1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 f2fs_build_fault_attr(sbi, 0, 0); 32 set_ckpt_flags(sbi, CP_ERROR_FLAG); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 57 bool is_meta) 58 { 59 struct address_space *mapping = META_MAPPING(sbi); 60 struct page *page; 61 struct f2fs_io_info fio = { 62 .sbi = sbi, 63 .type = META, 64 .op = REQ_OP_READ, 65 .op_flags = REQ_META | REQ_PRIO, 66 .old_blkaddr = index, 67 .new_blkaddr = index, 68 .encrypted_page = NULL, 69 .is_por = !is_meta, 70 }; 71 int err; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 err = f2fs_submit_page_bio(&fio); 87 if (err) { 88 f2fs_put_page(page, 1); 89 return ERR_PTR(err); 90 } 91 92 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 93 94 lock_page(page); 95 if (unlikely(page->mapping != mapping)) { 96 f2fs_put_page(page, 1); 97 goto repeat; 98 } 99 100 if (unlikely(!PageUptodate(page))) { 101 f2fs_handle_page_eio(sbi, page->index, META); 102 f2fs_put_page(page, 1); 103 return ERR_PTR(-EIO); 104 } 105 out: 106 return page; 107 } 108 109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 115 { 116 struct page *page; 117 int count = 0; 118 119 retry: 120 page = __get_meta_page(sbi, index, true); 121 if (IS_ERR(page)) { 122 if (PTR_ERR(page) == -EIO && 123 ++count <= DEFAULT_RETRY_IO_COUNT) 124 goto retry; 125 f2fs_stop_checkpoint(sbi, false); 126 } 127 return page; 128 } 129 130 /* for POR only */ 131 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 132 { 133 return __get_meta_page(sbi, index, false); 134 } 135 136 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 137 int type) 138 { 139 struct seg_entry *se; 140 unsigned int segno, offset; 141 bool exist; 142 143 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 144 return true; 145 146 segno = GET_SEGNO(sbi, blkaddr); 147 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 148 se = get_seg_entry(sbi, segno); 149 150 exist = f2fs_test_bit(offset, se->cur_valid_map); 151 if (!exist && type == DATA_GENERIC_ENHANCE) { 152 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 153 blkaddr, exist); 154 set_sbi_flag(sbi, SBI_NEED_FSCK); 155 dump_stack(); 156 } 157 return exist; 158 } 159 160 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 161 block_t blkaddr, int type) 162 { 163 switch (type) { 164 case META_NAT: 165 break; 166 case META_SIT: 167 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 168 return false; 169 break; 170 case META_SSA: 171 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 172 blkaddr < SM_I(sbi)->ssa_blkaddr)) 173 return false; 174 break; 175 case META_CP: 176 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 177 blkaddr < __start_cp_addr(sbi))) 178 return false; 179 break; 180 case META_POR: 181 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 182 blkaddr < MAIN_BLKADDR(sbi))) 183 return false; 184 break; 185 case DATA_GENERIC: 186 case DATA_GENERIC_ENHANCE: 187 case DATA_GENERIC_ENHANCE_READ: 188 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 189 blkaddr < MAIN_BLKADDR(sbi))) { 190 f2fs_warn(sbi, "access invalid blkaddr:%u", 191 blkaddr); 192 set_sbi_flag(sbi, SBI_NEED_FSCK); 193 dump_stack(); 194 return false; 195 } else { 196 return __is_bitmap_valid(sbi, blkaddr, type); 197 } 198 break; 199 case META_GENERIC: 200 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 201 blkaddr >= MAIN_BLKADDR(sbi))) 202 return false; 203 break; 204 default: 205 BUG(); 206 } 207 208 return true; 209 } 210 211 /* 212 * Readahead CP/NAT/SIT/SSA/POR pages 213 */ 214 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 215 int type, bool sync) 216 { 217 struct page *page; 218 block_t blkno = start; 219 struct f2fs_io_info fio = { 220 .sbi = sbi, 221 .type = META, 222 .op = REQ_OP_READ, 223 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 224 .encrypted_page = NULL, 225 .in_list = false, 226 .is_por = (type == META_POR), 227 }; 228 struct blk_plug plug; 229 int err; 230 231 if (unlikely(type == META_POR)) 232 fio.op_flags &= ~REQ_META; 233 234 blk_start_plug(&plug); 235 for (; nrpages-- > 0; blkno++) { 236 237 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 238 goto out; 239 240 switch (type) { 241 case META_NAT: 242 if (unlikely(blkno >= 243 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 244 blkno = 0; 245 /* get nat block addr */ 246 fio.new_blkaddr = current_nat_addr(sbi, 247 blkno * NAT_ENTRY_PER_BLOCK); 248 break; 249 case META_SIT: 250 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 251 goto out; 252 /* get sit block addr */ 253 fio.new_blkaddr = current_sit_addr(sbi, 254 blkno * SIT_ENTRY_PER_BLOCK); 255 break; 256 case META_SSA: 257 case META_CP: 258 case META_POR: 259 fio.new_blkaddr = blkno; 260 break; 261 default: 262 BUG(); 263 } 264 265 page = f2fs_grab_cache_page(META_MAPPING(sbi), 266 fio.new_blkaddr, false); 267 if (!page) 268 continue; 269 if (PageUptodate(page)) { 270 f2fs_put_page(page, 1); 271 continue; 272 } 273 274 fio.page = page; 275 err = f2fs_submit_page_bio(&fio); 276 f2fs_put_page(page, err ? 1 : 0); 277 278 if (!err) 279 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE); 280 } 281 out: 282 blk_finish_plug(&plug); 283 return blkno - start; 284 } 285 286 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 287 unsigned int ra_blocks) 288 { 289 struct page *page; 290 bool readahead = false; 291 292 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 293 return; 294 295 page = find_get_page(META_MAPPING(sbi), index); 296 if (!page || !PageUptodate(page)) 297 readahead = true; 298 f2fs_put_page(page, 0); 299 300 if (readahead) 301 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 302 } 303 304 static int __f2fs_write_meta_page(struct page *page, 305 struct writeback_control *wbc, 306 enum iostat_type io_type) 307 { 308 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 309 310 trace_f2fs_writepage(page, META); 311 312 if (unlikely(f2fs_cp_error(sbi))) 313 goto redirty_out; 314 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 315 goto redirty_out; 316 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 317 goto redirty_out; 318 319 f2fs_do_write_meta_page(sbi, page, io_type); 320 dec_page_count(sbi, F2FS_DIRTY_META); 321 322 if (wbc->for_reclaim) 323 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 324 325 unlock_page(page); 326 327 if (unlikely(f2fs_cp_error(sbi))) 328 f2fs_submit_merged_write(sbi, META); 329 330 return 0; 331 332 redirty_out: 333 redirty_page_for_writepage(wbc, page); 334 return AOP_WRITEPAGE_ACTIVATE; 335 } 336 