1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *orphan_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = META_MAPPING(sbi); 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 42 /* We wait writeback only inside grab_meta_page() */ 43 wait_on_page_writeback(page); 44 SetPageUptodate(page); 45 return page; 46 } 47 48 /* 49 * We guarantee no failure on the returned page. 50 */ 51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 52 { 53 struct address_space *mapping = META_MAPPING(sbi); 54 struct page *page; 55 repeat: 56 page = grab_cache_page(mapping, index); 57 if (!page) { 58 cond_resched(); 59 goto repeat; 60 } 61 if (PageUptodate(page)) 62 goto out; 63 64 if (f2fs_submit_page_bio(sbi, page, index, 65 READ_SYNC | REQ_META | REQ_PRIO)) 66 goto repeat; 67 68 lock_page(page); 69 if (unlikely(page->mapping != mapping)) { 70 f2fs_put_page(page, 1); 71 goto repeat; 72 } 73 out: 74 mark_page_accessed(page); 75 return page; 76 } 77 78 static int f2fs_write_meta_page(struct page *page, 79 struct writeback_control *wbc) 80 { 81 struct inode *inode = page->mapping->host; 82 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 83 84 /* Should not write any meta pages, if any IO error was occurred */ 85 if (unlikely(sbi->por_doing || 86 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG))) 87 goto redirty_out; 88 89 if (wbc->for_reclaim) 90 goto redirty_out; 91 92 wait_on_page_writeback(page); 93 94 write_meta_page(sbi, page); 95 dec_page_count(sbi, F2FS_DIRTY_META); 96 unlock_page(page); 97 return 0; 98 99 redirty_out: 100 dec_page_count(sbi, F2FS_DIRTY_META); 101 wbc->pages_skipped++; 102 set_page_dirty(page); 103 return AOP_WRITEPAGE_ACTIVATE; 104 } 105 106 static int f2fs_write_meta_pages(struct address_space *mapping, 107 struct writeback_control *wbc) 108 { 109 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 110 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 111 long written; 112 113 if (wbc->for_kupdate) 114 return 0; 115 116 /* collect a number of dirty meta pages and write together */ 117 if (get_pages(sbi, F2FS_DIRTY_META) < nrpages) 118 return 0; 119 120 /* if mounting is failed, skip writing node pages */ 121 mutex_lock(&sbi->cp_mutex); 122 written = sync_meta_pages(sbi, META, nrpages); 123 mutex_unlock(&sbi->cp_mutex); 124 wbc->nr_to_write -= written; 125 return 0; 126 } 127 128 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 129 long nr_to_write) 130 { 131 struct address_space *mapping = META_MAPPING(sbi); 132 pgoff_t index = 0, end = LONG_MAX; 133 struct pagevec pvec; 134 long nwritten = 0; 135 struct writeback_control wbc = { 136 .for_reclaim = 0, 137 }; 138 139 pagevec_init(&pvec, 0); 140 141 while (index <= end) { 142 int i, nr_pages; 143 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 144 PAGECACHE_TAG_DIRTY, 145 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 146 if (unlikely(nr_pages == 0)) 147 break; 148 149 for (i = 0; i < nr_pages; i++) { 150 struct page *page = pvec.pages[i]; 151 lock_page(page); 152 f2fs_bug_on(page->mapping != mapping); 153 f2fs_bug_on(!PageDirty(page)); 154 clear_page_dirty_for_io(page); 155 if (f2fs_write_meta_page(page, &wbc)) { 156 unlock_page(page); 157 break; 158 } 159 nwritten++; 160 if (unlikely(nwritten >= nr_to_write)) 161 break; 162 } 163 pagevec_release(&pvec); 164 cond_resched(); 165 } 166 167 if (nwritten) 168 f2fs_submit_merged_bio(sbi, type, WRITE); 169 170 return nwritten; 171 } 172 173 static int f2fs_set_meta_page_dirty(struct page *page) 174 { 175 struct address_space *mapping = page->mapping; 176 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 177 178 trace_f2fs_set_page_dirty(page, META); 179 180 SetPageUptodate(page); 181 if (!PageDirty(page)) { 182 __set_page_dirty_nobuffers(page); 183 inc_page_count(sbi, F2FS_DIRTY_META); 184 return 1; 185 } 186 return 0; 187 } 188 189 const struct address_space_operations f2fs_meta_aops = { 190 .writepage = f2fs_write_meta_page, 191 .writepages = f2fs_write_meta_pages, 192 .set_page_dirty = f2fs_set_meta_page_dirty, 193 }; 194 195 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 196 { 197 int err = 0; 198 199 spin_lock(&sbi->orphan_inode_lock); 200 if (unlikely(sbi->n_orphans >= sbi->max_orphans)) 201 err = -ENOSPC; 202 else 203 sbi->n_orphans++; 204 spin_unlock(&sbi->orphan_inode_lock); 