1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 f2fs_build_fault_attr(sbi, 0, 0); 32 set_ckpt_flags(sbi, CP_ERROR_FLAG); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_por = !is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 93 94 lock_page(page); 95 if (unlikely(page->mapping != mapping)) { 96 f2fs_put_page(page, 1); 97 goto repeat; 98 } 99 100 if (unlikely(!PageUptodate(page))) { 101 f2fs_put_page(page, 1); 102 return ERR_PTR(-EIO); 103 } 104 out: 105 return page; 106 } 107 108 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 109 { 110 return __get_meta_page(sbi, index, true); 111 } 112 113 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 struct page *page; 116 int count = 0; 117 118 retry: 119 page = __get_meta_page(sbi, index, true); 120 if (IS_ERR(page)) { 121 if (PTR_ERR(page) == -EIO && 122 ++count <= DEFAULT_RETRY_IO_COUNT) 123 goto retry; 124 f2fs_stop_checkpoint(sbi, false); 125 } 126 return page; 127 } 128 129 /* for POR only */ 130 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 131 { 132 return __get_meta_page(sbi, index, false); 133 } 134 135 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 136 int type) 137 { 138 struct seg_entry *se; 139 unsigned int segno, offset; 140 bool exist; 141 142 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 143 return true; 144 145 segno = GET_SEGNO(sbi, blkaddr); 146 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 147 se = get_seg_entry(sbi, segno); 148 149 exist = f2fs_test_bit(offset, se->cur_valid_map); 150 if (!exist && type == DATA_GENERIC_ENHANCE) { 151 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 152 blkaddr, exist); 153 set_sbi_flag(sbi, SBI_NEED_FSCK); 154 WARN_ON(1); 155 } 156 return exist; 157 } 158 159 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 160 block_t blkaddr, int type) 161 { 162 switch (type) { 163 case META_NAT: 164 break; 165 case META_SIT: 166 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 167 return false; 168 break; 169 case META_SSA: 170 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 171 blkaddr < SM_I(sbi)->ssa_blkaddr)) 172 return false; 173 break; 174 case META_CP: 175 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 176 blkaddr < __start_cp_addr(sbi))) 177 return false; 178 break; 179 case META_POR: 180 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 181 blkaddr < MAIN_BLKADDR(sbi))) 182 return false; 183 break; 184 case DATA_GENERIC: 185 case DATA_GENERIC_ENHANCE: 186 case DATA_GENERIC_ENHANCE_READ: 187 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 188 blkaddr < MAIN_BLKADDR(sbi))) { 189 f2fs_warn(sbi, "access invalid blkaddr:%u", 190 blkaddr); 191 set_sbi_flag(sbi, SBI_NEED_FSCK); 192 WARN_ON(1); 193 return false; 194 } else { 195 return __is_bitmap_valid(sbi, blkaddr, type); 196 } 197 break; 198 case META_GENERIC: 199 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 200 blkaddr >= MAIN_BLKADDR(sbi))) 201 return false; 202 break; 203 default: 204 BUG(); 205 } 206 207 return true; 208 } 209 210 /* 211 * Readahead CP/NAT/SIT/SSA/POR pages 212 */ 213 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 214 int type, bool sync) 215 { 216 struct page *page; 217 block_t blkno = start; 218 struct f2fs_io_info fio = { 219 .sbi = sbi, 220 .type = META, 221 .op = REQ_OP_READ, 222 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 223 .encrypted_page = NULL, 224 .in_list = false, 225 .is_por = (type == META_POR), 226 }; 227 struct blk_plug plug; 228 int err; 229 230 if (unlikely(type == META_POR)) 231 fio.op_flags &= ~REQ_META; 232 233 blk_start_plug(&plug); 234 for (; nrpages-- > 0; blkno++) { 235 236 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 237 goto out; 238 239 switch (type) { 240 case META_NAT: 241 if (unlikely(blkno >= 242 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 243 blkno = 0; 244 /* get nat block addr */ 245 fio.new_blkaddr = current_nat_addr(sbi, 246 blkno * NAT_ENTRY_PER_BLOCK); 247 break; 248 case META_SIT: 249 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 250 goto out; 251 /* get sit block addr */ 252 fio.new_blkaddr = current_sit_addr(sbi, 253 blkno * SIT_ENTRY_PER_BLOCK); 254 break; 255 case META_SSA: 256 case META_CP: 257 case META_POR: 258 fio.new_blkaddr = blkno; 259 break; 260 default: 261 BUG(); 262 } 263 264 page = f2fs_grab_cache_page(META_MAPPING(sbi), 265 fio.new_blkaddr, false); 266 if (!page) 267 continue; 268 if (PageUptodate(page)) { 269 f2fs_put_page(page, 1); 270 continue; 271 } 272 273 fio.page = page; 274 err = f2fs_submit_page_bio(&fio); 275 f2fs_put_page(page, err ? 1 : 0); 276 277 if (!err) 278 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 279 } 280 out: 281 blk_finish_plug(&plug); 282 return blkno - start; 283 } 284 285 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 286 { 287 struct page *page; 288 bool readahead = false; 289 290 page = find_get_page(META_MAPPING(sbi), index); 291 if (!page || !PageUptodate(page)) 292 readahead = true; 293 f2fs_put_page(page, 0); 294 295 if (readahead) 296 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true); 297 } 298 299 static int __f2fs_write_meta_page(struct page *page, 300 struct writeback_control *wbc, 301 enum iostat_type io_type) 302 { 303 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 304 305 trace_f2fs_writepage(page, META); 306 307 if (unlikely(f2fs_cp_error(sbi))) 308 goto redirty_out; 309 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 310 goto redirty_out; 311 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 312 goto redirty_out; 313 314 f2fs_do_write_meta_page(sbi, page, io_type); 315 dec_page_count(sbi, F2FS_DIRTY_META); 316 317 if (wbc->for_reclaim) 318 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 319 320 unlock_page(page); 321 322 if (unlikely(f2fs_cp_error(sbi))) 323 f2fs_submit_merged_write(sbi, META); 324 325 return 0; 326 327 redirty_out: 328 redirty_page_for_writepage(wbc, page); 329 return AOP_WRITEPAGE_ACTIVATE; 330 } 331 332 static int f2fs_write_meta_page(struct page *page, 333 struct writeback_control *wbc) 334 { 335 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 336 } 337 338 static int f2fs_write_meta_pages(struct address_space *mapping, 339 struct writeback_control *wbc) 340 { 341 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 342 long diff, written; 343 344 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 345 goto skip_write; 346 