 48 repeat: 49 page = f2fs_grab_cache_page(mapping, index, false); 50 if (!page) { 51 cond_resched(); 52 goto repeat; 53 } 54 f2fs_wait_on_page_writeback(page, META, true, true); 55 if (!PageUptodate(page)) 56 SetPageUptodate(page); 57 return page; 58 } 59 60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 61 bool is_meta) 62 { 63 struct address_space *mapping = META_MAPPING(sbi); 64 struct page *page; 65 struct f2fs_io_info fio = { 66 .sbi = sbi, 67 .type = META, 68 .op = REQ_OP_READ, 69 .op_flags = REQ_META | REQ_PRIO, 70 .old_blkaddr = index, 71 .new_blkaddr = index, 72 .encrypted_page = NULL, 73 .is_por = !is_meta, 74 }; 75 int err; 76 77 if (unlikely(!is_meta)) 78 fio.op_flags &= ~REQ_META; 79 repeat: 80 page = f2fs_grab_cache_page(mapping, index, false); 81 if (!page) { 82 cond_resched(); 83 goto repeat; 84 } 85 if (PageUptodate(page)) 86 goto out; 87 88 fio.page = page; 89 90 err = f2fs_submit_page_bio(&fio); 91 if (err) { 92 f2fs_put_page(page, 1); 93 return ERR_PTR(err); 94 } 95 96 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 97 98 lock_page(page); 99 if (unlikely(page->mapping != mapping)) { 100 f2fs_put_page(page, 1); 101 goto repeat; 102 } 103 104 if (unlikely(!PageUptodate(page))) { 105 f2fs_handle_page_eio(sbi, page->index, META); 106 f2fs_put_page(page, 1); 107 return ERR_PTR(-EIO); 108 } 109 out: 110 return page; 111 } 112 113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 return __get_meta_page(sbi, index, true); 116 } 117 118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 119 { 120 struct page *page; 121 int count = 0; 122 123 retry: 124 page = __get_meta_page(sbi, index, true); 125 if (IS_ERR(page)) { 126 if (PTR_ERR(page) == -EIO && 127 ++count <= DEFAULT_RETRY_IO_COUNT) 128 goto retry; 129 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 130 } 131 return page; 132 } 133 134 /* for POR only */ 135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 136 { 137 return __get_meta_page(sbi, index, false); 138 } 139 140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 141 int type) 142 { 143 struct seg_entry *se; 144 unsigned int segno, offset; 145 bool exist; 146 147 if (type == DATA_GENERIC) 148 return true; 149 150 segno = GET_SEGNO(sbi, blkaddr); 151 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 152 se = get_seg_entry(sbi, segno); 153 154 exist = f2fs_test_bit(offset, se->cur_valid_map); 155 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) { 156 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 157 blkaddr, exist); 158 set_sbi_flag(sbi, SBI_NEED_FSCK); 159 return exist; 160 } 161 162 if (!exist && type == DATA_GENERIC_ENHANCE) { 163 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 164 blkaddr, exist); 165 set_sbi_flag(sbi, SBI_NEED_FSCK); 166 dump_stack(); 167 } 168 return exist; 169 } 170 171 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 172 block_t blkaddr, int type) 173 { 174 switch (type) { 175 case META_NAT: 176 break; 177 case META_SIT: 178 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 179 return false; 180 break; 181 case META_SSA: 182 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 183 blkaddr < SM_I(sbi)->ssa_blkaddr)) 184 return false; 185 break; 186 case META_CP: 187 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 188 blkaddr < __start_cp_addr(sbi))) 189 return false; 190 break; 191 case META_POR: 192 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 193 blkaddr < MAIN_BLKADDR(sbi))) 194 return false; 195 break; 196 case DATA_GENERIC: 197 case DATA_GENERIC_ENHANCE: 198 case DATA_GENERIC_ENHANCE_READ: 199 case DATA_GENERIC_ENHANCE_UPDATE: 200 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 201 blkaddr < MAIN_BLKADDR(sbi))) { 202 f2fs_warn(sbi, "access invalid blkaddr:%u", 203 blkaddr); 204 set_sbi_flag(sbi, SBI_NEED_FSCK); 205 dump_stack(); 206 return false; 207 } else { 208 return __is_bitmap_valid(sbi, blkaddr, type); 209 } 210 break; 211 case META_GENERIC: 212 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 213 blkaddr >= MAIN_BLKADDR(sbi))) 214 return false; 215 break; 216 default: 217 BUG(); 218 } 219 220 return true; 221 } 222 223 /* 224 * Readahead CP/NAT/SIT/SSA/POR pages 225 */ 226 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 227 int type, bool sync) 228 { 229 struct page *page; 230 block_t blkno = start; 231 struct f2fs_io_info fio = { 232 .sbi = sbi, 233 .type = META, 234 .op = REQ_OP_READ, 235 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 236 .encrypted_page = NULL, 237 .in_list = false, 238 .is_por = (type == META_POR), 239 }; 240 struct blk_plug plug; 241 int err; 242 243 if (unlikely(type == META_POR)) 244 fio.op_flags &= ~REQ_META; 245 246 blk_start_plug(&plug); 247 for (; nrpages-- > 0; blkno++) { 248 249 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 250 goto out; 251 252 switch (type) { 253 case META_NAT: 254 if (unlikely(blkno >= 255 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 256 blkno = 0; 257 /* get nat block addr */ 258 fio.new_blkaddr = current_nat_addr(sbi, 259 blkno * NAT_ENTRY_PER_BLOCK); 260 break; 261 case META_SIT: 262 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 263 goto out; 264 /* get sit block addr */ 265 fio.new_blkaddr = current_sit_addr(sbi, 266 blkno * SIT_ENTRY_PER_BLOCK); 267 break; 268 case META_SSA: 269 case META_CP: 270 case META_POR: 271 fio.new_blkaddr = blkno; 272 break; 273 default: 274 BUG(); 275 } 276 277 page = f2fs_grab_cache_page(META_MAPPING(sbi), 278 fio.new_blkaddr, false); 279 if (!page) 280 continue; 281 if (PageUptodate(page)) { 282 f2fs_put_page(page, 1); 283 continue; 284 } 285 286 fio.page = page; 287 err = f2fs_submit_page_bio(&fio); 288 f2fs_put_page(page, err ? 