1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 if (!end_io) 33 f2fs_flush_merged_writes(sbi); 34 } 35 36 /* 37 * We guarantee no failure on the returned page. 38 */ 39 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 40 { 41 struct address_space *mapping = META_MAPPING(sbi); 42 struct page *page = NULL; 43 repeat: 44 page = f2fs_grab_cache_page(mapping, index, false); 45 if (!page) { 46 cond_resched(); 47 goto repeat; 48 } 49 f2fs_wait_on_page_writeback(page, META, true); 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ 58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .op = REQ_OP_READ, 67 .op_flags = REQ_META | REQ_PRIO, 68 .old_blkaddr = index, 69 .new_blkaddr = index, 70 .encrypted_page = NULL, 71 .is_meta = is_meta, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) { 104 memset(page_address(page), 0, PAGE_SIZE); 105 f2fs_stop_checkpoint(sbi, false); 106 } 107 out: 108 return page; 109 } 110 111 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 112 { 113 return __get_meta_page(sbi, index, true); 114 } 115 116 /* for POR only */ 117 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 118 { 119 return __get_meta_page(sbi, index, false); 120 } 121 122 bool f2fs_is_valid_meta_blkaddr(struct f2fs_sb_info *sbi, 123 block_t blkaddr, int type) 124 { 125 switch (type) { 126 case META_NAT: 127 break; 128 case META_SIT: 129 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 130 return false; 131 break; 132 case META_SSA: 133 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 134 blkaddr < SM_I(sbi)->ssa_blkaddr)) 135 return false; 136 break; 137 case META_CP: 138 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 139 blkaddr < __start_cp_addr(sbi))) 140 return false; 141 break; 142 case META_POR: 143 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 144 blkaddr < MAIN_BLKADDR(sbi))) 145 return false; 146 break; 147 default: 148 BUG(); 149 } 150 151 return true; 152 } 153 154 /* 155 * Readahead CP/NAT/SIT/SSA pages 156 */ 157 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 158 int type, bool sync) 159 { 160 struct page *page; 161 block_t blkno = start; 162 struct f2fs_io_info fio = { 163 .sbi = sbi, 164 .type = META, 165 .op = REQ_OP_READ, 166 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 167 .encrypted_page = NULL, 168 .in_list = false, 169 .is_meta = (type != META_POR), 170 }; 171 struct blk_plug plug; 172 173 if (unlikely(type == META_POR)) 174 fio.op_flags &= ~REQ_META; 175 176 blk_start_plug(&plug); 177 for (; nrpages-- > 0; blkno++) { 178 179 if (!f2fs_is_valid_meta_blkaddr(sbi, blkno, type)) 180 goto out; 181 182 switch (type) { 183 case META_NAT: 184 if (unlikely(blkno >= 185 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 186 blkno = 0; 187 /* get nat block addr */ 188 fio.new_blkaddr = current_nat_addr(sbi, 189 blkno * NAT_ENTRY_PER_BLOCK); 190 break; 191 case META_SIT: 192 /* get sit block addr */ 193 fio.new_blkaddr = current_sit_addr(sbi, 194 blkno * SIT_ENTRY_PER_BLOCK); 195 break; 196 case META_SSA: 197 case META_CP: 198 case META_POR: 199 fio.new_blkaddr = blkno; 200 break; 201 default: 202 BUG(); 203 } 204 205 page = f2fs_grab_cache_page(META_MAPPING(sbi), 206 fio.new_blkaddr, false); 207 if (!page) 208 continue; 209 if (PageUptodate(page)) { 210 f2fs_put_page(page, 1); 211 continue; 212 } 213 214 fio.page = page; 215 f2fs_submit_page_bio(&fio); 216 f2fs_put_page(page, 0); 217 } 218 out: 219 blk_finish_plug(&plug); 220 return blkno - start; 221 } 222 223 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 224 { 225 struct page *page; 226 bool readahead = false; 227 228 page = find_get_page(META_MAPPING(sbi), index); 229 if (!page || !PageUptodate(page)) 230 readahead = true; 231 f2fs_put_page(page, 0); 232 233 if (readahead) 234 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 235 } 236 237 static int __f2fs_write_meta_page(struct page *page, 238 struct writeback_control *wbc, 239 enum iostat_type io_type) 240 { 241 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 242 243 trace_f2fs_writepage(page, META); 244 245 if (unlikely(f2fs_cp_error(sbi))) { 246 dec_page_count(sbi, F2FS_DIRTY_META); 247 unlock_page(page); 248 return 0; 249 } 250 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 251 goto redirty_out; 252 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 253 goto redirty_out; 254 255 f2fs_do_write_meta_page(sbi, page, io_type); 256 dec_page_count(sbi, F2FS_DIRTY_META); 257 258 if (wbc->for_reclaim) 259 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 260 0, page->index, META); 261 262 unlock_page(page); 263 264 if (unlikely(f2fs_cp_error(sbi))) 265 f2fs_submit_merged_write(sbi, META); 266 267 return 0; 268 269 redirty_out: 270 redirty_page_for_writepage(wbc, page); 271 return AOP_WRITEPAGE_ACTIVATE; 272 } 273 274 static int f2fs_write_meta_page(struct page *page, 275 struct writeback_control *wbc) 276 { 277 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 278 } 279 280 static int