xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 97da55fc)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 
24 static struct kmem_cache *orphan_entry_slab;
25 static struct kmem_cache *inode_entry_slab;
26 
27 /*
28  * We guarantee no failure on the returned page.
29  */
30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
31 {
32 	struct address_space *mapping = sbi->meta_inode->i_mapping;
33 	struct page *page = NULL;
34 repeat:
35 	page = grab_cache_page(mapping, index);
36 	if (!page) {
37 		cond_resched();
38 		goto repeat;
39 	}
40 
41 	/* We wait writeback only inside grab_meta_page() */
42 	wait_on_page_writeback(page);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 	struct address_space *mapping = sbi->meta_inode->i_mapping;
53 	struct page *page;
54 repeat:
55 	page = grab_cache_page(mapping, index);
56 	if (!page) {
57 		cond_resched();
58 		goto repeat;
59 	}
60 	if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
61 		f2fs_put_page(page, 1);
62 		goto repeat;
63 	}
64 	mark_page_accessed(page);
65 
66 	/* We do not allow returning an errorneous page */
67 	return page;
68 }
69 
70 static int f2fs_write_meta_page(struct page *page,
71 				struct writeback_control *wbc)
72 {
73 	struct inode *inode = page->mapping->host;
74 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
75 
76 	/* Should not write any meta pages, if any IO error was occurred */
77 	if (wbc->for_reclaim ||
78 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
79 		dec_page_count(sbi, F2FS_DIRTY_META);
80 		wbc->pages_skipped++;
81 		set_page_dirty(page);
82 		return AOP_WRITEPAGE_ACTIVATE;
83 	}
84 
85 	wait_on_page_writeback(page);
86 
87 	write_meta_page(sbi, page);
88 	dec_page_count(sbi, F2FS_DIRTY_META);
89 	unlock_page(page);
90 	return 0;
91 }
92 
93 static int f2fs_write_meta_pages(struct address_space *mapping,
94 				struct writeback_control *wbc)
95 {
96 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
97 	struct block_device *bdev = sbi->sb->s_bdev;
98 	long written;
99 
100 	if (wbc->for_kupdate)
101 		return 0;
102 
103 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
104 		return 0;
105 
106 	/* if mounting is failed, skip writing node pages */
107 	mutex_lock(&sbi->cp_mutex);
108 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
109 	mutex_unlock(&sbi->cp_mutex);
110 	wbc->nr_to_write -= written;
111 	return 0;
112 }
113 
114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
115 						long nr_to_write)
116 {
117 	struct address_space *mapping = sbi->meta_inode->i_mapping;
118 	pgoff_t index = 0, end = LONG_MAX;
119 	struct pagevec pvec;
120 	long nwritten = 0;
121 	struct writeback_control wbc = {
122 		.for_reclaim = 0,
123 	};
124 
125 	pagevec_init(&pvec, 0);
126 
127 	while (index <= end) {
128 		int i, nr_pages;
129 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
130 				PAGECACHE_TAG_DIRTY,
131 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
132 		if (nr_pages == 0)
133 			break;
134 
135 		for (i = 0; i < nr_pages; i++) {
136 			struct page *page = pvec.pages[i];
137 			lock_page(page);
138 			BUG_ON(page->mapping != mapping);
139 			BUG_ON(!PageDirty(page));
140 			clear_page_dirty_for_io(page);
141 			if (f2fs_write_meta_page(page, &wbc)) {
142 				unlock_page(page);
143 				break;
144 			}
145 			if (nwritten++ >= nr_to_write)
146 				break;
147 		}
148 		pagevec_release(&pvec);
149 		cond_resched();
150 	}
151 
152 	if (nwritten)
153 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
154 
155 	return nwritten;
156 }
157 
158 static int f2fs_set_meta_page_dirty(struct page *page)
159 {
160 	struct address_space *mapping = page->mapping;