1 : 0); 289 290 if (!err) 291 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 292 F2FS_BLKSIZE); 293 } 294 out: 295 blk_finish_plug(&plug); 296 return blkno - start; 297 } 298 299 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 300 unsigned int ra_blocks) 301 { 302 struct page *page; 303 bool readahead = false; 304 305 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 306 return; 307 308 page = find_get_page(META_MAPPING(sbi), index); 309 if (!page || !PageUptodate(page)) 310 readahead = true; 311 f2fs_put_page(page, 0); 312 313 if (readahead) 314 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 315 } 316 317 static int __f2fs_write_meta_page(struct page *page, 318 struct writeback_control *wbc, 319 enum iostat_type io_type) 320 { 321 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 322 323 trace_f2fs_writepage(page, META); 324 325 if (unlikely(f2fs_cp_error(sbi))) 326 goto redirty_out; 327 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 328 goto redirty_out; 329 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 330 goto redirty_out; 331 332 f2fs_do_write_meta_page(sbi, page, io_type); 333 dec_page_count(sbi, F2FS_DIRTY_META); 334 335 if (wbc->for_reclaim) 336 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 337 338 unlock_page(page); 339 340 if (unlikely(f2fs_cp_error(sbi))) 341 f2fs_submit_merged_write(sbi, META); 342 343 return 0; 344 345 redirty_out: 346 redirty_page_for_writepage(wbc, page); 347 return AOP_WRITEPAGE_ACTIVATE; 348 } 349 350 static int f2fs_write_meta_page(struct page *page, 351 struct writeback_control *wbc) 352 { 353 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 354 } 355 356 static int f2fs_write_meta_pages(struct address_space *mapping, 357 struct writeback_control *wbc) 358 { 359 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 360 long diff, written; 361 362 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 363 goto skip_write; 364 365 /* collect a number of dirty meta pages and write together */ 366 if (wbc->sync_mode != WB_SYNC_ALL && 367 get_pages(sbi, F2FS_DIRTY_META) < 368 nr_pages_to_skip(sbi, META)) 369 goto skip_write; 370 371 /* if locked failed, cp will flush dirty pages instead */ 372 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 373 goto skip_write; 374 375 trace_f2fs_writepages(mapping->host, wbc, META); 376 diff = nr_pages_to_write(sbi, META, wbc); 377 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 378 f2fs_up_write(&sbi->cp_global_sem); 379 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 380 return 0; 381 382 skip_write: 383 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 384 trace_f2fs_writepages(mapping->host, wbc, META); 385 return 0; 386 } 387 388 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 389 long nr_to_write, enum iostat_type io_type) 390 { 391 struct address_space *mapping = META_MAPPING(sbi); 392 pgoff_t index = 0, prev = ULONG_MAX; 393 struct pagevec pvec; 394 long nwritten = 0; 395 int nr_pages; 396 struct writeback_control wbc = { 397 .for_reclaim = 0, 398 }; 399 struct blk_plug plug; 400 401 pagevec_init(&pvec); 402 403 blk_start_plug(&plug); 404 405 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 406 PAGECACHE_TAG_DIRTY))) { 407 int i; 408 409 for (i = 0; i < nr_pages; i++) { 410 struct page *page = pvec.pages[i]; 411 412 if (prev == ULONG_MAX) 413 prev = page->index - 1; 414 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 415 pagevec_release(&pvec); 416 goto stop; 417 } 418 419 lock_page(page); 420 421 if (unlikely(page->mapping != mapping)) { 422 continue_unlock: 423 unlock_page(page); 424 continue; 425 } 426 if (!PageDirty(page)) { 427 /* someone wrote it for us */ 428 goto continue_unlock; 429 } 430 431 f2fs_wait_on_page_writeback(page, META, true, true); 432 433 if (!clear_page_dirty_for_io(page)) 434 goto continue_unlock; 435 436 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 437 unlock_page(page); 438 break; 439 } 440 nwritten++; 441 prev = page->index; 442 if (unlikely(nwritten >= nr_to_write)) 443 break; 444 } 445 pagevec_release(&pvec); 446 cond_resched(); 447 } 448 stop: 449 if (nwritten) 450 f2fs_submit_merged_write(sbi, type); 451 452 blk_finish_plug(&plug); 453 454 return nwritten; 455 } 456 457 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 458 struct folio *folio) 459 { 460 trace_f2fs_set_page_dirty(&folio->page, META); 461 462 if (!folio_test_uptodate(folio)) 463 folio_mark_uptodate(folio); 464 if (filemap_dirty_folio(mapping, folio)) { 465 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 466 set_page_private_reference(&folio->page); 467 return true; 468 } 469 return false; 470 } 471 472 const struct address_space_operations f2fs_meta_aops = { 473 .writepage = f2fs_write_meta_page, 474 .writepages = f2fs_write_meta_pages, 475 .dirty_folio = f2fs_dirty_meta_folio, 476 .invalidate_folio = f2fs_invalidate_folio, 477 .release_folio = f2fs_release_folio, 478 .migrate_folio = filemap_migrate_folio, 479 }; 480 481 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 482 unsigned int devidx, int type) 483 { 484 struct inode_management *im = &sbi->im[type]; 485 struct ino_entry *e = NULL, *new = NULL; 486 487 if (type == FLUSH_INO) { 488 rcu_read_lock(); 489 e = radix_tree_lookup(&im->ino_root, ino); 490 rcu_read_unlock(); 491 } 492 493 retry: 494 if (!e) 495 new = f2fs_kmem_cache_alloc(ino_entry_slab, 496 GFP_NOFS, true, NULL); 497 498 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 499 500 spin_lock(&im->ino_lock); 501 e = radix_tree_lookup(&im->ino_root, ino); 502 if (!e) { 503 if (!new) { 504 spin_unlock(&im->ino_lock); 505 goto retry; 506 } 507 e = new; 508 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 509 f2fs_bug_on(sbi, 1); 510 511 memset(e, 0, sizeof(struct ino_entry)); 512 e->ino = ino; 513 514 list_add_tail(&e->list, &im->ino_list); 515 if (type != ORPHAN_INO) 516 im->ino_num++; 517 } 518 519 if (type == FLUSH_INO) 520 f2fs_set_bit(devidx, (char *)&e->dirty_device); 521 522 spin_unlock(&im->ino_lock); 523 radix_tree_preload_end(); 524 525 if (new && e != new) 526 kmem_cache_free(ino_entry_slab, new); 527 } 528 529 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 530 { 531 struct inode_management *im = &sbi->im[type]; 532 struct ino_entry *e; 533 534 spin_lock(&im->ino_lock); 535 e = radix_tree_lookup(&im->ino_root, ino); 536 if (e) { 537 list_del(&e->list); 538 radix_tree_delete(&im->ino_root, ino); 539 im->ino_num--; 540 spin_unlock(&im->ino_lock); 541 kmem_cache_free(ino_entry_slab, e); 542 return; 543 } 544 spin_unlock(&im->ino_lock); 545 } 546 547 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 548 { 549 /* add new dirty ino entry into list */ 550 __add_ino_entry(sbi, ino, 0, type); 551 } 552 553 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 554 { 555 /* remove dirty ino entry from list */ 556 __remove_ino_entry(sbi, ino, type); 557 } 558 559 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 560 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 561 { 562 struct inode_management *im = &sbi->im[mode]; 563 struct ino_entry *e; 564 565 spin_lock(&im->ino_lock); 566 e = radix_tree_lookup(&im->ino_root, ino); 567 spin_unlock(&im->ino_lock); 568 return e ? true : false; 569 } 570 571 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 572 { 573 struct ino_entry *e, *tmp; 574 int i; 575 576 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 577 struct inode_management *im = &sbi->im[i]; 578 579 spin_lock(&im->ino_lock); 580 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 581 list_del(&e->list); 582 radix_tree_delete(&im->ino_root, e->ino); 