347 /* collect a number of dirty meta pages and write together */ 348 if (wbc->sync_mode != WB_SYNC_ALL && 349 get_pages(sbi, F2FS_DIRTY_META) < 350 nr_pages_to_skip(sbi, META)) 351 goto skip_write; 352 353 /* if locked failed, cp will flush dirty pages instead */ 354 if (!down_write_trylock(&sbi->cp_global_sem)) 355 goto skip_write; 356 357 trace_f2fs_writepages(mapping->host, wbc, META); 358 diff = nr_pages_to_write(sbi, META, wbc); 359 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 360 up_write(&sbi->cp_global_sem); 361 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 362 return 0; 363 364 skip_write: 365 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 366 trace_f2fs_writepages(mapping->host, wbc, META); 367 return 0; 368 } 369 370 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 371 long nr_to_write, enum iostat_type io_type) 372 { 373 struct address_space *mapping = META_MAPPING(sbi); 374 pgoff_t index = 0, prev = ULONG_MAX; 375 struct pagevec pvec; 376 long nwritten = 0; 377 int nr_pages; 378 struct writeback_control wbc = { 379 .for_reclaim = 0, 380 }; 381 struct blk_plug plug; 382 383 pagevec_init(&pvec); 384 385 blk_start_plug(&plug); 386 387 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 388 PAGECACHE_TAG_DIRTY))) { 389 int i; 390 391 for (i = 0; i < nr_pages; i++) { 392 struct page *page = pvec.pages[i]; 393 394 if (prev == ULONG_MAX) 395 prev = page->index - 1; 396 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 397 pagevec_release(&pvec); 398 goto stop; 399 } 400 401 lock_page(page); 402 403 if (unlikely(page->mapping != mapping)) { 404 continue_unlock: 405 unlock_page(page); 406 continue; 407 } 408 if (!PageDirty(page)) { 409 /* someone wrote it for us */ 410 goto continue_unlock; 411 } 412 413 f2fs_wait_on_page_writeback(page, META, true, true); 414 415 if (!clear_page_dirty_for_io(page)) 416 goto continue_unlock; 417 418 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 419 unlock_page(page); 420 break; 421 } 422 nwritten++; 423 prev = page->index; 424 if (unlikely(nwritten >= nr_to_write)) 425 break; 426 } 427 pagevec_release(&pvec); 428 cond_resched(); 429 } 430 stop: 431 if (nwritten) 432 f2fs_submit_merged_write(sbi, type); 433 434 blk_finish_plug(&plug); 435 436 return nwritten; 437 } 438 439 static int f2fs_set_meta_page_dirty(struct page *page) 440 { 441 trace_f2fs_set_page_dirty(page, META); 442 443 if (!PageUptodate(page)) 444 SetPageUptodate(page); 445 if (!PageDirty(page)) { 446 __set_page_dirty_nobuffers(page); 447 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 448 set_page_private_reference(page); 449 return 1; 450 } 451 return 0; 452 } 453 454 const struct address_space_operations f2fs_meta_aops = { 455 .writepage = f2fs_write_meta_page, 456 .writepages = f2fs_write_meta_pages, 457 .set_page_dirty = f2fs_set_meta_page_dirty, 458 .invalidatepage = f2fs_invalidate_page, 459 .releasepage = f2fs_release_page, 460 #ifdef CONFIG_MIGRATION 461 .migratepage = f2fs_migrate_page, 462 #endif 463 }; 464 465 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 466 unsigned int devidx, int type) 467 { 468 struct inode_management *im = &sbi->im[type]; 469 struct ino_entry *e = NULL, *new = NULL; 470 471 if (type == FLUSH_INO) { 472 rcu_read_lock(); 473 e = radix_tree_lookup(&im->ino_root, ino); 474 rcu_read_unlock(); 475 } 476 477 retry: 478 if (!e) 479 new = f2fs_kmem_cache_alloc(ino_entry_slab, 480 GFP_NOFS, true, NULL); 481 482 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 483 484 spin_lock(&im->ino_lock); 485 e = radix_tree_lookup(&im->ino_root, ino); 486 if (!e) { 487 if (!new) { 488 spin_unlock(&im->ino_lock); 489 goto retry; 490 } 491 e = new; 492 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 493 f2fs_bug_on(sbi, 1); 494 495 memset(e, 0, sizeof(struct ino_entry)); 496 e->ino = ino; 497 498 list_add_tail(&e->list, &im->ino_list); 499 if (type != ORPHAN_INO) 500 im->ino_num++; 501 } 502 503 if (type == FLUSH_INO) 504 f2fs_set_bit(devidx, (char *)&e->dirty_device); 505 506 spin_unlock(&im->ino_lock); 507 radix_tree_preload_end(); 508 509 if (new && e != new) 510 kmem_cache_free(ino_entry_slab, new); 511 } 512 513 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 514 { 515 struct inode_management *im = &sbi->im[type]; 516 struct ino_entry *e; 517 518 spin_lock(&im->ino_lock); 519 e = radix_tree_lookup(&im->ino_root, ino); 520 if (e) { 521 list_del(&e->list); 522 radix_tree_delete(&im->ino_root, ino); 523 im->ino_num--; 524 spin_unlock(&im->ino_lock); 525 kmem_cache_free(ino_entry_slab, e); 526 return; 527 } 528 spin_unlock(&im->ino_lock); 529 } 530 531 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 532 { 533 /* add new dirty ino entry into list */ 534 __add_ino_entry(sbi, ino, 0, type); 535 } 536 537 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 538 { 539 /* remove dirty ino entry from list */ 540 __remove_ino_entry(sbi, ino, type); 541 } 542 543 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 544 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 545 { 546 struct inode_management *im = &sbi->im[mode]; 547 struct ino_entry *e; 548 549 spin_lock(&im->ino_lock); 550 e = radix_tree_lookup(&im->ino_root, ino); 551 spin_unlock(&im->ino_lock); 552 return e ? true : false; 553 } 554 555 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 556 { 557 struct ino_entry *e, *tmp; 558 int i; 559 560 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 561 struct inode_management *im = &sbi->im[i]; 562 563 spin_lock(&im->ino_lock); 564 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 565 list_del(&e->list); 566 radix_tree_delete(&im->ino_root, e->ino); 567 kmem_cache_free(ino_entry_slab, e); 568 im->ino_num--; 569 } 570 spin_unlock(&im->ino_lock); 571 } 572 } 573 574 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 575 unsigned int devidx, int type) 576 { 577 __add_ino_entry(sbi, ino, devidx, type); 578 } 579 580 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 581 unsigned int devidx, int type) 582 { 583 struct inode_management *im = &sbi->im[type]; 584 struct ino_entry *e; 585 bool is_dirty = false; 586 587 spin_lock(&im->ino_lock); 588 e = radix_tree_lookup(&im->ino_root, ino); 589 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 590 is_dirty = true; 591 spin_unlock(&im->ino_lock); 592 return is_dirty; 593 } 594 595 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 596 { 597 struct