f2fs_write_meta_pages(struct address_space *mapping, 281 struct writeback_control *wbc) 282 { 283 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 284 long diff, written; 285 286 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 287 goto skip_write; 288 289 /* collect a number of dirty meta pages and write together */ 290 if (wbc->for_kupdate || 291 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 292 goto skip_write; 293 294 /* if locked failed, cp will flush dirty pages instead */ 295 if (!mutex_trylock(&sbi->cp_mutex)) 296 goto skip_write; 297 298 trace_f2fs_writepages(mapping->host, wbc, META); 299 diff = nr_pages_to_write(sbi, META, wbc); 300 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 301 mutex_unlock(&sbi->cp_mutex); 302 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 303 return 0; 304 305 skip_write: 306 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 307 trace_f2fs_writepages(mapping->host, wbc, META); 308 return 0; 309 } 310 311 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 312 long nr_to_write, enum iostat_type io_type) 313 { 314 struct address_space *mapping = META_MAPPING(sbi); 315 pgoff_t index = 0, prev = ULONG_MAX; 316 struct pagevec pvec; 317 long nwritten = 0; 318 int nr_pages; 319 struct writeback_control wbc = { 320 .for_reclaim = 0, 321 }; 322 struct blk_plug plug; 323 324 pagevec_init(&pvec); 325 326 blk_start_plug(&plug); 327 328 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 329 PAGECACHE_TAG_DIRTY))) { 330 int i; 331 332 for (i = 0; i < nr_pages; i++) { 333 struct page *page = pvec.pages[i]; 334 335 if (prev == ULONG_MAX) 336 prev = page->index - 1; 337 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 338 pagevec_release(&pvec); 339 goto stop; 340 } 341 342 lock_page(page); 343 344 if (unlikely(page->mapping != mapping)) { 345 continue_unlock: 346 unlock_page(page); 347 continue; 348 } 349 if (!PageDirty(page)) { 350 /* someone wrote it for us */ 351 goto continue_unlock; 352 } 353 354 f2fs_wait_on_page_writeback(page, META, true); 355 356 BUG_ON(PageWriteback(page)); 357 if (!clear_page_dirty_for_io(page)) 358 goto continue_unlock; 359 360 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 361 unlock_page(page); 362 break; 363 } 364 nwritten++; 365 prev = page->index; 366 if (unlikely(nwritten >= nr_to_write)) 367 break; 368 } 369 pagevec_release(&pvec); 370 cond_resched(); 371 } 372 stop: 373 if (nwritten) 374 f2fs_submit_merged_write(sbi, type); 375 376 blk_finish_plug(&plug); 377 378 return nwritten; 379 } 380 381 static int f2fs_set_meta_page_dirty(struct page *page) 382 { 383 trace_f2fs_set_page_dirty(page, META); 384 385 if (!PageUptodate(page)) 386 SetPageUptodate(page); 387 if (!PageDirty(page)) { 388 __set_page_dirty_nobuffers(page); 389 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 390 SetPagePrivate(page); 391 f2fs_trace_pid(page); 392 return 1; 393 } 394 return 0; 395 } 396 397 const struct address_space_operations f2fs_meta_aops = { 398 .writepage = f2fs_write_meta_page, 399 .writepages = f2fs_write_meta_pages, 400 .set_page_dirty = f2fs_set_meta_page_dirty, 401 .invalidatepage = f2fs_invalidate_page, 402 .releasepage = f2fs_release_page, 403 #ifdef CONFIG_MIGRATION 404 .migratepage = f2fs_migrate_page, 405 #endif 406 }; 407 408 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 409 unsigned int devidx, int type) 410 { 411 struct inode_management *im = &sbi->im[type]; 412 struct ino_entry *e, *tmp; 413 414 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 415 416 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 417 418 spin_lock(&im->ino_lock); 419 e = radix_tree_lookup(&im->ino_root, ino); 420 if (!e) { 421 e = tmp; 422 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 423 f2fs_bug_on(sbi, 1); 424 425 memset(e, 0, sizeof(struct ino_entry)); 426 e->ino = ino; 427 428 list_add_tail(&e->list, &im->ino_list); 429 if (type != ORPHAN_INO) 430 im->ino_num++; 431 } 432 433 if (type == FLUSH_INO) 434 f2fs_set_bit(devidx, (char *)&e->dirty_device); 435 436 spin_unlock(&im->ino_lock); 437 radix_tree_preload_end(); 438 439 if (e != tmp) 440 kmem_cache_free(ino_entry_slab, tmp); 441 } 442 443 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 444 { 445 struct inode_management *im = &sbi->im[type]; 446 struct ino_entry *e; 447 448 spin_lock(&im->ino_lock); 449 e = radix_tree_lookup(&im->ino_root, ino); 450 if (e) { 451 list_del(&e->list); 452 radix_tree_delete(&im->ino_root, ino); 453 im->ino_num--; 454 spin_unlock(&im->ino_lock); 455 kmem_cache_free(ino_entry_slab, e); 456 return; 457 } 458 spin_unlock(&im->ino_lock); 459 } 460 461 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 462 { 463 /* add new dirty ino entry into list */ 464 __add_ino_entry(sbi, ino, 0, type); 465 } 466 467 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 468 { 469 /* remove dirty ino entry from list */ 470 __remove_ino_entry(sbi, ino, type); 471 } 472 473 /* mode should be APPEND_INO or UPDATE_INO */ 