1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 /* 30 * We guarantee no failure on the returned page. 31 */ 32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 33 { 34 struct address_space *mapping = META_MAPPING(sbi); 35 struct page *page = NULL; 36 repeat: 37 page = grab_cache_page(mapping, index); 38 if (!page) { 39 cond_resched(); 40 goto repeat; 41 } 42 f2fs_wait_on_page_writeback(page, META); 43 SetPageUptodate(page); 44 return page; 45 } 46 47 /* 48 * We guarantee no failure on the returned page. 49 */ 50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 51 { 52 struct address_space *mapping = META_MAPPING(sbi); 53 struct page *page; 54 struct f2fs_io_info fio = { 55 .type = META, 56 .rw = READ_SYNC | REQ_META | REQ_PRIO, 57 .blk_addr = index, 58 }; 59 repeat: 60 page = grab_cache_page(mapping, index); 61 if (!page) { 62 cond_resched(); 63 goto repeat; 64 } 65 if (PageUptodate(page)) 66 goto out; 67 68 if (f2fs_submit_page_bio(sbi, page, &fio)) 69 goto repeat; 70 71 lock_page(page); 72 if (unlikely(page->mapping != mapping)) { 73 f2fs_put_page(page, 1); 74 goto repeat; 75 } 76 out: 77 return page; 78 } 79 80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi, 81 block_t blkaddr, int type) 82 { 83 switch (type) { 84 case META_NAT: 85 break; 86 case META_SIT: 87 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 88 return false; 89 break; 90 case META_SSA: 91 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 92 blkaddr < SM_I(sbi)->ssa_blkaddr)) 93 return false; 94 break; 95 case META_CP: 96 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 97 blkaddr < __start_cp_addr(sbi))) 98 return false; 99 break; 100 case META_POR: 101 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 102 blkaddr < MAIN_BLKADDR(sbi))) 103 return false; 104 break; 105 default: 106 BUG(); 107 } 108 109 return true; 110 } 111 112 /* 113 * Readahead CP/NAT/SIT/SSA pages 114 */ 115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type) 116 { 117 block_t prev_blk_addr = 0; 118 struct page *page; 119 block_t blkno = start; 120 struct f2fs_io_info fio = { 121 .type = META, 122 .rw = READ_SYNC | REQ_META | REQ_PRIO 123 }; 124 125 for (; nrpages-- > 0; blkno++) { 126 127 if (!is_valid_blkaddr(sbi, blkno, type)) 128 goto out; 129 130 switch (type) { 131 case META_NAT: 132 if (unlikely(blkno >= 133 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 134 blkno = 0; 135 /* get nat block addr */ 136 fio.blk_addr = current_nat_addr(sbi, 137 blkno * NAT_ENTRY_PER_BLOCK); 138 break; 139 case META_SIT: 140 /* get sit block addr */ 141 fio.blk_addr = current_sit_addr(sbi, 142 blkno * SIT_ENTRY_PER_BLOCK); 143 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr) 144 goto out; 145 prev_blk_addr = fio.blk_addr; 146 break; 147 case META_SSA: 148 case META_CP: 149 case META_POR: 150 fio.blk_addr = blkno; 151 break; 152 default: 153 BUG(); 154 } 155 156 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr); 157 if (!page) 158 continue; 159 if (PageUptodate(page)) { 160 f2fs_put_page(page, 1); 161 continue; 162 } 163 164 f2fs_submit_page_mbio(sbi, page, &fio); 165 f2fs_put_page(page, 0); 166 } 167 out: 168 f2fs_submit_merged_bio(sbi, META, READ); 169 return blkno - start; 170 } 171 172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 173 { 174 struct page *page; 175 bool readahead = false; 176 177 page = find_get_page(META_MAPPING(sbi), index); 178 if (!page || (page && !PageUptodate(page))) 179 readahead = true; 180 f2fs_put_page(page, 0); 181 182 if (readahead) 183 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR); 184 } 185 186 static int f2fs_write_meta_page(struct page *page, 187 struct writeback_control *wbc) 188 { 189 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 190 191 trace_f2fs_writepage(page, META); 192 193 