1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *ino_entry_slab; 24 struct kmem_cache *f2fs_inode_entry_slab; 25 26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 27 { 28 f2fs_build_fault_attr(sbi, 0, 0); 29 set_ckpt_flags(sbi, CP_ERROR_FLAG); 30 if (!end_io) 31 f2fs_flush_merged_writes(sbi); 32 } 33 34 /* 35 * We guarantee no failure on the returned page. 36 */ 37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 38 { 39 struct address_space *mapping = META_MAPPING(sbi); 40 struct page *page = NULL; 41 repeat: 42 page = f2fs_grab_cache_page(mapping, index, false); 43 if (!page) { 44 cond_resched(); 45 goto repeat; 46 } 47 f2fs_wait_on_page_writeback(page, META, true, true); 48 if (!PageUptodate(page)) 49 SetPageUptodate(page); 50 return page; 51 } 52 53 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 54 bool is_meta) 55 { 56 struct address_space *mapping = META_MAPPING(sbi); 57 struct page *page; 58 struct f2fs_io_info fio = { 59 .sbi = sbi, 60 .type = META, 61 .op = REQ_OP_READ, 62 .op_flags = REQ_META | REQ_PRIO, 63 .old_blkaddr = index, 64 .new_blkaddr = index, 65 .encrypted_page = NULL, 66 .is_por = !is_meta, 67 }; 68 int err; 69 70 if (unlikely(!is_meta)) 71 fio.op_flags &= ~REQ_META; 72 repeat: 73 page = f2fs_grab_cache_page(mapping, index, false); 74 if (!page) { 75 cond_resched(); 76 goto repeat; 77 } 78 if (PageUptodate(page)) 79 goto out; 80 81 fio.page = page; 82 83 err = f2fs_submit_page_bio(&fio); 84 if (err) { 85 f2fs_put_page(page, 1); 86 return ERR_PTR(err); 87 } 88 89 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 90 91 lock_page(page); 92 if (unlikely(page->mapping != mapping)) { 93 f2fs_put_page(page, 1); 94 goto repeat; 95 } 96 97 if (unlikely(!PageUptodate(page))) { 98 f2fs_put_page(page, 1); 99 return ERR_PTR(-EIO); 100 } 101 out: 102 return page; 103 } 104 105 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 106 { 107 return __get_meta_page(sbi, index, true); 108 } 109 110 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index) 111 { 112 struct page *page; 113 int count = 0; 114 115 retry: 116 page = __get_meta_page(sbi, index, true); 117 if (IS_ERR(page)) { 118 if (PTR_ERR(page) == -EIO && 119 ++count <= DEFAULT_RETRY_IO_COUNT) 120 goto retry; 121 f2fs_stop_checkpoint(sbi, false); 122 } 123 return page; 124 } 125 126 /* for POR only */ 127 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 128 { 129 return __get_meta_page(sbi, index, false); 130 } 131 132 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 133 int type) 134 { 135 struct seg_entry *se; 136 unsigned int segno, offset; 137 bool exist; 138 139 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 140 return true; 141 142 segno = GET_SEGNO(sbi, blkaddr); 143 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 144 se = get_seg_entry(sbi, segno); 145 146 exist = f2fs_test_bit(offset, se->cur_valid_map); 147 if (!exist && type == DATA_GENERIC_ENHANCE) { 148 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 149 blkaddr, exist); 150 set_sbi_flag(sbi, SBI_NEED_FSCK); 151 WARN_ON(1); 152 } 153 return exist; 154 } 155 156 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 157 block_t blkaddr, int type) 158 { 159 switch (type) { 160 case META_NAT: 161 break; 162 case META_SIT: 163 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 164 return false; 165 break; 166 case META_SSA: 167 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 168 blkaddr < SM_I(sbi)->ssa_blkaddr)) 169 return false; 170 break; 171 case META_CP: 172 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 173 blkaddr < __start_cp_addr(sbi))) 174 return false; 175 break; 176 case META_POR: 177 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 178 blkaddr < MAIN_BLKADDR(sbi))) 179 return false; 180 break; 181 case DATA_GENERIC: 182 case DATA_GENERIC_ENHANCE: 183 case DATA_GENERIC_ENHANCE_READ: 184 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 185 blkaddr < MAIN_BLKADDR(sbi))) { 186 f2fs_warn(sbi, "access invalid blkaddr:%u", 187 blkaddr); 188 set_sbi_flag(sbi, SBI_NEED_FSCK); 189 WARN_ON(1); 190 return false; 191 } else { 192 return __is_bitmap_valid(sbi, blkaddr, type); 193 } 194 break; 195 case META_GENERIC: 196 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 197 blkaddr >= MAIN_BLKADDR(sbi))) 198 return false; 199 break; 200 default: 201 BUG(); 202 } 203 204 return true; 205 } 206 207 /* 208 * Readahead CP/NAT/SIT/SSA/POR pages 209 */ 210 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 211 int type, bool sync) 212 { 213 struct page *page; 214 block_t blkno = start; 215 struct f2fs_io_info fio = { 216 .sbi = sbi, 217 .type = META, 218 .op = REQ_OP_READ, 219 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 220 .encrypted_page = NULL, 221 .in_list = false, 222 .is_por = (type == META_POR), 223 }; 224 struct blk_plug plug; 225 int err; 226 227 if (unlikely(type == META_POR)) 228 fio.op_flags &= ~REQ_META; 229 230 blk_start_plug(&plug); 231 for (; nrpages-- > 0; blkno++) { 232 233 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 234 goto out; 235 236 switch (type) { 237 case META_NAT: 238 if (unlikely(blkno >= 239 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 240 blkno = 0; 241 /* get nat block addr */ 242 fio.new_blkaddr = current_nat_addr(sbi, 243 blkno * NAT_ENTRY_PER_BLOCK); 244 break; 245 case META_SIT: 246 /* get sit block addr */ 247 fio.new_blkaddr = current_sit_addr(sbi, 248 blkno * SIT_ENTRY_PER_BLOCK); 249 break; 250 case META_SSA: 251 case META_CP: 252 case META_POR: 253 fio.new_blkaddr = blkno; 254 break; 255 default: 256 BUG(); 257 } 258 259 page = f2fs_grab_cache_page(META_MAPPING(sbi), 260 fio.new_blkaddr, false); 261 if (!page) 262 continue; 263 if (PageUptodate(page)) { 264 f2fs_put_page(page, 1); 265 continue; 266 } 267 268 fio.page = page; 269 err = f2fs_submit_page_bio(&fio); 270 f2fs_put_page(page, err ? 