474 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 475 { 476 struct inode_management *im = &sbi->im[mode]; 477 struct ino_entry *e; 478 479 spin_lock(&im->ino_lock); 480 e = radix_tree_lookup(&im->ino_root, ino); 481 spin_unlock(&im->ino_lock); 482 return e ? true : false; 483 } 484 485 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 486 { 487 struct ino_entry *e, *tmp; 488 int i; 489 490 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 491 struct inode_management *im = &sbi->im[i]; 492 493 spin_lock(&im->ino_lock); 494 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 495 list_del(&e->list); 496 radix_tree_delete(&im->ino_root, e->ino); 497 kmem_cache_free(ino_entry_slab, e); 498 im->ino_num--; 499 } 500 spin_unlock(&im->ino_lock); 501 } 502 } 503 504 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 505 unsigned int devidx, int type) 506 { 507 __add_ino_entry(sbi, ino, devidx, type); 508 } 509 510 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 511 unsigned int devidx, int type) 512 { 513 struct inode_management *im = &sbi->im[type]; 514 struct ino_entry *e; 515 bool is_dirty = false; 516 517 spin_lock(&im->ino_lock); 518 e = radix_tree_lookup(&im->ino_root, ino); 519 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 520 is_dirty = true; 521 spin_unlock(&im->ino_lock); 522 return is_dirty; 523 } 524 525 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 526 { 527 struct inode_management *im = &sbi->im[ORPHAN_INO]; 528 int err = 0; 529 530 spin_lock(&im->ino_lock); 531 532 #ifdef CONFIG_F2FS_FAULT_INJECTION 533 if (time_to_inject(sbi, FAULT_ORPHAN)) { 534 spin_unlock(&im->ino_lock); 535 f2fs_show_injection_info(FAULT_ORPHAN); 536 return -ENOSPC; 537 } 538 #endif 539 if (unlikely(im->ino_num >= sbi->max_orphans)) 540 err = -ENOSPC; 541 else 542 im->ino_num++; 543 spin_unlock(&im->ino_lock); 544 545 return err; 546 } 547 548 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 549 { 550 struct inode_management *im = &sbi->im[ORPHAN_INO]; 551 552 spin_lock(&im->ino_lock); 553 f2fs_bug_on(sbi, im->ino_num == 0); 554 im->ino_num--; 555 spin_unlock(&im->ino_lock); 556 } 557 558 void f2fs_add_orphan_inode(struct inode *inode) 559 { 560 /* add new orphan ino entry into list */ 561 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 562 f2fs_update_inode_page(inode); 563 } 564 565 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 566 { 567 /* remove orphan entry from orphan list */ 568 __remove_ino_entry(sbi, ino, ORPHAN_INO); 569 } 570 571 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 572 { 573 struct inode *inode; 574 struct node_info ni; 575 int err = f2fs_acquire_orphan_inode(sbi); 576 577 if (err) 578 goto err_out; 579 580 __add_ino_entry(sbi, ino, 0, ORPHAN_INO); 581 582 inode = f2fs_iget_retry(sbi->sb, ino); 583 if (IS_ERR(inode)) { 584 /* 585 * there should be a bug that we can't find the entry 586 * to orphan inode. 587 */ 588 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 589 return PTR_ERR(inode); 590 } 591 592 err = dquot_initialize(inode); 593 if (err) { 594 iput(inode); 595 goto err_out; 596 } 597 598 clear_nlink(inode); 599 600 /* truncate all the data during iput */ 601 iput(inode); 602 603 f2fs_get_node_info(sbi, ino, &ni); 604 605 /* ENOMEM was fully retried in f2fs_evict_inode. */ 606 if (ni.blk_addr != NULL_ADDR) { 607 err = -EIO; 608 goto err_out; 609 } 610 __remove_ino_entry(sbi, ino, ORPHAN_INO); 611 return 0; 612 613 err_out: 614 set_sbi_flag(sbi, SBI_NEED_FSCK); 615 f2fs_msg(sbi->sb, KERN_WARNING, 616 "%s: orphan failed (ino=%x), run fsck to fix.", 617 __func__, ino); 618 return err; 619 } 620 621 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 622 { 623 block_t start_blk, orphan_blocks, i, j; 624 unsigned int s_flags = sbi->sb->s_flags; 625 int err = 0; 626 #ifdef CONFIG_QUOTA 627 int quota_enabled; 628 #endif 629 630 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 631 return 0; 632 633 if (s_flags & SB_RDONLY) { 634 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 635 sbi->sb->s_flags &= ~SB_RDONLY; 636 } 637 638 #ifdef CONFIG_QUOTA 639 /* Needed for iput() to work correctly and not trash data */ 640 sbi->sb->s_flags |= SB_ACTIVE; 641 642 /* Turn on quotas so that they are updated correctly */ 643 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 644 #endif 645 646 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 647 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 648 649 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 650 651 for (i = 0; i < orphan_blocks; i++) { 652 struct page *page = f2fs_get_meta_page(sbi, start_blk + i); 653 struct f2fs_orphan_block *orphan_blk; 654 655 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 656 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 657 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 658 err = recover_orphan_inode(sbi, ino); 659 if (err) { 660 f2fs_put_page(page, 1); 661 goto out; 662 } 663 } 664 f2fs_put_page(page, 