161 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
162 
163 	SetPageUptodate(page);
164 	if (!PageDirty(page)) {
165 		__set_page_dirty_nobuffers(page);
166 		inc_page_count(sbi, F2FS_DIRTY_META);
167 		return 1;
168 	}
169 	return 0;
170 }
171 
172 const struct address_space_operations f2fs_meta_aops = {
173 	.writepage	= f2fs_write_meta_page,
174 	.writepages	= f2fs_write_meta_pages,
175 	.set_page_dirty	= f2fs_set_meta_page_dirty,
176 };
177 
178 int check_orphan_space(struct f2fs_sb_info *sbi)
179 {
180 	unsigned int max_orphans;
181 	int err = 0;
182 
183 	/*
184 	 * considering 512 blocks in a segment 5 blocks are needed for cp
185 	 * and log segment summaries. Remaining blocks are used to keep
186 	 * orphan entries with the limitation one reserved segment
187 	 * for cp pack we can have max 1020*507 orphan entries
188 	 */
189 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
190 	mutex_lock(&sbi->orphan_inode_mutex);
191 	if (sbi->n_orphans >= max_orphans)
192 		err = -ENOSPC;
193 	mutex_unlock(&sbi->orphan_inode_mutex);
194 	return err;
195 }
196 
197 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
198 {
199 	struct list_head *head, *this;
200 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
201 
202 	mutex_lock(&sbi->orphan_inode_mutex);
203 	head = &sbi->orphan_inode_list;
204 	list_for_each(this, head) {
205 		orphan = list_entry(this, struct orphan_inode_entry, list);
206 		if (orphan->ino == ino)
207 			goto out;
208 		if (orphan->ino > ino)
209 			break;
210 		orphan = NULL;
211 	}
212 retry:
213 	new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
214 	if (!new) {
215 		cond_resched();
216 		goto retry;
217 	}
218 	new->ino = ino;
219 
220 	/* add new_oentry into list which is sorted by inode number */
221 	if (orphan)
222 		list_add(&new->list, this->prev);
223 	else
224 		list_add_tail(&new->list, head);
225 
226 	sbi->n_orphans++;
227 out:
228 	mutex_unlock(&sbi->orphan_inode_mutex);
229 }
230 
231 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
232 {
233 	struct list_head *this, *next, *head;
234 	struct orphan_inode_entry *orphan;
235 
236 	mutex_lock(&sbi->orphan_inode_mutex);
237 	head = &sbi->orphan_inode_list;
238 	list_for_each_safe(this, next, head) {
239 		orphan = list_entry(this, struct orphan_inode_entry, list);
240 		if (orphan->ino == ino) {
241 			list_del(&orphan->list);
242 			kmem_cache_free(orphan_entry_slab, orphan);
243 			sbi->n_orphans--;
244 			break;
245 		}
246 	}
247 	mutex_unlock(&sbi->orphan_inode_mutex);
248 }
249 
250 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
251 {
252 	struct inode *inode = f2fs_iget(sbi->sb, ino);
253 	BUG_ON(IS_ERR(inode));
254 	clear_nlink(inode);
255 
256 	/* truncate all the data during iput */
257 	iput(inode);
258 }
259 
260 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
261 {
262 	block_t start_blk, orphan_blkaddr, i, j;
263 
264 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
265 		return 0;
266 
267 	sbi->por_doing = 1;
268 	start_blk = __start_cp_addr(sbi) + 1;
269 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
270 
271 	for (i = 0; i < orphan_blkaddr; i++) {
272 		struct page *page = get_meta_page(sbi, start_blk + i);
273 		struct f2fs_orphan_block *orphan_blk;
274 
275 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
276 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
277 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
278 			recover_orphan_inode(sbi, ino);
279 		}
280 		f2fs_put_page(page, 1);
281 	}
282 	/* clear Orphan Flag */
283 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
284 	sbi->por_doing = 0;
285 	return 0;
286 }
287 
288 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