337 static int f2fs_write_meta_page(struct page *page, 338 struct writeback_control *wbc) 339 { 340 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 341 } 342 343 static int f2fs_write_meta_pages(struct address_space *mapping, 344 struct writeback_control *wbc) 345 { 346 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 347 long diff, written; 348 349 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 350 goto skip_write; 351 352 /* collect a number of dirty meta pages and write together */ 353 if (wbc->sync_mode != WB_SYNC_ALL && 354 get_pages(sbi, F2FS_DIRTY_META) < 355 nr_pages_to_skip(sbi, META)) 356 goto skip_write; 357 358 /* if locked failed, cp will flush dirty pages instead */ 359 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 360 goto skip_write; 361 362 trace_f2fs_writepages(mapping->host, wbc, META); 363 diff = nr_pages_to_write(sbi, META, wbc); 364 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 365 f2fs_up_write(&sbi->cp_global_sem); 366 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 367 return 0; 368 369 skip_write: 370 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 371 trace_f2fs_writepages(mapping->host, wbc, META); 372 return 0; 373 } 374 375 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 376 long nr_to_write, enum iostat_type io_type) 377 { 378 struct address_space *mapping = META_MAPPING(sbi); 379 pgoff_t index = 0, prev = ULONG_MAX; 380 struct pagevec pvec; 381 long nwritten = 0; 382 int nr_pages; 383 struct writeback_control wbc = { 384 .for_reclaim = 0, 385 }; 386 struct blk_plug plug; 387 388 pagevec_init(&pvec); 389 390 blk_start_plug(&plug); 391 392 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 393 PAGECACHE_TAG_DIRTY))) { 394 int i; 395 396 for (i = 0; i < nr_pages; i++) { 397 struct page *page = pvec.pages[i]; 398 399 if (prev == ULONG_MAX) 400 prev = page->index - 1; 401 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 402 pagevec_release(&pvec); 403 goto stop; 404 } 405 406 lock_page(page); 407 408 if (unlikely(page->mapping != mapping)) { 409 continue_unlock: 410 unlock_page(page); 411 continue; 412 } 413 if (!PageDirty(page)) { 414 /* someone wrote it for us */ 415 goto continue_unlock; 416 } 417 418 f2fs_wait_on_page_writeback(page, META, true, true); 419 420 if (!clear_page_dirty_for_io(page)) 421 goto continue_unlock; 422 423 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 424 unlock_page(page); 425 break; 426 } 427 nwritten++; 428 prev = page->index; 429 if (unlikely(nwritten >= nr_to_write)) 430 break; 431 } 432 pagevec_release(&pvec); 433 cond_resched(); 434 } 435 stop: 436 if (nwritten) 437 f2fs_submit_merged_write(sbi, type); 438 439 blk_finish_plug(&plug); 440 441 return nwritten; 442 } 443 444 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 445 struct folio *folio) 446 { 447 trace_f2fs_set_page_dirty(&folio->page, META); 448 449 if (!folio_test_uptodate(folio)) 450 folio_mark_uptodate(folio); 451 if (!folio_test_dirty(folio)) { 452 filemap_dirty_folio(mapping, folio); 453 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 454 set_page_private_reference(&folio->page); 455 return true; 456 } 457 return false; 458 } 459 460 const struct address_space_operations f2fs_meta_aops = { 461 .writepage = f2fs_write_meta_page, 462 .writepages = f2fs_write_meta_pages, 463 .dirty_folio = f2fs_dirty_meta_folio, 464 .invalidate_folio = f2fs_invalidate_folio, 465 .release_folio = f2fs_release_folio, 466 .migrate_folio = filemap_migrate_folio, 467 }; 468 469 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 470 unsigned int devidx, int type) 471 { 472 struct inode_management *im = &sbi->im[type]; 473 struct ino_entry *e = NULL, *new = NULL; 474 475 if (type == FLUSH_INO) { 476 rcu_read_lock(); 477 e = radix_tree_lookup(&im->ino_root, ino); 478 rcu_read_unlock(); 479 } 480 481 retry: 482 if (!e) 483 new = f2fs_kmem_cache_alloc(ino_entry_slab, 484 GFP_NOFS, true, NULL); 485 486 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 487 488 spin_lock(&im->ino_lock); 489 e = radix_tree_lookup(&im->ino_root, ino); 490 if (!e) { 491 if (!new) { 492 spin_unlock(&im->ino_lock); 493 goto retry; 494 } 495 e = new; 496 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 497 f2fs_bug_on(sbi, 1); 498 499 memset(e, 0, sizeof(struct ino_entry)); 500 e->ino = ino; 501 502 list_add_tail(&e->list, &im->ino_list); 503 if (type != ORPHAN_INO) 504 im->ino_num++; 505 } 506 507 if (type == FLUSH_INO) 508 f2fs_set_bit(devidx, (char *)&e->dirty_device); 509 510 spin_unlock(&im->ino_lock); 511 radix_tree_preload_end(); 512 513 if (new && e != new) 514 kmem_cache_free(ino_entry_slab, new); 515 } 516 517 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 518 { 519 struct inode_management *im = &sbi->im[type]; 520 struct ino_entry *e; 521 522 spin_lock(&im->ino_lock); 523 e = radix_tree_lookup(&im->ino_root, ino); 524 if (e) { 525 list_del(&e->list); 526 radix_tree_delete(&im->ino_root, ino); 527 im->ino_num--; 528 spin_unlock(&im->ino_lock); 529 kmem_cache_free(ino_entry_slab, e); 530 return; 531 } 532 spin_unlock(&im->ino_lock); 533 } 534 535 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 536 { 537 /* add new dirty ino entry into list */ 538 __add_ino_entry(sbi, ino, 0, type); 539 } 540 541 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 542 { 543 /* remove dirty ino entry from list */ 544 __remove_ino_entry(sbi, ino, type); 545 } 546 547 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 548 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 549 { 550 struct inode_management *im = &sbi->im[mode]; 551 struct ino_entry *e; 552 553 spin_lock(&im->ino_lock); 554 e = radix_tree_lookup(&im->ino_root, ino); 555 spin_unlock(&im->ino_lock); 556 return e ? true : false; 557 } 558 559 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 560 { 561 struct ino_entry *e, *tmp; 562 int i; 563 564 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 565 struct inode_management *im = &sbi->im[i]; 566 567 spin_lock(&im->ino_lock); 568 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 569 list_del(&e->list); 570 radix_tree_delete(&im->ino_root, e->ino); 571 kmem_cache_free(ino_entry_slab, e); 572 im->ino_num--; 573 } 574 spin_unlock(&im->ino_lock); 575 } 576 } 577 578 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 579 unsigned int devidx, int type) 580 { 581 __add_ino_entry(sbi, ino, devidx, type); 582 } 583 584 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 585 unsigned int devidx, int type) 586 { 587 struct inode_management *im = &sbi->im[type]; 588 struct ino_entry *e; 589 bool is_dirty = false; 590 591 spin_lock(&im->ino_lock); 592 e = radix_tree_lookup(&im->ino_root, ino); 593 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 594 is_dirty = true; 595 spin_unlock(&im->ino_lock); 596 return is_dirty; 597 } 598 599 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 600 { 601 struct inode_management *im = &sbi->im[ORPHAN_INO]; 602 int err = 0; 603 604 spin_lock(&im->ino_lock); 605 606 if (time_to_inject(sbi, FAULT_ORPHAN)) { 607 spin_unlock(&im->ino_lock); 608 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 609 return -ENOSPC; 610 } 611 612 if (unlikely(im->ino_num >= sbi->max_orphans)) 613 err = -ENOSPC; 614 else 615 im->ino_num++; 616 spin_unlock(&im->ino_lock); 617 618 return err; 619 } 620 621 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 622 { 623 struct inode_management *im = &sbi->im[ORPHAN_INO]; 624 625 spin_lock(&im->ino_lock); 626 f2fs_bug_on(sbi, im->ino_num == 0); 627 im->ino_num--; 628 spin_unlock(&im->ino_lock); 629 } 630 631 void f2fs_add_orphan_inode(struct inode *inode) 632 { 633 /* add new orphan ino entry into list */ 634 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 635 f2fs_update_inode_page(inode); 636 } 637 638 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 639 { 640 /* remove orphan entry from orphan list */ 641 __remove_ino_entry(sbi, ino, ORPHAN_INO); 642 } 643 644 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 645 { 646 struct inode *inode; 647 struct node_info ni; 648 int err; 649 650 inode = f2fs_iget_retry(sbi->sb, ino); 651 if (IS_ERR(inode)) { 652 /* 653 * there should be a bug that we can't find the entry 654 * to orphan inode. 655 */ 656 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 657 return PTR_ERR(inode); 658 } 659 660 err = f2fs_dquot_initialize(inode); 661 if (err) { 662 iput(inode); 663 goto err_out; 664 } 665 666 clear_nlink(inode); 667 668 /* truncate all the data during iput */ 669 iput(inode); 670 671 err = f2fs_get_node_info(sbi, ino, &ni, false); 672 if (err) 673 goto err_out; 674 675 /* ENOMEM was fully retried in f2fs_evict_inode. */ 676 if (ni.blk_addr != NULL_ADDR) { 677 err = -EIO; 678 goto err_out; 679 } 680 return 0; 681 682 err_out: 683 set_sbi_flag(sbi, SBI_NEED_FSCK); 684 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 685 __func__, ino); 686 return err; 687 } 688 689 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 690 { 691 block_t start_blk, orphan_blocks, i, j; 692 unsigned int s_flags = sbi->sb->s_flags; 693 int err = 0; 694 #ifdef CONFIG_QUOTA 695 int quota_enabled; 696 #endif 697 698 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 699 return 0; 700 701 if (bdev_read_only(sbi->sb->s_bdev)) { 702 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 703 return 0; 704 } 705 706 if (s_flags & SB_RDONLY) { 707 f2fs_info(sbi, "orphan cleanup on readonly fs"); 708 sbi->sb->s_flags &= ~SB_RDONLY; 709 } 710 711 #ifdef CONFIG_QUOTA 712 /* 713 * Turn on quotas which were not enabled for read-only mounts if 714 * filesystem has quota feature, so that they are updated correctly. 715 */ 716 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 717 #endif 718 719 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 720 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 721 722 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 723 724 for (i = 0; i < orphan_blocks; i++) { 725 struct page *page; 726 struct f2fs_orphan_block *orphan_blk; 727 728 page = f2fs_get_meta_page(sbi, start_blk + i); 729 if (IS_ERR(page)) { 730 err = PTR_ERR(page); 731 goto out; 732 } 733 734 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 735 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 736 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 737 738 err = recover_orphan_inode(sbi, ino); 739 if (err) { 740 f2fs_put_page(page, 1); 741 goto out; 742 } 743 } 744 f2fs_put_page(page, 1); 745 } 746 /* clear Orphan Flag */ 747 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 748 out: 749 set_sbi_flag(sbi, SBI_IS_RECOVERED); 750 751 #ifdef CONFIG_QUOTA 752 /* Turn quotas off */ 753 if (quota_enabled) 754 f2fs_quota_off_umount(sbi->sb); 755 #endif 756 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 757 758 return err; 759 } 760 761 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 762 { 763 struct list_head *head; 764 struct f2fs_orphan_block *orphan_blk = NULL; 765 unsigned int nentries = 0; 766 unsigned short index = 1; 767 unsigned short orphan_blocks; 768 struct page *page = NULL; 769 struct ino_entry *orphan = NULL; 770 struct inode_management *im = &sbi->im[ORPHAN_INO]; 771 772 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 773 774 /* 775 * we don't need to do spin_lock(&im->ino_lock) here, since all the 776 * orphan inode operations are covered under f2fs_lock_op(). 777 * And, spin_lock should be avoided due to page operations below. 778 */ 779 head = &im->ino_list; 780 781 /* loop for each orphan inode entry and write them in Jornal block */ 782 list_for_each_entry(orphan, head, list) { 783 if (!page) { 784 page = f2fs_grab_meta_page(sbi, start_blk++); 785 orphan_blk = 786 (struct f2fs_orphan_block *)page_address(page); 787 memset(orphan_blk, 0, sizeof(*orphan_blk)); 788 } 789 790 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 791 792 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 793 /* 794 * an orphan block is full of 1020 entries, 795 * then we need to flush current orphan blocks 796 * and bring another one in memory 797 */ 798 orphan_blk->blk_addr = cpu_to_le16(index); 799 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 800 orphan_blk->entry_count = cpu_to_le32(nentries); 801 set_page_dirty(page); 802 f2fs_put_page(page, 1); 803 index++; 804 nentries = 0; 805 page = NULL; 806 } 807 } 808 809 if (page) { 810 orphan_blk->blk_addr = cpu_to_le16(index); 811 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 812 orphan_blk->entry_count = cpu_to_le32(nentries); 813 set_page_dirty(page); 814 f2fs_put_page(page, 1); 815 } 816 } 817 818 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 819 struct f2fs_checkpoint *ckpt) 820 { 821 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 822 __u32 chksum; 823 824 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 825 if (chksum_ofs < CP_CHKSUM_OFFSET) { 826 chksum_ofs += sizeof(chksum); 827 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 828 F2FS_BLKSIZE - chksum_ofs); 829 } 