1); 665 } 666 /* clear Orphan Flag */ 667 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 668 out: 669 #ifdef CONFIG_QUOTA 670 /* Turn quotas off */ 671 if (quota_enabled) 672 f2fs_quota_off_umount(sbi->sb); 673 #endif 674 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 675 676 return err; 677 } 678 679 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 680 { 681 struct list_head *head; 682 struct f2fs_orphan_block *orphan_blk = NULL; 683 unsigned int nentries = 0; 684 unsigned short index = 1; 685 unsigned short orphan_blocks; 686 struct page *page = NULL; 687 struct ino_entry *orphan = NULL; 688 struct inode_management *im = &sbi->im[ORPHAN_INO]; 689 690 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 691 692 /* 693 * we don't need to do spin_lock(&im->ino_lock) here, since all the 694 * orphan inode operations are covered under f2fs_lock_op(). 695 * And, spin_lock should be avoided due to page operations below. 696 */ 697 head = &im->ino_list; 698 699 /* loop for each orphan inode entry and write them in Jornal block */ 700 list_for_each_entry(orphan, head, list) { 701 if (!page) { 702 page = f2fs_grab_meta_page(sbi, start_blk++); 703 orphan_blk = 704 (struct f2fs_orphan_block *)page_address(page); 705 memset(orphan_blk, 0, sizeof(*orphan_blk)); 706 } 707 708 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 709 710 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 711 /* 712 * an orphan block is full of 1020 entries, 713 * then we need to flush current orphan blocks 714 * and bring another one in memory 715 */ 716 orphan_blk->blk_addr = cpu_to_le16(index); 717 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 718 orphan_blk->entry_count = cpu_to_le32(nentries); 719 set_page_dirty(page); 720 f2fs_put_page(page, 1); 721 index++; 722 nentries = 0; 723 page = NULL; 724 } 725 } 726 727 if (page) { 728 orphan_blk->blk_addr = cpu_to_le16(index); 729 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 730 orphan_blk->entry_count = cpu_to_le32(nentries); 731 set_page_dirty(page); 732 f2fs_put_page(page, 1); 733 } 734 } 735 736 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 737 struct f2fs_checkpoint **cp_block, struct page **cp_page, 738 unsigned long long *version) 739 { 740 unsigned long blk_size = sbi->blocksize; 741 size_t crc_offset = 0; 742 __u32 crc = 0; 743 744 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 745 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 746 747 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 748 if (crc_offset > (blk_size - sizeof(__le32))) { 749 f2fs_msg(sbi->sb, KERN_WARNING, 750 "invalid crc_offset: %zu", crc_offset); 751 return -EINVAL; 752 } 753 754 crc = cur_cp_crc(*cp_block); 755 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 756 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 757 return -EINVAL; 758 } 759 760 *version = cur_cp_version(*cp_block); 761 return 0; 762 } 763 764 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 765 block_t cp_addr, unsigned long long *version) 766 { 767 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 768 struct f2fs_checkpoint *cp_block = NULL; 769 unsigned long long cur_version = 0, pre_version = 0; 770 int err; 771 772 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 773 &cp_page_1, version); 774 if (err) 775 goto invalid_cp1; 776 pre_version = *version; 777 778 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 779 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 780 &cp_page_2, version); 781 if (err) 782 goto invalid_cp2; 783 cur_version = *version; 784 785 if (cur_version == pre_version) { 786 *version = cur_version; 787 f2fs_put_page(cp_page_2, 1); 788 return cp_page_1; 789 } 790 invalid_cp2: 791 f2fs_put_page(cp_page_2, 1); 792 invalid_cp1: 793 f2fs_put_page(cp_page_1, 1); 794 return NULL; 795 } 796 797 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 798 { 799 struct f2fs_checkpoint *cp_block; 800 struct f2fs_super_block *fsb = sbi->raw_super; 801 struct page *cp1, *cp2, *cur_page; 802 unsigned long blk_size = sbi->blocksize; 803 unsigned long long cp1_version = 0, cp2_version = 0; 804 unsigned long long cp_start_blk_no; 805 unsigned int cp_blks = 1 + __cp_payload(sbi); 806 block_t cp_blk_no; 807 int i; 808 809 sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL); 810 if (!sbi->ckpt) 811 return -ENOMEM; 812 /* 813 * Finding out valid cp block involves read both 814 * sets( cp pack1 and cp pack 2) 815 */ 816 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 817 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 818 819 /* The second checkpoint pack should start at the next segment */ 820 cp_start_blk_no += ((unsigned long long)1) << 821 le32_to_cpu(fsb->log_blocks_per_seg); 822 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 823 824 if (cp1 && cp2) { 825 if (ver_after(cp2_version, cp1_version)) 826 cur_page = cp2; 827 else 828 cur_page = cp1; 829 } else if (cp1) { 830 cur_page = cp1; 831 } else if (cp2) { 832 