583 kmem_cache_free(ino_entry_slab, e); 584 im->ino_num--; 585 } 586 spin_unlock(&im->ino_lock); 587 } 588 } 589 590 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 591 unsigned int devidx, int type) 592 { 593 __add_ino_entry(sbi, ino, devidx, type); 594 } 595 596 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 597 unsigned int devidx, int type) 598 { 599 struct inode_management *im = &sbi->im[type]; 600 struct ino_entry *e; 601 bool is_dirty = false; 602 603 spin_lock(&im->ino_lock); 604 e = radix_tree_lookup(&im->ino_root, ino); 605 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 606 is_dirty = true; 607 spin_unlock(&im->ino_lock); 608 return is_dirty; 609 } 610 611 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 612 { 613 struct inode_management *im = &sbi->im[ORPHAN_INO]; 614 int err = 0; 615 616 spin_lock(&im->ino_lock); 617 618 if (time_to_inject(sbi, FAULT_ORPHAN)) { 619 spin_unlock(&im->ino_lock); 620 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 621 return -ENOSPC; 622 } 623 624 if (unlikely(im->ino_num >= sbi->max_orphans)) 625 err = -ENOSPC; 626 else 627 im->ino_num++; 628 spin_unlock(&im->ino_lock); 629 630 return err; 631 } 632 633 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 634 { 635 struct inode_management *im = &sbi->im[ORPHAN_INO]; 636 637 spin_lock(&im->ino_lock); 638 f2fs_bug_on(sbi, im->ino_num == 0); 639 im->ino_num--; 640 spin_unlock(&im->ino_lock); 641 } 642 643 void f2fs_add_orphan_inode(struct inode *inode) 644 { 645 /* add new orphan ino entry into list */ 646 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 647 f2fs_update_inode_page(inode); 648 } 649 650 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 651 { 652 /* remove orphan entry from orphan list */ 653 __remove_ino_entry(sbi, ino, ORPHAN_INO); 654 } 655 656 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 657 { 658 struct inode *inode; 659 struct node_info ni; 660 int err; 661 662 inode = f2fs_iget_retry(sbi->sb, ino); 663 if (IS_ERR(inode)) { 664 /* 665 * there should be a bug that we can't find the entry 666 * to orphan inode. 667 */ 668 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 669 return PTR_ERR(inode); 670 } 671 672 err = f2fs_dquot_initialize(inode); 673 if (err) { 674 iput(inode); 675 goto err_out; 676 } 677 678 clear_nlink(inode); 679 680 /* truncate all the data during iput */ 681 iput(inode); 682 683 err = f2fs_get_node_info(sbi, ino, &ni, false); 684 if (err) 685 goto err_out; 686 687 /* ENOMEM was fully retried in f2fs_evict_inode. */ 688 if (ni.blk_addr != NULL_ADDR) { 689 err = -EIO; 690 goto err_out; 691 } 692 return 0; 693 694 err_out: 695 set_sbi_flag(sbi, SBI_NEED_FSCK); 696 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 697 __func__, ino); 698 return err; 699 } 700 701 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 702 { 703 block_t start_blk, orphan_blocks, i, j; 704 unsigned int s_flags = sbi->sb->s_flags; 705 int err = 0; 706 #ifdef CONFIG_QUOTA 707 int quota_enabled; 708 #endif 709 710 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 711 return 0; 712 713 if (bdev_read_only(sbi->sb->s_bdev)) { 714 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 715 return 0; 716 } 717 718 if (s_flags & SB_RDONLY) { 719 f2fs_info(sbi, "orphan cleanup on readonly fs"); 720 sbi->sb->s_flags &= ~SB_RDONLY; 721 } 722 723 #ifdef CONFIG_QUOTA 724 /* 725 * Turn on quotas which were not enabled for read-only mounts if 726 * filesystem has quota feature, so that they are updated correctly. 727 */ 728 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 729 #endif 730 731 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 732 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 733 734 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 735 736 for (i = 0; i < orphan_blocks; i++) { 737 struct page *page; 738 struct f2fs_orphan_block *orphan_blk; 739 740 page = f2fs_get_meta_page(sbi, start_blk + i); 741 if (IS_ERR(page)) { 742 err = PTR_ERR(page); 743 goto out; 744 } 745 746 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 747 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 748 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 749 750 err = recover_orphan_inode(sbi, ino); 751 if (err) { 752 f2fs_put_page(page, 1); 753 goto out; 754 } 755 } 756 f2fs_put_page(page, 1); 757 } 758 /* clear Orphan Flag */ 759 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 760 out: 761 set_sbi_flag(sbi, SBI_IS_RECOVERED); 762 763 #ifdef CONFIG_QUOTA 764 /* Turn quotas off */ 765 if (quota_enabled) 766 f2fs_quota_off_umount(sbi->sb); 767 #endif 768 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 769 770 return err; 771 } 772 773 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 774 { 775 struct list_head *head; 776 struct f2fs_orphan_block *orphan_blk = NULL; 777 unsigned int nentries = 0; 778 unsigned short index = 1; 779 unsigned short orphan_blocks; 780 struct page *page = NULL; 781 struct ino_entry *orphan = NULL; 782 struct inode_management *im = &sbi->im[ORPHAN_INO]; 783 784 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 785 786 /* 787 * we don't need to do spin_lock(&im->ino_lock) here, since all the 788 * orphan inode operations are covered under f2fs_lock_op(). 789 * And, spin_lock should be avoided due to page operations below. 790 */ 791 head = &im->ino_list; 792 793 /* loop for each orphan inode entry and write them in Jornal block */ 794 list_for_each_entry(orphan, head, list) { 795 if (!page) { 796 page = f2fs_grab_meta_page(sbi, start_blk++); 797 orphan_blk = 798 (struct f2fs_orphan_block *)page_address(page); 799 memset(orphan_blk, 0, sizeof(*orphan_blk)); 800 } 801 802 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 803 804 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 805 /* 806 * an orphan block is full of 1020 entries, 807 * then we need to flush current orphan blocks 808 * and bring another one in memory 809 */ 810 orphan_blk->blk_addr = cpu_to_le16(index); 811 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 812 orphan_blk->entry_count = cpu_to_le32(nentries); 813 set_page_dirty(page); 814 f2fs_put_page(page, 1); 815 index++; 816 nentries = 0; 817 page = NULL; 818 } 819 } 820 821 if (page) { 822 orphan_blk->blk_addr = cpu_to_le16(index); 823 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 824 orphan_blk->entry_count = cpu_to_le32(nentries); 825 set_page_dirty(page); 826 f2fs_put_page(page, 1); 827 } 828 } 829 830 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 831 struct f2fs_checkpoint *ckpt) 832 { 833 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 834 __u32 chksum; 835 