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 194 goto redirty_out; 195 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 196 goto redirty_out; 197 if (unlikely(f2fs_cp_error(sbi))) 198 goto redirty_out; 199 200 f2fs_wait_on_page_writeback(page, META); 201 write_meta_page(sbi, page); 202 dec_page_count(sbi, F2FS_DIRTY_META); 203 unlock_page(page); 204 205 if (wbc->for_reclaim) 206 f2fs_submit_merged_bio(sbi, META, WRITE); 207 return 0; 208 209 redirty_out: 210 redirty_page_for_writepage(wbc, page); 211 return AOP_WRITEPAGE_ACTIVATE; 212 } 213 214 static int f2fs_write_meta_pages(struct address_space *mapping, 215 struct writeback_control *wbc) 216 { 217 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 218 long diff, written; 219 220 trace_f2fs_writepages(mapping->host, wbc, META); 221 222 /* collect a number of dirty meta pages and write together */ 223 if (wbc->for_kupdate || 224 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 225 goto skip_write; 226 227 /* if mounting is failed, skip writing node pages */ 228 mutex_lock(&sbi->cp_mutex); 229 diff = nr_pages_to_write(sbi, META, wbc); 230 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 231 mutex_unlock(&sbi->cp_mutex); 232 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 233 return 0; 234 235 skip_write: 236 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 237 return 0; 238 } 239 240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 241 long nr_to_write) 242 { 243 struct address_space *mapping = META_MAPPING(sbi); 244 pgoff_t index = 0, end = LONG_MAX; 245 struct pagevec pvec; 246 long nwritten = 0; 247 struct writeback_control wbc = { 248 .for_reclaim = 0, 249 }; 250 251 pagevec_init(&pvec, 0); 252 253 while (index <= end) { 254 int i, nr_pages; 255 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 256 PAGECACHE_TAG_DIRTY, 257 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 258 if (unlikely(nr_pages == 0)) 259 break; 260 261 for (i = 0; i < nr_pages; i++) { 262 struct page *page = pvec.pages[i]; 263 264 lock_page(page); 265 266 if (unlikely(page->mapping != mapping)) { 267 continue_unlock: 268 unlock_page(page); 269 continue; 270 } 271 if (!PageDirty(page)) { 272 /* someone wrote it for us */ 273 goto continue_unlock; 274 } 275 276 if (!clear_page_dirty_for_io(page)) 277 goto continue_unlock; 278 279 if (mapping->a_ops->writepage(page, &wbc)) { 280 unlock_page(page); 281 break; 282 } 283 nwritten++; 284 if (unlikely(nwritten >= nr_to_write)) 285 break; 286 } 287 pagevec_release(&pvec); 288 cond_resched(); 289 } 290 291 if (nwritten) 292 f2fs_submit_merged_bio(sbi, type, WRITE); 293 294 return nwritten; 295 } 296 297 static int f2fs_set_meta_page_dirty(struct page *page) 298 { 299 trace_f2fs_set_page_dirty(page, META); 300 301 SetPageUptodate(page); 302 if (!PageDirty(page)) { 303 __set_page_dirty_nobuffers(page); 304 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 305 SetPagePrivate(page); 306 f2fs_trace_pid(page); 307 return 1; 308 } 309 return 0; 310 } 311 312 const struct address_space_operations f2fs_meta_aops = { 313 .writepage = f2fs_write_meta_page, 314 .writepages = f2fs_write_meta_pages, 315 .set_page_dirty = f2fs_set_meta_page_dirty, 316 .invalidatepage = f2fs_invalidate_page, 317 .releasepage = f2fs_release_page, 318 }; 319 320 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 321 { 322 struct inode_management *im = &sbi->im[type]; 323 struct ino_entry *e; 324 retry: 325 if (radix_tree_preload(GFP_NOFS)) { 326 cond_resched(); 327 goto retry; 328 } 329 330 spin_lock(&im->ino_lock); 331 332 e = radix_tree_lookup(&im->ino_root, ino); 333 if (!e) { 334 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 335 if (!e) { 336 spin_unlock(&im->ino_lock); 337 radix_tree_preload_end(); 338 goto retry; 339 } 340 if (radix_tree_insert(&im->ino_root, ino, e)) { 341 spin_unlock(&im->ino_lock); 342 kmem_cache_free(ino_entry_slab, e); 343 radix_tree_preload_end(); 344 goto retry; 345 } 346 memset(e, 0, sizeof(struct ino_entry)); 347 e->ino = ino; 348 349 list_add_tail(&e->list, &im->ino_list); 350 if (type != ORPHAN_INO) 351 im->ino_num++; 352 } 353 spin_unlock(&im->ino_lock); 354 radix_tree_preload_end(); 355 } 356 357 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 358 { 359 struct inode_management *im = &sbi->im[type]; 360 struct ino_entry *e; 361 362 spin_lock(&im->ino_lock); 363 e = radix_tree_lookup(&im->ino_root, ino); 364 if (e) { 365 list_del(&e->list); 366 radix_tree_delete(&im->ino_root, ino); 367 im->ino_num--; 368 spin_unlock(&im->ino_lock); 369 kmem_cache_free(ino_entry_slab, e); 370 return; 371 } 372 spin_unlock(&im->ino_lock); 373 } 374 375 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 376 { 377 /* add new dirty ino entry into list */ 378 __add_ino_entry(sbi, ino, type); 379 } 380 381 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 382 { 383 /* remove dirty ino entry from list */ 384 __remove_ino_entry(sbi, ino, type); 385 } 386 387 /* mode should be APPEND_INO or UPDATE_INO */ 388 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 389 { 390 struct inode_management *im = &sbi->im[mode]; 391 struct ino_entry *e; 392 393 spin_lock(&im->ino_lock); 394 e = radix_tree_lookup(&im->ino_root, ino); 395 spin_unlock(&im->ino_lock); 396 return e ? true : false; 397 } 398 399 void release_dirty_inode(struct f2fs_sb_info *sbi) 400 { 401 struct ino_entry *e, *tmp; 402 int i; 403 404 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 405 struct inode_management *im = &sbi->im[i]; 406 407 spin_lock(&im->ino_lock); 408 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 409 list_del(&e->list); 410 radix_tree_delete(&im->ino_root, e->ino); 411 kmem_cache_free(ino_entry_slab, e); 412 im->ino_num--; 413 } 414 spin_unlock(&im->ino_lock); 415 } 416 } 417 418 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 419 { 420 struct inode_management *im = &sbi->im[ORPHAN_INO]; 421 int err = 0; 422 423 spin_lock(&im->ino_lock); 424 if (unlikely(im->ino_num >= sbi->max_orphans)) 425 err = -ENOSPC; 426 else 427 im->ino_num++; 428 spin_unlock(&im->ino_lock); 429 430 return err; 431 } 432 433 void release_orphan_inode(struct f2fs_sb_info *sbi) 434 { 435 struct inode_management *im = &sbi->im[ORPHAN_INO]; 436 437 spin_lock(&im->ino_lock); 438 f2fs_bug_on(sbi, im->ino_num == 0); 439 im->ino_num--; 440 spin_unlock(&im->ino_lock); 441 } 442 443 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 444 { 445 /* add new orphan ino entry into list */ 446 __add_ino_entry(sbi, ino, ORPHAN_INO); 447 } 448 449 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 450 { 451 /* remove orphan entry from orphan list */ 452 __remove_ino_entry(sbi, ino, ORPHAN_INO); 453 } 454 455 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 456 { 457 struct inode *inode = f2fs_iget(sbi->sb, ino); 458 f2fs_bug_on(sbi, IS_ERR(inode)); 459 clear_nlink(inode); 460 461 /* truncate all the data during iput */ 462 iput(inode); 463 } 464 465 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 466 { 467 block_t start_blk, orphan_blocks, i, j; 468 469 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 470 return; 471 472 set_sbi_flag(sbi, SBI_POR_DOING); 473 474 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 475 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 476 477 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP); 478 479 for (i = 0; i < orphan_blocks; i++) { 480 struct page *page = get_meta_page(sbi, start_blk + i); 481 struct f2fs_orphan_block *orphan_blk; 482 483 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 484 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 