1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 /* 30 * We guarantee no failure on the returned page. 31 */ 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 33 { 34 struct address_space *mapping = META_MAPPING(sbi); 35 struct page *page = NULL; 36 repeat: 37 page = grab_cache_page(mapping, index); 38 if (!page) { 39 cond_resched(); 40 goto repeat; 41 } 42 f2fs_wait_on_page_writeback(page, META); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 51 bool is_meta) 52 { 53 struct address_space *mapping = META_MAPPING(sbi); 54 struct page *page; 55 struct f2fs_io_info fio = { 56 .sbi = sbi, 57 .type = META, 58 .rw = READ_SYNC | REQ_META | REQ_PRIO, 59 .blk_addr = index, 60 .encrypted_page = NULL, 61 }; 62 63 if (unlikely(!is_meta)) 64 fio.rw &= ~REQ_META; 65 repeat: 66 page = grab_cache_page(mapping, index); 67 if (!page) { 68 cond_resched(); 69 goto repeat; 70 } 71 if (PageUptodate(page)) 72 goto out; 73 74 fio.page = page; 75 76 if (f2fs_submit_page_bio(&fio)) { 77 f2fs_put_page(page, 1); 78 goto repeat; 79 } 80 81 lock_page(page); 82 if (unlikely(page->mapping != mapping)) { 83 f2fs_put_page(page, 1); 84 goto repeat; 85 } 86 87 /* 88 * if there is any IO error when accessing device, make our filesystem 89 * readonly and make sure do not write checkpoint with non-uptodate 90 * meta page. 91 */ 92 if (unlikely(!PageUptodate(page))) 93 f2fs_stop_checkpoint(sbi); 94 out: 95 return page; 96 } 97 98 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 99 { 100 return __get_meta_page(sbi, index, true); 101 } 102 103 /* for POR only */ 104 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 105 { 106 return __get_meta_page(sbi, index, false); 107 } 108 109 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 110 { 111 switch (type) { 112 case META_NAT: 113 break; 114 case META_SIT: 115 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 116 return false; 117 break; 118 case META_SSA: 119 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 120 blkaddr < SM_I(sbi)->ssa_blkaddr)) 121 return false; 122 break; 123 case META_CP: 124 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 125 blkaddr < __start_cp_addr(sbi))) 126 return false; 127 break; 128 case META_POR: 129 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 130 blkaddr < MAIN_BLKADDR(sbi))) 131 return false; 132 break; 133 default: 134 BUG(); 135 } 136 137 return true; 138 } 139 140 /* 141 * Readahead CP/NAT/SIT/SSA pages 142 */ 143 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 144 int type, bool sync) 145 { 146 block_t prev_blk_addr = 0; 147 struct page *page; 148 block_t blkno = start; 149 struct f2fs_io_info fio = { 150 .sbi = sbi, 151 .type = META, 152 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA, 153 .encrypted_page = NULL, 154 }; 155 156 if (unlikely(type == META_POR)) 157 fio.rw &= ~REQ_META; 158 159 for (; nrpages-- > 0; blkno++) { 160 161 if (!is_valid_blkaddr(sbi, blkno, type)) 162 goto out; 163 164 switch (type) { 165 case META_NAT: 166 if (unlikely(blkno >= 167 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 168 blkno = 0; 169 /* get nat block addr */ 170 fio.blk_addr = current_nat_addr(sbi, 171 blkno * NAT_ENTRY_PER_BLOCK); 172 break; 173 case META_SIT: 174 /* get sit block addr */ 175 fio.blk_addr = current_sit_addr(sbi, 176 blkno * SIT_ENTRY_PER_BLOCK); 177 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) 178 goto out; 179 prev_blk_addr = fio.blk_addr; 180 break; 181 case META_SSA: 182 case META_CP: 183 case META_POR: 184 fio.blk_addr = blkno; 185 break; 186 default: 187 BUG(); 188 } 189 190 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); 191 if (!page) 192 continue; 193 if (PageUptodate(page)) { 194 f2fs_put_page(page, 1); 195 continue; 196 } 197 198 fio.page = page; 199 f2fs_submit_page_mbio(&fio); 200 f2fs_put_page(page, 0); 201 } 202 out: 203 f2fs_submit_merged_bio(sbi, META, READ); 204 return blkno - start; 205 } 206 207 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 