1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 f2fs_build_fault_attr(sbi, 0, 0); 32 set_ckpt_flags(sbi, CP_ERROR_FLAG); 33 if (!end_io) 34 f2fs_flush_merged_writes(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .op = REQ_OP_READ, 68 .op_flags = REQ_META | REQ_PRIO, 69 .old_blkaddr = index, 70 .new_blkaddr = index, 71 .encrypted_page = NULL, 72 .is_meta = is_meta, 73 }; 74 int err; 75 76 if (unlikely(!is_meta)) 77 fio.op_flags &= ~REQ_META; 78 repeat: 79 page = f2fs_grab_cache_page(mapping, index, false); 80 if (!page) { 81 cond_resched(); 82 goto repeat; 83 } 84 if (PageUptodate(page)) 85 goto out; 86 87 fio.page = page; 88 89 err = f2fs_submit_page_bio(&fio); 90 if (err) { 91 f2fs_put_page(page, 1); 92 return ERR_PTR(err); 93 } 94 95 lock_page(page); 96 if (unlikely(page->mapping != mapping)) { 97 f2fs_put_page(page, 1); 98 goto repeat; 99 } 100 101 if (unlikely(!PageUptodate(page))) { 102 f2fs_put_page(page, 1); 103 return ERR_PTR(-EIO); 104 } 105 out: 106 return page; 107 } 108 109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index) 115 { 116 struct page *page; 117 int count = 0; 118 119 retry: 120 page = __get_meta_page(sbi, index, true); 121 if (IS_ERR(page)) { 122 if (PTR_ERR(page) == -EIO && 123 ++count <= DEFAULT_RETRY_IO_COUNT) 124 goto retry; 125 126 f2fs_stop_checkpoint(sbi, false); 127 f2fs_bug_on(sbi, 1); 128 } 129 130 return page; 131 } 132 133 /* for POR only */ 134 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 135 { 136 return __get_meta_page(sbi, index, false); 137 } 138 139 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 140 block_t blkaddr, int type) 141 { 142 switch (type) { 143 case META_NAT: 144 break; 145 case META_SIT: 146 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 147 return false; 148 break; 149 case META_SSA: 150 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 151 blkaddr < SM_I(sbi)->ssa_blkaddr)) 152 return false; 153 break; 154 case META_CP: 155 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 156 blkaddr < __start_cp_addr(sbi))) 157 return false; 158 break; 159 case META_POR: 160 case DATA_GENERIC: 161 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 162 blkaddr < MAIN_BLKADDR(sbi))) { 163 if (type == DATA_GENERIC) { 164 f2fs_msg(sbi->sb, KERN_WARNING, 165 "access invalid blkaddr:%u", blkaddr); 166 WARN_ON(1); 167 } 168 return false; 169 } 170 break; 171 case META_GENERIC: 172 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 173 blkaddr >= MAIN_BLKADDR(sbi))) 174 return false; 175 break; 176 default: 177 BUG(); 178 } 179 180 return true; 181 } 182 183 /* 184 * Readahead CP/NAT/SIT/SSA pages 185 */ 186 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 187 int type, bool sync) 188 { 189 struct page *page; 190 block_t blkno = start; 191 struct f2fs_io_info fio = { 192 .sbi = sbi, 193 .type = META, 194 .op = REQ_OP_READ, 195 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 196 .encrypted_page = NULL, 197 .in_list = false, 198 .is_meta = (type != META_POR), 199 }; 200 struct blk_plug plug; 201 202 if (unlikely(type == META_POR)) 203 fio.op_flags &= ~REQ_META; 204 205 blk_start_plug(&plug); 206 for (; nrpages-- > 0; blkno++) { 207 208 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 209 goto out; 210 211 switch (type) { 212 case META_NAT: 213 if (unlikely(blkno >= 214 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 215 blkno = 0; 216 /* get nat block addr */ 217 fio.new_blkaddr = current_nat_addr(sbi, 218 blkno * NAT_ENTRY_PER_BLOCK); 219 break; 220 case META_SIT: 221 /* get sit block addr */ 222 fio.new_blkaddr = current_sit_addr(sbi, 223 blkno * SIT_ENTRY_PER_BLOCK); 224 break; 225 case META_SSA: 226 case META_CP: 227 case META_POR: 228 fio.new_blkaddr = blkno; 229 break; 230 default: 231 BUG(); 232 } 233 234 page = f2fs_grab_cache_page(META_MAPPING(sbi), 235 fio.new_blkaddr, false); 236 if (!page) 237 continue; 238 if (PageUptodate(page)) { 239 f2fs_put_page(page, 1); 240 continue; 241 } 242 243 fio.page = page; 244 f2fs_submit_page_bio(&fio); 245 f2fs_put_page(page, 0); 246 } 247 out: 248 blk_finish_plug(&plug); 249 return blkno - start; 250 } 251 252 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 253 { 254 struct page *page; 255 bool readahead = false; 256 257 page = find_get_page(META_MAPPING(sbi), index); 258 if (!page || !PageUptodate(page)) 259 readahead = true; 260 f2fs_put_page(page, 0); 261 262 if (readahead) 263 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 264 } 265 266 static int __f2fs_write_meta_page(struct page *page, 267 struct writeback_control *wbc, 268 enum iostat_type io_type) 269 { 270 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 271 272 trace_f2fs_writepage(page, META); 273 274 if (unlikely(f2fs_cp_error(sbi))) 275 goto redirty_out; 276 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 277 goto redirty_out; 278 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 279 goto redirty_out; 280 281 f2fs_do_write_meta_page(sbi, page, io_type); 282 dec_page_count(sbi, F2FS_DIRTY_META); 283 284 if (wbc->for_reclaim) 285 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 286 0, page->index, META); 287 