1 : 0); 271 272 if (!err) 273 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 274 } 275 out: 276 blk_finish_plug(&plug); 277 return blkno - start; 278 } 279 280 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 281 { 282 struct page *page; 283 bool readahead = false; 284 285 page = find_get_page(META_MAPPING(sbi), index); 286 if (!page || !PageUptodate(page)) 287 readahead = true; 288 f2fs_put_page(page, 0); 289 290 if (readahead) 291 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 292 } 293 294 static int __f2fs_write_meta_page(struct page *page, 295 struct writeback_control *wbc, 296 enum iostat_type io_type) 297 { 298 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 299 300 trace_f2fs_writepage(page, META); 301 302 if (unlikely(f2fs_cp_error(sbi))) 303 goto redirty_out; 304 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 305 goto redirty_out; 306 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 307 goto redirty_out; 308 309 f2fs_do_write_meta_page(sbi, page, io_type); 310 dec_page_count(sbi, F2FS_DIRTY_META); 311 312 if (wbc->for_reclaim) 313 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 314 315 unlock_page(page); 316 317 if (unlikely(f2fs_cp_error(sbi))) 318 f2fs_submit_merged_write(sbi, META); 319 320 return 0; 321 322 redirty_out: 323 redirty_page_for_writepage(wbc, page); 324 return AOP_WRITEPAGE_ACTIVATE; 325 } 326 327 static int f2fs_write_meta_page(struct page *page, 328 struct writeback_control *wbc) 329 { 330 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 331 } 332 333 static int f2fs_write_meta_pages(struct address_space *mapping, 334 struct writeback_control *wbc) 335 { 336 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 337 long diff, written; 338 339 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 340 goto skip_write; 341 342 /* collect a number of dirty meta pages and write together */ 343 if (wbc->sync_mode != WB_SYNC_ALL && 344 get_pages(sbi, F2FS_DIRTY_META) < 345 nr_pages_to_skip(sbi, META)) 346 goto skip_write; 347 348 /* if locked failed, cp will flush dirty pages instead */ 349 if (!mutex_trylock(&sbi->cp_mutex)) 350 goto skip_write; 351 352 trace_f2fs_writepages(mapping->host, wbc, META); 353 diff = nr_pages_to_write(sbi, META, wbc); 354 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 355 mutex_unlock(&sbi->cp_mutex); 356 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 357 return 0; 358 359 skip_write: 360 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 361 trace_f2fs_writepages(mapping->host, wbc, META); 362 return 0; 363 } 364 365 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 366 long nr_to_write, enum iostat_type io_type) 367 { 368 struct address_space *mapping = META_MAPPING(sbi); 369 pgoff_t index = 0, prev = ULONG_MAX; 370 struct pagevec pvec; 371 long nwritten = 0; 372 int nr_pages; 373 struct writeback_control wbc = { 374 .for_reclaim = 0, 375 }; 376 struct blk_plug plug; 377 378 pagevec_init(&pvec); 379 380 blk_start_plug(&plug); 381 382 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 383 PAGECACHE_TAG_DIRTY))) { 384 int i; 385 386 for (i = 0; i < nr_pages; i++) { 387 struct page *page = pvec.pages[i]; 388 389 if (prev == ULONG_MAX) 390 prev = page->index - 1; 391 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 392 pagevec_release(&pvec); 393 goto stop; 394 } 395 396 lock_page(page); 397 398 if (unlikely(page->mapping != mapping)) { 399 continue_unlock: 400 unlock_page(page); 401 continue; 402 } 403 if (!PageDirty(page)) { 404 /* someone wrote it for us */ 405 goto continue_unlock; 406 } 407 408 f2fs_wait_on_page_writeback(page, META, true, true); 409 410 if (!clear_page_dirty_for_io(page)) 411 goto continue_unlock; 412 413 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 414 unlock_page(page); 415 break; 416 } 417 nwritten++; 418 prev = page->index; 419 if (unlikely(nwritten >= nr_to_write)) 420 break; 421 } 422 pagevec_release(&pvec); 423 cond_resched(); 424 } 425 stop: 426 if (nwritten) 427 f2fs_submit_merged_write(sbi, type); 428 429 blk_finish_plug(&plug); 430 431 return nwritten; 432 } 433 434 static int f2fs_set_meta_page_dirty(struct page *page) 435 { 436 trace_f2fs_set_page_dirty(page, META); 437 438 if (!PageUptodate(page)) 439 SetPageUptodate(page); 440 if (!PageDirty(page)) { 441 __set_page_dirty_nobuffers(page); 442 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 443 f2fs_set_page_private(page, 0); 444 f2fs_trace_pid(page); 445 return 1; 446 } 447 return 0; 448 } 449 450 const struct address_space_operations f2fs_meta_aops = { 451 .writepage = f2fs_write_meta_page, 452 .writepages = f2fs_write_meta_pages, 453 .set_page_dirty = f2fs_set_meta_page_dirty, 454 .invalidatepage = f2fs_invalidate_page, 455 .releasepage = f2fs_release_page, 456 #ifdef CONFIG_MIGRATION 457 .migratepage = f2fs_migrate_page, 458 #endif 459 }; 460 461 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 462 unsigned int devidx, int type) 463 { 464 struct inode_management *im = &sbi->im[type]; 465 struct ino_entry *e, *tmp; 466 467 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 468 469 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 470 471 spin_lock(&im->ino_lock); 472 e = radix_tree_lookup(&im->ino_root, ino); 473 if (!e) { 474 e = tmp; 475 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 476 f2fs_bug_on(sbi, 1); 477 478 memset(e, 0, sizeof(struct ino_entry)); 479 e->ino = ino; 480 481 list_add_tail(&e->list, &im->ino_list); 482 if (type != ORPHAN_INO) 483 im->ino_num++; 484 } 485 486 if (type == FLUSH_INO) 487 f2fs_set_bit(devidx, (char *)&e->dirty_device); 488 489 spin_unlock(&im->ino_lock); 490 radix_tree_preload_end(); 