208 { 209 struct page *page; 210 bool readahead = false; 211 212 page = find_get_page(META_MAPPING(sbi), index); 213 if (!page || (page && !PageUptodate(page))) 214 readahead = true; 215 f2fs_put_page(page, 0); 216 217 if (readahead) 218 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true); 219 } 220 221 static int f2fs_write_meta_page(struct page *page, 222 struct writeback_control *wbc) 223 { 224 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 225 226 trace_f2fs_writepage(page, META); 227 228 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 229 goto redirty_out; 230 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 231 goto redirty_out; 232 if (unlikely(f2fs_cp_error(sbi))) 233 goto redirty_out; 234 235 f2fs_wait_on_page_writeback(page, META); 236 write_meta_page(sbi, page); 237 dec_page_count(sbi, F2FS_DIRTY_META); 238 unlock_page(page); 239 240 if (wbc->for_reclaim) 241 f2fs_submit_merged_bio(sbi, META, WRITE); 242 return 0; 243 244 redirty_out: 245 redirty_page_for_writepage(wbc, page); 246 return AOP_WRITEPAGE_ACTIVATE; 247 } 248 249 static int f2fs_write_meta_pages(struct address_space *mapping, 250 struct writeback_control *wbc) 251 { 252 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 253 long diff, written; 254 255 trace_f2fs_writepages(mapping->host, wbc, META); 256 257 /* collect a number of dirty meta pages and write together */ 258 if (wbc->for_kupdate || 259 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 260 goto skip_write; 261 262 /* if mounting is failed, skip writing node pages */ 263 mutex_lock(&sbi->cp_mutex); 264 diff = nr_pages_to_write(sbi, META, wbc); 265 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 266 mutex_unlock(&sbi->cp_mutex); 267 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 268 return 0; 269 270 skip_write: 271 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 272 return 0; 273 } 274 275 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 276 long nr_to_write) 277 { 278 struct address_space *mapping = META_MAPPING(sbi); 279 pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX; 280 struct pagevec pvec; 281 long nwritten = 0; 282 struct writeback_control wbc = { 283 .for_reclaim = 0, 284 }; 285 286 pagevec_init(&pvec, 0); 287 288 while (index <= end) { 289 int i, nr_pages; 290 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 291 PAGECACHE_TAG_DIRTY, 292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 293 if (unlikely(nr_pages == 0)) 294 break; 295 296 for (i = 0; i < nr_pages; i++) { 297 struct page *page = pvec.pages[i]; 298 299 if (prev == LONG_MAX) 300 prev = page->index - 1; 301 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 302 pagevec_release(&pvec); 303 goto stop; 304 } 305 306 lock_page(page); 307 308 if (unlikely(page->mapping != mapping)) { 309 continue_unlock: 310 unlock_page(page); 311 continue; 312 } 313 if (!PageDirty(page)) { 314 /* someone wrote it for us */ 315 goto continue_unlock; 316 } 317 318 if (!clear_page_dirty_for_io(page)) 319 goto continue_unlock; 320 321 if (mapping->a_ops->writepage(page, &wbc)) { 322 unlock_page(page); 323 break; 324 } 325 nwritten++; 326 prev = page->index; 327 if (unlikely(nwritten >= nr_to_write)) 328 break; 329 } 330 pagevec_release(&pvec); 331 cond_resched(); 332 } 333 stop: 334 if (nwritten) 335 f2fs_submit_merged_bio(sbi, type, WRITE); 336 337 return nwritten; 338 } 339 340 static int f2fs_set_meta_page_dirty(struct page *page) 341 { 342 trace_f2fs_set_page_dirty(page, META); 343 344 SetPageUptodate(page); 345 if (!PageDirty(page)) { 346 __set_page_dirty_nobuffers(page); 347 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 348 SetPagePrivate(page); 349 f2fs_trace_pid(page); 350 return 1; 351 } 352 return 0; 353 } 354 355 const struct address_space_operations f2fs_meta_aops = { 356 .writepage = f2fs_write_meta_page, 357 .writepages = f2fs_write_meta_pages, 358 .set_page_dirty = f2fs_set_meta_page_dirty, 