205 206 return err; 207 } 208 209 void release_orphan_inode(struct f2fs_sb_info *sbi) 210 { 211 spin_lock(&sbi->orphan_inode_lock); 212 f2fs_bug_on(sbi->n_orphans == 0); 213 sbi->n_orphans--; 214 spin_unlock(&sbi->orphan_inode_lock); 215 } 216 217 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 218 { 219 struct list_head *head, *this; 220 struct orphan_inode_entry *new = NULL, *orphan = NULL; 221 222 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 223 new->ino = ino; 224 225 spin_lock(&sbi->orphan_inode_lock); 226 head = &sbi->orphan_inode_list; 227 list_for_each(this, head) { 228 orphan = list_entry(this, struct orphan_inode_entry, list); 229 if (orphan->ino == ino) { 230 spin_unlock(&sbi->orphan_inode_lock); 231 kmem_cache_free(orphan_entry_slab, new); 232 return; 233 } 234 235 if (orphan->ino > ino) 236 break; 237 orphan = NULL; 238 } 239 240 /* add new_oentry into list which is sorted by inode number */ 241 if (orphan) 242 list_add(&new->list, this->prev); 243 else 244 list_add_tail(&new->list, head); 245 spin_unlock(&sbi->orphan_inode_lock); 246 } 247 248 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 249 { 250 struct list_head *head; 251 struct orphan_inode_entry *orphan; 252 253 spin_lock(&sbi->orphan_inode_lock); 254 head = &sbi->orphan_inode_list; 255 list_for_each_entry(orphan, head, list) { 256 if (orphan->ino == ino) { 257 list_del(&orphan->list); 258 kmem_cache_free(orphan_entry_slab, orphan); 259 f2fs_bug_on(sbi->n_orphans == 0); 260 sbi->n_orphans--; 261 break; 262 } 263 } 264 spin_unlock(&sbi->orphan_inode_lock); 265 } 266 267 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 268 { 269 struct inode *inode = f2fs_iget(sbi->sb, ino); 270 f2fs_bug_on(IS_ERR(inode)); 271 clear_nlink(inode); 272 273 /* truncate all the data during iput */ 274 iput(inode); 275 } 276 277 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 278 { 279 block_t start_blk, orphan_blkaddr, i, j; 280 281 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 282 return; 283 284 sbi->por_doing = true; 285 start_blk = __start_cp_addr(sbi) + 1; 286 orphan_blkaddr = __start_sum_addr(sbi) - 1; 287 288 for (i = 0; i < orphan_blkaddr; i++) { 289 struct page *page = get_meta_page(sbi, start_blk + i); 290 struct f2fs_orphan_block *orphan_blk; 291 292 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 293 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 294 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 295 recover_orphan_inode(sbi, ino); 296 } 297 f2fs_put_page(page, 1); 298 } 299 /* clear Orphan Flag */ 300 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 301 sbi->por_doing = false; 302 return; 303 } 304 305 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 306 { 307 struct list_head *head; 308 struct f2fs_orphan_block *orphan_blk = NULL; 309 unsigned int nentries = 0; 310 unsigned short index; 311 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans + 312 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 313 struct page *page = NULL; 314 struct orphan_inode_entry *orphan = NULL; 315 316 for (index = 0; index < orphan_blocks; index++) 317 grab_meta_page(sbi, start_blk + index); 318 319 index = 1; 320 spin_lock(&sbi->orphan_inode_lock); 321 head = &sbi->orphan_inode_list; 322 323 /* loop for each orphan inode entry and write them in Jornal block */ 324 list_for_each_entry(orphan, head, list) { 325 if (!page) { 326 page = find_get_page(META_MAPPING(sbi), start_blk++); 327 f2fs_bug_on(!page); 328 orphan_blk = 329 (struct f2fs_orphan_block *)page_address(page); 330 memset(orphan_blk, 0, sizeof(*orphan_blk)); 331 f2fs_put_page(page, 0); 332 } 333 334 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 335 336 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 337 /* 338 * an orphan block is full of 1020 entries, 339 * then we need to flush current orphan blocks 340 * and bring another one in memory 341 */ 342 orphan_blk->blk_addr = cpu_to_le16(index); 343 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 344 orphan_blk->entry_count = cpu_to_le32(nentries); 345 set_page_dirty(page); 346 f2fs_put_page(page, 1); 347 index++; 348 nentries = 0; 349 page = NULL; 350 } 351 } 352 353 if (page) { 354 orphan_blk->blk_addr = cpu_to_le16(index); 355 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 356 