inode_management *im = &sbi->im[ORPHAN_INO]; 598 int err = 0; 599 600 spin_lock(&im->ino_lock); 601 602 if (time_to_inject(sbi, FAULT_ORPHAN)) { 603 spin_unlock(&im->ino_lock); 604 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 605 return -ENOSPC; 606 } 607 608 if (unlikely(im->ino_num >= sbi->max_orphans)) 609 err = -ENOSPC; 610 else 611 im->ino_num++; 612 spin_unlock(&im->ino_lock); 613 614 return err; 615 } 616 617 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 618 { 619 struct inode_management *im = &sbi->im[ORPHAN_INO]; 620 621 spin_lock(&im->ino_lock); 622 f2fs_bug_on(sbi, im->ino_num == 0); 623 im->ino_num--; 624 spin_unlock(&im->ino_lock); 625 } 626 627 void f2fs_add_orphan_inode(struct inode *inode) 628 { 629 /* add new orphan ino entry into list */ 630 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 631 f2fs_update_inode_page(inode); 632 } 633 634 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 635 { 636 /* remove orphan entry from orphan list */ 637 __remove_ino_entry(sbi, ino, ORPHAN_INO); 638 } 639 640 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 641 { 642 struct inode *inode; 643 struct node_info ni; 644 int err; 645 646 inode = f2fs_iget_retry(sbi->sb, ino); 647 if (IS_ERR(inode)) { 648 /* 649 * there should be a bug that we can't find the entry 650 * to orphan inode. 651 */ 652 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 653 return PTR_ERR(inode); 654 } 655 656 err = f2fs_dquot_initialize(inode); 657 if (err) { 658 iput(inode); 659 goto err_out; 660 } 661 662 clear_nlink(inode); 663 664 /* truncate all the data during iput */ 665 iput(inode); 666 667 err = f2fs_get_node_info(sbi, ino, &ni); 668 if (err) 669 goto err_out; 670 671 /* ENOMEM was fully retried in f2fs_evict_inode. */ 672 if (ni.blk_addr != NULL_ADDR) { 673 err = -EIO; 674 goto err_out; 675 } 676 return 0; 677 678 err_out: 679 set_sbi_flag(sbi, SBI_NEED_FSCK); 680 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 681 __func__, ino); 682 return err; 683 } 684 685 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 686 { 687 block_t start_blk, orphan_blocks, i, j; 688 unsigned int s_flags = sbi->sb->s_flags; 689 int err = 0; 690 #ifdef CONFIG_QUOTA 691 int quota_enabled; 692 #endif 693 694 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 695 return 0; 696 697 if (bdev_read_only(sbi->sb->s_bdev)) { 698 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 699 return 0; 700 } 701 702 if (s_flags & SB_RDONLY) { 703 f2fs_info(sbi, "orphan cleanup on readonly fs"); 704 sbi->sb->s_flags &= ~SB_RDONLY; 705 } 706 707 #ifdef CONFIG_QUOTA 708 /* 709 * Turn on quotas which were not enabled for read-only mounts if 710 * filesystem has quota feature, so that they are updated correctly. 711 */ 712 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 713 #endif 714 715 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 716 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 717 718 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 719 720 for (i = 0; i < orphan_blocks; i++) { 721 struct page *page; 722 struct f2fs_orphan_block *orphan_blk; 723 724 page = f2fs_get_meta_page(sbi, start_blk + i); 725 if (IS_ERR(page)) { 726 err = PTR_ERR(page); 727 goto out; 728 } 729 730 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 731 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 732 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 733 734 err = recover_orphan_inode(sbi, ino); 735 if (err) { 736 f2fs_put_page(page, 1); 737 goto out; 738 } 739 } 740 f2fs_put_page(page, 1); 741 } 742 /* clear Orphan Flag */ 743 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 744 out: 745 set_sbi_flag(sbi, SBI_IS_RECOVERED); 746 747 #ifdef CONFIG_QUOTA 748 /* Turn quotas off */ 749 if (quota_enabled) 750 f2fs_quota_off_umount(sbi->sb); 751 #endif 752 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 753 754 return err; 755 } 756 757 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 758 { 759 struct list_head *head; 760 struct f2fs_orphan_block *orphan_blk = NULL; 761 unsigned int nentries = 0; 762 unsigned short index = 1; 763 unsigned short orphan_blocks; 764 struct page *page = NULL; 765 struct ino_entry *orphan = NULL; 766 struct inode_management *im = &sbi->im[ORPHAN_INO]; 767 768 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 769 770 /* 771 * we don't need to do spin_lock(&im->ino_lock) here, since all the 772 * orphan inode operations are covered under f2fs_lock_op(). 773 * And, spin_lock should be avoided due to page operations below. 774 */ 775 head = &im->ino_list; 776 777 /* loop for each orphan inode entry and write them in Jornal block */ 778 list_for_each_entry(orphan, head, list) { 779 if (!page) { 780 page = f2fs_grab_meta_page(sbi, start_blk++); 781 orphan_blk = 782 (struct f2fs_orphan_block *)page_address(page); 783 memset(orphan_blk, 0, sizeof(*orphan_blk)); 784 } 785 786 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 787 788 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 789 /* 790 * an orphan block is full of 1020 entries, 791 * then we need to flush current orphan blocks 792 * and bring another one in memory 793 */ 794 orphan_blk->blk_addr = cpu_to_le16(index); 795 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 796 orphan_blk->entry_count = cpu_to_le32(nentries); 797 set_page_dirty(page); 798 f2fs_put_page(page, 1); 799 index++; 800 nentries = 0; 801 page = NULL; 802 } 803 } 804 805 if (page) { 806 orphan_blk->blk_addr = cpu_to_le16(index); 807 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 808 orphan_blk->entry_count = cpu_to_le32(nentries); 809 set_page_dirty(page); 810 f2fs_put_page(page, 1); 811 } 812 } 813 814 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 815 struct f2fs_checkpoint *ckpt) 816 { 817 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 818 __u32 chksum; 819 820 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 821 if (chksum_ofs < CP_CHKSUM_OFFSET) { 822 chksum_ofs += sizeof(chksum); 823 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 824 F2FS_BLKSIZE - chksum_ofs); 825 } 826 return chksum; 827 } 828 829 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 830 struct f2fs_checkpoint **cp_block, struct page **cp_page, 831 unsigned long long *version) 832 { 833 size_t crc_offset = 0; 834 __u32 crc; 835 836 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 837 if (IS_ERR(*cp_page)) 838 