289 {
290 	struct list_head *head, *this, *next;
291 	struct f2fs_orphan_block *orphan_blk = NULL;
292 	struct page *page = NULL;
293 	unsigned int nentries = 0;
294 	unsigned short index = 1;
295 	unsigned short orphan_blocks;
296 
297 	orphan_blocks = (unsigned short)((sbi->n_orphans +
298 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
299 
300 	mutex_lock(&sbi->orphan_inode_mutex);
301 	head = &sbi->orphan_inode_list;
302 
303 	/* loop for each orphan inode entry and write them in Jornal block */
304 	list_for_each_safe(this, next, head) {
305 		struct orphan_inode_entry *orphan;
306 
307 		orphan = list_entry(this, struct orphan_inode_entry, list);
308 
309 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
310 			/*
311 			 * an orphan block is full of 1020 entries,
312 			 * then we need to flush current orphan blocks
313 			 * and bring another one in memory
314 			 */
315 			orphan_blk->blk_addr = cpu_to_le16(index);
316 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
317 			orphan_blk->entry_count = cpu_to_le32(nentries);
318 			set_page_dirty(page);
319 			f2fs_put_page(page, 1);
320 			index++;
321 			start_blk++;
322 			nentries = 0;
323 			page = NULL;
324 		}
325 		if (page)
326 			goto page_exist;
327 
328 		page = grab_meta_page(sbi, start_blk);
329 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
330 		memset(orphan_blk, 0, sizeof(*orphan_blk));
331 page_exist:
332 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
333 	}
334 	if (!page)
335 		goto end;
336 
337 	orphan_blk->blk_addr = cpu_to_le16(index);
338 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
339 	orphan_blk->entry_count = cpu_to_le32(nentries);
340 	set_page_dirty(page);
341 	f2fs_put_page(page, 1);
342 end:
343 	mutex_unlock(&sbi->orphan_inode_mutex);
344 }
345 
346 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
347 				block_t cp_addr, unsigned long long *version)
348 {
349 	struct page *cp_page_1, *cp_page_2 = NULL;
350 	unsigned long blk_size = sbi->blocksize;
351 	struct f2fs_checkpoint *cp_block;
352 	unsigned long long cur_version = 0, pre_version = 0;
353 	unsigned int crc = 0;
354 	size_t crc_offset;
355 
356 	/* Read the 1st cp block in this CP pack */
357 	cp_page_1 = get_meta_page(sbi, cp_addr);
358 
359 	/* get the version number */
360 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
361 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
362 	if (crc_offset >= blk_size)
363 		goto invalid_cp1;
364 
365 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
366 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
367 		goto invalid_cp1;
368 
369 	pre_version = le64_to_cpu(cp_block->checkpoint_ver);
370 
371 	/* Read the 2nd cp block in this CP pack */
372 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
373 	cp_page_2 = get_meta_page(sbi, cp_addr);
374 
375 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
376 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
377 	if (crc_offset >= blk_size)
378 		goto invalid_cp2;
379 
380 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
381 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
382 		goto invalid_cp2;
383 
384 	cur_version = le64_to_cpu(cp_block->checkpoint_ver);
385 
386 	if (cur_version == pre_version) {
387 		*version = cur_version;
388 		f2fs_put_page(cp_page_2, 1);
389 		return cp_page_1;
390 	}
391 invalid_cp2:
392 	f2fs_put_page(cp_page_2, 1);
393 invalid_cp1:
394 	f2fs_put_page(cp_page_1, 1);
395 	return NULL;
396 }
397 
398 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
399 {
400 	struct f2fs_checkpoint *cp_block;
401 	struct f2fs_super_block *fsb = sbi->raw_super;