orphan_blk->entry_count = cpu_to_le32(nentries); 357 set_page_dirty(page); 358 f2fs_put_page(page, 1); 359 } 360 361 spin_unlock(&sbi->orphan_inode_lock); 362 } 363 364 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 365 block_t cp_addr, unsigned long long *version) 366 { 367 struct page *cp_page_1, *cp_page_2 = NULL; 368 unsigned long blk_size = sbi->blocksize; 369 struct f2fs_checkpoint *cp_block; 370 unsigned long long cur_version = 0, pre_version = 0; 371 size_t crc_offset; 372 __u32 crc = 0; 373 374 /* Read the 1st cp block in this CP pack */ 375 cp_page_1 = get_meta_page(sbi, cp_addr); 376 377 /* get the version number */ 378 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 379 crc_offset = le32_to_cpu(cp_block->checksum_offset); 380 if (crc_offset >= blk_size) 381 goto invalid_cp1; 382 383 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 384 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 385 goto invalid_cp1; 386 387 pre_version = cur_cp_version(cp_block); 388 389 /* Read the 2nd cp block in this CP pack */ 390 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 391 cp_page_2 = get_meta_page(sbi, cp_addr); 392 393 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 394 crc_offset = le32_to_cpu(cp_block->checksum_offset); 395 if (crc_offset >= blk_size) 396 goto invalid_cp2; 397 398 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 399 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 400 goto invalid_cp2; 401 402 cur_version = cur_cp_version(cp_block); 403 404 if (cur_version == pre_version) { 405 *version = cur_version; 406 f2fs_put_page(cp_page_2, 1); 407 return cp_page_1; 408 } 409 invalid_cp2: 410 f2fs_put_page(cp_page_2, 1); 411 invalid_cp1: 412 f2fs_put_page(cp_page_1, 1); 413 return NULL; 414 } 415 416 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 417 { 418 struct f2fs_checkpoint *cp_block; 419 struct f2fs_super_block *fsb = sbi->raw_super; 420 struct page *cp1, *cp2, *cur_page; 421 unsigned long blk_size = sbi->blocksize; 422 unsigned long long cp1_version = 0, cp2_version = 0; 423 unsigned long long cp_start_blk_no; 424 425 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 426 if (!sbi->ckpt) 427 return -ENOMEM; 428 /* 429 * Finding out valid cp block involves read both 430 * sets( cp pack1 and cp pack 2) 431 */ 432 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 433 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 434 435 /* The second checkpoint pack should start at the next segment */ 436 cp_start_blk_no += ((unsigned long long)1) << 437 le32_to_cpu(fsb->log_blocks_per_seg); 438 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 439 440 if (cp1 && cp2) { 441 if (ver_after(cp2_version, cp1_version)) 442 cur_page = cp2; 443 else 444 cur_page = cp1; 445 } else if (cp1) { 446 cur_page = cp1; 447 } else if (cp2) { 448 cur_page = cp2; 449 } else { 450 goto fail_no_cp; 451 } 452 453 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 454 memcpy(sbi->ckpt, cp_block, blk_size); 455 456 f2fs_put_page(cp1, 1); 457 f2fs_put_page(cp2, 1); 458 return 0; 459 460 fail_no_cp: 461 kfree(sbi->ckpt); 462 return -EINVAL; 463 } 464 465 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 466 { 467 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 468 struct list_head *head = &sbi->dir_inode_list; 469 struct list_head *this; 470 471 list_for_each(this, head) { 472 struct dir_inode_entry *entry; 473 entry = list_entry(this, struct dir_inode_entry, list); 474 if (unlikely(entry->inode == inode)) 475 return -EEXIST; 476 } 477 list_add_tail(&new->list, head); 478 stat_inc_dirty_dir(sbi); 479 return 0; 480 } 481 482 void set_dirty_dir_page(struct inode *inode, struct page *page) 483 { 484 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 485 struct dir_inode_entry *new; 486 487 if (!S_ISDIR(inode->i_mode)) 488 return; 489 490 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 491 new->inode = inode; 492 INIT_LIST_HEAD(&new->list); 493 494 spin_lock(&sbi->dir_inode_lock); 495 if (__add_dirty_inode(inode, new)) 496 kmem_cache_free(inode_entry_slab, new); 497 498 inc_page_count(sbi, F2FS_DIRTY_DENTS); 499 inode_inc_dirty_dents(inode); 500 SetPagePrivate(page); 501 spin_unlock(&sbi->dir_inode_lock); 502 } 503 504 void add_dirty_dir_inode(struct inode *inode) 505 { 506 