return PTR_ERR(*cp_page); 839 840 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 841 842 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 843 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 844 crc_offset > CP_CHKSUM_OFFSET) { 845 f2fs_put_page(*cp_page, 1); 846 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 847 return -EINVAL; 848 } 849 850 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 851 if (crc != cur_cp_crc(*cp_block)) { 852 f2fs_put_page(*cp_page, 1); 853 f2fs_warn(sbi, "invalid crc value"); 854 return -EINVAL; 855 } 856 857 *version = cur_cp_version(*cp_block); 858 return 0; 859 } 860 861 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 862 block_t cp_addr, unsigned long long *version) 863 { 864 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 865 struct f2fs_checkpoint *cp_block = NULL; 866 unsigned long long cur_version = 0, pre_version = 0; 867 int err; 868 869 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 870 &cp_page_1, version); 871 if (err) 872 return NULL; 873 874 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 875 sbi->blocks_per_seg) { 876 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 877 le32_to_cpu(cp_block->cp_pack_total_block_count)); 878 goto invalid_cp; 879 } 880 pre_version = *version; 881 882 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 883 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 884 &cp_page_2, version); 885 if (err) 886 goto invalid_cp; 887 cur_version = *version; 888 889 if (cur_version == pre_version) { 890 *version = cur_version; 891 f2fs_put_page(cp_page_2, 1); 892 return cp_page_1; 893 } 894 f2fs_put_page(cp_page_2, 1); 895 invalid_cp: 896 f2fs_put_page(cp_page_1, 1); 897 return NULL; 898 } 899 900 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 901 { 902 struct f2fs_checkpoint *cp_block; 903 struct f2fs_super_block *fsb = sbi->raw_super; 904 struct page *cp1, *cp2, *cur_page; 905 unsigned long blk_size = sbi->blocksize; 906 unsigned long long cp1_version = 0, cp2_version = 0; 907 unsigned long long cp_start_blk_no; 908 unsigned int cp_blks = 1 + __cp_payload(sbi); 909 block_t cp_blk_no; 910 int i; 911 int err; 912 913 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 914 GFP_KERNEL); 915 if (!sbi->ckpt) 916 return -ENOMEM; 917 /* 918 * Finding out valid cp block involves read both 919 * sets( cp pack 1 and cp pack 2) 920 */ 921 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 922 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 923 924 /* The second checkpoint pack should start at the next segment */ 925 cp_start_blk_no += ((unsigned long long)1) << 926 le32_to_cpu(fsb->log_blocks_per_seg); 927 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 928 929 if (cp1 && cp2) { 930 if (ver_after(cp2_version, cp1_version)) 931 cur_page = cp2; 932 else 933 cur_page = cp1; 934 } else if (cp1) { 935 cur_page = cp1; 936 } else if (cp2) { 937 cur_page = cp2; 938 } else { 939 err = -EFSCORRUPTED; 940 goto fail_no_cp; 941 } 942 943 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 944 memcpy(sbi->ckpt, cp_block, blk_size); 945 946 if (cur_page == cp1) 947 sbi->cur_cp_pack = 1; 948 else 949 sbi->cur_cp_pack = 2; 950 951 /* Sanity checking of checkpoint */ 952 if (f2fs_sanity_check_ckpt(sbi)) { 953 err = -EFSCORRUPTED; 954 goto free_fail_no_cp; 955 } 956 957 if (cp_blks <= 1) 958 goto done; 959 960 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 961 if (cur_page == cp2) 962 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 963 964 for (i = 1; i < cp_blks; i++) { 965 void *sit_bitmap_ptr; 966 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 967 968 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 969 if (IS_ERR(cur_page)) { 970 err = PTR_ERR(cur_page); 971 goto free_fail_no_cp; 972 } 973 sit_bitmap_ptr = page_address(cur_page); 974 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 975 f2fs_put_page(cur_page, 1); 976 } 977 done: 978 f2fs_put_page(cp1, 1); 979 f2fs_put_page(cp2, 1); 980 return 0; 981 982 free_fail_no_cp: 983 f2fs_put_page(cp1, 1); 984 f2fs_put_page(cp2, 1); 985 fail_no_cp: 986 kvfree(sbi->ckpt); 987 return err; 988 } 989 990 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 991 { 992 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 993 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 994 995 if (is_inode_flag_set(inode, flag)) 996 return; 997 998 set_inode_flag(inode, flag); 999 if (!f2fs_is_volatile_file(inode)) 1000 list_add_tail(&F2FS_I(inode)->dirty_list, 1001 &sbi->inode_list[type]); 1002 stat_inc_dirty_inode(sbi, type); 1003 } 1004 1005 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1006 { 1007 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1008 1009 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1010 return; 1011 1012 list_del_init(&F2FS_I(inode)->dirty_list); 1013 clear_inode_flag(inode, flag); 1014 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1015 } 1016 1017 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 1018 { 1019 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1020 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1021 1022 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1023 !S_ISLNK(inode->i_mode)) 1024 return; 1025 1026 spin_lock(&sbi->inode_lock[type]); 1027 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1028 __add_dirty_inode(inode, type); 1029 inode_inc_dirty_pages(inode); 1030 spin_unlock(&sbi->inode_lock[type]); 1031 1032 set_page_private_reference(page); 1033 } 1034 1035 void f2fs_remove_dirty_inode(struct inode *inode) 1036 { 1037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1038 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1039 1040 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1041 !S_ISLNK(inode->i_mode)) 1042 return; 1043 1044 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1045 return; 1046 1047 spin_lock(&sbi->inode_lock[type]); 1048 __remove_dirty_inode(inode, type); 1049 spin_unlock(&sbi->inode_lock[type]); 1050 } 1051 1052 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1053 { 1054 struct list_head *head; 1055 struct inode *inode; 1056 struct f2fs_inode_info *fi; 1057 bool is_dir = (type == DIR_INODE); 1058 unsigned long ino = 0; 1059 1060 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1061 get_pages(sbi, is_dir ? 