836 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 837 if (chksum_ofs < CP_CHKSUM_OFFSET) { 838 chksum_ofs += sizeof(chksum); 839 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 840 F2FS_BLKSIZE - chksum_ofs); 841 } 842 return chksum; 843 } 844 845 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 846 struct f2fs_checkpoint **cp_block, struct page **cp_page, 847 unsigned long long *version) 848 { 849 size_t crc_offset = 0; 850 __u32 crc; 851 852 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 853 if (IS_ERR(*cp_page)) 854 return PTR_ERR(*cp_page); 855 856 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 857 858 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 859 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 860 crc_offset > CP_CHKSUM_OFFSET) { 861 f2fs_put_page(*cp_page, 1); 862 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 863 return -EINVAL; 864 } 865 866 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 867 if (crc != cur_cp_crc(*cp_block)) { 868 f2fs_put_page(*cp_page, 1); 869 f2fs_warn(sbi, "invalid crc value"); 870 return -EINVAL; 871 } 872 873 *version = cur_cp_version(*cp_block); 874 return 0; 875 } 876 877 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 878 block_t cp_addr, unsigned long long *version) 879 { 880 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 881 struct f2fs_checkpoint *cp_block = NULL; 882 unsigned long long cur_version = 0, pre_version = 0; 883 unsigned int cp_blocks; 884 int err; 885 886 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 887 &cp_page_1, version); 888 if (err) 889 return NULL; 890 891 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 892 893 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 894 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 895 le32_to_cpu(cp_block->cp_pack_total_block_count)); 896 goto invalid_cp; 897 } 898 pre_version = *version; 899 900 cp_addr += cp_blocks - 1; 901 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 902 &cp_page_2, version); 903 if (err) 904 goto invalid_cp; 905 cur_version = *version; 906 907 if (cur_version == pre_version) { 908 *version = cur_version; 909 f2fs_put_page(cp_page_2, 1); 910 return cp_page_1; 911 } 912 f2fs_put_page(cp_page_2, 1); 913 invalid_cp: 914 f2fs_put_page(cp_page_1, 1); 915 return NULL; 916 } 917 918 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 919 { 920 struct f2fs_checkpoint *cp_block; 921 struct f2fs_super_block *fsb = sbi->raw_super; 922 struct page *cp1, *cp2, *cur_page; 923 unsigned long blk_size = sbi->blocksize; 924 unsigned long long cp1_version = 0, cp2_version = 0; 925 unsigned long long cp_start_blk_no; 926 unsigned int cp_blks = 1 + __cp_payload(sbi); 927 block_t cp_blk_no; 928 int i; 929 int err; 930 931 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 932 GFP_KERNEL); 933 if (!sbi->ckpt) 934 return -ENOMEM; 935 /* 936 * Finding out valid cp block involves read both 937 * sets( cp pack 1 and cp pack 2) 938 */ 939 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 940 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 941 942 /* The second checkpoint pack should start at the next segment */ 943 cp_start_blk_no += ((unsigned long long)1) << 944 le32_to_cpu(fsb->log_blocks_per_seg); 945 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 946 947 if (cp1 && cp2) { 948 if (ver_after(cp2_version, cp1_version)) 949 cur_page = cp2; 950 else 951 cur_page = cp1; 952 } else if (cp1) { 953 cur_page = cp1; 954 } else if (cp2) { 955 cur_page = cp2; 956 } else { 957 err = -EFSCORRUPTED; 958 goto fail_no_cp; 959 } 960 961 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 962 memcpy(sbi->ckpt, cp_block, blk_size); 963 964 if (cur_page == cp1) 965 sbi->cur_cp_pack = 1; 966 else 967 sbi->cur_cp_pack = 2; 968 969 /* Sanity checking of checkpoint */ 970 if (f2fs_sanity_check_ckpt(sbi)) { 971 err = -EFSCORRUPTED; 972 goto free_fail_no_cp; 973 } 974 975 if (cp_blks <= 1) 976 goto done; 977 978 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 979 if (cur_page == cp2) 980 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 981 982 for (i = 1; i < cp_blks; i++) { 983 void *sit_bitmap_ptr; 984 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 985 986 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 987 if (IS_ERR(cur_page)) { 988 err = PTR_ERR(cur_page); 989 goto free_fail_no_cp; 990 } 991 sit_bitmap_ptr = page_address(cur_page); 992 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 993 f2fs_put_page(cur_page, 1); 994 } 995 done: 996 f2fs_put_page(cp1, 1); 997 f2fs_put_page(cp2, 1); 998 return 0; 999 1000 free_fail_no_cp: 1001 f2fs_put_page(cp1, 1); 1002 f2fs_put_page(cp2, 1); 1003 fail_no_cp: 1004 kvfree(sbi->ckpt); 1005 return err; 1006 } 1007 1008 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1009 { 1010 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1011 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1012 1013 if (is_inode_flag_set(inode, flag)) 1014 return; 1015 1016 set_inode_flag(inode, flag); 1017 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1018 stat_inc_dirty_inode(sbi, type); 1019 } 1020 1021 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1022 { 1023 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1024 1025 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1026 return; 1027 1028 list_del_init(&F2FS_I(inode)->dirty_list); 1029 clear_inode_flag(inode, flag); 1030 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1031 } 1032 1033 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1034 { 1035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1036 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1037 1038 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1039 !S_ISLNK(inode->i_mode)) 1040 return; 1041 1042 spin_lock(&sbi->inode_lock[type]); 1043 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1044 __add_dirty_inode(inode, type); 1045 inode_inc_dirty_pages(inode); 1046 spin_unlock(&sbi->inode_lock[type]); 1047 1048 set_page_private_reference(&folio->page); 1049 } 1050 1051 void f2fs_remove_dirty_inode(struct inode *inode) 1052 { 1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1054 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1055 1056 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1057 !S_ISLNK(inode->i_mode)) 1058 return; 1059 1060 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1061 return; 1062 1063 spin_lock(&sbi->inode_lock[type]); 1064 __remove_dirty_inode(inode, type); 1065 spin_unlock(&sbi->inode_lock[type]); 1066 } 1067 1068 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1069 bool from_cp) 1070 { 1071 struct list_head *head; 1072 struct inode *inode; 1073 struct f2fs_inode_info *fi; 1074 bool is_dir = (type == DIR_INODE); 1075 unsigned long ino = 0; 1076 1077 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1078 get_pages(sbi, is_dir ? 