359 .invalidatepage = f2fs_invalidate_page, 360 .releasepage = f2fs_release_page, 361 }; 362 363 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 364 { 365 struct inode_management *im = &sbi->im[type]; 366 struct ino_entry *e, *tmp; 367 368 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 369 retry: 370 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 371 372 spin_lock(&im->ino_lock); 373 e = radix_tree_lookup(&im->ino_root, ino); 374 if (!e) { 375 e = tmp; 376 if (radix_tree_insert(&im->ino_root, ino, e)) { 377 spin_unlock(&im->ino_lock); 378 radix_tree_preload_end(); 379 goto retry; 380 } 381 memset(e, 0, sizeof(struct ino_entry)); 382 e->ino = ino; 383 384 list_add_tail(&e->list, &im->ino_list); 385 if (type != ORPHAN_INO) 386 im->ino_num++; 387 } 388 spin_unlock(&im->ino_lock); 389 radix_tree_preload_end(); 390 391 if (e != tmp) 392 kmem_cache_free(ino_entry_slab, tmp); 393 } 394 395 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 396 { 397 struct inode_management *im = &sbi->im[type]; 398 struct ino_entry *e; 399 400 spin_lock(&im->ino_lock); 401 e = radix_tree_lookup(&im->ino_root, ino); 402 if (e) { 403 list_del(&e->list); 404 radix_tree_delete(&im->ino_root, ino); 405 im->ino_num--; 406 spin_unlock(&im->ino_lock); 407 kmem_cache_free(ino_entry_slab, e); 408 return; 409 } 410 spin_unlock(&im->ino_lock); 411 } 412 413 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 414 { 415 /* add new dirty ino entry into list */ 416 __add_ino_entry(sbi, ino, type); 417 } 418 419 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 420 { 421 /* remove dirty ino entry from list */ 422 __remove_ino_entry(sbi, ino, type); 423 } 424 425 /* mode should be APPEND_INO or UPDATE_INO */ 426 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 427 { 428 struct inode_management *im = &sbi->im[mode]; 429 struct ino_entry *e; 430 431 spin_lock(&im->ino_lock); 432 e = radix_tree_lookup(&im->ino_root, ino); 433 spin_unlock(&im->ino_lock); 434 return e ? true : false; 435 } 436 437 void release_dirty_inode(struct f2fs_sb_info *sbi) 438 { 439 struct ino_entry *e, *tmp; 440 int i; 441 442 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 443 struct inode_management *im = &sbi->im[i]; 444 445 spin_lock(&im->ino_lock); 446 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 447 list_del(&e->list); 448 radix_tree_delete(&im->ino_root, e->ino); 449 kmem_cache_free(ino_entry_slab, e); 450 im->ino_num--; 451 } 452 spin_unlock(&im->ino_lock); 453 } 454 } 455 456 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 457 { 458 struct inode_management *im = &sbi->im[ORPHAN_INO]; 459 int err = 0; 460 461 spin_lock(&im->ino_lock); 462 if (unlikely(im->ino_num >= sbi->max_orphans)) 463 err = -ENOSPC; 464 else 465 im->ino_num++; 466 spin_unlock(&im->ino_lock); 467 468 return err; 469 } 470 471 void release_orphan_inode(struct f2fs_sb_info *sbi) 472 { 473 struct inode_management *im = &sbi->im[ORPHAN_INO]; 474 475 spin_lock(&im->ino_lock); 476 f2fs_bug_on(sbi, im->ino_num == 0); 477 im->ino_num--; 478 spin_unlock(&im->ino_lock); 479 } 480 481 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 482 { 483 /* add new orphan ino entry into list */ 484 __add_ino_entry(sbi, ino, ORPHAN_INO); 485 } 486 487 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 488 { 489 /* remove orphan entry from orphan list */ 490 __remove_ino_entry(sbi, ino, ORPHAN_INO); 491 } 492 493 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 494 { 495 struct inode *inode; 496 497 inode = f2fs_iget(sbi->sb, ino); 498 if (IS_ERR(inode)) { 499 /* 500 * there should be a bug that we can't find the entry 501 * to orphan inode. 