cur_page = cp2; 833 } else { 834 goto fail_no_cp; 835 } 836 837 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 838 memcpy(sbi->ckpt, cp_block, blk_size); 839 840 /* Sanity checking of checkpoint */ 841 if (f2fs_sanity_check_ckpt(sbi)) 842 goto free_fail_no_cp; 843 844 if (cur_page == cp1) 845 sbi->cur_cp_pack = 1; 846 else 847 sbi->cur_cp_pack = 2; 848 849 if (cp_blks <= 1) 850 goto done; 851 852 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 853 if (cur_page == cp2) 854 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 855 856 for (i = 1; i < cp_blks; i++) { 857 void *sit_bitmap_ptr; 858 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 859 860 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 861 sit_bitmap_ptr = page_address(cur_page); 862 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 863 f2fs_put_page(cur_page, 1); 864 } 865 done: 866 f2fs_put_page(cp1, 1); 867 f2fs_put_page(cp2, 1); 868 return 0; 869 870 free_fail_no_cp: 871 f2fs_put_page(cp1, 1); 872 f2fs_put_page(cp2, 1); 873 fail_no_cp: 874 kfree(sbi->ckpt); 875 return -EINVAL; 876 } 877 878 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 879 { 880 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 881 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 882 883 if (is_inode_flag_set(inode, flag)) 884 return; 885 886 set_inode_flag(inode, flag); 887 if (!f2fs_is_volatile_file(inode)) 888 list_add_tail(&F2FS_I(inode)->dirty_list, 889 &sbi->inode_list[type]); 890 stat_inc_dirty_inode(sbi, type); 891 } 892 893 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 894 { 895 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 896 897 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 898 return; 899 900 list_del_init(&F2FS_I(inode)->dirty_list); 901 clear_inode_flag(inode, flag); 902 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 903 } 904 905 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 906 { 907 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 908 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 909 910 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 911 !S_ISLNK(inode->i_mode)) 912 return; 913 914 spin_lock(&sbi->inode_lock[type]); 915 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 916 __add_dirty_inode(inode, type); 917 inode_inc_dirty_pages(inode); 918 spin_unlock(&sbi->inode_lock[type]); 919 920 SetPagePrivate(page); 921 f2fs_trace_pid(page); 922 } 923 924 void f2fs_remove_dirty_inode(struct inode *inode) 925 { 926 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 927 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 928 929 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 930 !S_ISLNK(inode->i_mode)) 931 return; 932 933 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 934 return; 935 936 spin_lock(&sbi->inode_lock[type]); 937 __remove_dirty_inode(inode, type); 938 spin_unlock(&sbi->inode_lock[type]); 939 } 940 941 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 942 { 943 struct list_head *head; 944 struct inode *inode; 945 struct f2fs_inode_info *fi; 946 bool is_dir = (type == DIR_INODE); 947 unsigned long ino = 0; 948 949 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 950 get_pages(sbi, is_dir ? 951 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 952 retry: 953 if (unlikely(f2fs_cp_error(sbi))) 954 return -EIO; 955 956 spin_lock(&sbi->inode_lock[type]); 957 958 head = &sbi->inode_list[type]; 959 if (list_empty(head)) { 960 spin_unlock(&sbi->inode_lock[type]); 961 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 962 get_pages(sbi, is_dir ? 963 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 964 return 0; 965 } 966 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 967 inode = igrab(&fi->vfs_inode); 968 spin_unlock(&sbi->inode_lock[type]); 969 if (inode) { 970 unsigned long cur_ino = inode->i_ino; 971 972 if (is_dir) 973 F2FS_I(inode)->cp_task = current; 974 975 filemap_fdatawrite(inode->i_mapping); 976 977 if (is_dir) 978 F2FS_I(inode)->cp_task = NULL; 979 980 iput(inode); 981 /* We need to give cpu to another writers. */ 982 if (ino == cur_ino) { 983 congestion_wait(BLK_RW_ASYNC, HZ/50); 984 cond_resched(); 985 } else { 986 ino = cur_ino; 987 } 988 } else { 989 /* 990 * We should submit bio, since it exists several 991 * wribacking dentry pages in the freeing inode. 