1062 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1063 retry: 1064 if (unlikely(f2fs_cp_error(sbi))) { 1065 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1066 get_pages(sbi, is_dir ? 1067 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1068 return -EIO; 1069 } 1070 1071 spin_lock(&sbi->inode_lock[type]); 1072 1073 head = &sbi->inode_list[type]; 1074 if (list_empty(head)) { 1075 spin_unlock(&sbi->inode_lock[type]); 1076 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1077 get_pages(sbi, is_dir ? 1078 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1079 return 0; 1080 } 1081 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1082 inode = igrab(&fi->vfs_inode); 1083 spin_unlock(&sbi->inode_lock[type]); 1084 if (inode) { 1085 unsigned long cur_ino = inode->i_ino; 1086 1087 F2FS_I(inode)->cp_task = current; 1088 1089 filemap_fdatawrite(inode->i_mapping); 1090 1091 F2FS_I(inode)->cp_task = NULL; 1092 1093 iput(inode); 1094 /* We need to give cpu to another writers. */ 1095 if (ino == cur_ino) 1096 cond_resched(); 1097 else 1098 ino = cur_ino; 1099 } else { 1100 /* 1101 * We should submit bio, since it exists several 1102 * wribacking dentry pages in the freeing inode. 1103 */ 1104 f2fs_submit_merged_write(sbi, DATA); 1105 cond_resched(); 1106 } 1107 goto retry; 1108 } 1109 1110 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1111 { 1112 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1113 struct inode *inode; 1114 struct f2fs_inode_info *fi; 1115 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1116 1117 while (total--) { 1118 if (unlikely(f2fs_cp_error(sbi))) 1119 return -EIO; 1120 1121 spin_lock(&sbi->inode_lock[DIRTY_META]); 1122 if (list_empty(head)) { 1123 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1124 return 0; 1125 } 1126 fi = list_first_entry(head, struct f2fs_inode_info, 1127 gdirty_list); 1128 inode = igrab(&fi->vfs_inode); 1129 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1130 if (inode) { 1131 sync_inode_metadata(inode, 0); 1132 1133 /* it's on eviction */ 1134 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1135 f2fs_update_inode_page(inode); 1136 iput(inode); 1137 } 1138 } 1139 return 0; 1140 } 1141 1142 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1143 { 1144 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1145 struct f2fs_nm_info *nm_i = NM_I(sbi); 1146 nid_t last_nid = nm_i->next_scan_nid; 1147 1148 next_free_nid(sbi, &last_nid); 1149 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1150 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1151 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1152 ckpt->next_free_nid = cpu_to_le32(last_nid); 1153 } 1154 1155 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1156 { 1157 bool ret = false; 1158 1159 if (!is_journalled_quota(sbi)) 1160 return false; 1161 1162 if (!down_write_trylock(&sbi->quota_sem)) 1163 return true; 1164 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1165 ret = false; 1166 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1167 ret = false; 1168 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1169 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1170 ret = true; 1171 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1172 ret = true; 1173 } 1174 up_write(&sbi->quota_sem); 1175 return ret; 1176 } 1177 1178 /* 1179 * Freeze all the FS-operations for checkpoint. 1180 */ 1181 static int block_operations(struct f2fs_sb_info *sbi) 1182 { 1183 struct writeback_control wbc = { 1184 .sync_mode = WB_SYNC_ALL, 1185 .nr_to_write = LONG_MAX, 1186 .for_reclaim = 0, 1187 }; 1188 int err = 0, cnt = 0; 1189 1190 /* 1191 * Let's flush inline_data in dirty node pages. 1192 */ 1193 f2fs_flush_inline_data(sbi); 1194 1195 retry_flush_quotas: 1196 f2fs_lock_all(sbi); 1197 if (__need_flush_quota(sbi)) { 1198 int locked; 1199 1200 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1201 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1202 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1203 goto retry_flush_dents; 1204 } 1205 f2fs_unlock_all(sbi); 1206 1207 /* only failed during mount/umount/freeze/quotactl */ 1208 locked = down_read_trylock(&sbi->sb->s_umount); 1209 f2fs_quota_sync(sbi->sb, -1); 1210 if (locked) 1211 up_read(&sbi->sb->s_umount); 1212 cond_resched(); 1213 goto retry_flush_quotas; 1214 } 1215 1216 retry_flush_dents: 1217 /* write all the dirty dentry pages */ 1218 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1219 f2fs_unlock_all(sbi); 1220 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1221 if (err) 1222 return err; 1223 cond_resched(); 1224 goto retry_flush_quotas; 1225 } 1226 1227 /* 1228 * POR: we should ensure that there are no dirty node pages 1229 * until finishing nat/sit flush. inode->i_blocks can be updated. 1230 */ 1231 down_write(&sbi->node_change); 1232 1233 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1234 up_write(&sbi->node_change); 1235 f2fs_unlock_all(sbi); 1236 err = f2fs_sync_inode_meta(sbi); 1237 if (err) 1238 return err; 1239 cond_resched(); 1240 goto retry_flush_quotas; 1241 } 1242 1243 retry_flush_nodes: 1244 down_write(&sbi->node_write); 1245 1246 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1247 up_write(&sbi->node_write); 1248 atomic_inc(&sbi->wb_sync_req[NODE]); 1249 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1250 atomic_dec(&sbi->wb_sync_req[NODE]); 1251 if (err) { 1252 up_write(&sbi->node_change); 1253 f2fs_unlock_all(sbi); 1254 return err; 1255 } 1256 cond_resched(); 1257 goto retry_flush_nodes; 1258 } 1259 1260 /* 1261 * sbi->node_change is used only for AIO write_begin path which produces 1262 * dirty node blocks and some checkpoint values by block allocation. 