402 	struct page *cp1, *cp2, *cur_page;
403 	unsigned long blk_size = sbi->blocksize;
404 	unsigned long long cp1_version = 0, cp2_version = 0;
405 	unsigned long long cp_start_blk_no;
406 
407 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
408 	if (!sbi->ckpt)
409 		return -ENOMEM;
410 	/*
411 	 * Finding out valid cp block involves read both
412 	 * sets( cp pack1 and cp pack 2)
413 	 */
414 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
415 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
416 
417 	/* The second checkpoint pack should start at the next segment */
418 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
419 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
420 
421 	if (cp1 && cp2) {
422 		if (ver_after(cp2_version, cp1_version))
423 			cur_page = cp2;
424 		else
425 			cur_page = cp1;
426 	} else if (cp1) {
427 		cur_page = cp1;
428 	} else if (cp2) {
429 		cur_page = cp2;
430 	} else {
431 		goto fail_no_cp;
432 	}
433 
434 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
435 	memcpy(sbi->ckpt, cp_block, blk_size);
436 
437 	f2fs_put_page(cp1, 1);
438 	f2fs_put_page(cp2, 1);
439 	return 0;
440 
441 fail_no_cp:
442 	kfree(sbi->ckpt);
443 	return -EINVAL;
444 }
445 
446 void set_dirty_dir_page(struct inode *inode, struct page *page)
447 {
448 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
449 	struct list_head *head = &sbi->dir_inode_list;
450 	struct dir_inode_entry *new;
451 	struct list_head *this;
452 
453 	if (!S_ISDIR(inode->i_mode))
454 		return;
455 retry:
456 	new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
457 	if (!new) {
458 		cond_resched();
459 		goto retry;
460 	}
461 	new->inode = inode;
462 	INIT_LIST_HEAD(&new->list);
463 
464 	spin_lock(&sbi->dir_inode_lock);
465 	list_for_each(this, head) {
466 		struct dir_inode_entry *entry;
467 		entry = list_entry(this, struct dir_inode_entry, list);
468 		if (entry->inode == inode) {
469 			kmem_cache_free(inode_entry_slab, new);
470 			goto out;
471 		}
472 	}
473 	list_add_tail(&new->list, head);
474 	sbi->n_dirty_dirs++;
475 
476 	BUG_ON(!S_ISDIR(inode->i_mode));
477 out:
478 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
479 	inode_inc_dirty_dents(inode);
480 	SetPagePrivate(page);
481 
482 	spin_unlock(&sbi->dir_inode_lock);
483 }
484 
485 void remove_dirty_dir_inode(struct inode *inode)
486 {
487 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
488 	struct list_head *head = &sbi->dir_inode_list;
489 	struct list_head *this;
490 
491 	if (!S_ISDIR(inode->i_mode))
492 		return;
493 
494 	spin_lock(&sbi->dir_inode_lock);
495 	if (atomic_read(&F2FS_I(inode)->dirty_dents))
496 		goto out;
497 
498 	list_for_each(this, head) {
499 		struct dir_inode_entry *entry;
500 		entry = list_entry(this, struct dir_inode_entry, list);
501 		if (entry->inode == inode) {
502 			list_del(&entry->list);
503 			kmem_cache_free(inode_entry_slab, entry);
504 			sbi->n_dirty_dirs--;
505 			break;
506 		}
507 	}
508 out:
509 	spin_unlock(&sbi->dir_inode_lock);
510 }
511 
512 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
513 {
514 	struct list_head *head = &sbi->dir_inode_list;
515 	struct dir_inode_entry *entry;
516 	struct inode *inode;
517 retry:
518 	spin_lock(&sbi->dir_inode_lock);
519 	if (list_empty(head)) {
520 		spin_unlock(&sbi->dir_inode_lock);
521 		return;
522 	}
523 	entry = list_entry(head->next, struct dir_inode_entry, list);
524 	inode = igrab(entry->inode);
525 	spin_unlock(&sbi->dir_inode_lock);
526 	if (inode) {
527 		filemap_flush(inode->i_mapping);
528 		iput(inode);
529 	} else {
530 		/*
531 		 * We should submit bio, since it exists several
532 		 * wribacking dentry pages in the freeing inode.