992 */ 993 f2fs_submit_merged_write(sbi, DATA); 994 cond_resched(); 995 } 996 goto retry; 997 } 998 999 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1000 { 1001 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1002 struct inode *inode; 1003 struct f2fs_inode_info *fi; 1004 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1005 1006 while (total--) { 1007 if (unlikely(f2fs_cp_error(sbi))) 1008 return -EIO; 1009 1010 spin_lock(&sbi->inode_lock[DIRTY_META]); 1011 if (list_empty(head)) { 1012 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1013 return 0; 1014 } 1015 fi = list_first_entry(head, struct f2fs_inode_info, 1016 gdirty_list); 1017 inode = igrab(&fi->vfs_inode); 1018 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1019 if (inode) { 1020 sync_inode_metadata(inode, 0); 1021 1022 /* it's on eviction */ 1023 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1024 f2fs_update_inode_page(inode); 1025 iput(inode); 1026 } 1027 } 1028 return 0; 1029 } 1030 1031 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1032 { 1033 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1034 struct f2fs_nm_info *nm_i = NM_I(sbi); 1035 nid_t last_nid = nm_i->next_scan_nid; 1036 1037 next_free_nid(sbi, &last_nid); 1038 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1039 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1040 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1041 ckpt->next_free_nid = cpu_to_le32(last_nid); 1042 } 1043 1044 /* 1045 * Freeze all the FS-operations for checkpoint. 1046 */ 1047 static int block_operations(struct f2fs_sb_info *sbi) 1048 { 1049 struct writeback_control wbc = { 1050 .sync_mode = WB_SYNC_ALL, 1051 .nr_to_write = LONG_MAX, 1052 .for_reclaim = 0, 1053 }; 1054 struct blk_plug plug; 1055 int err = 0; 1056 1057 blk_start_plug(&plug); 1058 1059 retry_flush_dents: 1060 f2fs_lock_all(sbi); 1061 /* write all the dirty dentry pages */ 1062 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1063 f2fs_unlock_all(sbi); 1064 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1065 if (err) 1066 goto out; 1067 cond_resched(); 1068 goto retry_flush_dents; 1069 } 1070 1071 /* 1072 * POR: we should ensure that there are no dirty node pages 1073 * until finishing nat/sit flush. inode->i_blocks can be updated. 1074 */ 1075 down_write(&sbi->node_change); 1076 1077 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1078 up_write(&sbi->node_change); 1079 f2fs_unlock_all(sbi); 1080 err = f2fs_sync_inode_meta(sbi); 1081 if (err) 1082 goto out; 1083 cond_resched(); 1084 goto retry_flush_dents; 1085 } 1086 1087 retry_flush_nodes: 1088 down_write(&sbi->node_write); 1089 1090 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1091 up_write(&sbi->node_write); 1092 atomic_inc(&sbi->wb_sync_req[NODE]); 1093 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1094 atomic_dec(&sbi->wb_sync_req[NODE]); 1095 if (err) { 1096 up_write(&sbi->node_change); 1097 f2fs_unlock_all(sbi); 1098 goto out; 1099 } 1100 cond_resched(); 1101 goto retry_flush_nodes; 1102 } 1103 1104 /* 1105 * sbi->node_change is used only for AIO write_begin path which produces 1106 * dirty node blocks and some checkpoint values by block allocation. 1107 */ 1108 __prepare_cp_block(sbi); 1109 up_write(&sbi->node_change); 1110 out: 1111 blk_finish_plug(&plug); 1112 return err; 1113 } 1114 1115 static void unblock_operations(struct f2fs_sb_info *sbi) 1116 { 1117 up_write(&sbi->node_write); 1118 f2fs_unlock_all(sbi); 1119 } 1120 1121 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1122 { 1123 DEFINE_WAIT(wait); 1124 1125 for (;;) { 1126 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1127 1128 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1129 break; 1130 1131 io_schedule_timeout(5*HZ); 1132 } 1133 finish_wait(&sbi->cp_wait, &wait); 1134 } 1135 1136 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1137 { 1138 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1139 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1140 unsigned long flags; 1141 1142 spin_lock_irqsave(&sbi->cp_lock, flags); 1143 1144 if ((cpc->reason & CP_UMOUNT) && 1145 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1146 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1147 disable_nat_bits(sbi, false); 1148 1149 if (cpc->reason & CP_TRIMMED) 1150 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1151 else 1152 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1153 1154 if (cpc->reason & CP_UMOUNT) 1155 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1156 else 1157 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1158 1159 if (cpc->reason & CP_FASTBOOT) 1160 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1161 else 1162 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1163 1164 if (orphan_num) 1165 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1166 else 1167 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1168 1169 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1170 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1171 1172 /* set this flag to activate crc|cp_ver for recovery */ 1173 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1174 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1175 1176 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1177 } 1178 1179 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1180 void *src, block_t blk_addr) 1181 { 1182 struct writeback_control wbc = { 1183 .for_reclaim = 0, 1184 }; 1185 1186 /* 1187 * pagevec_lookup_tag and lock_page again will take 1188 * some extra time. Therefore, f2fs_update_meta_pages and 1189 * f2fs_sync_meta_pages are combined in this function. 