485 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 486 recover_orphan_inode(sbi, ino); 487 } 488 f2fs_put_page(page, 1); 489 } 490 /* clear Orphan Flag */ 491 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 492 clear_sbi_flag(sbi, SBI_POR_DOING); 493 return; 494 } 495 496 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 497 { 498 struct list_head *head; 499 struct f2fs_orphan_block *orphan_blk = NULL; 500 unsigned int nentries = 0; 501 unsigned short index; 502 unsigned short orphan_blocks; 503 struct page *page = NULL; 504 struct ino_entry *orphan = NULL; 505 struct inode_management *im = &sbi->im[ORPHAN_INO]; 506 507 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 508 509 for (index = 0; index < orphan_blocks; index++) 510 grab_meta_page(sbi, start_blk + index); 511 512 index = 1; 513 spin_lock(&im->ino_lock); 514 head = &im->ino_list; 515 516 /* loop for each orphan inode entry and write them in Jornal block */ 517 list_for_each_entry(orphan, head, list) { 518 if (!page) { 519 page = find_get_page(META_MAPPING(sbi), start_blk++); 520 f2fs_bug_on(sbi, !page); 521 orphan_blk = 522 (struct f2fs_orphan_block *)page_address(page); 523 memset(orphan_blk, 0, sizeof(*orphan_blk)); 524 f2fs_put_page(page, 0); 525 } 526 527 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 528 529 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 530 /* 531 * an orphan block is full of 1020 entries, 532 * then we need to flush current orphan blocks 533 * and bring another one in memory 534 */ 535 orphan_blk->blk_addr = cpu_to_le16(index); 536 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 537 orphan_blk->entry_count = cpu_to_le32(nentries); 538 set_page_dirty(page); 539 f2fs_put_page(page, 1); 540 index++; 541 nentries = 0; 542 page = NULL; 543 } 544 } 545 546 if (page) { 547 orphan_blk->blk_addr = cpu_to_le16(index); 548 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 549 orphan_blk->entry_count = cpu_to_le32(nentries); 550 set_page_dirty(page); 551 f2fs_put_page(page, 1); 552 } 553 554 spin_unlock(&im->ino_lock); 555 } 556 557 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 558 block_t cp_addr, unsigned long long *version) 559 { 560 struct page *cp_page_1, *cp_page_2 = NULL; 561 unsigned long blk_size = sbi->blocksize; 562 struct f2fs_checkpoint *cp_block; 563 unsigned long long cur_version = 0, pre_version = 0; 564 size_t crc_offset; 565 __u32 crc = 0; 566 567 /* Read the 1st cp block in this CP pack */ 568 cp_page_1 = get_meta_page(sbi, cp_addr); 569 570 /* get the version number */ 571 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 572 crc_offset = le32_to_cpu(cp_block->checksum_offset); 573 if (crc_offset >= blk_size) 574 goto invalid_cp1; 575 576 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 577 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 578 goto invalid_cp1; 579 580 pre_version = cur_cp_version(cp_block); 581 582 /* Read the 2nd cp block in this CP pack */ 583 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 584 cp_page_2 = get_meta_page(sbi, cp_addr); 585 586 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 587 crc_offset = le32_to_cpu(cp_block->checksum_offset); 588 if (crc_offset >= blk_size) 589 goto invalid_cp2; 590 591 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 592 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 593 goto invalid_cp2; 594 595 cur_version = cur_cp_version(cp_block); 596 597 if (cur_version == pre_version) { 598 *version = cur_version; 599 f2fs_put_page(cp_page_2, 1); 600 return cp_page_1; 601 } 602 invalid_cp2: 603 f2fs_put_page(cp_page_2, 1); 604 invalid_cp1: 605 f2fs_put_page(cp_page_1, 1); 606 return NULL; 607 } 608 609 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 610 { 611 struct f2fs_checkpoint *cp_block; 612 struct f2fs_super_block *fsb = sbi->raw_super; 613 struct page *cp1, *cp2, *cur_page; 614 unsigned long blk_size = sbi->blocksize; 615 unsigned long long cp1_version = 0, cp2_version = 0; 616 unsigned long long cp_start_blk_no; 617 unsigned int cp_blks = 1 + __cp_payload(sbi); 618 block_t cp_blk_no; 619 int i; 620 621 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 622 if (!sbi->ckpt) 623 return -ENOMEM; 624 /* 625 * Finding out valid cp block involves read both 626 * sets( cp pack1 and cp pack 2) 627 */ 628 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 629 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 630 631 /* The second checkpoint pack should start at the next segment */ 632 cp_start_blk_no += ((unsigned long long)1) << 633 le32_to_cpu(fsb->log_blocks_per_seg); 634 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 635 636 if (cp1 && cp2) { 637 if (ver_after(cp2_version, cp1_version)) 638 cur_page = cp2; 639 else 640 cur_page = cp1; 641 } else if (cp1) { 642 cur_page = cp1; 643 } else if (cp2) { 644 cur_page = cp2; 645 } else { 646 goto fail_no_cp; 647 } 648 649 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 650 memcpy(sbi->ckpt, cp_block, blk_size); 651 652 if (cp_blks <= 1) 653 goto done; 654 655 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 656 if (cur_page == cp2) 657 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 658 659 for (i = 1; i < cp_blks; i++) { 660 void *sit_bitmap_ptr; 661 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 662 663 cur_page = get_meta_page(sbi, cp_blk_no + i); 664 sit_bitmap_ptr = page_address(cur_page); 665 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 666 f2fs_put_page(cur_page, 1); 667 } 668 done: 669 f2fs_put_page(cp1, 1); 670 f2fs_put_page(cp2, 1); 671 return 0; 672 673 fail_no_cp: 674 kfree(sbi->ckpt); 675 return -EINVAL; 676 } 677 678 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new) 679 { 680 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 681 682 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 683 return -EEXIST; 684 685 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 686 F2FS_I(inode)->dirty_dir = new; 687 list_add_tail(&new->list, &sbi->dir_inode_list); 688 stat_inc_dirty_dir(sbi); 689 return 0; 690 } 691 692 void update_dirty_page(struct inode *inode, struct page *page) 693 { 694 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 695 struct inode_entry *new; 696 int ret = 0; 697 698 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 699 return; 700 701 if (!S_ISDIR(inode->i_mode)) { 702 inode_inc_dirty_pages(inode); 703 goto out; 704 } 705 706 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 707 new->inode = inode; 708 INIT_LIST_HEAD(&new->list); 709 710 spin_lock(&sbi->dir_inode_lock); 711 ret = __add_dirty_inode(inode, new); 712 inode_inc_dirty_pages(inode); 713 spin_unlock(&sbi->dir_inode_lock); 714 715 if (ret) 716 kmem_cache_free(inode_entry_slab, new); 717 out: 718 SetPagePrivate(page); 719 f2fs_trace_pid(page); 720 } 721 722 void add_dirty_dir_inode(struct inode *inode) 723 { 724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 725 struct inode_entry *new = 726 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 727 int ret = 0; 728 729 new->inode = inode; 730 INIT_LIST_HEAD(&new->list); 731 732 spin_lock(&sbi->dir_inode_lock); 733 ret = __add_dirty_inode(inode, new); 734 spin_unlock(&sbi->dir_inode_lock); 735 736 if (ret) 737 kmem_cache_free(inode_entry_slab, new); 738 } 739 740 void remove_dirty_dir_inode(struct inode *inode) 741 { 742 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 743 struct inode_entry *entry; 744 745 if (!S_ISDIR(inode->i_mode)) 746 return; 747 748 spin_lock(&sbi->dir_inode_lock); 749 if (get_dirty_pages(inode) || 750 