502 */ 503 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 504 return PTR_ERR(inode); 505 } 506 507 clear_nlink(inode); 508 509 /* truncate all the data during iput */ 510 iput(inode); 511 return 0; 512 } 513 514 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 515 { 516 block_t start_blk, orphan_blocks, i, j; 517 int err; 518 519 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 520 return 0; 521 522 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 523 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 524 525 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 526 527 for (i = 0; i < orphan_blocks; i++) { 528 struct page *page = get_meta_page(sbi, start_blk + i); 529 struct f2fs_orphan_block *orphan_blk; 530 531 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 532 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 533 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 534 err = recover_orphan_inode(sbi, ino); 535 if (err) { 536 f2fs_put_page(page, 1); 537 return err; 538 } 539 } 540 f2fs_put_page(page, 1); 541 } 542 /* clear Orphan Flag */ 543 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 544 return 0; 545 } 546 547 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 548 { 549 struct list_head *head; 550 struct f2fs_orphan_block *orphan_blk = NULL; 551 unsigned int nentries = 0; 552 unsigned short index = 1; 553 unsigned short orphan_blocks; 554 struct page *page = NULL; 555 struct ino_entry *orphan = NULL; 556 struct inode_management *im = &sbi->im[ORPHAN_INO]; 557 558 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 559 560 /* 561 * we don't need to do spin_lock(&im->ino_lock) here, since all the 562 * orphan inode operations are covered under f2fs_lock_op(). 563 * And, spin_lock should be avoided due to page operations below. 564 */ 565 head = &im->ino_list; 566 567 /* loop for each orphan inode entry and write them in Jornal block */ 568 list_for_each_entry(orphan, head, list) { 569 if (!page) { 570 page = grab_meta_page(sbi, start_blk++); 571 orphan_blk = 572 (struct f2fs_orphan_block *)page_address(page); 573 memset(orphan_blk, 0, sizeof(*orphan_blk)); 574 } 575 576 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 577 578 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 579 /* 580 * an orphan block is full of 1020 entries, 581 * then we need to flush current orphan blocks 582 * and bring another one in memory 583 */ 584 orphan_blk->blk_addr = cpu_to_le16(index); 585 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 586 orphan_blk->entry_count = cpu_to_le32(nentries); 587 set_page_dirty(page); 588 f2fs_put_page(page, 1); 589 index++; 590 nentries = 0; 591 page = NULL; 592 } 593 } 594 595 if (page) { 596 orphan_blk->blk_addr = cpu_to_le16(index); 597 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 598 orphan_blk->entry_count = cpu_to_le32(nentries); 599 set_page_dirty(page); 600 f2fs_put_page(page, 1); 601 } 602 } 603 604 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 605 block_t cp_addr, unsigned long long *version) 606 { 607 struct page *cp_page_1, *cp_page_2 = NULL; 608 unsigned long blk_size = sbi->blocksize; 609 struct f2fs_checkpoint *cp_block; 610 unsigned long long cur_version = 0, pre_version = 0; 611 size_t crc_offset; 612 __u32 crc = 0; 613 614 /* Read the 1st cp block in this CP pack */ 615 cp_page_1 = get_meta_page(sbi, cp_addr); 616 617 /* get the version number */ 618 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 619 crc_offset = le32_to_cpu(cp_block->checksum_offset); 620 if (crc_offset >= blk_size) 621 goto invalid_cp1; 622 623 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 624 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 625 goto invalid_cp1; 626 627 pre_version = cur_cp_version(cp_block); 628 629 /* Read the 2nd cp block in this CP pack */ 630 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 631 cp_page_2 = get_meta_page(sbi, cp_addr); 632 633 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 634 crc_offset = le32_to_cpu(cp_block->checksum_offset); 635 if (crc_offset >= blk_size) 636 goto invalid_cp2; 637 638 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 639 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 640 goto invalid_cp2; 641 