288 unlock_page(page); 289 290 if (unlikely(f2fs_cp_error(sbi))) 291 f2fs_submit_merged_write(sbi, META); 292 293 return 0; 294 295 redirty_out: 296 redirty_page_for_writepage(wbc, page); 297 return AOP_WRITEPAGE_ACTIVATE; 298 } 299 300 static int f2fs_write_meta_page(struct page *page, 301 struct writeback_control *wbc) 302 { 303 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 304 } 305 306 static int f2fs_write_meta_pages(struct address_space *mapping, 307 struct writeback_control *wbc) 308 { 309 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 310 long diff, written; 311 312 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 313 goto skip_write; 314 315 /* collect a number of dirty meta pages and write together */ 316 if (wbc->for_kupdate || 317 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 318 goto skip_write; 319 320 /* if locked failed, cp will flush dirty pages instead */ 321 if (!mutex_trylock(&sbi->cp_mutex)) 322 goto skip_write; 323 324 trace_f2fs_writepages(mapping->host, wbc, META); 325 diff = nr_pages_to_write(sbi, META, wbc); 326 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 327 mutex_unlock(&sbi->cp_mutex); 328 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 329 return 0; 330 331 skip_write: 332 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 333 trace_f2fs_writepages(mapping->host, wbc, META); 334 return 0; 335 } 336 337 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 338 long nr_to_write, enum iostat_type io_type) 339 { 340 struct address_space *mapping = META_MAPPING(sbi); 341 pgoff_t index = 0, prev = ULONG_MAX; 342 struct pagevec pvec; 343 long nwritten = 0; 344 int nr_pages; 345 struct writeback_control wbc = { 346 .for_reclaim = 0, 347 }; 348 struct blk_plug plug; 349 350 pagevec_init(&pvec); 351 352 blk_start_plug(&plug); 353 354 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 355 PAGECACHE_TAG_DIRTY))) { 356 int i; 357 358 for (i = 0; i < nr_pages; i++) { 359 struct page *page = pvec.pages[i]; 360 361 if (prev == ULONG_MAX) 362 prev = page->index - 1; 363 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 364 pagevec_release(&pvec); 365 goto stop; 366 } 367 368 lock_page(page); 369 370 if (unlikely(page->mapping != mapping)) { 371 continue_unlock: 372 unlock_page(page); 373 continue; 374 } 375 if (!PageDirty(page)) { 376 /* someone wrote it for us */ 377 goto continue_unlock; 378 } 379 380 f2fs_wait_on_page_writeback(page, META, true); 381 382 BUG_ON(PageWriteback(page)); 383 if (!clear_page_dirty_for_io(page)) 384 goto continue_unlock; 385 386 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 387 unlock_page(page); 388 break; 389 } 390 nwritten++; 391 prev = page->index; 392 if (unlikely(nwritten >= nr_to_write)) 393 break; 394 } 395 pagevec_release(&pvec); 396 cond_resched(); 397 } 398 stop: 399 if (nwritten) 400 f2fs_submit_merged_write(sbi, type); 401 402 blk_finish_plug(&plug); 403 404 return nwritten; 405 } 406 407 static int f2fs_set_meta_page_dirty(struct page *page) 408 { 409 trace_f2fs_set_page_dirty(page, META); 410 411 if (!PageUptodate(page)) 412 SetPageUptodate(page); 413 if (!PageDirty(page)) { 414 __set_page_dirty_nobuffers(page); 415 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 416 SetPagePrivate(page); 417 f2fs_trace_pid(page); 418 return 1; 419 } 420 return 0; 421 } 422 423 const struct address_space_operations f2fs_meta_aops = { 424 .writepage = f2fs_write_meta_page, 425 .writepages = f2fs_write_meta_pages, 426 .set_page_dirty = f2fs_set_meta_page_dirty, 427 .invalidatepage = f2fs_invalidate_page, 428 .releasepage = f2fs_release_page, 429 #ifdef CONFIG_MIGRATION 430 .migratepage = f2fs_migrate_page, 431 #endif 432 }; 433 434 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 435 unsigned int devidx, int type) 436 { 437 struct inode_management *im = &sbi->im[type]; 438 struct ino_entry *e, *tmp; 439 440 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 441 442 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 443 444 spin_lock(&im->ino_lock); 445 e = radix_tree_lookup(&im->ino_root, ino); 446 if (!e) { 447 e = tmp; 448 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 449 f2fs_bug_on(sbi, 1); 450 451 memset(e, 0, sizeof(struct ino_entry)); 452 e->ino = ino; 453 454 list_add_tail(&e->list, &im->ino_list); 455 if (type != ORPHAN_INO) 456 im->ino_num++; 457 } 458 459 if (type == FLUSH_INO) 460 f2fs_set_bit(devidx, (char *)&e->dirty_device); 461 462 spin_unlock(&im->ino_lock); 463 radix_tree_preload_end(); 464 465 if (e != tmp) 466 kmem_cache_free(ino_entry_slab, tmp); 467 } 468 469 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 470 { 471 struct inode_management *im = &sbi->im[type]; 472 struct ino_entry *e; 473 474 spin_lock(&im->ino_lock); 475 e = radix_tree_lookup(&im->ino_root, ino); 476 if (e) { 477 list_del(&e->list); 478 radix_tree_delete(&im->ino_root, ino); 479 im->ino_num--; 480 spin_unlock(&im->ino_lock); 481 kmem_cache_free(ino_entry_slab, e); 482 return; 483 } 484 spin_unlock(&im->ino_lock); 485 } 486 487 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 488 { 489 /* add new dirty ino entry into list */ 490 __add_ino_entry(sbi, ino, 0, type); 491 } 492 493 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 494 { 495 /* remove dirty ino entry from list */ 496 __remove_ino_entry(sbi, ino, type); 497 } 498 499 /* mode should be APPEND_INO or UPDATE_INO */ 500 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 501 { 502 struct inode_management *im = &sbi->im[mode]; 503 struct ino_entry *e; 504 505 spin_lock(&im->ino_lock); 506 e = radix_tree_lookup(&im->ino_root, ino); 507 spin_unlock(&im->ino_lock); 508 return e ? true : false; 509 } 510 511 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 512 { 513 struct ino_entry *e, *tmp; 514 int i; 515 516 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 517 struct inode_management *im = &sbi->im[i]; 518 519 spin_lock(&im->ino_lock); 520 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 521 list_del(&e->list); 522 radix_tree_delete(&im->ino_root, e->ino); 523 kmem_cache_free(ino_entry_slab, e); 524 im->ino_num--; 525 } 526 spin_unlock(&im->ino_lock); 527 } 528 } 529 530 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 531 unsigned int devidx, int type) 532 { 533 __add_ino_entry(sbi, ino, devidx, type); 534 } 535 536 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 537 unsigned int devidx, int type) 538 { 539 struct inode_management *im = &sbi->im[type]; 540 struct ino_entry *e; 541 bool is_dirty = false; 542 543 spin_lock(&im->ino_lock); 544 e = radix_tree_lookup(&im->ino_root, ino); 545 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 546 is_dirty = true; 547 spin_unlock(&im->ino_lock); 548 return is_dirty; 549 } 550 551 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 552 { 553 struct inode_management *im = &sbi->im[ORPHAN_INO]; 554 int err = 0; 555 556 spin_lock(&im->ino_lock); 557 558 if (time_to_inject(sbi, FAULT_ORPHAN)) { 559 spin_unlock(&im->ino_lock); 560 f2fs_show_injection_info(FAULT_ORPHAN); 561 return -ENOSPC; 562 } 563 564 if (unlikely(im->ino_num >= sbi->max_orphans)) 565 err = -ENOSPC; 566 else 567 im->ino_num++; 568 spin_unlock(&im->ino_lock); 569 570 return err; 571 } 572 573 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 574 { 575 struct inode_management *im = &sbi->im[ORPHAN_INO]; 576 577 spin_lock(&im->ino_lock); 578 f2fs_bug_on(sbi, im->ino_num == 0); 579 im->ino_num--; 580 spin_unlock(&im->ino_lock); 581 } 582 583 void f2fs_add_orphan_inode(struct inode *inode) 584 { 585 /* add new orphan ino entry into list */ 586 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 587 f2fs_update_inode_page(inode); 588 } 589 590 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 591 { 592 /* remove orphan entry from orphan list */ 593 __remove_ino_entry(sbi, ino, ORPHAN_INO); 594 } 595 596 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 597 { 598 struct inode *inode; 599 struct node_info ni; 600 int err; 601 602 inode = f2fs_iget_retry(sbi->sb, ino); 603 if (IS_ERR(inode)) { 604 /* 605 * there should be a bug that we can't find the entry 606 * to orphan inode. 607 */ 608 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 609 return PTR_ERR(inode); 610 } 611 612 err = dquot_initialize(inode); 613 if (err) { 614 iput(inode); 615 goto err_out; 616 } 617 618 clear_nlink(inode); 619 620 /* truncate all the data during iput */ 621 iput(inode); 622 623 err = f2fs_get_node_info(sbi, ino, &ni); 624 if (err) 625 goto err_out; 626 627 /* ENOMEM was fully retried in f2fs_evict_inode. */ 628 if (ni.blk_addr != NULL_ADDR) { 629 err = -EIO; 630 goto err_out; 631 } 632 return 0; 633 634 err_out: 635 set_sbi_flag(sbi, SBI_NEED_FSCK); 636 f2fs_msg(sbi->sb, KERN_WARNING, 637 "%s: orphan failed (ino=%x), run fsck to fix.", 638 __func__, ino); 639 return err; 640 } 641 642 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 643 { 644 block_t start_blk, orphan_blocks, i, j; 645 unsigned int s_flags = sbi->sb->s_flags; 646 int err = 0; 647 #ifdef CONFIG_QUOTA 648 int quota_enabled; 649 #endif 650 651 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 652 return 0; 653 654 if (s_flags & SB_RDONLY) { 655 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 656 sbi->sb->s_flags &= ~SB_RDONLY; 657 } 658 659 #ifdef CONFIG_QUOTA 660 /* Needed for iput() to work correctly and not trash data */ 661 sbi->sb->s_flags |= SB_ACTIVE; 662 663 /* 664 * Turn on quotas which were not enabled for read-only mounts if 665 * filesystem has quota feature, so that they are updated correctly. 