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 751 spin_unlock(&sbi->dir_inode_lock); 752 return; 753 } 754 755 entry = F2FS_I(inode)->dirty_dir; 756 list_del(&entry->list); 757 F2FS_I(inode)->dirty_dir = NULL; 758 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 759 stat_dec_dirty_dir(sbi); 760 spin_unlock(&sbi->dir_inode_lock); 761 kmem_cache_free(inode_entry_slab, entry); 762 763 /* Only from the recovery routine */ 764 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 765 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 766 iput(inode); 767 } 768 } 769 770 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 771 { 772 struct list_head *head; 773 struct inode_entry *entry; 774 struct inode *inode; 775 retry: 776 if (unlikely(f2fs_cp_error(sbi))) 777 return; 778 779 spin_lock(&sbi->dir_inode_lock); 780 781 head = &sbi->dir_inode_list; 782 if (list_empty(head)) { 783 spin_unlock(&sbi->dir_inode_lock); 784 return; 785 } 786 entry = list_entry(head->next, struct inode_entry, list); 787 inode = igrab(entry->inode); 788 spin_unlock(&sbi->dir_inode_lock); 789 if (inode) { 790 filemap_fdatawrite(inode->i_mapping); 791 iput(inode); 792 } else { 793 /* 794 * We should submit bio, since it exists several 795 * wribacking dentry pages in the freeing inode. 796 */ 797 f2fs_submit_merged_bio(sbi, DATA, WRITE); 798 cond_resched(); 799 } 800 goto retry; 801 } 802 803 /* 804 * Freeze all the FS-operations for checkpoint. 805 */ 806 static int block_operations(struct f2fs_sb_info *sbi) 807 { 808 struct writeback_control wbc = { 809 .sync_mode = WB_SYNC_ALL, 810 .nr_to_write = LONG_MAX, 811 .for_reclaim = 0, 812 }; 813 struct blk_plug plug; 814 int err = 0; 815 816 blk_start_plug(&plug); 817 818 retry_flush_dents: 819 f2fs_lock_all(sbi); 820 /* write all the dirty dentry pages */ 821 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 822 f2fs_unlock_all(sbi); 823 sync_dirty_dir_inodes(sbi); 824 if (unlikely(f2fs_cp_error(sbi))) { 825 err = -EIO; 826 goto out; 827 } 828 goto retry_flush_dents; 829 } 830 831 /* 832 * POR: we should ensure that there are no dirty node pages 833 * until finishing nat/sit flush. 834 */ 835 retry_flush_nodes: 836 down_write(&sbi->node_write); 837 838 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 839 up_write(&sbi->node_write); 840 sync_node_pages(sbi, 0, &wbc); 841 if (unlikely(f2fs_cp_error(sbi))) { 842 f2fs_unlock_all(sbi); 843 err = -EIO; 844 goto out; 845 } 846 goto retry_flush_nodes; 847 } 848 out: 849 blk_finish_plug(&plug); 850 return err; 851 } 852 853 static void unblock_operations(struct f2fs_sb_info *sbi) 854 { 855 up_write(&sbi->node_write); 856 f2fs_unlock_all(sbi); 857 } 858 859 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 860 { 861 DEFINE_WAIT(wait); 862 863 for (;;) { 864 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 865 866 if (!get_pages(sbi, F2FS_WRITEBACK)) 867 break; 868 869 io_schedule(); 870 } 871 finish_wait(&sbi->cp_wait, &wait); 872 } 873 874 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 875 { 876 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 877 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 878 struct f2fs_nm_info *nm_i = NM_I(sbi); 879 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 880 nid_t last_nid = nm_i->next_scan_nid; 881 block_t start_blk; 882 struct page *cp_page; 883 unsigned int data_sum_blocks, orphan_blocks; 884 __u32 crc32 = 0; 885 void *kaddr; 886 int i; 887 int cp_payload_blks = __cp_payload(sbi); 888 889 /* 890 * This avoids to conduct wrong roll-forward operations and uses 891 * metapages, so should be called prior to sync_meta_pages below. 