491 492 if (e != tmp) 493 kmem_cache_free(ino_entry_slab, tmp); 494 } 495 496 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 497 { 498 struct inode_management *im = &sbi->im[type]; 499 struct ino_entry *e; 500 501 spin_lock(&im->ino_lock); 502 e = radix_tree_lookup(&im->ino_root, ino); 503 if (e) { 504 list_del(&e->list); 505 radix_tree_delete(&im->ino_root, ino); 506 im->ino_num--; 507 spin_unlock(&im->ino_lock); 508 kmem_cache_free(ino_entry_slab, e); 509 return; 510 } 511 spin_unlock(&im->ino_lock); 512 } 513 514 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 515 { 516 /* add new dirty ino entry into list */ 517 __add_ino_entry(sbi, ino, 0, type); 518 } 519 520 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 521 { 522 /* remove dirty ino entry from list */ 523 __remove_ino_entry(sbi, ino, type); 524 } 525 526 /* mode should be APPEND_INO or UPDATE_INO */ 527 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 528 { 529 struct inode_management *im = &sbi->im[mode]; 530 struct ino_entry *e; 531 532 spin_lock(&im->ino_lock); 533 e = radix_tree_lookup(&im->ino_root, ino); 534 spin_unlock(&im->ino_lock); 535 return e ? true : false; 536 } 537 538 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 539 { 540 struct ino_entry *e, *tmp; 541 int i; 542 543 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 544 struct inode_management *im = &sbi->im[i]; 545 546 spin_lock(&im->ino_lock); 547 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 548 list_del(&e->list); 549 radix_tree_delete(&im->ino_root, e->ino); 550 kmem_cache_free(ino_entry_slab, e); 551 im->ino_num--; 552 } 553 spin_unlock(&im->ino_lock); 554 } 555 } 556 557 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 558 unsigned int devidx, int type) 559 { 560 __add_ino_entry(sbi, ino, devidx, type); 561 } 562 563 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 564 unsigned int devidx, int type) 565 { 566 struct inode_management *im = &sbi->im[type]; 567 struct ino_entry *e; 568 bool is_dirty = false; 569 570 spin_lock(&im->ino_lock); 571 e = radix_tree_lookup(&im->ino_root, ino); 572 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 573 is_dirty = true; 574 spin_unlock(&im->ino_lock); 575 return is_dirty; 576 } 577 578 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 579 { 580 struct inode_management *im = &sbi->im[ORPHAN_INO]; 581 int err = 0; 582 583 spin_lock(&im->ino_lock); 584 585 if (time_to_inject(sbi, FAULT_ORPHAN)) { 586 spin_unlock(&im->ino_lock); 587 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 588 return -ENOSPC; 589 } 590 591 if (unlikely(im->ino_num >= sbi->max_orphans)) 592 err = -ENOSPC; 593 else 594 im->ino_num++; 595 spin_unlock(&im->ino_lock); 596 597 return err; 598 } 599 600 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 601 { 602 struct inode_management *im = &sbi->im[ORPHAN_INO]; 603 604 spin_lock(&im->ino_lock); 605 f2fs_bug_on(sbi, im->ino_num == 0); 606 im->ino_num--; 607 spin_unlock(&im->ino_lock); 608 } 609 610 void f2fs_add_orphan_inode(struct inode *inode) 611 { 612 /* add new orphan ino entry into list */ 613 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 614 f2fs_update_inode_page(inode); 615 } 616 617 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 618 { 619 /* remove orphan entry from orphan list */ 620 __remove_ino_entry(sbi, ino, ORPHAN_INO); 621 } 622 623 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 624 { 625 struct inode *inode; 626 struct node_info ni; 627 int err; 628 629 inode = f2fs_iget_retry(sbi->sb, ino); 630 if (IS_ERR(inode)) { 631 /* 632 * there should be a bug that we can't find the entry 633 * to orphan inode. 634 */ 635 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 636 return PTR_ERR(inode); 637 } 638 639 err = dquot_initialize(inode); 640 if (err) { 641 iput(inode); 642 goto err_out; 643 } 644 645 clear_nlink(inode); 646 647 /* truncate all the data during iput */ 648 iput(inode); 649 650 err = f2fs_get_node_info(sbi, ino, &ni); 651 if (err) 652 goto err_out; 653 654 /* ENOMEM was fully retried in f2fs_evict_inode. */ 655 if (ni.blk_addr != NULL_ADDR) { 656 err = -EIO; 657 goto err_out; 658 } 659 return 0; 660 661 err_out: 662 set_sbi_flag(sbi, SBI_NEED_FSCK); 663 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 664 __func__, ino); 665 return err; 666 } 667 668 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 669 { 670 block_t start_blk, orphan_blocks, i, j; 671 unsigned int s_flags = sbi->sb->s_flags; 672 int err = 0; 673 #ifdef CONFIG_QUOTA 674 int quota_enabled; 675 #endif 676 677 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 678 return 0; 679 680 if (bdev_read_only(sbi->sb->s_bdev)) { 681 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 682 return 0; 683 } 684 685 if (s_flags & SB_RDONLY) { 686 f2fs_info(sbi, "orphan cleanup on readonly fs"); 687 sbi->sb->s_flags &= ~SB_RDONLY; 688 } 689 690 #ifdef CONFIG_QUOTA 691 /* Needed for iput() to work correctly and not trash data */ 692 sbi->sb->s_flags |= SB_ACTIVE; 693 694 /* 695 * Turn on quotas which were not enabled for read-only mounts if 696 * filesystem has quota feature, so that they are updated correctly. 