666 */ 667 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 668 #endif 669 670 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 671 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 672 673 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 674 675 for (i = 0; i < orphan_blocks; i++) { 676 struct page *page; 677 struct f2fs_orphan_block *orphan_blk; 678 679 page = f2fs_get_meta_page(sbi, start_blk + i); 680 if (IS_ERR(page)) { 681 err = PTR_ERR(page); 682 goto out; 683 } 684 685 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 686 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 687 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 688 err = recover_orphan_inode(sbi, ino); 689 if (err) { 690 f2fs_put_page(page, 1); 691 goto out; 692 } 693 } 694 f2fs_put_page(page, 1); 695 } 696 /* clear Orphan Flag */ 697 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 698 out: 699 #ifdef CONFIG_QUOTA 700 /* Turn quotas off */ 701 if (quota_enabled) 702 f2fs_quota_off_umount(sbi->sb); 703 #endif 704 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 705 706 return err; 707 } 708 709 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 710 { 711 struct list_head *head; 712 struct f2fs_orphan_block *orphan_blk = NULL; 713 unsigned int nentries = 0; 714 unsigned short index = 1; 715 unsigned short orphan_blocks; 716 struct page *page = NULL; 717 struct ino_entry *orphan = NULL; 718 struct inode_management *im = &sbi->im[ORPHAN_INO]; 719 720 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 721 722 /* 723 * we don't need to do spin_lock(&im->ino_lock) here, since all the 724 * orphan inode operations are covered under f2fs_lock_op(). 725 * And, spin_lock should be avoided due to page operations below. 726 */ 727 head = &im->ino_list; 728 729 /* loop for each orphan inode entry and write them in Jornal block */ 730 list_for_each_entry(orphan, head, list) { 731 if (!page) { 732 page = f2fs_grab_meta_page(sbi, start_blk++); 733 orphan_blk = 734 (struct f2fs_orphan_block *)page_address(page); 735 memset(orphan_blk, 0, sizeof(*orphan_blk)); 736 } 737 738 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 739 740 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 741 /* 742 * an orphan block is full of 1020 entries, 743 * then we need to flush current orphan blocks 744 * and bring another one in memory 745 */ 746 orphan_blk->blk_addr = cpu_to_le16(index); 747 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 748 orphan_blk->entry_count = cpu_to_le32(nentries); 749 set_page_dirty(page); 750 f2fs_put_page(page, 1); 751 index++; 752 nentries = 0; 753 page = NULL; 754 } 755 } 756 757 if (page) { 758 orphan_blk->blk_addr = cpu_to_le16(index); 759 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 760 orphan_blk->entry_count = cpu_to_le32(nentries); 761 set_page_dirty(page); 762 f2fs_put_page(page, 1); 763 } 764 } 765 766 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 767 struct f2fs_checkpoint **cp_block, struct page **cp_page, 768 unsigned long long *version) 769 { 770 unsigned long blk_size = sbi->blocksize; 771 size_t crc_offset = 0; 772 __u32 crc = 0; 773 774 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 775 if (IS_ERR(*cp_page)) 776 return PTR_ERR(*cp_page); 777 778 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 779 780 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 781 if (crc_offset > (blk_size - sizeof(__le32))) { 782 f2fs_put_page(*cp_page, 1); 783 f2fs_msg(sbi->sb, KERN_WARNING, 784 "invalid crc_offset: %zu", crc_offset); 785 return -EINVAL; 786 } 787 788 crc = cur_cp_crc(*cp_block); 789 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 790 f2fs_put_page(*cp_page, 1); 791 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 792 return -EINVAL; 793 } 794 795 *version = cur_cp_version(*cp_block); 796 return 0; 797 } 798 799 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 800 block_t cp_addr, unsigned long long *version) 801 { 802 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 803 struct f2fs_checkpoint *cp_block = NULL; 804 unsigned long long cur_version = 0, pre_version = 0; 805 int err; 806 807 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 808 &cp_page_1, version); 809 if (err) 810 return NULL; 811 812 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 813 sbi->blocks_per_seg) { 814 f2fs_msg(sbi->sb, KERN_WARNING, 815 "invalid cp_pack_total_block_count:%u", 816 le32_to_cpu(cp_block->cp_pack_total_block_count)); 817 goto invalid_cp; 818 } 819 pre_version = *version; 820 821 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 822 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 823 &cp_page_2, version); 824 if (err) 825 goto invalid_cp; 826 cur_version = *version; 827 828 if (cur_version == pre_version) { 829 *version = cur_version; 830 f2fs_put_page(cp_page_2, 1); 831 return cp_page_1; 832 } 833 f2fs_put_page(cp_page_2, 1); 834 invalid_cp: 835 f2fs_put_page(cp_page_1, 1); 836 return NULL; 837 } 838 839 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 840 { 841 struct f2fs_checkpoint *cp_block; 842 struct f2fs_super_block *fsb = sbi->raw_super; 843 struct page *cp1, *cp2, *cur_page; 844 unsigned long blk_size = sbi->blocksize; 845 unsigned long long cp1_version = 0, cp2_version = 0; 846 unsigned long long cp_start_blk_no; 847 unsigned int cp_blks = 1 + __cp_payload(sbi); 848 block_t cp_blk_no; 849 int i; 850 851 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks), 852 GFP_KERNEL); 853 if (!sbi->ckpt) 854 return -ENOMEM; 855 /* 856 * Finding out valid cp block involves read both 857 * sets( cp pack1 and cp pack 2) 858 */ 859 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 860 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 861 862 /* The second checkpoint pack should start at the next segment */ 863 cp_start_blk_no += ((unsigned long long)1) << 864 