830 return chksum; 831 } 832 833 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 834 struct f2fs_checkpoint **cp_block, struct page **cp_page, 835 unsigned long long *version) 836 { 837 size_t crc_offset = 0; 838 __u32 crc; 839 840 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 841 if (IS_ERR(*cp_page)) 842 return PTR_ERR(*cp_page); 843 844 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 845 846 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 847 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 848 crc_offset > CP_CHKSUM_OFFSET) { 849 f2fs_put_page(*cp_page, 1); 850 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 851 return -EINVAL; 852 } 853 854 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 855 if (crc != cur_cp_crc(*cp_block)) { 856 f2fs_put_page(*cp_page, 1); 857 f2fs_warn(sbi, "invalid crc value"); 858 return -EINVAL; 859 } 860 861 *version = cur_cp_version(*cp_block); 862 return 0; 863 } 864 865 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 866 block_t cp_addr, unsigned long long *version) 867 { 868 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 869 struct f2fs_checkpoint *cp_block = NULL; 870 unsigned long long cur_version = 0, pre_version = 0; 871 unsigned int cp_blocks; 872 int err; 873 874 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 875 &cp_page_1, version); 876 if (err) 877 return NULL; 878 879 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 880 881 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 882 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 883 le32_to_cpu(cp_block->cp_pack_total_block_count)); 884 goto invalid_cp; 885 } 886 pre_version = *version; 887 888 cp_addr += cp_blocks - 1; 889 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 890 &cp_page_2, version); 891 if (err) 892 goto invalid_cp; 893 cur_version = *version; 894 895 if (cur_version == pre_version) { 896 *version = cur_version; 897 f2fs_put_page(cp_page_2, 1); 898 return cp_page_1; 899 } 900 f2fs_put_page(cp_page_2, 1); 901 invalid_cp: 902 f2fs_put_page(cp_page_1, 1); 903 return NULL; 904 } 905 906 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 907 { 908 struct f2fs_checkpoint *cp_block; 909 struct f2fs_super_block *fsb = sbi->raw_super; 910 struct page *cp1, *cp2, *cur_page; 911 unsigned long blk_size = sbi->blocksize; 912 unsigned long long cp1_version = 0, cp2_version = 0; 913 unsigned long long cp_start_blk_no; 914 unsigned int cp_blks = 1 + __cp_payload(sbi); 915 block_t cp_blk_no; 916 int i; 917 int err; 918 919 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 920 GFP_KERNEL); 921 if (!sbi->ckpt) 922 return -ENOMEM; 923 /* 924 * Finding out valid cp block involves read both 925 * sets( cp pack 1 and cp pack 2) 926 */ 927 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 928 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 929 930 /* The second checkpoint pack should start at the next segment */ 931 cp_start_blk_no += ((unsigned long long)1) << 932 le32_to_cpu(fsb->log_blocks_per_seg); 933 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 934 935 if (cp1 && cp2) { 936 if (ver_after(cp2_version, cp1_version)) 937 cur_page = cp2; 938 else 939 cur_page = cp1; 940 } else if (cp1) { 941 cur_page = cp1; 942 } else if (cp2) { 943 cur_page = cp2; 944 } else { 945 err = -EFSCORRUPTED; 946 goto fail_no_cp; 947 } 948 949 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 950 memcpy(sbi->ckpt, cp_block, blk_size); 951 952 if (cur_page == cp1) 953 sbi->cur_cp_pack = 1; 954 else 955 sbi->cur_cp_pack = 2; 956 957 /* Sanity checking of checkpoint */ 958 if (f2fs_sanity_check_ckpt(sbi)) { 959 err = -EFSCORRUPTED; 960 goto free_fail_no_cp; 961 } 962 963 if (cp_blks <= 1) 964 goto done; 965 966 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 967 if (cur_page == cp2) 968 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 969 970 for (i = 1; i < cp_blks; i++) { 971 void *sit_bitmap_ptr; 972 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 973 974 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 975 if (IS_ERR(cur_page)) { 976 err = PTR_ERR(cur_page); 977 goto free_fail_no_cp; 978 } 979 sit_bitmap_ptr = page_address(cur_page); 980 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 981 f2fs_put_page(cur_page, 1); 982 } 983 done: 984 f2fs_put_page(cp1, 1); 985 f2fs_put_page(cp2, 1); 986 return 0; 987 988 free_fail_no_cp: 989 f2fs_put_page(cp1, 1); 990 f2fs_put_page(cp2, 1); 991 fail_no_cp: 992 kvfree(sbi->ckpt); 993 return err; 994 } 995 996 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 997 { 998 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 999 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1000 1001 if (is_inode_flag_set(inode, flag)) 1002 return; 1003 1004 set_inode_flag(inode, flag); 1005 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1006 stat_inc_dirty_inode(sbi, type); 1007 } 1008 1009 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1010 { 1011 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1012 1013 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1014 return; 1015 1016 list_del_init(&F2FS_I(inode)->dirty_list); 1017 clear_inode_flag(inode, flag); 1018 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1019 } 1020 1021 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1022 { 1023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1024 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1025 1026 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1027 !S_ISLNK(inode->i_mode)) 1028 return; 1029 1030 spin_lock(&sbi->inode_lock[type]); 1031 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1032 __add_dirty_inode(inode, type); 1033 inode_inc_dirty_pages(inode); 1034 spin_unlock(&sbi->inode_lock[type]); 1035 1036 set_page_private_reference(&folio->page); 1037 } 1038 1039 void f2fs_remove_dirty_inode(struct inode *inode) 1040 { 1041 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1042 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1043 1044 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1045 !S_ISLNK(inode->i_mode)) 1046 return; 1047 1048 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1049 return; 1050 1051 spin_lock(&sbi->inode_lock[type]); 1052 __remove_dirty_inode(inode, type); 1053 spin_unlock(&sbi->inode_lock[type]); 1054 } 1055 1056 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1057 { 1058 struct list_head *head; 1059 struct inode *inode; 1060 struct f2fs_inode_info *fi; 1061 bool is_dir = (type == DIR_INODE); 1062 unsigned long ino = 0; 1063 1064 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1065 get_pages(sbi, is_dir ? 