642 cur_version = cur_cp_version(cp_block); 643 644 if (cur_version == pre_version) { 645 *version = cur_version; 646 f2fs_put_page(cp_page_2, 1); 647 return cp_page_1; 648 } 649 invalid_cp2: 650 f2fs_put_page(cp_page_2, 1); 651 invalid_cp1: 652 f2fs_put_page(cp_page_1, 1); 653 return NULL; 654 } 655 656 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 657 { 658 struct f2fs_checkpoint *cp_block; 659 struct f2fs_super_block *fsb = sbi->raw_super; 660 struct page *cp1, *cp2, *cur_page; 661 unsigned long blk_size = sbi->blocksize; 662 unsigned long long cp1_version = 0, cp2_version = 0; 663 unsigned long long cp_start_blk_no; 664 unsigned int cp_blks = 1 + __cp_payload(sbi); 665 block_t cp_blk_no; 666 int i; 667 668 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 669 if (!sbi->ckpt) 670 return -ENOMEM; 671 /* 672 * Finding out valid cp block involves read both 673 * sets( cp pack1 and cp pack 2) 674 */ 675 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 676 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 677 678 /* The second checkpoint pack should start at the next segment */ 679 cp_start_blk_no += ((unsigned long long)1) << 680 le32_to_cpu(fsb->log_blocks_per_seg); 681 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 682 683 if (cp1 && cp2) { 684 if (ver_after(cp2_version, cp1_version)) 685 cur_page = cp2; 686 else 687 cur_page = cp1; 688 } else if (cp1) { 689 cur_page = cp1; 690 } else if (cp2) { 691 cur_page = cp2; 692 } else { 693 goto fail_no_cp; 694 } 695 696 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 697 memcpy(sbi->ckpt, cp_block, blk_size); 698 699 if (cp_blks <= 1) 700 goto done; 701 702 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 703 if (cur_page == cp2) 704 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 705 706 for (i = 1; i < cp_blks; i++) { 707 void *sit_bitmap_ptr; 708 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 709 710 cur_page = get_meta_page(sbi, cp_blk_no + i); 711 sit_bitmap_ptr = page_address(cur_page); 712 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 713 f2fs_put_page(cur_page, 1); 714 } 715 done: 716 f2fs_put_page(cp1, 1); 717 f2fs_put_page(cp2, 1); 718 return 0; 719 720 fail_no_cp: 721 kfree(sbi->ckpt); 722 return -EINVAL; 723 } 724 725 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) 726 { 727 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 728 729 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 730 return -EEXIST; 731 732 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 733 F2FS_I(inode)->dirty_dir = new; 734 list_add_tail(&new->list, &sbi->dir_inode_list); 735 stat_inc_dirty_dir(sbi); 736 return 0; 737 } 738 739 void update_dirty_page(struct inode *inode, struct page *page) 740 { 741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 742 struct inode_entry *new; 743 int ret = 0; 744 745 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 746 !S_ISLNK(inode->i_mode)) 747 return; 748 749 if (!S_ISDIR(inode->i_mode)) { 750 inode_inc_dirty_pages(inode); 751 goto out; 752 } 753 754 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 755 new->inode = inode; 756 INIT_LIST_HEAD(&new->list); 757 758 spin_lock(&sbi->dir_inode_lock); 759 ret = __add_dirty_inode(inode, new); 760 inode_inc_dirty_pages(inode); 761 spin_unlock(&sbi->dir_inode_lock); 762 763 if (ret) 764 kmem_cache_free(inode_entry_slab, new); 765 out: 766 SetPagePrivate(page); 767 f2fs_trace_pid(page); 768 } 769 770 void add_dirty_dir_inode(struct inode *inode) 771 { 772 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 773 struct inode_entry *new = 774 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 775 int ret = 0; 776 777 new->inode = inode; 778 INIT_LIST_HEAD(&new->list); 779 780 spin_lock(&sbi->dir_inode_lock); 781 ret = __add_dirty_inode(inode, new); 782 spin_unlock(&sbi->dir_inode_lock); 783 784 if (ret) 785 kmem_cache_free(inode_entry_slab, new); 786 } 787 788 void remove_dirty_dir_inode(struct