le32_to_cpu(fsb->log_blocks_per_seg); 865 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 866 867 if (cp1 && cp2) { 868 if (ver_after(cp2_version, cp1_version)) 869 cur_page = cp2; 870 else 871 cur_page = cp1; 872 } else if (cp1) { 873 cur_page = cp1; 874 } else if (cp2) { 875 cur_page = cp2; 876 } else { 877 goto fail_no_cp; 878 } 879 880 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 881 memcpy(sbi->ckpt, cp_block, blk_size); 882 883 if (cur_page == cp1) 884 sbi->cur_cp_pack = 1; 885 else 886 sbi->cur_cp_pack = 2; 887 888 /* Sanity checking of checkpoint */ 889 if (f2fs_sanity_check_ckpt(sbi)) 890 goto free_fail_no_cp; 891 892 if (cp_blks <= 1) 893 goto done; 894 895 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 896 if (cur_page == cp2) 897 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 898 899 for (i = 1; i < cp_blks; i++) { 900 void *sit_bitmap_ptr; 901 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 902 903 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 904 if (IS_ERR(cur_page)) 905 goto free_fail_no_cp; 906 sit_bitmap_ptr = page_address(cur_page); 907 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 908 f2fs_put_page(cur_page, 1); 909 } 910 done: 911 f2fs_put_page(cp1, 1); 912 f2fs_put_page(cp2, 1); 913 return 0; 914 915 free_fail_no_cp: 916 f2fs_put_page(cp1, 1); 917 f2fs_put_page(cp2, 1); 918 fail_no_cp: 919 kfree(sbi->ckpt); 920 return -EINVAL; 921 } 922 923 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 924 { 925 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 926 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 927 928 if (is_inode_flag_set(inode, flag)) 929 return; 930 931 set_inode_flag(inode, flag); 932 if (!f2fs_is_volatile_file(inode)) 933 list_add_tail(&F2FS_I(inode)->dirty_list, 934 &sbi->inode_list[type]); 935 stat_inc_dirty_inode(sbi, type); 936 } 937 938 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 939 { 940 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 941 942 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 943 return; 944 945 list_del_init(&F2FS_I(inode)->dirty_list); 946 clear_inode_flag(inode, flag); 947 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 948 } 949 950 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 951 { 952 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 953 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 954 955 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 956 !S_ISLNK(inode->i_mode)) 957 return; 958 959 spin_lock(&sbi->inode_lock[type]); 960 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 961 __add_dirty_inode(inode, type); 962 inode_inc_dirty_pages(inode); 963 spin_unlock(&sbi->inode_lock[type]); 964 965 SetPagePrivate(page); 966 f2fs_trace_pid(page); 967 } 968 969 void f2fs_remove_dirty_inode(struct inode *inode) 970 { 971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 972 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 973 974 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 975 !S_ISLNK(inode->i_mode)) 976 return; 977 978 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 979 return; 980 981 spin_lock(&sbi->inode_lock[type]); 982 __remove_dirty_inode(inode, type); 983 spin_unlock(&sbi->inode_lock[type]); 984 } 985 986 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 987 { 988 struct list_head *head; 989 struct inode *inode; 990 struct f2fs_inode_info *fi; 991 bool is_dir = (type == DIR_INODE); 992 unsigned long ino = 0; 993 994 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 995 get_pages(sbi, is_dir ? 996 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 997 retry: 998 if (unlikely(f2fs_cp_error(sbi))) 999 return -EIO; 1000 1001 spin_lock(&sbi->inode_lock[type]); 1002 1003 head = &sbi->inode_list[type]; 1004 if (list_empty(head)) { 1005 spin_unlock(&sbi->inode_lock[type]); 1006 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1007 get_pages(sbi, is_dir ? 1008 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1009 return 0; 1010 } 1011 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1012 inode = igrab(&fi->vfs_inode); 1013 spin_unlock(&sbi->inode_lock[type]); 1014 if (inode) { 1015 unsigned long cur_ino = inode->i_ino; 1016 1017 if (is_dir) 1018 F2FS_I(inode)->cp_task = current; 1019 1020 filemap_fdatawrite(inode->i_mapping); 1021 1022 if (is_dir) 1023 F2FS_I(inode)->cp_task = NULL; 1024 1025 iput(inode); 1026 /* We need to give cpu to another writers. */ 1027 if (ino == cur_ino) 1028 cond_resched(); 1029 else 1030 ino = cur_ino; 1031 } else { 1032 /* 1033 * We should submit bio, since it exists several 1034 * wribacking dentry pages in the freeing inode. 