1066 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1067 retry: 1068 if (unlikely(f2fs_cp_error(sbi))) { 1069 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1070 get_pages(sbi, is_dir ? 1071 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1072 return -EIO; 1073 } 1074 1075 spin_lock(&sbi->inode_lock[type]); 1076 1077 head = &sbi->inode_list[type]; 1078 if (list_empty(head)) { 1079 spin_unlock(&sbi->inode_lock[type]); 1080 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1081 get_pages(sbi, is_dir ? 1082 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1083 return 0; 1084 } 1085 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1086 inode = igrab(&fi->vfs_inode); 1087 spin_unlock(&sbi->inode_lock[type]); 1088 if (inode) { 1089 unsigned long cur_ino = inode->i_ino; 1090 1091 F2FS_I(inode)->cp_task = current; 1092 1093 filemap_fdatawrite(inode->i_mapping); 1094 1095 F2FS_I(inode)->cp_task = NULL; 1096 1097 iput(inode); 1098 /* We need to give cpu to another writers. */ 1099 if (ino == cur_ino) 1100 cond_resched(); 1101 else 1102 ino = cur_ino; 1103 } else { 1104 /* 1105 * We should submit bio, since it exists several 1106 * wribacking dentry pages in the freeing inode. 1107 */ 1108 f2fs_submit_merged_write(sbi, DATA); 1109 cond_resched(); 1110 } 1111 goto retry; 1112 } 1113 1114 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1115 { 1116 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1117 struct inode *inode; 1118 struct f2fs_inode_info *fi; 1119 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1120 1121 while (total--) { 1122 if (unlikely(f2fs_cp_error(sbi))) 1123 return -EIO; 1124 1125 spin_lock(&sbi->inode_lock[DIRTY_META]); 1126 if (list_empty(head)) { 1127 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1128 return 0; 1129 } 1130 fi = list_first_entry(head, struct f2fs_inode_info, 1131 gdirty_list); 1132 inode = igrab(&fi->vfs_inode); 1133 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1134 if (inode) { 1135 sync_inode_metadata(inode, 0); 1136 1137 /* it's on eviction */ 1138 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1139 f2fs_update_inode_page(inode); 1140 iput(inode); 1141 } 1142 } 1143 return 0; 1144 } 1145 1146 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1147 { 1148 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1149 struct f2fs_nm_info *nm_i = NM_I(sbi); 1150 nid_t last_nid = nm_i->next_scan_nid; 1151 1152 next_free_nid(sbi, &last_nid); 1153 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1154 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1155 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1156 ckpt->next_free_nid = cpu_to_le32(last_nid); 1157 } 1158 1159 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1160 { 1161 bool ret = false; 1162 1163 if (!is_journalled_quota(sbi)) 1164 return false; 1165 1166 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1167 return true; 1168 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1169 ret = false; 1170 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1171 ret = false; 1172 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1173 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1174 ret = true; 1175 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1176 ret = true; 1177 } 1178 f2fs_up_write(&sbi->quota_sem); 1179 return ret; 1180 } 1181 1182 /* 1183 * Freeze all the FS-operations for checkpoint. 1184 */ 1185 static int block_operations(struct f2fs_sb_info *sbi) 1186 { 1187 struct writeback_control wbc = { 1188 .sync_mode = WB_SYNC_ALL, 1189 .nr_to_write = LONG_MAX, 1190 .for_reclaim = 0, 1191 }; 1192 int err = 0, cnt = 0; 1193 1194 /* 1195 * Let's flush inline_data in dirty node pages. 1196 */ 1197 f2fs_flush_inline_data(sbi); 1198 1199 retry_flush_quotas: 1200 f2fs_lock_all(sbi); 1201 if (__need_flush_quota(sbi)) { 1202 int locked; 1203 1204 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1205 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1206 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1207 goto retry_flush_dents; 1208 } 1209 f2fs_unlock_all(sbi); 1210 1211 /* only failed during mount/umount/freeze/quotactl */ 1212 locked = down_read_trylock(&sbi->sb->s_umount); 1213 f2fs_quota_sync(sbi->sb, -1); 1214 if (locked) 1215 up_read(&sbi->sb->s_umount); 1216 cond_resched(); 1217 goto retry_flush_quotas; 1218 } 1219 1220 retry_flush_dents: 1221 /* write all the dirty dentry pages */ 1222 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1223 f2fs_unlock_all(sbi); 1224 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1225 if (err) 1226 return err; 1227 cond_resched(); 1228 goto retry_flush_quotas; 1229 } 1230 1231 /* 1232 * POR: we should ensure that there are no dirty node pages 1233 * until finishing nat/sit flush. inode->i_blocks can be updated. 1234 */ 1235 f2fs_down_write(&sbi->node_change); 1236 1237 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1238 f2fs_up_write(&sbi->node_change); 1239 f2fs_unlock_all(sbi); 1240 err = f2fs_sync_inode_meta(sbi); 1241 if (err) 1242 return err; 1243 cond_resched(); 1244 goto retry_flush_quotas; 1245 } 1246 1247 retry_flush_nodes: 1248 f2fs_down_write(&sbi->node_write); 1249 1250 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1251 f2fs_up_write(&sbi->node_write); 1252 atomic_inc(&sbi->wb_sync_req[NODE]); 1253 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1254 atomic_dec(&sbi->wb_sync_req[NODE]); 1255 if (err) { 1256 f2fs_up_write(&sbi->node_change); 1257 f2fs_unlock_all(sbi); 1258 return err; 1259 } 1260 cond_resched(); 1261 goto retry_flush_nodes; 1262 } 1263 1264 /* 1265 * sbi->node_change is used only for AIO write_begin path which produces 1266 * dirty node blocks and some checkpoint values by block allocation. 