892 */ 893 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 894 895 /* Flush all the NAT/SIT pages */ 896 while (get_pages(sbi, F2FS_DIRTY_META)) { 897 sync_meta_pages(sbi, META, LONG_MAX); 898 if (unlikely(f2fs_cp_error(sbi))) 899 return; 900 } 901 902 next_free_nid(sbi, &last_nid); 903 904 /* 905 * modify checkpoint 906 * version number is already updated 907 */ 908 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 909 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 910 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 911 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 912 ckpt->cur_node_segno[i] = 913 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 914 ckpt->cur_node_blkoff[i] = 915 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 916 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 917 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 918 } 919 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 920 ckpt->cur_data_segno[i] = 921 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 922 ckpt->cur_data_blkoff[i] = 923 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 924 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 925 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 926 } 927 928 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 929 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 930 ckpt->next_free_nid = cpu_to_le32(last_nid); 931 932 /* 2 cp + n data seg summary + orphan inode blocks */ 933 data_sum_blocks = npages_for_summary_flush(sbi, false); 934 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 935 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 936 else 937 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 938 939 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 940 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 941 orphan_blocks); 942 943 if (__remain_node_summaries(cpc->reason)) 944 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 945 cp_payload_blks + data_sum_blocks + 946 orphan_blocks + NR_CURSEG_NODE_TYPE); 947 else 948 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 949 cp_payload_blks + data_sum_blocks + 950 orphan_blocks); 951 952 if (cpc->reason == CP_UMOUNT) 953 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 954 else 955 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 956 957 if (cpc->reason == CP_FASTBOOT) 958 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 959 else 960 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 961 962 if (orphan_num) 963 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 964 else 965 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 966 967 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 968 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 969 970 /* update SIT/NAT bitmap */ 971 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 972 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 973 974 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 975 *((__le32 *)((unsigned char *)ckpt + 976 le32_to_cpu(ckpt->checksum_offset))) 977 = cpu_to_le32(crc32); 978 979 start_blk = __start_cp_addr(sbi); 980 981 /* write out checkpoint buffer at block 0 */ 982 cp_page = grab_meta_page(sbi, start_blk++); 983 kaddr = page_address(cp_page); 984 memcpy(kaddr, ckpt, F2FS_BLKSIZE); 985 set_page_dirty(cp_page); 986 f2fs_put_page(cp_page, 1); 987 988 for (i = 1; i < 1 + cp_payload_blks; i++) { 989 cp_page = grab_meta_page(sbi, start_blk++); 990 kaddr = page_address(cp_page); 991 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, F2FS_BLKSIZE); 992 set_page_dirty(cp_page); 993 f2fs_put_page(cp_page, 1); 994 } 995 996 if (orphan_num) { 997 write_orphan_inodes(sbi, start_blk); 998 start_blk += orphan_blocks; 999 } 1000 1001 write_data_summaries(sbi, start_blk); 1002 start_blk += data_sum_blocks; 1003 if (__remain_node_summaries(cpc->reason)) { 1004 write_node_summaries(sbi, start_blk); 1005 start_blk += NR_CURSEG_NODE_TYPE; 