533 		 */
534 		f2fs_submit_bio(sbi, DATA, true);
535 	}
536 	goto retry;
537 }
538 
539 /*
540  * Freeze all the FS-operations for checkpoint.
541  */
542 static void block_operations(struct f2fs_sb_info *sbi)
543 {
544 	int t;
545 	struct writeback_control wbc = {
546 		.sync_mode = WB_SYNC_ALL,
547 		.nr_to_write = LONG_MAX,
548 		.for_reclaim = 0,
549 	};
550 
551 	/* Stop renaming operation */
552 	mutex_lock_op(sbi, RENAME);
553 	mutex_lock_op(sbi, DENTRY_OPS);
554 
555 retry_dents:
556 	/* write all the dirty dentry pages */
557 	sync_dirty_dir_inodes(sbi);
558 
559 	mutex_lock_op(sbi, DATA_WRITE);
560 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
561 		mutex_unlock_op(sbi, DATA_WRITE);
562 		goto retry_dents;
563 	}
564 
565 	/* block all the operations */
566 	for (t = DATA_NEW; t <= NODE_TRUNC; t++)
567 		mutex_lock_op(sbi, t);
568 
569 	mutex_lock(&sbi->write_inode);
570 
571 	/*
572 	 * POR: we should ensure that there is no dirty node pages
573 	 * until finishing nat/sit flush.
574 	 */
575 retry:
576 	sync_node_pages(sbi, 0, &wbc);
577 
578 	mutex_lock_op(sbi, NODE_WRITE);
579 
580 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
581 		mutex_unlock_op(sbi, NODE_WRITE);
582 		goto retry;
583 	}
584 	mutex_unlock(&sbi->write_inode);
585 }
586 
587 static void unblock_operations(struct f2fs_sb_info *sbi)
588 {
589 	int t;
590 	for (t = NODE_WRITE; t >= RENAME; t--)
591 		mutex_unlock_op(sbi, t);
592 }
593 
594 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
595 {
596 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
597 	nid_t last_nid = 0;
598 	block_t start_blk;
599 	struct page *cp_page;
600 	unsigned int data_sum_blocks, orphan_blocks;
601 	unsigned int crc32 = 0;
602 	void *kaddr;
603 	int i;
604 
605 	/* Flush all the NAT/SIT pages */
606 	while (get_pages(sbi, F2FS_DIRTY_META))
607 		sync_meta_pages(sbi, META, LONG_MAX);
608 
609 	next_free_nid(sbi, &last_nid);
610 
611 	/*
612 	 * modify checkpoint
613 	 * version number is already updated
614 	 */
615 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
616 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
617 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
618 	for (i = 0; i < 3; i++) {
619 		ckpt->cur_node_segno[i] =
620 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
621 		ckpt->cur_node_blkoff[i] =
622 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
623 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
624 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
625 	}
626 	for (i = 0; i < 3; i++) {
627 		ckpt->cur_data_segno[i] =
628 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
629 		ckpt->cur_data_blkoff[i] =
630 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
631 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
632 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
633 	}
634 
635 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
636 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
637 	ckpt->next_free_nid = cpu_to_le32(last_nid);
638 
639 	/* 2 cp  + n data seg summary + orphan inode blocks */
640 	data_sum_blocks = npages_for_summary_flush(sbi);
641 	if (data_sum_blocks < 3)
642 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
643 	else
644 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
645 
646 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
647 					/ F2FS_ORPHANS_PER_BLOCK;
648 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
649 
650 	if (is_umount) {
651 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
652 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
653 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
654 	} else {
655 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
656 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
657 			data_sum_blocks + orphan_blocks);
658 	}
659 
660 	if (sbi->n_orphans)