1190 */ 1191 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1192 int err; 1193 1194 memcpy(page_address(page), src, PAGE_SIZE); 1195 set_page_dirty(page); 1196 1197 f2fs_wait_on_page_writeback(page, META, true); 1198 f2fs_bug_on(sbi, PageWriteback(page)); 1199 if (unlikely(!clear_page_dirty_for_io(page))) 1200 f2fs_bug_on(sbi, 1); 1201 1202 /* writeout cp pack 2 page */ 1203 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1204 f2fs_bug_on(sbi, err); 1205 1206 f2fs_put_page(page, 0); 1207 1208 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1209 f2fs_submit_merged_write(sbi, META_FLUSH); 1210 } 1211 1212 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1213 { 1214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1215 struct f2fs_nm_info *nm_i = NM_I(sbi); 1216 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1217 block_t start_blk; 1218 unsigned int data_sum_blocks, orphan_blocks; 1219 __u32 crc32 = 0; 1220 int i; 1221 int cp_payload_blks = __cp_payload(sbi); 1222 struct super_block *sb = sbi->sb; 1223 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1224 u64 kbytes_written; 1225 int err; 1226 1227 /* Flush all the NAT/SIT pages */ 1228 while (get_pages(sbi, F2FS_DIRTY_META)) { 1229 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1230 if (unlikely(f2fs_cp_error(sbi))) 1231 return -EIO; 1232 } 1233 1234 /* 1235 * modify checkpoint 1236 * version number is already updated 1237 */ 1238 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1239 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1240 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1241 ckpt->cur_node_segno[i] = 1242 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1243 ckpt->cur_node_blkoff[i] = 1244 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1245 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1246 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1247 } 1248 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1249 ckpt->cur_data_segno[i] = 1250 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1251 ckpt->cur_data_blkoff[i] = 1252 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1253 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1254 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1255 } 1256 1257 /* 2 cp + n data seg summary + orphan inode blocks */ 1258 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1259 spin_lock_irqsave(&sbi->cp_lock, flags); 1260 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1261 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1262 else 1263 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1264 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1265 1266 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1267 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1268 orphan_blocks); 1269 1270 if (__remain_node_summaries(cpc->reason)) 1271 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1272 cp_payload_blks + data_sum_blocks + 1273 orphan_blocks + NR_CURSEG_NODE_TYPE); 1274 else 1275 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1276 cp_payload_blks + data_sum_blocks + 1277 orphan_blocks); 1278 1279 /* update ckpt flag for checkpoint */ 1280 update_ckpt_flags(sbi, cpc); 1281 1282 /* update SIT/NAT bitmap */ 1283 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1284 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1285 1286 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1287 *((__le32 *)((unsigned char *)ckpt + 1288 le32_to_cpu(ckpt->checksum_offset))) 1289 = cpu_to_le32(crc32); 1290 1291 start_blk = __start_cp_next_addr(sbi); 1292 1293 /* write nat bits */ 1294 if (enabled_nat_bits(sbi, cpc)) { 1295 __u64 cp_ver = cur_cp_version(ckpt); 1296 block_t blk; 1297 1298 cp_ver |= ((__u64)crc32 << 32); 1299 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1300 1301 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1302 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1303 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1304 (i << F2FS_BLKSIZE_BITS), blk + i); 1305 1306 /* Flush all the NAT BITS pages */ 1307 while (get_pages(sbi, F2FS_DIRTY_META)) { 1308 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1309 FS_CP_META_IO); 1310 if (unlikely(f2fs_cp_error(sbi))) 1311 return -EIO; 1312 } 1313 } 1314 1315 /* write out checkpoint buffer at block 0 */ 1316 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1317 1318 for (i = 1; i < 1 + cp_payload_blks; i++) 1319 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1320 start_blk++); 1321 1322 if (orphan_num) { 1323 write_orphan_inodes(sbi, start_blk); 1324 start_blk += orphan_blocks; 1325 } 1326 1327 f2fs_write_data_summaries(sbi, start_blk); 1328 start_blk += data_sum_blocks; 1329 1330 /* Record write statistics in the hot node summary */ 1331 kbytes_written = sbi->kbytes_written; 1332 if (sb->s_bdev->bd_part) 1333 kbytes_written += BD_PART_WRITTEN(sbi); 1334 1335 