1267 */ 1268 __prepare_cp_block(sbi); 1269 f2fs_up_write(&sbi->node_change); 1270 return err; 1271 } 1272 1273 static void unblock_operations(struct f2fs_sb_info *sbi) 1274 { 1275 f2fs_up_write(&sbi->node_write); 1276 f2fs_unlock_all(sbi); 1277 } 1278 1279 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1280 { 1281 DEFINE_WAIT(wait); 1282 1283 for (;;) { 1284 if (!get_pages(sbi, type)) 1285 break; 1286 1287 if (unlikely(f2fs_cp_error(sbi))) 1288 break; 1289 1290 if (type == F2FS_DIRTY_META) 1291 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1292 FS_CP_META_IO); 1293 else if (type == F2FS_WB_CP_DATA) 1294 f2fs_submit_merged_write(sbi, DATA); 1295 1296 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1297 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1298 } 1299 finish_wait(&sbi->cp_wait, &wait); 1300 } 1301 1302 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1303 { 1304 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1305 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1306 unsigned long flags; 1307 1308 if (cpc->reason & CP_UMOUNT) { 1309 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1310 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1311 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1312 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1313 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1314 f2fs_nat_bitmap_enabled(sbi)) { 1315 f2fs_enable_nat_bits(sbi); 1316 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1317 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1318 } 1319 } 1320 1321 spin_lock_irqsave(&sbi->cp_lock, flags); 1322 1323 if (cpc->reason & CP_TRIMMED) 1324 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1325 else 1326 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1327 1328 if (cpc->reason & CP_UMOUNT) 1329 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1330 else 1331 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1332 1333 if (cpc->reason & CP_FASTBOOT) 1334 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1335 else 1336 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1337 1338 if (orphan_num) 1339 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1340 else 1341 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1342 1343 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1344 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1345 1346 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1347 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1348 else 1349 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1350 1351 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1352 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1353 else 1354 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1355 1356 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1357 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1358 else 1359 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1360 1361 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1362 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1363 else 1364 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1365 1366 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1367 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1368 1369 /* set this flag to activate crc|cp_ver for recovery */ 1370 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1371 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1372 1373 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1374 } 1375 1376 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1377 void *src, block_t blk_addr) 1378 { 1379 struct writeback_control wbc = { 1380 .for_reclaim = 0, 1381 }; 1382 1383 /* 1384 * pagevec_lookup_tag and lock_page again will take 1385 * some extra time. Therefore, f2fs_update_meta_pages and 1386 * f2fs_sync_meta_pages are combined in this function. 1387 */ 1388 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1389 int err; 1390 1391 f2fs_wait_on_page_writeback(page, META, true, true); 1392 1393 memcpy(page_address(page), src, PAGE_SIZE); 1394 1395 set_page_dirty(page); 1396 if (unlikely(!clear_page_dirty_for_io(page))) 1397 f2fs_bug_on(sbi, 1); 1398 1399 /* writeout cp pack 2 page */ 1400 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1401 if (unlikely(err && f2fs_cp_error(sbi))) { 1402 f2fs_put_page(page, 1); 1403 return; 1404 } 1405 1406 f2fs_bug_on(sbi, err); 1407 f2fs_put_page(page, 0); 1408 1409 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1410 f2fs_submit_merged_write(sbi, META_FLUSH); 1411 } 1412 1413 static inline u64 get_sectors_written(struct block_device *bdev) 1414 { 1415 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1416 } 1417 1418 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1419 { 1420 if (f2fs_is_multi_device(sbi)) { 1421 u64 sectors = 0; 1422 int i; 1423 1424 for (i = 0; i < sbi->s_ndevs; i++) 1425 sectors += get_sectors_written(FDEV(i).bdev); 1426 1427 return sectors; 1428 } 1429 1430 return get_sectors_written(sbi->sb->s_bdev); 1431 } 1432 1433 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1434 { 1435 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1436 struct f2fs_nm_info *nm_i = NM_I(sbi); 1437 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1438 block_t start_blk; 1439 unsigned int data_sum_blocks, orphan_blocks; 1440 __u32 crc32 = 0; 1441 int i; 1442 int cp_payload_blks = __cp_payload(sbi); 1443 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1444 u64 kbytes_written; 1445 int err; 1446 1447 /* Flush all the NAT/SIT pages */ 1448 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1449 1450 /* start to update checkpoint, cp ver is already updated previously */ 1451 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1452 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1453 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1454 ckpt->cur_node_segno[i] = 1455 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1456 ckpt->cur_node_blkoff[i] = 1457 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1458 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1459 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1460 } 1461 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1462 ckpt->cur_data_segno[i] = 1463 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1464 ckpt->cur_data_blkoff[i] = 1465 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1466 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1467 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1468 } 1469 1470 /* 2 cp + n data seg summary + orphan inode blocks */ 1471 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1472 spin_lock_irqsave(&sbi->cp_lock, flags); 1473 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1474 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1475 else 1476 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1477 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1478 1479 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1480 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1481 orphan_blocks); 1482 1483 if (__remain_node_summaries(cpc->reason)) 