661 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
662 	else
663 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
664 
665 	/* update SIT/NAT bitmap */
666 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
667 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
668 
669 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
670 	*(__le32 *)((unsigned char *)ckpt +
671 				le32_to_cpu(ckpt->checksum_offset))
672 				= cpu_to_le32(crc32);
673 
674 	start_blk = __start_cp_addr(sbi);
675 
676 	/* write out checkpoint buffer at block 0 */
677 	cp_page = grab_meta_page(sbi, start_blk++);
678 	kaddr = page_address(cp_page);
679 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
680 	set_page_dirty(cp_page);
681 	f2fs_put_page(cp_page, 1);
682 
683 	if (sbi->n_orphans) {
684 		write_orphan_inodes(sbi, start_blk);
685 		start_blk += orphan_blocks;
686 	}
687 
688 	write_data_summaries(sbi, start_blk);
689 	start_blk += data_sum_blocks;
690 	if (is_umount) {
691 		write_node_summaries(sbi, start_blk);
692 		start_blk += NR_CURSEG_NODE_TYPE;
693 	}
694 
695 	/* writeout checkpoint block */
696 	cp_page = grab_meta_page(sbi, start_blk);
697 	kaddr = page_address(cp_page);
698 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
699 	set_page_dirty(cp_page);
700 	f2fs_put_page(cp_page, 1);
701 
702 	/* wait for previous submitted node/meta pages writeback */
703 	while (get_pages(sbi, F2FS_WRITEBACK))
704 		congestion_wait(BLK_RW_ASYNC, HZ / 50);
705 
706 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
707 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
708 
709 	/* update user_block_counts */
710 	sbi->last_valid_block_count = sbi->total_valid_block_count;
711 	sbi->alloc_valid_block_count = 0;
712 
713 	/* Here, we only have one bio having CP pack */
714 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
715 
716 	if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
717 		clear_prefree_segments(sbi);
718 		F2FS_RESET_SB_DIRT(sbi);
719 	}
720 }
721 
722 /*
723  * We guarantee that this checkpoint procedure should not fail.
724  */
725 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
726 {
727 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
728 	unsigned long long ckpt_ver;
729 
730 	mutex_lock(&sbi->cp_mutex);
731 	block_operations(sbi);
732 
733 	f2fs_submit_bio(sbi, DATA, true);
734 	f2fs_submit_bio(sbi, NODE, true);
735 	f2fs_submit_bio(sbi, META, true);
736 
737 	/*
738 	 * update checkpoint pack index
739 	 * Increase the version number so that
740 	 * SIT entries and seg summaries are written at correct place
741 	 */
742 	ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
743 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
744 
745 	/* write cached NAT/SIT entries to NAT/SIT area */
746 	flush_nat_entries(sbi);
747 	flush_sit_entries(sbi);
748 
749 	reset_victim_segmap(sbi);
750 
751 	/* unlock all the fs_lock[] in do_checkpoint() */
752 	do_checkpoint(sbi, is_umount);
753 
754 	unblock_operations(sbi);
755 	mutex_unlock(&sbi->cp_mutex);
756 }
757 
758 void init_orphan_info(struct f2fs_sb_info *sbi)
759 {
760 	mutex_init(&sbi->orphan_inode_mutex);
761 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
762 	sbi->n_orphans = 0;
763 }
764 
765 int __init create_checkpoint_caches(void)
766 {
767 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
768 			sizeof(struct orphan_inode_entry), NULL);
769 	if (unlikely(!orphan_entry_slab))
770 		return -ENOMEM;
771 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
772 			sizeof(struct dir_inode_entry), NULL);
773 	if (unlikely(!inode_entry_slab)) {
774 		kmem_cache_destroy(orphan_entry_slab);
775 		return -ENOMEM;
776 	}
777 	return 0;
778 }
779 
780 void destroy_checkpoint_caches(void)
781 {
782 	kmem_cache_destroy(orphan_entry_slab);
783 	kmem_cache_destroy(inode_entry_slab);
784 }
785