1035 */ 1036 f2fs_submit_merged_write(sbi, DATA); 1037 cond_resched(); 1038 } 1039 goto retry; 1040 } 1041 1042 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1043 { 1044 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1045 struct inode *inode; 1046 struct f2fs_inode_info *fi; 1047 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1048 1049 while (total--) { 1050 if (unlikely(f2fs_cp_error(sbi))) 1051 return -EIO; 1052 1053 spin_lock(&sbi->inode_lock[DIRTY_META]); 1054 if (list_empty(head)) { 1055 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1056 return 0; 1057 } 1058 fi = list_first_entry(head, struct f2fs_inode_info, 1059 gdirty_list); 1060 inode = igrab(&fi->vfs_inode); 1061 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1062 if (inode) { 1063 sync_inode_metadata(inode, 0); 1064 1065 /* it's on eviction */ 1066 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1067 f2fs_update_inode_page(inode); 1068 iput(inode); 1069 } 1070 } 1071 return 0; 1072 } 1073 1074 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1075 { 1076 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1077 struct f2fs_nm_info *nm_i = NM_I(sbi); 1078 nid_t last_nid = nm_i->next_scan_nid; 1079 1080 next_free_nid(sbi, &last_nid); 1081 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1082 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1083 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1084 ckpt->next_free_nid = cpu_to_le32(last_nid); 1085 } 1086 1087 /* 1088 * Freeze all the FS-operations for checkpoint. 1089 */ 1090 static int block_operations(struct f2fs_sb_info *sbi) 1091 { 1092 struct writeback_control wbc = { 1093 .sync_mode = WB_SYNC_ALL, 1094 .nr_to_write = LONG_MAX, 1095 .for_reclaim = 0, 1096 }; 1097 struct blk_plug plug; 1098 int err = 0; 1099 1100 blk_start_plug(&plug); 1101 1102 retry_flush_dents: 1103 f2fs_lock_all(sbi); 1104 /* write all the dirty dentry pages */ 1105 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1106 f2fs_unlock_all(sbi); 1107 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1108 if (err) 1109 goto out; 1110 cond_resched(); 1111 goto retry_flush_dents; 1112 } 1113 1114 /* 1115 * POR: we should ensure that there are no dirty node pages 1116 * until finishing nat/sit flush. inode->i_blocks can be updated. 1117 */ 1118 down_write(&sbi->node_change); 1119 1120 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1121 up_write(&sbi->node_change); 1122 f2fs_unlock_all(sbi); 1123 err = f2fs_sync_inode_meta(sbi); 1124 if (err) 1125 goto out; 1126 cond_resched(); 1127 goto retry_flush_dents; 1128 } 1129 1130 retry_flush_nodes: 1131 down_write(&sbi->node_write); 1132 1133 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1134 up_write(&sbi->node_write); 1135 atomic_inc(&sbi->wb_sync_req[NODE]); 1136 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1137 atomic_dec(&sbi->wb_sync_req[NODE]); 1138 if (err) { 1139 up_write(&sbi->node_change); 1140 f2fs_unlock_all(sbi); 1141 goto out; 1142 } 1143 cond_resched(); 1144 goto retry_flush_nodes; 1145 } 1146 1147 /* 1148 * sbi->node_change is used only for AIO write_begin path which produces 1149 * dirty node blocks and some checkpoint values by block allocation. 1150 */ 1151 __prepare_cp_block(sbi); 1152 up_write(&sbi->node_change); 1153 out: 1154 blk_finish_plug(&plug); 1155 return err; 1156 } 1157 1158 static void unblock_operations(struct f2fs_sb_info *sbi) 1159 { 1160 up_write(&sbi->node_write); 1161 f2fs_unlock_all(sbi); 1162 } 1163 1164 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1165 { 1166 DEFINE_WAIT(wait); 1167 1168 for (;;) { 1169 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1170 1171 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1172 break; 1173 1174 if (unlikely(f2fs_cp_error(sbi))) 1175 break; 1176 1177 io_schedule_timeout(5*HZ); 1178 } 1179 finish_wait(&sbi->cp_wait, &wait); 1180 } 1181 1182 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1183 { 1184 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1186 unsigned long flags; 1187 1188 spin_lock_irqsave(&sbi->cp_lock, flags); 1189 1190 if ((cpc->reason & CP_UMOUNT) && 1191 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1192 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1193 disable_nat_bits(sbi, false); 1194 1195 if (cpc->reason & CP_TRIMMED) 1196 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1197 else 1198 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1199 1200 if (cpc->reason & CP_UMOUNT) 1201 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1202 else 1203 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1204 1205 if (cpc->reason & CP_FASTBOOT) 1206 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1207 else 1208 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1209 1210 if (orphan_num) 1211 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1212 else 1213 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1214 1215 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1216 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1217 1218 /* set this flag to activate crc|cp_ver for recovery */ 1219 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1220 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1221 1222 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1223 } 1224 1225 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1226 void *src, block_t blk_addr) 1227 { 1228 struct writeback_control wbc = { 1229 .for_reclaim = 0, 1230 }; 1231 1232 /* 1233 * pagevec_lookup_tag and lock_page again will take 1234 * some extra time. Therefore, f2fs_update_meta_pages and 1235 * f2fs_sync_meta_pages are combined in this function. 