inode *inode) 789 { 790 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 791 struct inode_entry *entry; 792 793 if (!S_ISDIR(inode->i_mode)) 794 return; 795 796 spin_lock(&sbi->dir_inode_lock); 797 if (get_dirty_pages(inode) || 798 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 799 spin_unlock(&sbi->dir_inode_lock); 800 return; 801 } 802 803 entry = F2FS_I(inode)->dirty_dir; 804 list_del(&entry->list); 805 F2FS_I(inode)->dirty_dir = NULL; 806 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 807 stat_dec_dirty_dir(sbi); 808 spin_unlock(&sbi->dir_inode_lock); 809 kmem_cache_free(inode_entry_slab, entry); 810 811 /* Only from the recovery routine */ 812 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 813 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 814 iput(inode); 815 } 816 } 817 818 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 819 { 820 struct list_head *head; 821 struct inode_entry *entry; 822 struct inode *inode; 823 retry: 824 if (unlikely(f2fs_cp_error(sbi))) 825 return; 826 827 spin_lock(&sbi->dir_inode_lock); 828 829 head = &sbi->dir_inode_list; 830 if (list_empty(head)) { 831 spin_unlock(&sbi->dir_inode_lock); 832 return; 833 } 834 entry = list_entry(head->next, struct inode_entry, list); 835 inode = igrab(entry->inode); 836 spin_unlock(&sbi->dir_inode_lock); 837 if (inode) { 838 filemap_fdatawrite(inode->i_mapping); 839 iput(inode); 840 } else { 841 /* 842 * We should submit bio, since it exists several 843 * wribacking dentry pages in the freeing inode. 844 */ 845 f2fs_submit_merged_bio(sbi, DATA, WRITE); 846 cond_resched(); 847 } 848 goto retry; 849 } 850 851 /* 852 * Freeze all the FS-operations for checkpoint. 853 */ 854 static int block_operations(struct f2fs_sb_info *sbi) 855 { 856 struct writeback_control wbc = { 857 .sync_mode = WB_SYNC_ALL, 858 .nr_to_write = LONG_MAX, 859 .for_reclaim = 0, 860 }; 861 struct blk_plug plug; 862 int err = 0; 863 864 blk_start_plug(&plug); 865 866 retry_flush_dents: 867 f2fs_lock_all(sbi); 868 /* write all the dirty dentry pages */ 869 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 870 f2fs_unlock_all(sbi); 871 sync_dirty_dir_inodes(sbi); 872 if (unlikely(f2fs_cp_error(sbi))) { 873 err = -EIO; 874 goto out; 875 } 876 goto retry_flush_dents; 877 } 878 879 /* 880 * POR: we should ensure that there are no dirty node pages 881 * until finishing nat/sit flush. 882 */ 883 retry_flush_nodes: 884 down_write(&sbi->node_write); 885 886 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 887 up_write(&sbi->node_write); 888 sync_node_pages(sbi, 0, &wbc); 889 if (unlikely(f2fs_cp_error(sbi))) { 890 f2fs_unlock_all(sbi); 891 err = -EIO; 892 goto out; 893 } 894 goto retry_flush_nodes; 895 } 896 out: 897 blk_finish_plug(&plug); 898 return err; 899 } 900 901 static void unblock_operations(struct f2fs_sb_info *sbi) 902 { 903 up_write(&sbi->node_write); 904 f2fs_unlock_all(sbi); 905 } 906 907 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 908 { 909 DEFINE_WAIT(wait); 910 911 for (;;) { 912 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 913 914 if (!get_pages(sbi, F2FS_WRITEBACK)) 915 break; 916 917 io_schedule(); 918 } 919 finish_wait(&sbi->cp_wait, &wait); 920 } 921 922 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 923 { 924 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 925 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 926 struct f2fs_nm_info *nm_i = NM_I(sbi); 927 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 928 nid_t last_nid = nm_i->next_scan_nid; 929 block_t start_blk; 930 unsigned int data_sum_blocks, orphan_blocks; 931 __u32 crc32 = 0; 932 int i; 933 int cp_payload_blks = __cp_payload(sbi); 934 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg); 935 bool invalidate = false; 936 937 /* 938 * This avoids to conduct wrong roll-forward operations and uses 939 * metapages, so should be called prior to sync_meta_pages below. 