1079 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1080 retry: 1081 if (unlikely(f2fs_cp_error(sbi))) { 1082 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1083 get_pages(sbi, is_dir ? 1084 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1085 return -EIO; 1086 } 1087 1088 spin_lock(&sbi->inode_lock[type]); 1089 1090 head = &sbi->inode_list[type]; 1091 if (list_empty(head)) { 1092 spin_unlock(&sbi->inode_lock[type]); 1093 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1094 get_pages(sbi, is_dir ? 1095 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1096 return 0; 1097 } 1098 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1099 inode = igrab(&fi->vfs_inode); 1100 spin_unlock(&sbi->inode_lock[type]); 1101 if (inode) { 1102 unsigned long cur_ino = inode->i_ino; 1103 1104 if (from_cp) 1105 F2FS_I(inode)->cp_task = current; 1106 F2FS_I(inode)->wb_task = current; 1107 1108 filemap_fdatawrite(inode->i_mapping); 1109 1110 F2FS_I(inode)->wb_task = NULL; 1111 if (from_cp) 1112 F2FS_I(inode)->cp_task = NULL; 1113 1114 iput(inode); 1115 /* We need to give cpu to another writers. */ 1116 if (ino == cur_ino) 1117 cond_resched(); 1118 else 1119 ino = cur_ino; 1120 } else { 1121 /* 1122 * We should submit bio, since it exists several 1123 * wribacking dentry pages in the freeing inode. 1124 */ 1125 f2fs_submit_merged_write(sbi, DATA); 1126 cond_resched(); 1127 } 1128 goto retry; 1129 } 1130 1131 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1132 { 1133 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1134 struct inode *inode; 1135 struct f2fs_inode_info *fi; 1136 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1137 1138 while (total--) { 1139 if (unlikely(f2fs_cp_error(sbi))) 1140 return -EIO; 1141 1142 spin_lock(&sbi->inode_lock[DIRTY_META]); 1143 if (list_empty(head)) { 1144 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1145 return 0; 1146 } 1147 fi = list_first_entry(head, struct f2fs_inode_info, 1148 gdirty_list); 1149 inode = igrab(&fi->vfs_inode); 1150 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1151 if (inode) { 1152 sync_inode_metadata(inode, 0); 1153 1154 /* it's on eviction */ 1155 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1156 f2fs_update_inode_page(inode); 1157 iput(inode); 1158 } 1159 } 1160 return 0; 1161 } 1162 1163 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1164 { 1165 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1166 struct f2fs_nm_info *nm_i = NM_I(sbi); 1167 nid_t last_nid = nm_i->next_scan_nid; 1168 1169 next_free_nid(sbi, &last_nid); 1170 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1171 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1172 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1173 ckpt->next_free_nid = cpu_to_le32(last_nid); 1174 } 1175 1176 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1177 { 1178 bool ret = false; 1179 1180 if (!is_journalled_quota(sbi)) 1181 return false; 1182 1183 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1184 return true; 1185 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1186 ret = false; 1187 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1188 ret = false; 1189 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1190 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1191 ret = true; 1192 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1193 ret = true; 1194 } 1195 f2fs_up_write(&sbi->quota_sem); 1196 return ret; 1197 } 1198 1199 /* 1200 * Freeze all the FS-operations for checkpoint. 1201 */ 1202 static int block_operations(struct f2fs_sb_info *sbi) 1203 { 1204 struct writeback_control wbc = { 1205 .sync_mode = WB_SYNC_ALL, 1206 .nr_to_write = LONG_MAX, 1207 .for_reclaim = 0, 1208 }; 1209 int err = 0, cnt = 0; 1210 1211 /* 1212 * Let's flush inline_data in dirty node pages. 1213 */ 1214 f2fs_flush_inline_data(sbi); 1215 1216 retry_flush_quotas: 1217 f2fs_lock_all(sbi); 1218 if (__need_flush_quota(sbi)) { 1219 int locked; 1220 1221 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1222 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1223 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1224 goto retry_flush_dents; 1225 } 1226 f2fs_unlock_all(sbi); 1227 1228 /* only failed during mount/umount/freeze/quotactl */ 1229 locked = down_read_trylock(&sbi->sb->s_umount); 1230 f2fs_quota_sync(sbi->sb, -1); 1231 if (locked) 1232 up_read(&sbi->sb->s_umount); 1233 cond_resched(); 1234 goto retry_flush_quotas; 1235 } 1236 1237 retry_flush_dents: 1238 /* write all the dirty dentry pages */ 1239 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1240 f2fs_unlock_all(sbi); 1241 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1242 if (err) 1243 return err; 1244 cond_resched(); 1245 goto retry_flush_quotas; 1246 } 1247 1248 /* 1249 * POR: we should ensure that there are no dirty node pages 1250 * until finishing nat/sit flush. inode->i_blocks can be updated. 1251 */ 1252 f2fs_down_write(&sbi->node_change); 1253 1254 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1255 f2fs_up_write(&sbi->node_change); 1256 f2fs_unlock_all(sbi); 1257 err = f2fs_sync_inode_meta(sbi); 1258 if (err) 1259 return err; 1260 cond_resched(); 1261 goto retry_flush_quotas; 1262 } 1263 1264 retry_flush_nodes: 1265 f2fs_down_write(&sbi->node_write); 1266 1267 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1268 f2fs_up_write(&sbi->node_write); 1269 atomic_inc(&sbi->wb_sync_req[NODE]); 1270 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1271 atomic_dec(&sbi->wb_sync_req[NODE]); 1272 if (err) { 1273 f2fs_up_write(&sbi->node_change); 1274 f2fs_unlock_all(sbi); 1275 return err; 1276 } 1277 cond_resched(); 1278 goto retry_flush_nodes; 1279 } 1280 1281 /* 1282 * sbi->node_change is used only for AIO write_begin path which produces 1283 * dirty node blocks and some checkpoint values by block allocation. 