1263 */ 1264 __prepare_cp_block(sbi); 1265 up_write(&sbi->node_change); 1266 return err; 1267 } 1268 1269 static void unblock_operations(struct f2fs_sb_info *sbi) 1270 { 1271 up_write(&sbi->node_write); 1272 f2fs_unlock_all(sbi); 1273 } 1274 1275 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1276 { 1277 DEFINE_WAIT(wait); 1278 1279 for (;;) { 1280 if (!get_pages(sbi, type)) 1281 break; 1282 1283 if (unlikely(f2fs_cp_error(sbi))) 1284 break; 1285 1286 if (type == F2FS_DIRTY_META) 1287 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1288 FS_CP_META_IO); 1289 else if (type == F2FS_WB_CP_DATA) 1290 f2fs_submit_merged_write(sbi, DATA); 1291 1292 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1293 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1294 } 1295 finish_wait(&sbi->cp_wait, &wait); 1296 } 1297 1298 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1299 { 1300 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1301 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1302 unsigned long flags; 1303 1304 if (cpc->reason & CP_UMOUNT) { 1305 if (le32_to_cpu(ckpt->cp_pack_total_block_count) > 1306 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) { 1307 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1308 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1309 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1310 f2fs_nat_bitmap_enabled(sbi)) { 1311 f2fs_enable_nat_bits(sbi); 1312 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1313 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1314 } 1315 } 1316 1317 spin_lock_irqsave(&sbi->cp_lock, flags); 1318 1319 if (cpc->reason & CP_TRIMMED) 1320 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1321 else 1322 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1323 1324 if (cpc->reason & CP_UMOUNT) 1325 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1326 else 1327 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1328 1329 if (cpc->reason & CP_FASTBOOT) 1330 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1331 else 1332 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1333 1334 if (orphan_num) 1335 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1336 else 1337 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1338 1339 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1340 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1341 1342 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1343 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1344 else 1345 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1346 1347 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1348 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1349 else 1350 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1351 1352 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1353 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1354 else 1355 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1356 1357 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1358 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1359 else 1360 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1361 1362 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1363 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1364 1365 /* set this flag to activate crc|cp_ver for recovery */ 1366 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1367 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1368 1369 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1370 } 1371 1372 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1373 void *src, block_t blk_addr) 1374 { 1375 struct writeback_control wbc = { 1376 .for_reclaim = 0, 1377 }; 1378 1379 /* 1380 * pagevec_lookup_tag and lock_page again will take 1381 * some extra time. Therefore, f2fs_update_meta_pages and 1382 * f2fs_sync_meta_pages are combined in this function. 1383 */ 1384 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1385 int err; 1386 1387 f2fs_wait_on_page_writeback(page, META, true, true); 1388 1389 memcpy(page_address(page), src, PAGE_SIZE); 1390 1391 set_page_dirty(page); 1392 if (unlikely(!clear_page_dirty_for_io(page))) 1393 f2fs_bug_on(sbi, 1); 1394 1395 /* writeout cp pack 2 page */ 1396 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1397 if (unlikely(err && f2fs_cp_error(sbi))) { 1398 f2fs_put_page(page, 1); 1399 return; 1400 } 1401 1402 f2fs_bug_on(sbi, err); 1403 f2fs_put_page(page, 0); 1404 1405 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1406 f2fs_submit_merged_write(sbi, META_FLUSH); 1407 } 1408 1409 static inline u64 get_sectors_written(struct block_device *bdev) 1410 { 1411 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1412 } 1413 1414 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1415 { 1416 if (f2fs_is_multi_device(sbi)) { 1417 u64 sectors = 0; 1418 int i; 1419 1420 for (i = 0; i < sbi->s_ndevs; i++) 1421 sectors += get_sectors_written(FDEV(i).bdev); 1422 1423 return sectors; 1424 } 1425 1426 return get_sectors_written(sbi->sb->s_bdev); 1427 } 1428 1429 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1430 { 1431 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1432 struct f2fs_nm_info *nm_i = NM_I(sbi); 1433 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1434 block_t start_blk; 1435 unsigned int data_sum_blocks, orphan_blocks; 1436 __u32 crc32 = 0; 1437 int i; 1438 int cp_payload_blks = __cp_payload(sbi); 1439 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1440 u64 kbytes_written; 1441 int err; 1442 1443 /* Flush all the NAT/SIT pages */ 1444 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1445 1446 /* start to update checkpoint, cp ver is already updated previously */ 1447 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1448 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1449 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1450 ckpt->cur_node_segno[i] = 1451 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1452 ckpt->cur_node_blkoff[i] = 1453 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1454 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1455 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1456 } 1457 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1458 ckpt->cur_data_segno[i] = 1459 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1460 ckpt->cur_data_blkoff[i] = 1461 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1462 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1463 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1464 } 1465 1466 /* 2 cp + n data seg summary + orphan inode blocks */ 1467 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1468 spin_lock_irqsave(&sbi->cp_lock, flags); 1469 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1470 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1471 else 1472 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1473 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1474 1475 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1476 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1477 orphan_blocks); 1478 1479 if (__remain_node_summaries(cpc->reason)) 1480 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1481 cp_payload_blks + data_sum_blocks + 1482 orphan_blocks + NR_CURSEG_NODE_TYPE); 1483 else 1484 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1485 cp_payload_blks + data_sum_blocks + 1486 orphan_blocks); 1487 1488 /* update ckpt flag for checkpoint */ 1489 update_ckpt_flags(sbi, cpc); 1490 1491 /* update SIT/NAT bitmap */ 1492 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1493 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1494 1495 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1496 *((__le32 *)((unsigned char *)ckpt + 1497 le32_to_cpu(ckpt->checksum_offset))) 1498 = cpu_to_le32(crc32); 1499 1500 start_blk = __start_cp_next_addr(sbi); 1501 1502 /* write nat bits */ 1503 if ((cpc->reason & CP_UMOUNT) && 1504 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1505 __u64 cp_ver = cur_cp_version(ckpt); 1506 block_t blk; 1507 1508 cp_ver |= ((__u64)crc32 << 32); 1509 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1510 1511 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1512 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1513 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1514 (i << F2FS_BLKSIZE_BITS), blk + i); 1515 } 1516 1517 /* write out checkpoint buffer at block 0 */ 1518 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1519 1520 for (i = 1; i < 1 + cp_payload_blks; i++) 1521 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1522 start_blk++); 1523 1524 if (orphan_num) { 1525 write_orphan_inodes(sbi, start_blk); 1526 start_blk += orphan_blocks; 1527 } 1528 1529 f2fs_write_data_summaries(sbi, start_blk); 1530 start_blk += data_sum_blocks; 1531 1532 /* Record write statistics in the hot node summary */ 1533 kbytes_written = sbi->kbytes_written; 1534 kbytes_written += (f2fs_get_sectors_written(sbi) - 1535 sbi->sectors_written_start) >> 1; 1536 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1537 1538 if (__remain_node_summaries(cpc->reason)) { 1539 f2fs_write_node_summaries(sbi, start_blk); 1540 start_blk += NR_CURSEG_NODE_TYPE; 1541 } 1542 1543 /* update user_block_counts */ 1544 sbi->last_valid_block_count = sbi->total_valid_block_count; 1545 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1546 1547 /* Here, we have one bio having CP pack except cp pack 2 page */ 1548 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1549 /* Wait for all dirty meta pages to be submitted for IO */ 1550 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1551 1552 /* wait for previous submitted meta pages writeback */ 1553 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1554 1555 /* flush all device cache */ 1556 err = f2fs_flush_device_cache(sbi); 1557 if (err) 1558 return err; 1559 1560 /* barrier and flush checkpoint cp pack 2 page if it can */ 1561 commit_checkpoint(sbi, ckpt, start_blk); 1562 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1563 1564 /* 1565 * invalidate intermediate page cache borrowed from meta inode which are 1566 * used for migration of encrypted, verity or compressed inode's blocks. 1567 */ 1568 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1569 f2fs_sb_has_compression(sbi)) 1570 invalidate_mapping_pages(META_MAPPING(sbi), 1571 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1572 1573 f2fs_release_ino_entry(sbi, false); 1574 1575 f2fs_reset_fsync_node_info(sbi); 1576 1577 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1578 clear_sbi_flag(sbi, SBI_NEED_CP); 1579 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1580 1581 spin_lock(&sbi->stat_lock); 1582 sbi->unusable_block_count = 0; 1583 spin_unlock(&sbi->stat_lock); 1584 1585 __set_cp_next_pack(sbi); 1586 1587 /* 1588 * redirty superblock if metadata like node page or inode cache is 1589 * updated during writing checkpoint. 1590 */ 1591 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1592 get_pages(sbi, F2FS_DIRTY_IMETA)) 1593 set_sbi_flag(sbi, SBI_IS_DIRTY); 1594 1595 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1596 1597 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1598 } 1599 1600 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1601 { 1602 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1603 unsigned long long ckpt_ver; 1604 int err = 0; 1605 1606 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1607 return -EROFS; 1608 1609 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1610 if (cpc->reason != CP_PAUSE) 1611 return 0; 1612 f2fs_warn(sbi, "Start checkpoint disabled!"); 1613 } 1614 if (cpc->reason != CP_RESIZE) 1615 down_write(&sbi->cp_global_sem); 1616 1617 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1618 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1619 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1620 goto out; 1621 if (unlikely(f2fs_cp_error(sbi))) { 1622 err = -EIO; 1623 goto out; 1624 } 1625 1626 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1627 1628 err = block_operations(sbi); 1629 if (err) 1630 goto out; 1631 1632 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1633 1634 f2fs_flush_merged_writes(sbi); 1635 1636 /* this is the case of multiple fstrims without any changes */ 1637 if (cpc->reason & CP_DISCARD) { 1638 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1639 unblock_operations(sbi); 1640 goto out; 1641 } 1642 1643 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1644 SIT_I(sbi)->dirty_sentries == 0 && 1645 prefree_segments(sbi) == 0) { 1646 f2fs_flush_sit_entries(sbi, cpc); 1647 f2fs_clear_prefree_segments(sbi, cpc); 1648 unblock_operations(sbi); 1649 goto out; 1650 } 1651 } 1652 1653 /* 1654 * update checkpoint pack index 1655 * Increase the version number so that 1656 * SIT entries and seg summaries are written at correct place 1657 */ 1658 ckpt_ver = cur_cp_version(ckpt); 1659 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1660 1661 /* write cached NAT/SIT entries to NAT/SIT area */ 1662 err = f2fs_flush_nat_entries(sbi, cpc); 1663 if (err) { 1664 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1665 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1666 goto stop; 1667 } 1668 1669 f2fs_flush_sit_entries(sbi, cpc); 1670 1671 /* save inmem log status */ 1672 f2fs_save_inmem_curseg(sbi); 1673 1674 err = do_checkpoint(sbi, cpc); 1675 if (err) { 1676 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1677 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1678 f2fs_release_discard_addrs(sbi); 1679 } else { 1680 f2fs_clear_prefree_segments(sbi, cpc); 