940 */ 941 if (discard_next_dnode(sbi, discard_blk)) 942 invalidate = true; 943 944 /* Flush all the NAT/SIT pages */ 945 while (get_pages(sbi, F2FS_DIRTY_META)) { 946 sync_meta_pages(sbi, META, LONG_MAX); 947 if (unlikely(f2fs_cp_error(sbi))) 948 return; 949 } 950 951 next_free_nid(sbi, &last_nid); 952 953 /* 954 * modify checkpoint 955 * version number is already updated 956 */ 957 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 958 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 959 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 960 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 961 ckpt->cur_node_segno[i] = 962 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 963 ckpt->cur_node_blkoff[i] = 964 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 965 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 966 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 967 } 968 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 969 ckpt->cur_data_segno[i] = 970 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 971 ckpt->cur_data_blkoff[i] = 972 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 973 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 974 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 975 } 976 977 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 978 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 979 ckpt->next_free_nid = cpu_to_le32(last_nid); 980 981 /* 2 cp + n data seg summary + orphan inode blocks */ 982 data_sum_blocks = npages_for_summary_flush(sbi, false); 983 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 984 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 985 else 986 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 987 988 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 989 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 990 orphan_blocks); 991 992 if (__remain_node_summaries(cpc->reason)) 993 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 994 cp_payload_blks + data_sum_blocks + 995 orphan_blocks + NR_CURSEG_NODE_TYPE); 996 else 997 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 998 cp_payload_blks + data_sum_blocks + 999 orphan_blocks); 1000 1001 if (cpc->reason == CP_UMOUNT) 1002 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1003 else 1004 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1005 1006 if (cpc->reason == CP_FASTBOOT) 1007 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1008 else 1009 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1010 1011 if (orphan_num) 1012 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1013 else 1014 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1015 1016 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1017 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1018 1019 /* update SIT/NAT bitmap */ 1020 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1021 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1022 1023 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 1024 *((__le32 *)((unsigned char *)ckpt + 1025 le32_to_cpu(ckpt->checksum_offset))) 1026 = cpu_to_le32(crc32); 1027 1028 start_blk = __start_cp_addr(sbi); 1029 1030 /* need to wait for end_io results */ 1031 wait_on_all_pages_writeback(sbi); 1032 if (unlikely(f2fs_cp_error(sbi))) 1033 return; 1034 1035 /* write out checkpoint buffer at block 0 */ 1036 update_meta_page(sbi, ckpt, start_blk++); 1037 1038 for (i = 1; i < 1 + cp_payload_blks; i++) 1039 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1040 start_blk++); 1041 1042 if (orphan_num) { 1043 write_orphan_inodes(sbi, start_blk); 1044 start_blk += orphan_blocks; 1045 } 1046 1047 write_data_summaries(sbi, start_blk); 1048 start_blk += data_sum_blocks; 1049 if (__remain_node_summaries(cpc->reason)) { 1050 write_node_summaries(sbi, start_blk); 1051 start_blk += NR_CURSEG_NODE_TYPE; 1052 } 1053 1054 /* writeout checkpoint block */ 1055 update_meta_page(sbi, ckpt, start_blk); 1056 1057 /* wait