1284 */ 1285 __prepare_cp_block(sbi); 1286 f2fs_up_write(&sbi->node_change); 1287 return err; 1288 } 1289 1290 static void unblock_operations(struct f2fs_sb_info *sbi) 1291 { 1292 f2fs_up_write(&sbi->node_write); 1293 f2fs_unlock_all(sbi); 1294 } 1295 1296 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1297 { 1298 DEFINE_WAIT(wait); 1299 1300 for (;;) { 1301 if (!get_pages(sbi, type)) 1302 break; 1303 1304 if (unlikely(f2fs_cp_error(sbi))) 1305 break; 1306 1307 if (type == F2FS_DIRTY_META) 1308 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1309 FS_CP_META_IO); 1310 else if (type == F2FS_WB_CP_DATA) 1311 f2fs_submit_merged_write(sbi, DATA); 1312 1313 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1314 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1315 } 1316 finish_wait(&sbi->cp_wait, &wait); 1317 } 1318 1319 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1320 { 1321 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1322 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1323 unsigned long flags; 1324 1325 if (cpc->reason & CP_UMOUNT) { 1326 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1327 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1328 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1329 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1330 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1331 f2fs_nat_bitmap_enabled(sbi)) { 1332 f2fs_enable_nat_bits(sbi); 1333 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1334 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1335 } 1336 } 1337 1338 spin_lock_irqsave(&sbi->cp_lock, flags); 1339 1340 if (cpc->reason & CP_TRIMMED) 1341 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1342 else 1343 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1344 1345 if (cpc->reason & CP_UMOUNT) 1346 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1347 else 1348 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1349 1350 if (cpc->reason & CP_FASTBOOT) 1351 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1352 else 1353 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1354 1355 if (orphan_num) 1356 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1357 else 1358 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1359 1360 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1361 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1362 1363 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1364 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1365 else 1366 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1367 1368 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1369 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1370 else 1371 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1372 1373 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1374 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1375 else 1376 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1377 1378 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1379 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1380 else 1381 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1382 1383 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1384 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1385 1386 /* set this flag to activate crc|cp_ver for recovery */ 1387 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1388 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1389 1390 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1391 } 1392 1393 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1394 void *src, block_t blk_addr) 1395 { 1396 struct writeback_control wbc = { 1397 .for_reclaim = 0, 1398 }; 1399 1400 /* 1401 * pagevec_lookup_tag and lock_page again will take 1402 * some extra time. Therefore, f2fs_update_meta_pages and 1403 * f2fs_sync_meta_pages are combined in this function. 1404 */ 1405 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1406 int err; 1407 1408 f2fs_wait_on_page_writeback(page, META, true, true); 1409 1410 memcpy(page_address(page), src, PAGE_SIZE); 1411 1412 set_page_dirty(page); 1413 if (unlikely(!clear_page_dirty_for_io(page))) 1414 f2fs_bug_on(sbi, 1); 1415 1416 /* writeout cp pack 2 page */ 1417 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1418 if (unlikely(err && f2fs_cp_error(sbi))) { 1419 f2fs_put_page(page, 1); 1420 return; 1421 } 1422 1423 f2fs_bug_on(sbi, err); 1424 f2fs_put_page(page, 0); 1425 1426 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1427 f2fs_submit_merged_write(sbi, META_FLUSH); 1428 } 1429 1430 static inline u64 get_sectors_written(struct block_device *bdev) 1431 { 1432 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1433 } 1434 1435 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1436 { 1437 if (f2fs_is_multi_device(sbi)) { 1438 u64 sectors = 0; 1439 int i; 1440 1441 for (i = 0; i < sbi->s_ndevs; i++) 1442 sectors += get_sectors_written(FDEV(i).bdev); 1443 1444 return sectors; 1445 } 1446 1447 return get_sectors_written(sbi->sb->s_bdev); 1448 } 1449 1450 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1451 { 1452 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1453 struct f2fs_nm_info *nm_i = NM_I(sbi); 1454 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1455 block_t start_blk; 1456 unsigned int data_sum_blocks, orphan_blocks; 1457 __u32 crc32 = 0; 1458 int i; 1459 int cp_payload_blks = __cp_payload(sbi); 1460 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1461 u64 kbytes_written; 1462 int err; 1463 1464 /* Flush all the NAT/SIT pages */ 1465 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1466 1467 /* start to update checkpoint, cp ver is already updated previously */ 1468 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1469 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1470 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1471 ckpt->cur_node_segno[i] = 1472 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1473 ckpt->cur_node_blkoff[i] = 1474 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1475 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1476 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1477 } 1478 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1479 ckpt->cur_data_segno[i] = 1480 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1481 ckpt->cur_data_blkoff[i] = 1482 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1483 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1484 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1485 } 1486 1487 /* 2 cp + n data seg summary + orphan inode blocks */ 1488 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1489 spin_lock_irqsave(&sbi->cp_lock, flags); 1490 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1491 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1492 else 1493 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1494 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1495 1496 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1497 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1498 orphan_blocks); 1499 1500 if (__remain_node_summaries(cpc->reason)) 1501 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1502 