1236 */ 1237 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1238 int err; 1239 1240 memcpy(page_address(page), src, PAGE_SIZE); 1241 set_page_dirty(page); 1242 1243 f2fs_wait_on_page_writeback(page, META, true); 1244 f2fs_bug_on(sbi, PageWriteback(page)); 1245 if (unlikely(!clear_page_dirty_for_io(page))) 1246 f2fs_bug_on(sbi, 1); 1247 1248 /* writeout cp pack 2 page */ 1249 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1250 if (unlikely(err && f2fs_cp_error(sbi))) { 1251 f2fs_put_page(page, 1); 1252 return; 1253 } 1254 1255 f2fs_bug_on(sbi, err); 1256 f2fs_put_page(page, 0); 1257 1258 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1259 f2fs_submit_merged_write(sbi, META_FLUSH); 1260 } 1261 1262 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1263 { 1264 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1265 struct f2fs_nm_info *nm_i = NM_I(sbi); 1266 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1267 block_t start_blk; 1268 unsigned int data_sum_blocks, orphan_blocks; 1269 __u32 crc32 = 0; 1270 int i; 1271 int cp_payload_blks = __cp_payload(sbi); 1272 struct super_block *sb = sbi->sb; 1273 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1274 u64 kbytes_written; 1275 int err; 1276 1277 /* Flush all the NAT/SIT pages */ 1278 while (get_pages(sbi, F2FS_DIRTY_META)) { 1279 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1280 if (unlikely(f2fs_cp_error(sbi))) 1281 break; 1282 } 1283 1284 /* 1285 * modify checkpoint 1286 * version number is already updated 1287 */ 1288 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1289 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1290 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1291 ckpt->cur_node_segno[i] = 1292 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1293 ckpt->cur_node_blkoff[i] = 1294 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1295 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1296 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1297 } 1298 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1299 ckpt->cur_data_segno[i] = 1300 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1301 ckpt->cur_data_blkoff[i] = 1302 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1303 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1304 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1305 } 1306 1307 /* 2 cp + n data seg summary + orphan inode blocks */ 1308 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1309 spin_lock_irqsave(&sbi->cp_lock, flags); 1310 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1311 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1312 else 1313 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1314 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1315 1316 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1317 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1318 orphan_blocks); 1319 1320 if (__remain_node_summaries(cpc->reason)) 1321 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1322 cp_payload_blks + data_sum_blocks + 1323 orphan_blocks + NR_CURSEG_NODE_TYPE); 1324 else 1325 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1326 cp_payload_blks + data_sum_blocks + 1327 orphan_blocks); 1328 1329 /* update ckpt flag for checkpoint */ 1330 update_ckpt_flags(sbi, cpc); 1331 1332 /* update SIT/NAT bitmap */ 1333 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1334 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1335 1336 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1337 *((__le32 *)((unsigned char *)ckpt + 1338 le32_to_cpu(ckpt->checksum_offset))) 1339 = cpu_to_le32(crc32); 1340 1341 start_blk = __start_cp_next_addr(sbi); 1342 1343 /* write nat bits */ 1344 if (enabled_nat_bits(sbi, cpc)) { 1345 __u64 cp_ver = cur_cp_version(ckpt); 1346 block_t blk; 1347 1348 cp_ver |= ((__u64)crc32 << 32); 1349 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1350 1351 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1352 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1353 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1354 (i << F2FS_BLKSIZE_BITS), blk + i); 1355 1356 /* Flush all the NAT BITS pages */ 1357 while (get_pages(sbi, F2FS_DIRTY_META)) { 1358 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1359 FS_CP_META_IO); 1360 if (unlikely(f2fs_cp_error(sbi))) 1361 break; 1362 } 1363 } 1364 1365 /* write out checkpoint buffer at block 0 */ 1366 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1367 1368 for (i = 1; i < 1 + cp_payload_blks; i++) 1369 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1370 start_blk++); 1371 1372 if (orphan_num) { 1373 write_orphan_inodes(sbi, start_blk); 1374 start_blk += orphan_blocks; 1375 } 1376 1377 f2fs_write_data_summaries(sbi, start_blk); 1378 start_blk += data_sum_blocks; 1379 1380 /* Record write statistics in the hot node summary */ 1381 kbytes_written = sbi->kbytes_written; 1382 if (sb->s_bdev->bd_part) 1383 kbytes_written += BD_PART_WRITTEN(sbi); 1384 1385 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1386 1387 if (__remain_node_summaries(cpc->reason)) { 1388 