697 */ 698 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 699 #endif 700 701 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 702 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 703 704 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 705 706 for (i = 0; i < orphan_blocks; i++) { 707 struct page *page; 708 struct f2fs_orphan_block *orphan_blk; 709 710 page = f2fs_get_meta_page(sbi, start_blk + i); 711 if (IS_ERR(page)) { 712 err = PTR_ERR(page); 713 goto out; 714 } 715 716 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 717 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 718 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 719 err = recover_orphan_inode(sbi, ino); 720 if (err) { 721 f2fs_put_page(page, 1); 722 goto out; 723 } 724 } 725 f2fs_put_page(page, 1); 726 } 727 /* clear Orphan Flag */ 728 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 729 out: 730 set_sbi_flag(sbi, SBI_IS_RECOVERED); 731 732 #ifdef CONFIG_QUOTA 733 /* Turn quotas off */ 734 if (quota_enabled) 735 f2fs_quota_off_umount(sbi->sb); 736 #endif 737 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 738 739 return err; 740 } 741 742 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 743 { 744 struct list_head *head; 745 struct f2fs_orphan_block *orphan_blk = NULL; 746 unsigned int nentries = 0; 747 unsigned short index = 1; 748 unsigned short orphan_blocks; 749 struct page *page = NULL; 750 struct ino_entry *orphan = NULL; 751 struct inode_management *im = &sbi->im[ORPHAN_INO]; 752 753 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 754 755 /* 756 * we don't need to do spin_lock(&im->ino_lock) here, since all the 757 * orphan inode operations are covered under f2fs_lock_op(). 758 * And, spin_lock should be avoided due to page operations below. 759 */ 760 head = &im->ino_list; 761 762 /* loop for each orphan inode entry and write them in Jornal block */ 763 list_for_each_entry(orphan, head, list) { 764 if (!page) { 765 page = f2fs_grab_meta_page(sbi, start_blk++); 766 orphan_blk = 767 (struct f2fs_orphan_block *)page_address(page); 768 memset(orphan_blk, 0, sizeof(*orphan_blk)); 769 } 770 771 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 772 773 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 774 /* 775 * an orphan block is full of 1020 entries, 776 * then we need to flush current orphan blocks 777 * and bring another one in memory 778 */ 779 orphan_blk->blk_addr = cpu_to_le16(index); 780 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 781 orphan_blk->entry_count = cpu_to_le32(nentries); 782 set_page_dirty(page); 783 f2fs_put_page(page, 1); 784 index++; 785 nentries = 0; 786 page = NULL; 787 } 788 } 789 790 if (page) { 791 orphan_blk->blk_addr = cpu_to_le16(index); 792 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 793 orphan_blk->entry_count = cpu_to_le32(nentries); 794 set_page_dirty(page); 795 f2fs_put_page(page, 1); 796 } 797 } 798 799 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 800 struct f2fs_checkpoint *ckpt) 801 { 802 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 803 __u32 chksum; 804 805 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 806 if (chksum_ofs < CP_CHKSUM_OFFSET) { 807 chksum_ofs += sizeof(chksum); 808 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 809 F2FS_BLKSIZE - chksum_ofs); 810 } 811 return chksum; 812 } 813 814 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 815 struct f2fs_checkpoint **cp_block, struct page **cp_page, 816 unsigned long long *version) 817 { 818 size_t crc_offset = 0; 819 __u32 crc; 820 821 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 822 if (IS_ERR(*cp_page)) 823 return PTR_ERR(*cp_page); 824 825 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 826 827 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 828 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 829 crc_offset > CP_CHKSUM_OFFSET) { 830 f2fs_put_page(*cp_page, 1); 831 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 832 return -EINVAL; 833 } 834 835 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 836 if (crc != cur_cp_crc(*cp_block)) { 837 f2fs_put_page(*cp_page, 1); 838 f2fs_warn(sbi, "invalid crc value"); 839 return -EINVAL; 840 } 841 842 *version = cur_cp_version(*cp_block); 843 return 0; 844 } 845 846 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 847 block_t cp_addr, unsigned long long *version) 848 { 849 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 850 struct f2fs_checkpoint *cp_block = NULL; 851 unsigned long long cur_version = 0, pre_version = 0; 852 int err; 853 854 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 855 &cp_page_1, version); 856 if (err) 857 return NULL; 858 859 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 860 sbi->blocks_per_seg) { 861 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 862 le32_to_cpu(cp_block->cp_pack_total_block_count)); 863 goto invalid_cp; 864 } 865 pre_version = *version; 866 867 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 868 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 869 &cp_page_2, version); 870 if (err) 871 goto invalid_cp; 872 cur_version = *version; 873 874 if (cur_version == pre_version) { 875 *version = cur_version; 876 f2fs_put_page(cp_page_2, 1); 877 return cp_page_1; 878 } 879 f2fs_put_page(cp_page_2, 1); 880 invalid_cp: 881 f2fs_put_page(cp_page_1, 1); 882 return NULL; 883 } 884 885 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 886 { 887 struct f2fs_checkpoint *cp_block; 888 struct f2fs_super_block *fsb = sbi->raw_super; 889 struct page *cp1, *cp2, *cur_page; 890 unsigned long blk_size = sbi->blocksize; 891 unsigned long long cp1_version = 0, cp2_version = 0; 892 unsigned long long cp_start_blk_no; 893 unsigned int cp_blks = 1 + __cp_payload(sbi); 894 block_t cp_blk_no; 895 int i; 896 int err; 897 898 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 899 GFP_KERNEL); 900 if (!sbi->ckpt) 901 return -ENOMEM; 902 /* 903 * Finding out valid cp block involves read both 904 * sets( cp pack 1 and cp pack 2) 905 */ 906 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 907 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 908 909 /* The second checkpoint pack should start at the next segment */ 910 cp_start_blk_no += ((unsigned long long)1) << 911 le32_to_cpu(fsb->log_blocks_per_seg); 912 