1484 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1485 cp_payload_blks + data_sum_blocks + 1486 orphan_blocks + NR_CURSEG_NODE_TYPE); 1487 else 1488 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1489 cp_payload_blks + data_sum_blocks + 1490 orphan_blocks); 1491 1492 /* update ckpt flag for checkpoint */ 1493 update_ckpt_flags(sbi, cpc); 1494 1495 /* update SIT/NAT bitmap */ 1496 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1497 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1498 1499 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1500 *((__le32 *)((unsigned char *)ckpt + 1501 le32_to_cpu(ckpt->checksum_offset))) 1502 = cpu_to_le32(crc32); 1503 1504 start_blk = __start_cp_next_addr(sbi); 1505 1506 /* write nat bits */ 1507 if ((cpc->reason & CP_UMOUNT) && 1508 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1509 __u64 cp_ver = cur_cp_version(ckpt); 1510 block_t blk; 1511 1512 cp_ver |= ((__u64)crc32 << 32); 1513 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1514 1515 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1516 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1517 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1518 (i << F2FS_BLKSIZE_BITS), blk + i); 1519 } 1520 1521 /* write out checkpoint buffer at block 0 */ 1522 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1523 1524 for (i = 1; i < 1 + cp_payload_blks; i++) 1525 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1526 start_blk++); 1527 1528 if (orphan_num) { 1529 write_orphan_inodes(sbi, start_blk); 1530 start_blk += orphan_blocks; 1531 } 1532 1533 f2fs_write_data_summaries(sbi, start_blk); 1534 start_blk += data_sum_blocks; 1535 1536 /* Record write statistics in the hot node summary */ 1537 kbytes_written = sbi->kbytes_written; 1538 kbytes_written += (f2fs_get_sectors_written(sbi) - 1539 sbi->sectors_written_start) >> 1; 1540 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1541 1542 if (__remain_node_summaries(cpc->reason)) { 1543 f2fs_write_node_summaries(sbi, start_blk); 1544 start_blk += NR_CURSEG_NODE_TYPE; 1545 } 1546 1547 /* update user_block_counts */ 1548 sbi->last_valid_block_count = sbi->total_valid_block_count; 1549 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1550 percpu_counter_set(&sbi->rf_node_block_count, 0); 1551 1552 /* Here, we have one bio having CP pack except cp pack 2 page */ 1553 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1554 /* Wait for all dirty meta pages to be submitted for IO */ 1555 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1556 1557 /* wait for previous submitted meta pages writeback */ 1558 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1559 1560 /* flush all device cache */ 1561 err = f2fs_flush_device_cache(sbi); 1562 if (err) 1563 return err; 1564 1565 /* barrier and flush checkpoint cp pack 2 page if it can */ 1566 commit_checkpoint(sbi, ckpt, start_blk); 1567 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1568 1569 /* 1570 * invalidate intermediate page cache borrowed from meta inode which are 1571 * used for migration of encrypted, verity or compressed inode's blocks. 1572 */ 1573 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1574 f2fs_sb_has_compression(sbi)) 1575 invalidate_mapping_pages(META_MAPPING(sbi), 1576 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1577 1578 f2fs_release_ino_entry(sbi, false); 1579 1580 f2fs_reset_fsync_node_info(sbi); 1581 1582 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1583 clear_sbi_flag(sbi, SBI_NEED_CP); 1584 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1585 1586 spin_lock(&sbi->stat_lock); 1587 sbi->unusable_block_count = 0; 1588 spin_unlock(&sbi->stat_lock); 1589 1590 __set_cp_next_pack(sbi); 1591 1592 /* 1593 * redirty superblock if metadata like node page or inode cache is 1594 * updated during writing checkpoint. 1595 */ 1596 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1597 get_pages(sbi, F2FS_DIRTY_IMETA)) 1598 set_sbi_flag(sbi, SBI_IS_DIRTY); 1599 1600 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1601 1602 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1603 } 1604 1605 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1606 { 1607 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1608 unsigned long long ckpt_ver; 1609 int err = 0; 1610 1611 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1612 return -EROFS; 1613 1614 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1615 if (cpc->reason != CP_PAUSE) 1616 return 0; 1617 f2fs_warn(sbi, "Start checkpoint disabled!"); 1618 } 1619 if (cpc->reason != CP_RESIZE) 1620 f2fs_down_write(&sbi->cp_global_sem); 1621 1622 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1623 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1624 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1625 goto out; 1626 if (unlikely(f2fs_cp_error(sbi))) { 1627 err = -EIO; 1628 goto out; 1629 } 1630 1631 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1632 1633 err = block_operations(sbi); 1634 if (err) 1635 goto out; 1636 1637 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1638 1639 f2fs_flush_merged_writes(sbi); 1640 1641 /* this is the case of multiple fstrims without any changes */ 1642 if (cpc->reason & CP_DISCARD) { 1643 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1644 unblock_operations(sbi); 1645 goto out; 1646 } 1647 1648 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1649 SIT_I(sbi)->dirty_sentries == 0 && 1650 prefree_segments(sbi) == 0) { 1651 f2fs_flush_sit_entries(sbi, cpc); 1652 f2fs_clear_prefree_segments(sbi, cpc); 1653 unblock_operations(sbi); 1654 goto out; 1655 } 1656 } 1657 1658 /* 1659 * update checkpoint pack index 1660 * Increase the version number so that 1661 * SIT entries and seg summaries are written at correct place 1662 */ 1663 ckpt_ver = cur_cp_version(ckpt); 1664 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1665 1666 /* write cached NAT/SIT entries to NAT/SIT area */ 1667 err = f2fs_flush_nat_entries(sbi, cpc); 1668 if (err) { 1669 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1670 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1671 goto stop; 1672 } 1673 1674 f2fs_flush_sit_entries(sbi, cpc); 1675 1676 /* save inmem log status */ 1677 f2fs_save_inmem_curseg(sbi); 1678 1679 err = do_checkpoint(sbi, cpc); 1680 if (err) { 1681 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1682 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1683 