1681 } 1682 1683 f2fs_restore_inmem_curseg(sbi); 1684 stop: 1685 unblock_operations(sbi); 1686 stat_inc_cp_count(sbi->stat_info); 1687 1688 if (cpc->reason & CP_RECOVERY) 1689 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1690 1691 /* update CP_TIME to trigger checkpoint periodically */ 1692 f2fs_update_time(sbi, CP_TIME); 1693 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1694 out: 1695 if (cpc->reason != CP_RESIZE) 1696 up_write(&sbi->cp_global_sem); 1697 return err; 1698 } 1699 1700 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1701 { 1702 int i; 1703 1704 for (i = 0; i < MAX_INO_ENTRY; i++) { 1705 struct inode_management *im = &sbi->im[i]; 1706 1707 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1708 spin_lock_init(&im->ino_lock); 1709 INIT_LIST_HEAD(&im->ino_list); 1710 im->ino_num = 0; 1711 } 1712 1713 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1714 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1715 F2FS_ORPHANS_PER_BLOCK; 1716 } 1717 1718 int __init f2fs_create_checkpoint_caches(void) 1719 { 1720 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1721 sizeof(struct ino_entry)); 1722 if (!ino_entry_slab) 1723 return -ENOMEM; 1724 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1725 sizeof(struct inode_entry)); 1726 if (!f2fs_inode_entry_slab) { 1727 kmem_cache_destroy(ino_entry_slab); 1728 return -ENOMEM; 1729 } 1730 return 0; 1731 } 1732 1733 void f2fs_destroy_checkpoint_caches(void) 1734 { 1735 kmem_cache_destroy(ino_entry_slab); 1736 kmem_cache_destroy(f2fs_inode_entry_slab); 1737 } 1738 1739 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1740 { 1741 struct cp_control cpc = { .reason = CP_SYNC, }; 1742 int err; 1743 1744 down_write(&sbi->gc_lock); 1745 err = f2fs_write_checkpoint(sbi, &cpc); 1746 up_write(&sbi->gc_lock); 1747 1748 return err; 1749 } 1750 1751 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1752 { 1753 struct ckpt_req_control *cprc = &sbi->cprc_info; 1754 struct ckpt_req *req, *next; 1755 struct llist_node *dispatch_list; 1756 u64 sum_diff = 0, diff, count = 0; 1757 int ret; 1758 1759 dispatch_list = llist_del_all(&cprc->issue_list); 1760 if (!dispatch_list) 1761 return; 1762 dispatch_list = llist_reverse_order(dispatch_list); 1763 1764 ret = __write_checkpoint_sync(sbi); 1765 atomic_inc(&cprc->issued_ckpt); 1766 1767 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1768 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1769 req->ret = ret; 1770 complete(&req->wait); 1771 1772 sum_diff += diff; 1773 count++; 1774 } 1775 atomic_sub(count, &cprc->queued_ckpt); 1776 atomic_add(count, &cprc->total_ckpt); 1777 1778 spin_lock(&cprc->stat_lock); 1779 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1780 if (cprc->peak_time < cprc->cur_time) 1781 cprc->peak_time = cprc->cur_time; 1782 spin_unlock(&cprc->stat_lock); 1783 } 1784 1785 static int issue_checkpoint_thread(void *data) 1786 { 1787 struct f2fs_sb_info *sbi = data; 1788 struct ckpt_req_control *cprc = &sbi->cprc_info; 1789 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1790 repeat: 1791 if (kthread_should_stop()) 1792 return 0; 1793 1794 if (!llist_empty(&cprc->issue_list)) 1795 __checkpoint_and_complete_reqs(sbi); 1796 1797 wait_event_interruptible(*q, 1798 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1799 goto repeat; 1800 } 1801 1802 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1803 struct ckpt_req *wait_req) 1804 { 1805 struct ckpt_req_control *cprc = &sbi->cprc_info; 1806 1807 if (!llist_empty(&cprc->issue_list)) { 1808 __checkpoint_and_complete_reqs(sbi); 1809 } else { 1810 /* already dispatched by issue_checkpoint_thread */ 1811 if (wait_req) 1812 wait_for_completion(&wait_req->wait); 1813 } 1814 } 1815 1816 static void init_ckpt_req(struct ckpt_req *req) 1817 { 1818 memset(req, 0, sizeof(struct ckpt_req)); 1819 1820 init_completion(&req->wait); 1821 req->queue_time = ktime_get(); 1822 } 1823 1824 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1825 { 1826 struct ckpt_req_control *cprc = &sbi->cprc_info; 1827 struct ckpt_req req; 1828 struct cp_control cpc; 1829 1830 cpc.reason = __get_cp_reason(sbi); 1831 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1832 int ret; 1833 1834 down_write(&sbi->gc_lock); 1835 ret = f2fs_write_checkpoint(sbi, &cpc); 1836 up_write(&sbi->gc_lock); 1837 1838 return ret; 1839 } 1840 1841 if (!cprc->f2fs_issue_ckpt) 1842 return __write_checkpoint_sync(sbi); 1843 1844 init_ckpt_req(&req); 1845 1846 llist_add(&req.llnode, &cprc->issue_list); 1847 atomic_inc(&cprc->queued_ckpt); 1848 1849 /* 1850 * update issue_list before we wake up issue_checkpoint thread, 1851 * this smp_mb() pairs with another barrier in ___wait_event(), 1852 * see more details in comments of waitqueue_active(). 1853 */ 1854 smp_mb(); 1855 1856 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1857 wake_up(&cprc->ckpt_wait_queue); 1858 1859 if (cprc->f2fs_issue_ckpt) 1860 wait_for_completion(&req.wait); 1861 else 1862 flush_remained_ckpt_reqs(sbi, &req); 1863 1864 return req.ret; 1865 } 1866 1867 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1868 { 1869 dev_t dev = sbi->sb->s_bdev->bd_dev; 1870 struct ckpt_req_control *cprc = &sbi->cprc_info; 1871 1872 if (cprc->f2fs_issue_ckpt) 1873 return 0; 1874 1875 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1876 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1877 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1878 cprc->f2fs_issue_ckpt = NULL; 1879 return -ENOMEM; 1880 } 1881 1882 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1883 1884 return 0; 1885 } 1886 1887 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1888 { 1889 struct ckpt_req_control *cprc = &sbi->cprc_info; 1890 1891 if (cprc->f2fs_issue_ckpt) { 1892 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt; 1893 1894 cprc->f2fs_issue_ckpt = NULL; 1895 kthread_stop(ckpt_task); 1896 1897 flush_remained_ckpt_reqs(sbi, NULL); 1898 } 1899 } 1900 1901 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1902 { 1903 struct ckpt_req_control *cprc = &sbi->cprc_info; 1904 1905 atomic_set(&cprc->issued_ckpt, 0); 1906 atomic_set(&cprc->total_ckpt, 0); 1907 atomic_set(&cprc->queued_ckpt, 0); 1908 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1909 init_waitqueue_head(&cprc->ckpt_wait_queue); 1910 init_llist_head(&cprc->issue_list); 1911 spin_lock_init(&cprc->stat_lock); 1912 } 1913