1006 } 1007 1008 /* writeout checkpoint block */ 1009 cp_page = grab_meta_page(sbi, start_blk); 1010 kaddr = page_address(cp_page); 1011 memcpy(kaddr, ckpt, F2FS_BLKSIZE); 1012 set_page_dirty(cp_page); 1013 f2fs_put_page(cp_page, 1); 1014 1015 /* wait for previous submitted node/meta pages writeback */ 1016 wait_on_all_pages_writeback(sbi); 1017 1018 if (unlikely(f2fs_cp_error(sbi))) 1019 return; 1020 1021 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 1022 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 1023 1024 /* update user_block_counts */ 1025 sbi->last_valid_block_count = sbi->total_valid_block_count; 1026 sbi->alloc_valid_block_count = 0; 1027 1028 /* Here, we only have one bio having CP pack */ 1029 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1030 1031 /* wait for previous submitted meta pages writeback */ 1032 wait_on_all_pages_writeback(sbi); 1033 1034 release_dirty_inode(sbi); 1035 1036 if (unlikely(f2fs_cp_error(sbi))) 1037 return; 1038 1039 clear_prefree_segments(sbi); 1040 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1041 } 1042 1043 /* 1044 * We guarantee that this checkpoint procedure will not fail. 1045 */ 1046 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1047 { 1048 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1049 unsigned long long ckpt_ver; 1050 1051 mutex_lock(&sbi->cp_mutex); 1052 1053 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1054 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC)) 1055 goto out; 1056 if (unlikely(f2fs_cp_error(sbi))) 1057 goto out; 1058 if (f2fs_readonly(sbi->sb)) 1059 goto out; 1060 1061 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1062 1063 if (block_operations(sbi)) 1064 goto out; 1065 1066 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1067 1068 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1069 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1070 f2fs_submit_merged_bio(sbi, META, WRITE); 1071 1072 /* 1073 * update checkpoint pack index 1074 * Increase the version number so that 1075 * SIT entries and seg summaries are written at correct place 1076 */ 1077 ckpt_ver = cur_cp_version(ckpt); 1078 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1079 1080 /* write cached NAT/SIT entries to NAT/SIT area */ 1081 flush_nat_entries(sbi); 1082 flush_sit_entries(sbi, cpc); 1083 1084 /* unlock all the fs_lock[] in do_checkpoint() */ 1085 do_checkpoint(sbi, cpc); 1086 1087 unblock_operations(sbi); 1088 stat_inc_cp_count(sbi->stat_info); 1089 1090 if (cpc->reason == CP_RECOVERY) 1091 f2fs_msg(sbi->sb, KERN_NOTICE, 1092 "checkpoint: version = %llx", ckpt_ver); 1093 out: 1094 mutex_unlock(&sbi->cp_mutex); 1095 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1096 } 1097 1098 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1099 { 1100 int i; 1101 1102 for (i = 0; i < MAX_INO_ENTRY; i++) { 1103 struct inode_management *im = &sbi->im[i]; 1104 1105 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1106 spin_lock_init(&im->ino_lock); 1107 INIT_LIST_HEAD(&im->ino_list); 1108 im->ino_num = 0; 1109 } 1110 1111 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1112 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1113 F2FS_ORPHANS_PER_BLOCK; 1114 } 1115 1116 int __init create_checkpoint_caches(void) 1117 { 1118 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1119 sizeof(struct ino_entry)); 1120 if (!ino_entry_slab) 1121 return -ENOMEM; 1122 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1123 sizeof(struct inode_entry)); 1124 if (!inode_entry_slab) { 1125 kmem_cache_destroy(ino_entry_slab); 1126 return -ENOMEM; 1127 } 1128 return 0; 1129 } 1130 1131 void destroy_checkpoint_caches(void) 1132 { 1133 kmem_cache_destroy(ino_entry_slab); 1134 kmem_cache_destroy(inode_entry_slab); 1135 } 1136