f2fs_release_discard_addrs(sbi); 1684 } else { 1685 f2fs_clear_prefree_segments(sbi, cpc); 1686 } 1687 1688 f2fs_restore_inmem_curseg(sbi); 1689 stop: 1690 unblock_operations(sbi); 1691 stat_inc_cp_count(sbi->stat_info); 1692 1693 if (cpc->reason & CP_RECOVERY) 1694 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1695 1696 /* update CP_TIME to trigger checkpoint periodically */ 1697 f2fs_update_time(sbi, CP_TIME); 1698 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1699 out: 1700 if (cpc->reason != CP_RESIZE) 1701 f2fs_up_write(&sbi->cp_global_sem); 1702 return err; 1703 } 1704 1705 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1706 { 1707 int i; 1708 1709 for (i = 0; i < MAX_INO_ENTRY; i++) { 1710 struct inode_management *im = &sbi->im[i]; 1711 1712 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1713 spin_lock_init(&im->ino_lock); 1714 INIT_LIST_HEAD(&im->ino_list); 1715 im->ino_num = 0; 1716 } 1717 1718 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1719 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1720 F2FS_ORPHANS_PER_BLOCK; 1721 } 1722 1723 int __init f2fs_create_checkpoint_caches(void) 1724 { 1725 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1726 sizeof(struct ino_entry)); 1727 if (!ino_entry_slab) 1728 return -ENOMEM; 1729 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1730 sizeof(struct inode_entry)); 1731 if (!f2fs_inode_entry_slab) { 1732 kmem_cache_destroy(ino_entry_slab); 1733 return -ENOMEM; 1734 } 1735 return 0; 1736 } 1737 1738 void f2fs_destroy_checkpoint_caches(void) 1739 { 1740 kmem_cache_destroy(ino_entry_slab); 1741 kmem_cache_destroy(f2fs_inode_entry_slab); 1742 } 1743 1744 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1745 { 1746 struct cp_control cpc = { .reason = CP_SYNC, }; 1747 int err; 1748 1749 f2fs_down_write(&sbi->gc_lock); 1750 err = f2fs_write_checkpoint(sbi, &cpc); 1751 f2fs_up_write(&sbi->gc_lock); 1752 1753 return err; 1754 } 1755 1756 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1757 { 1758 struct ckpt_req_control *cprc = &sbi->cprc_info; 1759 struct ckpt_req *req, *next; 1760 struct llist_node *dispatch_list; 1761 u64 sum_diff = 0, diff, count = 0; 1762 int ret; 1763 1764 dispatch_list = llist_del_all(&cprc->issue_list); 1765 if (!dispatch_list) 1766 return; 1767 dispatch_list = llist_reverse_order(dispatch_list); 1768 1769 ret = __write_checkpoint_sync(sbi); 1770 atomic_inc(&cprc->issued_ckpt); 1771 1772 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1773 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1774 req->ret = ret; 1775 complete(&req->wait); 1776 1777 sum_diff += diff; 1778 count++; 1779 } 1780 atomic_sub(count, &cprc->queued_ckpt); 1781 atomic_add(count, &cprc->total_ckpt); 1782 1783 spin_lock(&cprc->stat_lock); 1784 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1785 if (cprc->peak_time < cprc->cur_time) 1786 cprc->peak_time = cprc->cur_time; 1787 spin_unlock(&cprc->stat_lock); 1788 } 1789 1790 static int issue_checkpoint_thread(void *data) 1791 { 1792 struct f2fs_sb_info *sbi = data; 1793 struct ckpt_req_control *cprc = &sbi->cprc_info; 1794 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1795 repeat: 1796 if (kthread_should_stop()) 1797 return 0; 1798 1799 if (!llist_empty(&cprc->issue_list)) 1800 __checkpoint_and_complete_reqs(sbi); 1801 1802 wait_event_interruptible(*q, 1803 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1804 goto repeat; 1805 } 1806 1807 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1808 struct ckpt_req *wait_req) 1809 { 1810 struct ckpt_req_control *cprc = &sbi->cprc_info; 1811 1812 if (!llist_empty(&cprc->issue_list)) { 1813 __checkpoint_and_complete_reqs(sbi); 1814 } else { 1815 /* already dispatched by issue_checkpoint_thread */ 1816 if (wait_req) 1817 wait_for_completion(&wait_req->wait); 1818 } 1819 } 1820 1821 static void init_ckpt_req(struct ckpt_req *req) 1822 { 1823 memset(req, 0, sizeof(struct ckpt_req)); 1824 1825 init_completion(&req->wait); 1826 req->queue_time = ktime_get(); 1827 } 1828 1829 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1830 { 1831 struct ckpt_req_control *cprc = &sbi->cprc_info; 1832 struct ckpt_req req; 1833 struct cp_control cpc; 1834 1835 cpc.reason = __get_cp_reason(sbi); 1836 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1837 int ret; 1838 1839 f2fs_down_write(&sbi->gc_lock); 1840 ret = f2fs_write_checkpoint(sbi, &cpc); 1841 f2fs_up_write(&sbi->gc_lock); 1842 1843 return ret; 1844 } 1845 1846 if (!cprc->f2fs_issue_ckpt) 1847 return __write_checkpoint_sync(sbi); 1848 1849 init_ckpt_req(&req); 1850 1851 llist_add(&req.llnode, &cprc->issue_list); 1852 atomic_inc(&cprc->queued_ckpt); 1853 1854 /* 1855 * update issue_list before we wake up issue_checkpoint thread, 1856 * this smp_mb() pairs with another barrier in ___wait_event(), 1857 * see more details in comments of waitqueue_active(). 1858 */ 1859 smp_mb(); 1860 1861 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1862 wake_up(&cprc->ckpt_wait_queue); 1863 1864 if (cprc->f2fs_issue_ckpt) 1865 wait_for_completion(&req.wait); 1866 else 1867 flush_remained_ckpt_reqs(sbi, &req); 1868 1869 return req.ret; 1870 } 1871 1872 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1873 { 1874 dev_t dev = sbi->sb->s_bdev->bd_dev; 1875 struct ckpt_req_control *cprc = &sbi->cprc_info; 1876 1877 if (cprc->f2fs_issue_ckpt) 1878 return 0; 1879 1880 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1881 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1882 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1883 cprc->f2fs_issue_ckpt = NULL; 1884 return -ENOMEM; 1885 } 1886 1887 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1888 1889 return 0; 1890 } 1891 1892 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1893 { 1894 struct ckpt_req_control *cprc = &sbi->cprc_info; 1895 1896 if (cprc->f2fs_issue_ckpt) { 1897 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt; 1898 1899 cprc->f2fs_issue_ckpt = NULL; 1900 kthread_stop(ckpt_task); 1901 1902 flush_remained_ckpt_reqs(sbi, NULL); 1903 } 1904 } 1905 1906 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1907 { 1908 struct ckpt_req_control *cprc = &sbi->cprc_info; 1909 1910 atomic_set(&cprc->issued_ckpt, 0); 1911 atomic_set(&cprc->total_ckpt, 0); 1912 atomic_set(&cprc->queued_ckpt, 0); 1913 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1914 init_waitqueue_head(&cprc->ckpt_wait_queue); 1915 init_llist_head(&cprc->issue_list); 1916 spin_lock_init(&cprc->stat_lock); 1917 } 1918