cp_payload_blks + data_sum_blocks + 1503 orphan_blocks + NR_CURSEG_NODE_TYPE); 1504 else 1505 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1506 cp_payload_blks + data_sum_blocks + 1507 orphan_blocks); 1508 1509 /* update ckpt flag for checkpoint */ 1510 update_ckpt_flags(sbi, cpc); 1511 1512 /* update SIT/NAT bitmap */ 1513 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1514 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1515 1516 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1517 *((__le32 *)((unsigned char *)ckpt + 1518 le32_to_cpu(ckpt->checksum_offset))) 1519 = cpu_to_le32(crc32); 1520 1521 start_blk = __start_cp_next_addr(sbi); 1522 1523 /* write nat bits */ 1524 if ((cpc->reason & CP_UMOUNT) && 1525 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1526 __u64 cp_ver = cur_cp_version(ckpt); 1527 block_t blk; 1528 1529 cp_ver |= ((__u64)crc32 << 32); 1530 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1531 1532 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1533 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1534 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1535 (i << F2FS_BLKSIZE_BITS), blk + i); 1536 } 1537 1538 /* write out checkpoint buffer at block 0 */ 1539 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1540 1541 for (i = 1; i < 1 + cp_payload_blks; i++) 1542 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1543 start_blk++); 1544 1545 if (orphan_num) { 1546 write_orphan_inodes(sbi, start_blk); 1547 start_blk += orphan_blocks; 1548 } 1549 1550 f2fs_write_data_summaries(sbi, start_blk); 1551 start_blk += data_sum_blocks; 1552 1553 /* Record write statistics in the hot node summary */ 1554 kbytes_written = sbi->kbytes_written; 1555 kbytes_written += (f2fs_get_sectors_written(sbi) - 1556 sbi->sectors_written_start) >> 1; 1557 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1558 1559 if (__remain_node_summaries(cpc->reason)) { 1560 f2fs_write_node_summaries(sbi, start_blk); 1561 start_blk += NR_CURSEG_NODE_TYPE; 1562 } 1563 1564 /* update user_block_counts */ 1565 sbi->last_valid_block_count = sbi->total_valid_block_count; 1566 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1567 percpu_counter_set(&sbi->rf_node_block_count, 0); 1568 1569 /* Here, we have one bio having CP pack except cp pack 2 page */ 1570 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1571 /* Wait for all dirty meta pages to be submitted for IO */ 1572 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1573 1574 /* wait for previous submitted meta pages writeback */ 1575 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1576 1577 /* flush all device cache */ 1578 err = f2fs_flush_device_cache(sbi); 1579 if (err) 1580 return err; 1581 1582 /* barrier and flush checkpoint cp pack 2 page if it can */ 1583 commit_checkpoint(sbi, ckpt, start_blk); 1584 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1585 1586 /* 1587 * invalidate intermediate page cache borrowed from meta inode which are 1588 * used for migration of encrypted, verity or compressed inode's blocks. 1589 */ 1590 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1591 f2fs_sb_has_compression(sbi)) 1592 invalidate_mapping_pages(META_MAPPING(sbi), 1593 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1594 1595 f2fs_release_ino_entry(sbi, false); 1596 1597 f2fs_reset_fsync_node_info(sbi); 1598 1599 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1600 clear_sbi_flag(sbi, SBI_NEED_CP); 1601 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1602 1603 spin_lock(&sbi->stat_lock); 1604 sbi->unusable_block_count = 0; 1605 spin_unlock(&sbi->stat_lock); 1606 1607 __set_cp_next_pack(sbi); 1608 1609 /* 1610 * redirty superblock if metadata like node page or inode cache is 1611 * updated during writing checkpoint. 1612 */ 1613 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1614 get_pages(sbi, F2FS_DIRTY_IMETA)) 1615 set_sbi_flag(sbi, SBI_IS_DIRTY); 1616 1617 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1618 1619 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1620 } 1621 1622 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1623 { 1624 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1625 unsigned long long ckpt_ver; 1626 int err = 0; 1627 1628 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1629 return -EROFS; 1630 1631 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1632 if (cpc->reason != CP_PAUSE) 1633 return 0; 1634 f2fs_warn(sbi, "Start checkpoint disabled!"); 1635 } 1636 if (cpc->reason != CP_RESIZE) 1637 f2fs_down_write(&sbi->cp_global_sem); 1638 1639 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1640 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1641 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1642 goto out; 1643 if (unlikely(f2fs_cp_error(sbi))) { 1644 err = -EIO; 1645 goto out; 1646 } 1647 1648 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1649 1650 err = block_operations(sbi); 1651 if (err) 1652 goto out; 1653 1654 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1655 1656 f2fs_flush_merged_writes(sbi); 1657 1658 /* this is the case of multiple fstrims without any changes */ 1659 if (cpc->reason & CP_DISCARD) { 1660 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1661 unblock_operations(sbi); 1662 goto out; 1663 } 1664 1665 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1666 SIT_I(sbi)->dirty_sentries == 0 && 1667 prefree_segments(sbi) == 0) { 1668 f2fs_flush_sit_entries(sbi, cpc); 1669 f2fs_clear_prefree_segments(sbi, cpc); 1670 unblock_operations(sbi); 1671 goto out; 1672 } 1673 } 1674 1675 /* 1676 * update checkpoint pack index 1677 * Increase the version number so that 1678 * SIT entries and seg summaries are written at correct place 1679 */ 1680 ckpt_ver = cur_cp_version(ckpt); 1681 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1682 1683 /* write cached NAT/SIT entries to NAT/SIT area */ 1684 err = f2fs_flush_nat_entries(sbi, cpc); 1685 if (err) { 1686 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1687 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1688 goto stop; 1689 } 1690 1691 f2fs_flush_sit_entries(sbi, cpc); 1692 1693 /* save inmem log status */ 1694 f2fs_save_inmem_curseg(sbi); 1695 1696 err = do_checkpoint(sbi, cpc); 1697 if (err) { 1698 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1699 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1700 f2fs_release_discard_addrs(sbi); 1701 } else { 1702 f2fs_clear_prefree_segments(sbi, cpc); 1703 } 1704 1705 f2fs_restore_inmem_curseg(sbi); 1706 stop: 1707 unblock_operations(sbi); 1708 stat_inc_cp_count(sbi->stat_info); 1709 1710 