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 913 914 if (cp1 && cp2) { 915 if (ver_after(cp2_version, cp1_version)) 916 cur_page = cp2; 917 else 918 cur_page = cp1; 919 } else if (cp1) { 920 cur_page = cp1; 921 } else if (cp2) { 922 cur_page = cp2; 923 } else { 924 err = -EFSCORRUPTED; 925 goto fail_no_cp; 926 } 927 928 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 929 memcpy(sbi->ckpt, cp_block, blk_size); 930 931 if (cur_page == cp1) 932 sbi->cur_cp_pack = 1; 933 else 934 sbi->cur_cp_pack = 2; 935 936 /* Sanity checking of checkpoint */ 937 if (f2fs_sanity_check_ckpt(sbi)) { 938 err = -EFSCORRUPTED; 939 goto free_fail_no_cp; 940 } 941 942 if (cp_blks <= 1) 943 goto done; 944 945 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 946 if (cur_page == cp2) 947 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 948 949 for (i = 1; i < cp_blks; i++) { 950 void *sit_bitmap_ptr; 951 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 952 953 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 954 if (IS_ERR(cur_page)) { 955 err = PTR_ERR(cur_page); 956 goto free_fail_no_cp; 957 } 958 sit_bitmap_ptr = page_address(cur_page); 959 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 960 f2fs_put_page(cur_page, 1); 961 } 962 done: 963 f2fs_put_page(cp1, 1); 964 f2fs_put_page(cp2, 1); 965 return 0; 966 967 free_fail_no_cp: 968 f2fs_put_page(cp1, 1); 969 f2fs_put_page(cp2, 1); 970 fail_no_cp: 971 kvfree(sbi->ckpt); 972 return err; 973 } 974 975 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 976 { 977 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 978 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 979 980 if (is_inode_flag_set(inode, flag)) 981 return; 982 983 set_inode_flag(inode, flag); 984 if (!f2fs_is_volatile_file(inode)) 985 list_add_tail(&F2FS_I(inode)->dirty_list, 986 &sbi->inode_list[type]); 987 stat_inc_dirty_inode(sbi, type); 988 } 989 990 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 991 { 992 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 993 994 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 995 return; 996 997 list_del_init(&F2FS_I(inode)->dirty_list); 998 clear_inode_flag(inode, flag); 999 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1000 } 1001 1002 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 1003 { 1004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1005 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1006 1007 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1008 !S_ISLNK(inode->i_mode)) 1009 return; 1010 1011 spin_lock(&sbi->inode_lock[type]); 1012 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1013 __add_dirty_inode(inode, type); 1014 inode_inc_dirty_pages(inode); 1015 spin_unlock(&sbi->inode_lock[type]); 1016 1017 f2fs_set_page_private(page, 0); 1018 f2fs_trace_pid(page); 1019 } 1020 1021 void f2fs_remove_dirty_inode(struct inode *inode) 1022 { 1023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1024 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1025 1026 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1027 !S_ISLNK(inode->i_mode)) 1028 return; 1029 1030 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1031 return; 1032 1033 spin_lock(&sbi->inode_lock[type]); 1034 __remove_dirty_inode(inode, type); 1035 spin_unlock(&sbi->inode_lock[type]); 1036 } 1037 1038 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1039 { 1040 struct list_head *head; 1041 struct inode *inode; 1042 struct f2fs_inode_info *fi; 1043 bool is_dir = (type == DIR_INODE); 1044 unsigned long ino = 0; 1045 1046 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1047 get_pages(sbi, is_dir ? 1048 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1049 retry: 1050 if (unlikely(f2fs_cp_error(sbi))) 1051 return -EIO; 1052 1053 spin_lock(&sbi->inode_lock[type]); 1054 1055 head = &sbi->inode_list[type]; 1056 if (list_empty(head)) { 1057 spin_unlock(&sbi->inode_lock[type]); 1058 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1059 get_pages(sbi, is_dir ? 1060 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1061 return 0; 1062 } 1063 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1064 inode = igrab(&fi->vfs_inode); 1065 spin_unlock(&sbi->inode_lock[type]); 1066 if (inode) { 1067 unsigned long cur_ino = inode->i_ino; 1068 1069 F2FS_I(inode)->cp_task = current; 1070 1071 filemap_fdatawrite(inode->i_mapping); 1072 1073 F2FS_I(inode)->cp_task = NULL; 1074 1075 iput(inode); 1076 /* We need to give cpu to another writers. */ 1077 if (ino == cur_ino) 1078 cond_resched(); 1079 else 1080 ino = cur_ino; 1081 } else { 1082 /* 1083 * We should submit bio, since it exists several 1084 * wribacking dentry pages in the freeing inode. 1085 */ 1086 f2fs_submit_merged_write(sbi, DATA); 1087 cond_resched(); 1088 } 1089 goto retry; 1090 } 1091 1092 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1093 { 1094 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1095 struct inode *inode; 1096 struct f2fs_inode_info *fi; 1097 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1098 1099 while (total--) { 1100 if (unlikely(f2fs_cp_error(sbi))) 1101 return -EIO; 1102 1103 spin_lock(&sbi->inode_lock[DIRTY_META]); 1104 if (list_empty(head)) { 1105 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1106 return 0; 1107 } 1108 fi = list_first_entry(head, struct f2fs_inode_info, 1109 gdirty_list); 1110 inode = igrab(&fi->vfs_inode); 1111 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1112 if (inode) { 1113 sync_inode_metadata(inode, 0); 1114 1115 /* it's on eviction */ 1116 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1117 f2fs_update_inode_page(inode); 1118 iput(inode); 1119 } 1120 } 1121 return 0; 1122 } 1123 1124 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1125 { 1126 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1127 struct f2fs_nm_info *nm_i = NM_I(sbi); 1128 nid_t last_nid = nm_i->next_scan_nid; 1129 1130 next_free_nid(sbi, &last_nid); 1131 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1132 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1133 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1134 ckpt->next_free_nid = cpu_to_le32(last_nid); 1135 } 1136 1137 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1138 { 1139 bool ret = false; 1140 1141 if (!is_journalled_quota(sbi)) 1142 return false; 1143 1144 down_write(&sbi->quota_sem); 1145 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1146 ret = false; 1147 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1148 ret = false; 1149 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1150 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1151 ret = true; 1152 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1153 ret = true; 1154 } 1155 up_write(&sbi->quota_sem); 1156 return ret; 1157 } 1158 1159 /* 1160 * Freeze all the FS-operations for checkpoint. 1161 */ 1162 static int block_operations(struct f2fs_sb_info *sbi) 1163 { 1164 struct writeback_control wbc = { 1165 .sync_mode = WB_SYNC_ALL, 1166 .nr_to_write = LONG_MAX, 1167 .for_reclaim = 0, 1168 }; 1169 int err = 0, cnt = 0; 1170 1171 /* 1172 * Let's flush inline_data in dirty node pages. 1173 */ 1174 f2fs_flush_inline_data(sbi); 1175 1176 retry_flush_quotas: 1177 f2fs_lock_all(sbi); 1178 if (__need_flush_quota(sbi)) { 1179 int locked; 1180 1181 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1182 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1183 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1184 goto retry_flush_dents; 1185 } 1186 f2fs_unlock_all(sbi); 1187 1188 /* only failed during mount/umount/freeze/quotactl */ 1189 locked = down_read_trylock(&sbi->sb->s_umount); 1190 f2fs_quota_sync(sbi->sb, -1); 1191 if (locked) 1192 up_read(&sbi->sb->s_umount); 1193 cond_resched(); 1194 goto retry_flush_quotas; 1195 } 1196 1197 retry_flush_dents: 1198 /* write all the dirty dentry pages */ 1199 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1200 f2fs_unlock_all(sbi); 1201 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1202 if (err) 1203 return err; 1204 cond_resched(); 1205 goto retry_flush_quotas; 1206 } 1207 1208 /* 1209 * POR: we should ensure that there are no dirty node pages 1210 * until finishing nat/sit flush. inode->i_blocks can be updated. 1211 */ 1212 down_write(&sbi->node_change); 1213 1214 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1215 up_write(&sbi->node_change); 1216 f2fs_unlock_all(sbi); 1217 err = f2fs_sync_inode_meta(sbi); 1218 if (err) 1219 return err; 1220 cond_resched(); 1221 goto retry_flush_quotas; 1222 } 1223 1224 retry_flush_nodes: 1225 down_write(&sbi->node_write); 1226 1227 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1228 up_write(&sbi->node_write); 1229 atomic_inc(&sbi->wb_sync_req[NODE]); 1230 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1231 atomic_dec(&sbi->wb_sync_req[NODE]); 1232 if (err) { 1233 up_write(&sbi->node_change); 1234 f2fs_unlock_all(sbi); 1235 return err; 1236 } 1237 cond_resched(); 1238 goto retry_flush_nodes; 1239 } 1240 1241 /* 1242 * sbi->node_change is used only for AIO write_begin path which produces 1243 * dirty node blocks and some checkpoint values by block allocation. 1244 */ 1245 __prepare_cp_block(sbi); 1246 up_write(&sbi->node_change); 1247 return err; 1248 } 1249 1250 static void unblock_operations(struct f2fs_sb_info *sbi) 1251 { 1252 up_write(&sbi->node_write); 1253 f2fs_unlock_all(sbi); 1254 } 1255 1256 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1257 { 1258 DEFINE_WAIT(wait); 1259 1260 for (;;) { 1261 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1262 1263 if (!get_pages(sbi, type)) 1264 break; 1265 1266 if (unlikely(f2fs_cp_error(sbi))) 1267 break; 1268 1269 if (type == F2FS_DIRTY_META) 1270 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1271 FS_CP_META_IO); 1272 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1273 } 1274 finish_wait(&sbi->cp_wait, &wait); 1275 } 1276 1277 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1278 { 1279 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1280 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1281 unsigned long flags; 1282 1283 spin_lock_irqsave(&sbi->cp_lock, flags); 1284 1285 if ((cpc->reason & CP_UMOUNT) && 1286 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1287 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1288 disable_nat_bits(sbi, false); 1289 1290 if (cpc->reason & CP_TRIMMED) 1291 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1292 else 1293 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1294 1295 if (cpc->reason & CP_UMOUNT) 1296 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1297 else 1298 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1299 1300 if (cpc->reason & CP_FASTBOOT) 1301 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1302 else 1303 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1304 1305 if (orphan_num) 1306 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1307 else 1308 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1309 1310 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1311 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1312 1313 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1314 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1315 else 1316 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1317 1318 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1319 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1320 else 1321 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1322 