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1336 1337 if (__remain_node_summaries(cpc->reason)) { 1338 f2fs_write_node_summaries(sbi, start_blk); 1339 start_blk += NR_CURSEG_NODE_TYPE; 1340 } 1341 1342 /* update user_block_counts */ 1343 sbi->last_valid_block_count = sbi->total_valid_block_count; 1344 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1345 1346 /* Here, we have one bio having CP pack except cp pack 2 page */ 1347 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1348 1349 /* wait for previous submitted meta pages writeback */ 1350 wait_on_all_pages_writeback(sbi); 1351 1352 if (unlikely(f2fs_cp_error(sbi))) 1353 return -EIO; 1354 1355 /* flush all device cache */ 1356 err = f2fs_flush_device_cache(sbi); 1357 if (err) 1358 return err; 1359 1360 /* barrier and flush checkpoint cp pack 2 page if it can */ 1361 commit_checkpoint(sbi, ckpt, start_blk); 1362 wait_on_all_pages_writeback(sbi); 1363 1364 f2fs_release_ino_entry(sbi, false); 1365 1366 if (unlikely(f2fs_cp_error(sbi))) 1367 return -EIO; 1368 1369 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1370 clear_sbi_flag(sbi, SBI_NEED_CP); 1371 __set_cp_next_pack(sbi); 1372 1373 /* 1374 * redirty superblock if metadata like node page or inode cache is 1375 * updated during writing checkpoint. 1376 */ 1377 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1378 get_pages(sbi, F2FS_DIRTY_IMETA)) 1379 set_sbi_flag(sbi, SBI_IS_DIRTY); 1380 1381 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1382 1383 return 0; 1384 } 1385 1386 /* 1387 * We guarantee that this checkpoint procedure will not fail. 1388 */ 1389 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1390 { 1391 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1392 unsigned long long ckpt_ver; 1393 int err = 0; 1394 1395 mutex_lock(&sbi->cp_mutex); 1396 1397 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1398 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1399 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1400 goto out; 1401 if (unlikely(f2fs_cp_error(sbi))) { 1402 err = -EIO; 1403 goto out; 1404 } 1405 if (f2fs_readonly(sbi->sb)) { 1406 err = -EROFS; 1407 goto out; 1408 } 1409 1410 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1411 1412 err = block_operations(sbi); 1413 if (err) 1414 goto out; 1415 1416 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1417 1418 f2fs_flush_merged_writes(sbi); 1419 1420 /* this is the case of multiple fstrims without any changes */ 1421 if (cpc->reason & CP_DISCARD) { 1422 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1423 unblock_operations(sbi); 1424 goto out; 1425 } 1426 1427 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1428 SIT_I(sbi)->dirty_sentries == 0 && 1429 prefree_segments(sbi) == 0) { 1430 f2fs_flush_sit_entries(sbi, cpc); 1431 f2fs_clear_prefree_segments(sbi, cpc); 1432 unblock_operations(sbi); 1433 goto out; 1434 } 1435 } 1436 1437 /* 1438 * update checkpoint pack index 1439 * Increase the version number so that 1440 * SIT entries and seg summaries are written at correct place 1441 */ 1442 ckpt_ver = cur_cp_version(ckpt); 1443 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1444 1445 /* write cached NAT/SIT entries to NAT/SIT area */ 1446 f2fs_flush_nat_entries(sbi, cpc); 1447 f2fs_flush_sit_entries(sbi, cpc); 1448 1449 /* unlock all the fs_lock[] in do_checkpoint() */ 1450 err = do_checkpoint(sbi, cpc); 1451 if (err) 1452 f2fs_release_discard_addrs(sbi); 1453 else 1454 f2fs_clear_prefree_segments(sbi, cpc); 1455 1456 unblock_operations(sbi); 1457 stat_inc_cp_count(sbi->stat_info); 1458 1459 if (cpc->reason & CP_RECOVERY) 1460 f2fs_msg(sbi->sb, KERN_NOTICE, 1461 "checkpoint: version = %llx", ckpt_ver); 1462 1463 /* do checkpoint periodically */ 1464 f2fs_update_time(sbi, CP_TIME); 1465 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1466 out: 1467 mutex_unlock(&sbi->cp_mutex); 1468 return err; 1469 } 1470 1471 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1472 { 1473 int i; 1474 1475 for (i = 0; i < MAX_INO_ENTRY; i++) { 1476 struct inode_management *im = &sbi->im[i]; 1477 1478 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1479 spin_lock_init(&im->ino_lock); 1480 INIT_LIST_HEAD(&im->ino_list); 1481 im->ino_num = 0; 1482 } 1483 1484 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1485 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1486 F2FS_ORPHANS_PER_BLOCK; 1487 } 1488 1489 int __init f2fs_create_checkpoint_caches(void) 1490 { 1491 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1492 sizeof(struct ino_entry)); 1493 if (!ino_entry_slab) 1494 return -ENOMEM; 1495 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1496 sizeof(struct inode_entry)); 1497 if (!f2fs_inode_entry_slab) { 1498 kmem_cache_destroy(ino_entry_slab); 1499 return -ENOMEM; 1500 } 1501 return 0; 1502 } 1503 1504 void f2fs_destroy_checkpoint_caches(void) 1505 { 1506 kmem_cache_destroy(ino_entry_slab); 1507 kmem_cache_destroy(f2fs_inode_entry_slab); 1508 } 1509