for previous submitted node/meta pages writeback */ 1058 wait_on_all_pages_writeback(sbi); 1059 1060 if (unlikely(f2fs_cp_error(sbi))) 1061 return; 1062 1063 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 1064 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 1065 1066 /* update user_block_counts */ 1067 sbi->last_valid_block_count = sbi->total_valid_block_count; 1068 sbi->alloc_valid_block_count = 0; 1069 1070 /* Here, we only have one bio having CP pack */ 1071 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1072 1073 /* wait for previous submitted meta pages writeback */ 1074 wait_on_all_pages_writeback(sbi); 1075 1076 /* 1077 * invalidate meta page which is used temporarily for zeroing out 1078 * block at the end of warm node chain. 1079 */ 1080 if (invalidate) 1081 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk, 1082 discard_blk); 1083 1084 release_dirty_inode(sbi); 1085 1086 if (unlikely(f2fs_cp_error(sbi))) 1087 return; 1088 1089 clear_prefree_segments(sbi, cpc); 1090 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1091 } 1092 1093 /* 1094 * We guarantee that this checkpoint procedure will not fail. 1095 */ 1096 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1097 { 1098 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1099 unsigned long long ckpt_ver; 1100 1101 mutex_lock(&sbi->cp_mutex); 1102 1103 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1104 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1105 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1106 goto out; 1107 if (unlikely(f2fs_cp_error(sbi))) 1108 goto out; 1109 if (f2fs_readonly(sbi->sb)) 1110 goto out; 1111 1112 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1113 1114 if (block_operations(sbi)) 1115 goto out; 1116 1117 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1118 1119 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1120 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1121 f2fs_submit_merged_bio(sbi, META, WRITE); 1122 1123 /* 1124 * update checkpoint pack index 1125 * Increase the version number so that 1126 * SIT entries and seg summaries are written at correct place 1127 */ 1128 ckpt_ver = cur_cp_version(ckpt); 1129 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1130 1131 /* write cached NAT/SIT entries to NAT/SIT area */ 1132 flush_nat_entries(sbi); 1133 flush_sit_entries(sbi, cpc); 1134 1135 /* unlock all the fs_lock[] in do_checkpoint() */ 1136 do_checkpoint(sbi, cpc); 1137 1138 unblock_operations(sbi); 1139 stat_inc_cp_count(sbi->stat_info); 1140 1141 if (cpc->reason == CP_RECOVERY) 1142 f2fs_msg(sbi->sb, KERN_NOTICE, 1143 "checkpoint: version = %llx", ckpt_ver); 1144 1145 /* do checkpoint periodically */ 1146 sbi->cp_expires = round_jiffies_up(jiffies + HZ * sbi->cp_interval); 1147 out: 1148 mutex_unlock(&sbi->cp_mutex); 1149 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1150 } 1151 1152 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1153 { 1154 int i; 1155 1156 for (i = 0; i < MAX_INO_ENTRY; i++) { 1157 struct inode_management *im = &sbi->im[i]; 1158 1159 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1160 spin_lock_init(&im->ino_lock); 1161 INIT_LIST_HEAD(&im->ino_list); 1162 im->ino_num = 0; 1163 } 1164 1165 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1166 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1167 F2FS_ORPHANS_PER_BLOCK; 1168 } 1169 1170 int __init create_checkpoint_caches(void) 1171 { 1172 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1173 sizeof(struct ino_entry)); 1174 if (!ino_entry_slab) 1175 return -ENOMEM; 1176 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1177 sizeof(struct inode_entry)); 1178 if (!inode_entry_slab) { 1179 kmem_cache_destroy(ino_entry_slab); 1180 return -ENOMEM; 1181 } 1182 return 0; 1183 } 1184 1185 void destroy_checkpoint_caches(void) 1186 { 1187 kmem_cache_destroy(ino_entry_slab); 1188 kmem_cache_destroy(inode_entry_slab); 1189 } 1190