1323 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1324 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1325 else 1326 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1327 1328 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1329 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1330 else 1331 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1332 1333 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1334 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1335 1336 /* set this flag to activate crc|cp_ver for recovery */ 1337 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1338 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1339 1340 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1341 } 1342 1343 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1344 void *src, block_t blk_addr) 1345 { 1346 struct writeback_control wbc = { 1347 .for_reclaim = 0, 1348 }; 1349 1350 /* 1351 * pagevec_lookup_tag and lock_page again will take 1352 * some extra time. Therefore, f2fs_update_meta_pages and 1353 * f2fs_sync_meta_pages are combined in this function. 1354 */ 1355 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1356 int err; 1357 1358 f2fs_wait_on_page_writeback(page, META, true, true); 1359 1360 memcpy(page_address(page), src, PAGE_SIZE); 1361 1362 set_page_dirty(page); 1363 if (unlikely(!clear_page_dirty_for_io(page))) 1364 f2fs_bug_on(sbi, 1); 1365 1366 /* writeout cp pack 2 page */ 1367 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1368 if (unlikely(err && f2fs_cp_error(sbi))) { 1369 f2fs_put_page(page, 1); 1370 return; 1371 } 1372 1373 f2fs_bug_on(sbi, err); 1374 f2fs_put_page(page, 0); 1375 1376 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1377 f2fs_submit_merged_write(sbi, META_FLUSH); 1378 } 1379 1380 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1381 { 1382 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1383 struct f2fs_nm_info *nm_i = NM_I(sbi); 1384 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1385 block_t start_blk; 1386 unsigned int data_sum_blocks, orphan_blocks; 1387 __u32 crc32 = 0; 1388 int i; 1389 int cp_payload_blks = __cp_payload(sbi); 1390 struct super_block *sb = sbi->sb; 1391 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1392 u64 kbytes_written; 1393 int err; 1394 1395 /* Flush all the NAT/SIT pages */ 1396 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1397 1398 /* start to update checkpoint, cp ver is already updated previously */ 1399 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1400 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1401 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1402 ckpt->cur_node_segno[i] = 1403 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1404 ckpt->cur_node_blkoff[i] = 1405 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1406 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1407 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1408 } 1409 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1410 ckpt->cur_data_segno[i] = 1411 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1412 ckpt->cur_data_blkoff[i] = 1413 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1414 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1415 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1416 } 1417 1418 /* 2 cp + n data seg summary + orphan inode blocks */ 1419 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1420 spin_lock_irqsave(&sbi->cp_lock, flags); 1421 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1422 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1423 else 1424 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1425 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1426 1427 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1428 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1429 orphan_blocks); 1430 1431 if (__remain_node_summaries(cpc->reason)) 1432 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1433 cp_payload_blks + data_sum_blocks + 1434 orphan_blocks + NR_CURSEG_NODE_TYPE); 1435 else 1436 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1437 cp_payload_blks + data_sum_blocks + 1438 orphan_blocks); 1439 1440 /* update ckpt flag for checkpoint */ 1441 update_ckpt_flags(sbi, cpc); 1442 1443 /* update SIT/NAT bitmap */ 1444 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1445 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1446 1447 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1448 *((__le32 *)((unsigned char *)ckpt + 1449 le32_to_cpu(ckpt->checksum_offset))) 1450 = cpu_to_le32(crc32); 1451 1452 start_blk = __start_cp_next_addr(sbi); 1453 1454 /* write nat bits */ 1455 if (enabled_nat_bits(sbi, cpc)) { 1456 __u64 cp_ver = cur_cp_version(ckpt); 1457 block_t blk; 1458 1459 cp_ver |= ((__u64)crc32 << 32); 1460 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1461 1462 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1463 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1464 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1465 (i << F2FS_BLKSIZE_BITS), blk + i); 1466 } 1467 1468 /* write out checkpoint buffer at block 0 */ 1469 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1470 1471 for (i = 1; i < 1 + cp_payload_blks; i++) 1472 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1473 start_blk++); 1474 1475 if (orphan_num) { 1476 write_orphan_inodes(sbi, start_blk); 1477 start_blk += orphan_blocks; 1478 } 1479 1480 f2fs_write_data_summaries(sbi, start_blk); 1481 start_blk += data_sum_blocks; 1482 1483 /* Record write statistics in the hot node summary */ 1484 kbytes_written = sbi->kbytes_written; 1485 if (sb->s_bdev->bd_part) 1486 kbytes_written += BD_PART_WRITTEN(sbi); 1487 1488 