f2fs_write_node_summaries(sbi, start_blk); 1389 start_blk += NR_CURSEG_NODE_TYPE; 1390 } 1391 1392 /* update user_block_counts */ 1393 sbi->last_valid_block_count = sbi->total_valid_block_count; 1394 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1395 1396 /* Here, we have one bio having CP pack except cp pack 2 page */ 1397 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1398 1399 /* wait for previous submitted meta pages writeback */ 1400 f2fs_wait_on_all_pages_writeback(sbi); 1401 1402 /* flush all device cache */ 1403 err = f2fs_flush_device_cache(sbi); 1404 if (err) 1405 return err; 1406 1407 /* barrier and flush checkpoint cp pack 2 page if it can */ 1408 commit_checkpoint(sbi, ckpt, start_blk); 1409 f2fs_wait_on_all_pages_writeback(sbi); 1410 1411 /* 1412 * invalidate intermediate page cache borrowed from meta inode 1413 * which are used for migration of encrypted inode's blocks. 1414 */ 1415 if (f2fs_sb_has_encrypt(sbi->sb)) 1416 invalidate_mapping_pages(META_MAPPING(sbi), 1417 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1418 1419 f2fs_release_ino_entry(sbi, false); 1420 1421 f2fs_reset_fsync_node_info(sbi); 1422 1423 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1424 clear_sbi_flag(sbi, SBI_NEED_CP); 1425 __set_cp_next_pack(sbi); 1426 1427 /* 1428 * redirty superblock if metadata like node page or inode cache is 1429 * updated during writing checkpoint. 1430 */ 1431 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1432 get_pages(sbi, F2FS_DIRTY_IMETA)) 1433 set_sbi_flag(sbi, SBI_IS_DIRTY); 1434 1435 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1436 1437 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1438 } 1439 1440 /* 1441 * We guarantee that this checkpoint procedure will not fail. 1442 */ 1443 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1444 { 1445 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1446 unsigned long long ckpt_ver; 1447 int err = 0; 1448 1449 mutex_lock(&sbi->cp_mutex); 1450 1451 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1452 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1453 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1454 goto out; 1455 if (unlikely(f2fs_cp_error(sbi))) { 1456 err = -EIO; 1457 goto out; 1458 } 1459 if (f2fs_readonly(sbi->sb)) { 1460 err = -EROFS; 1461 goto out; 1462 } 1463 1464 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1465 1466 err = block_operations(sbi); 1467 if (err) 1468 goto out; 1469 1470 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1471 1472 f2fs_flush_merged_writes(sbi); 1473 1474 /* this is the case of multiple fstrims without any changes */ 1475 if (cpc->reason & CP_DISCARD) { 1476 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1477 unblock_operations(sbi); 1478 goto out; 1479 } 1480 1481 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1482 SIT_I(sbi)->dirty_sentries == 0 && 1483 prefree_segments(sbi) == 0) { 1484 f2fs_flush_sit_entries(sbi, cpc); 1485 f2fs_clear_prefree_segments(sbi, cpc); 1486 unblock_operations(sbi); 1487 goto out; 1488 } 1489 } 1490 1491 /* 1492 * update checkpoint pack index 1493 * Increase the version number so that 1494 * SIT entries and seg summaries are written at correct place 1495 */ 1496 ckpt_ver = cur_cp_version(ckpt); 1497 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1498 1499 /* write cached NAT/SIT entries to NAT/SIT area */ 1500 f2fs_flush_nat_entries(sbi, cpc); 1501 f2fs_flush_sit_entries(sbi, cpc); 1502 1503 /* unlock all the fs_lock[] in do_checkpoint() */ 1504 err = do_checkpoint(sbi, cpc); 1505 if (err) 1506 f2fs_release_discard_addrs(sbi); 1507 else 1508 f2fs_clear_prefree_segments(sbi, cpc); 1509 1510 unblock_operations(sbi); 1511 stat_inc_cp_count(sbi->stat_info); 1512 1513 if (cpc->reason & CP_RECOVERY) 1514 f2fs_msg(sbi->sb, KERN_NOTICE, 1515 "checkpoint: version = %llx", ckpt_ver); 1516 1517 /* do checkpoint periodically */ 1518 f2fs_update_time(sbi, CP_TIME); 1519 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1520 out: 1521 mutex_unlock(&sbi->cp_mutex); 1522 return err; 1523 } 1524 1525 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1526 { 1527 int i; 1528 1529 for (i = 0; i < MAX_INO_ENTRY; i++) { 1530 struct inode_management *im = &sbi->im[i]; 1531 1532 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1533 spin_lock_init(&im->ino_lock); 1534 INIT_LIST_HEAD(&im->ino_list); 1535 im->ino_num = 0; 1536 } 1537 1538 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1539 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1540 F2FS_ORPHANS_PER_BLOCK; 1541 } 1542 1543 int __init f2fs_create_checkpoint_caches(void) 1544 { 1545 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1546 sizeof(struct ino_entry)); 1547 if (!ino_entry_slab) 1548 return -ENOMEM; 1549 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1550 sizeof(struct inode_entry)); 1551 if (!f2fs_inode_entry_slab) { 1552 kmem_cache_destroy(ino_entry_slab); 1553 return -ENOMEM; 1554 } 1555 return 0; 1556 } 1557 1558 void f2fs_destroy_checkpoint_caches(void) 1559 { 1560 kmem_cache_destroy(ino_entry_slab); 1561 kmem_cache_destroy(f2fs_inode_entry_slab); 1562 } 1563