if (cpc->reason & CP_RECOVERY) 1711 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1712 1713 /* update CP_TIME to trigger checkpoint periodically */ 1714 f2fs_update_time(sbi, CP_TIME); 1715 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1716 out: 1717 if (cpc->reason != CP_RESIZE) 1718 f2fs_up_write(&sbi->cp_global_sem); 1719 return err; 1720 } 1721 1722 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1723 { 1724 int i; 1725 1726 for (i = 0; i < MAX_INO_ENTRY; i++) { 1727 struct inode_management *im = &sbi->im[i]; 1728 1729 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1730 spin_lock_init(&im->ino_lock); 1731 INIT_LIST_HEAD(&im->ino_list); 1732 im->ino_num = 0; 1733 } 1734 1735 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1736 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1737 F2FS_ORPHANS_PER_BLOCK; 1738 } 1739 1740 int __init f2fs_create_checkpoint_caches(void) 1741 { 1742 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1743 sizeof(struct ino_entry)); 1744 if (!ino_entry_slab) 1745 return -ENOMEM; 1746 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1747 sizeof(struct inode_entry)); 1748 if (!f2fs_inode_entry_slab) { 1749 kmem_cache_destroy(ino_entry_slab); 1750 return -ENOMEM; 1751 } 1752 return 0; 1753 } 1754 1755 void f2fs_destroy_checkpoint_caches(void) 1756 { 1757 kmem_cache_destroy(ino_entry_slab); 1758 kmem_cache_destroy(f2fs_inode_entry_slab); 1759 } 1760 1761 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1762 { 1763 struct cp_control cpc = { .reason = CP_SYNC, }; 1764 int err; 1765 1766 f2fs_down_write(&sbi->gc_lock); 1767 err = f2fs_write_checkpoint(sbi, &cpc); 1768 f2fs_up_write(&sbi->gc_lock); 1769 1770 return err; 1771 } 1772 1773 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1774 { 1775 struct ckpt_req_control *cprc = &sbi->cprc_info; 1776 struct ckpt_req *req, *next; 1777 struct llist_node *dispatch_list; 1778 u64 sum_diff = 0, diff, count = 0; 1779 int ret; 1780 1781 dispatch_list = llist_del_all(&cprc->issue_list); 1782 if (!dispatch_list) 1783 return; 1784 dispatch_list = llist_reverse_order(dispatch_list); 1785 1786 ret = __write_checkpoint_sync(sbi); 1787 atomic_inc(&cprc->issued_ckpt); 1788 1789 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1790 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1791 req->ret = ret; 1792 complete(&req->wait); 1793 1794 sum_diff += diff; 1795 count++; 1796 } 1797 atomic_sub(count, &cprc->queued_ckpt); 1798 atomic_add(count, &cprc->total_ckpt); 1799 1800 spin_lock(&cprc->stat_lock); 1801 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1802 if (cprc->peak_time < cprc->cur_time) 1803 cprc->peak_time = cprc->cur_time; 1804 spin_unlock(&cprc->stat_lock); 1805 } 1806 1807 static int issue_checkpoint_thread(void *data) 1808 { 1809 struct f2fs_sb_info *sbi = data; 1810 struct ckpt_req_control *cprc = &sbi->cprc_info; 1811 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1812 repeat: 1813 if (kthread_should_stop()) 1814 return 0; 1815 1816 if (!llist_empty(&cprc->issue_list)) 1817 __checkpoint_and_complete_reqs(sbi); 1818 1819 wait_event_interruptible(*q, 1820 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1821 goto repeat; 1822 } 1823 1824 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1825 struct ckpt_req *wait_req) 1826 { 1827 struct ckpt_req_control *cprc = &sbi->cprc_info; 1828 1829 if (!llist_empty(&cprc->issue_list)) { 1830 __checkpoint_and_complete_reqs(sbi); 1831 } else { 1832 /* already dispatched by issue_checkpoint_thread */ 1833 if (wait_req) 1834 wait_for_completion(&wait_req->wait); 1835 } 1836 } 1837 1838 static void init_ckpt_req(struct ckpt_req *req) 1839 { 1840 memset(req, 0, sizeof(struct ckpt_req)); 1841 1842 init_completion(&req->wait); 1843 req->queue_time = ktime_get(); 1844 } 1845 1846 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1847 { 1848 struct ckpt_req_control *cprc = &sbi->cprc_info; 1849 struct ckpt_req req; 1850 struct cp_control cpc; 1851 1852 cpc.reason = __get_cp_reason(sbi); 1853 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1854 int ret; 1855 1856 f2fs_down_write(&sbi->gc_lock); 1857 ret = f2fs_write_checkpoint(sbi, &cpc); 1858 f2fs_up_write(&sbi->gc_lock); 1859 1860 return ret; 1861 } 1862 1863 if (!cprc->f2fs_issue_ckpt) 1864 return __write_checkpoint_sync(sbi); 1865 1866 init_ckpt_req(&req); 1867 1868 llist_add(&req.llnode, &cprc->issue_list); 1869 atomic_inc(&cprc->queued_ckpt); 1870 1871 /* 1872 * update issue_list before we wake up issue_checkpoint thread, 1873 * this smp_mb() pairs with another barrier in ___wait_event(), 1874 * see more details in comments of waitqueue_active(). 1875 */ 1876 smp_mb(); 1877 1878 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1879 wake_up(&cprc->ckpt_wait_queue); 1880 1881 if (cprc->f2fs_issue_ckpt) 1882 wait_for_completion(&req.wait); 1883 else 1884 flush_remained_ckpt_reqs(sbi, &req); 1885 1886 return req.ret; 1887 } 1888 1889 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1890 { 1891 dev_t dev = sbi->sb->s_bdev->bd_dev; 1892 struct ckpt_req_control *cprc = &sbi->cprc_info; 1893 1894 if (cprc->f2fs_issue_ckpt) 1895 return 0; 1896 1897 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1898 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1899 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1900 cprc->f2fs_issue_ckpt = NULL; 1901 return -ENOMEM; 1902 } 1903 1904 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1905 1906 return 0; 1907 } 1908 1909 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1910 { 1911 struct ckpt_req_control *cprc = &sbi->cprc_info; 1912 struct task_struct *ckpt_task; 1913 1914 if (!cprc->f2fs_issue_ckpt) 1915 return; 1916 1917 ckpt_task = cprc->f2fs_issue_ckpt; 1918 cprc->f2fs_issue_ckpt = NULL; 1919 kthread_stop(ckpt_task); 1920 1921 f2fs_flush_ckpt_thread(sbi); 1922 } 1923 1924 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1925 { 1926 struct ckpt_req_control *cprc = &sbi->cprc_info; 1927 1928 flush_remained_ckpt_reqs(sbi, NULL); 1929 1930 /* Let's wait for the previous dispatched checkpoint. */ 1931 while (atomic_read(&cprc->queued_ckpt)) 1932 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1933 } 1934 1935 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1936 { 1937 struct ckpt_req_control *cprc = &sbi->cprc_info; 1938 1939 atomic_set(&cprc->issued_ckpt, 0); 1940 atomic_set(&cprc->total_ckpt, 0); 1941 atomic_set(&cprc->queued_ckpt, 0); 1942 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1943 init_waitqueue_head(&cprc->ckpt_wait_queue); 1944 init_llist_head(&cprc->issue_list); 1945 spin_lock_init(&cprc->stat_lock); 1946 } 1947