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1489 1490 if (__remain_node_summaries(cpc->reason)) { 1491 f2fs_write_node_summaries(sbi, start_blk); 1492 start_blk += NR_CURSEG_NODE_TYPE; 1493 } 1494 1495 /* update user_block_counts */ 1496 sbi->last_valid_block_count = sbi->total_valid_block_count; 1497 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1498 1499 /* Here, we have one bio having CP pack except cp pack 2 page */ 1500 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1501 /* Wait for all dirty meta pages to be submitted for IO */ 1502 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1503 1504 /* wait for previous submitted meta pages writeback */ 1505 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1506 1507 /* flush all device cache */ 1508 err = f2fs_flush_device_cache(sbi); 1509 if (err) 1510 return err; 1511 1512 /* barrier and flush checkpoint cp pack 2 page if it can */ 1513 commit_checkpoint(sbi, ckpt, start_blk); 1514 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1515 1516 /* 1517 * invalidate intermediate page cache borrowed from meta inode which are 1518 * used for migration of encrypted or verity inode's blocks. 1519 */ 1520 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi)) 1521 invalidate_mapping_pages(META_MAPPING(sbi), 1522 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1523 1524 f2fs_release_ino_entry(sbi, false); 1525 1526 f2fs_reset_fsync_node_info(sbi); 1527 1528 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1529 clear_sbi_flag(sbi, SBI_NEED_CP); 1530 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1531 1532 spin_lock(&sbi->stat_lock); 1533 sbi->unusable_block_count = 0; 1534 spin_unlock(&sbi->stat_lock); 1535 1536 __set_cp_next_pack(sbi); 1537 1538 /* 1539 * redirty superblock if metadata like node page or inode cache is 1540 * updated during writing checkpoint. 1541 */ 1542 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1543 get_pages(sbi, F2FS_DIRTY_IMETA)) 1544 set_sbi_flag(sbi, SBI_IS_DIRTY); 1545 1546 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1547 1548 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1549 } 1550 1551 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1552 { 1553 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1554 unsigned long long ckpt_ver; 1555 int err = 0; 1556 1557 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1558 return -EROFS; 1559 1560 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1561 if (cpc->reason != CP_PAUSE) 1562 return 0; 1563 f2fs_warn(sbi, "Start checkpoint disabled!"); 1564 } 1565 if (cpc->reason != CP_RESIZE) 1566 mutex_lock(&sbi->cp_mutex); 1567 1568 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1569 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1570 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1571 goto out; 1572 if (unlikely(f2fs_cp_error(sbi))) { 1573 err = -EIO; 1574 goto out; 1575 } 1576 1577 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1578 1579 err = block_operations(sbi); 1580 if (err) 1581 goto out; 1582 1583 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1584 1585 f2fs_flush_merged_writes(sbi); 1586 1587 /* this is the case of multiple fstrims without any changes */ 1588 if (cpc->reason & CP_DISCARD) { 1589 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1590 unblock_operations(sbi); 1591 goto out; 1592 } 1593 1594 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1595 SIT_I(sbi)->dirty_sentries == 0 && 1596 prefree_segments(sbi) == 0) { 1597 f2fs_flush_sit_entries(sbi, cpc); 1598 f2fs_clear_prefree_segments(sbi, cpc); 1599 unblock_operations(sbi); 1600 goto out; 1601 } 1602 } 1603 1604 /* 1605 * update checkpoint pack index 1606 * Increase the version number so that 1607 * SIT entries and seg summaries are written at correct place 1608 */ 1609 ckpt_ver = cur_cp_version(ckpt); 1610 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1611 1612 /* write cached NAT/SIT entries to NAT/SIT area */ 1613 err = f2fs_flush_nat_entries(sbi, cpc); 1614 if (err) 1615 goto stop; 1616 1617 f2fs_flush_sit_entries(sbi, cpc); 1618 1619 err = do_checkpoint(sbi, cpc); 1620 if (err) 1621 f2fs_release_discard_addrs(sbi); 1622 else 1623 f2fs_clear_prefree_segments(sbi, cpc); 1624 stop: 1625 unblock_operations(sbi); 1626 stat_inc_cp_count(sbi->stat_info); 1627 1628 if (cpc->reason & CP_RECOVERY) 1629 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1630 1631 /* update CP_TIME to trigger checkpoint periodically */ 1632 f2fs_update_time(sbi, CP_TIME); 1633 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1634 out: 1635 if (cpc->reason != CP_RESIZE) 1636 mutex_unlock(&sbi->cp_mutex); 1637 return err; 1638 } 1639 1640 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1641 { 1642 int i; 1643 1644 for (i = 0; i < MAX_INO_ENTRY; i++) { 1645 struct inode_management *im = &sbi->im[i]; 1646 1647 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1648 spin_lock_init(&im->ino_lock); 1649 INIT_LIST_HEAD(&im->ino_list); 1650 im->ino_num = 0; 1651 } 1652 1653 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1654 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1655 F2FS_ORPHANS_PER_BLOCK; 1656 } 1657 1658 int __init f2fs_create_checkpoint_caches(void) 1659 { 1660 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1661 sizeof(struct ino_entry)); 1662 if (!ino_entry_slab) 1663 return -ENOMEM; 1664 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1665 sizeof(struct inode_entry)); 1666 if (!f2fs_inode_entry_slab) { 1667 kmem_cache_destroy(ino_entry_slab); 1668 return -ENOMEM; 1669 } 1670 return 0; 1671 } 1672 1673 void f2fs_destroy_checkpoint_caches(void) 1674 { 1675 kmem_cache_destroy(ino_entry_slab); 1676 kmem_cache_destroy(f2fs_inode_entry_slab); 1677 } 1678