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 507 struct dir_inode_entry *new = 508 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 509 510 new->inode = inode; 511 INIT_LIST_HEAD(&new->list); 512 513 spin_lock(&sbi->dir_inode_lock); 514 if (__add_dirty_inode(inode, new)) 515 kmem_cache_free(inode_entry_slab, new); 516 spin_unlock(&sbi->dir_inode_lock); 517 } 518 519 void remove_dirty_dir_inode(struct inode *inode) 520 { 521 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 522 523 struct list_head *this, *head; 524 525 if (!S_ISDIR(inode->i_mode)) 526 return; 527 528 spin_lock(&sbi->dir_inode_lock); 529 if (atomic_read(&F2FS_I(inode)->dirty_dents)) { 530 spin_unlock(&sbi->dir_inode_lock); 531 return; 532 } 533 534 head = &sbi->dir_inode_list; 535 list_for_each(this, head) { 536 struct dir_inode_entry *entry; 537 entry = list_entry(this, struct dir_inode_entry, list); 538 if (entry->inode == inode) { 539 list_del(&entry->list); 540 kmem_cache_free(inode_entry_slab, entry); 541 stat_dec_dirty_dir(sbi); 542 break; 543 } 544 } 545 spin_unlock(&sbi->dir_inode_lock); 546 547 /* Only from the recovery routine */ 548 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 549 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 550 iput(inode); 551 } 552 } 553 554 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) 555 { 556 557 struct list_head *this, *head; 558 struct inode *inode = NULL; 559 560 spin_lock(&sbi->dir_inode_lock); 561 562 head = &sbi->dir_inode_list; 563 list_for_each(this, head) { 564 struct dir_inode_entry *entry; 565 entry = list_entry(this, struct dir_inode_entry, list); 566 if (entry->inode->i_ino == ino) { 567 inode = entry->inode; 568 break; 569 } 570 } 571 spin_unlock(&sbi->dir_inode_lock); 572 return inode; 573 } 574 575 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 576 { 577 struct list_head *head; 578 struct dir_inode_entry *entry; 579 struct inode *inode; 580 retry: 581 spin_lock(&sbi->dir_inode_lock); 582 583 head = &sbi->dir_inode_list; 584 if (list_empty(head)) { 585 spin_unlock(&sbi->dir_inode_lock); 586 return; 587 } 588 entry = list_entry(head->next, struct dir_inode_entry, list); 589 inode = igrab(entry->inode); 590 spin_unlock(&sbi->dir_inode_lock); 591 if (inode) { 592 filemap_flush(inode->i_mapping); 593 iput(inode); 594 } else { 595 /* 596 * We should submit bio, since it exists several 597 * wribacking dentry pages in the freeing inode. 598 */ 599 f2fs_submit_merged_bio(sbi, DATA, WRITE); 600 } 601 goto retry; 602 } 603 604 /* 605 * Freeze all the FS-operations for checkpoint. 606 */ 607 static void block_operations(struct f2fs_sb_info *sbi) 608 { 609 struct writeback_control wbc = { 610 .sync_mode = WB_SYNC_ALL, 611 .nr_to_write = LONG_MAX, 612 .for_reclaim = 0, 613 }; 614 struct blk_plug plug; 615 616 blk_start_plug(&plug); 617 618 retry_flush_dents: 619 f2fs_lock_all(sbi); 620 /* write all the dirty dentry pages */ 621 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 622 f2fs_unlock_all(sbi); 623 sync_dirty_dir_inodes(sbi); 624 goto retry_flush_dents; 625 } 626 627 /* 628 * POR: we should ensure that there is no dirty node pages 629 * until finishing nat/sit flush. 630 */ 631 retry_flush_nodes: 632 mutex_lock(&sbi->node_write); 633 634 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 635 mutex_unlock(&sbi->node_write); 636 sync_node_pages(sbi, 0, &wbc); 637 goto retry_flush_nodes; 638 } 639 blk_finish_plug(&plug); 640 } 641 642 static void unblock_operations(struct f2fs_sb_info *sbi) 643 { 644 mutex_unlock(&sbi->node_write); 645 f2fs_unlock_all(sbi); 646 } 647 648 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 649 { 650 DEFINE_WAIT(wait); 651 652 for (;;) { 653 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 654 655 if (!get_pages(sbi, F2FS_WRITEBACK)) 656 break; 657 658 io_schedule(); 659 } 660 finish_wait(&sbi->cp_wait, &wait); 661 } 662 663 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 664 { 665 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 666 nid_t last_nid = 0; 667 block_t start_blk; 668 struct page *cp_page; 669 unsigned int data_sum_blocks, orphan_blocks; 670 __u32 crc32 = 0; 671 void *kaddr; 672 int i; 673 674 /* Flush all the NAT/SIT pages */ 675 while (get_pages(sbi, F2FS_DIRTY_META)) 676 sync_meta_pages(sbi, META, LONG_MAX); 677 678 next_free_nid(sbi, &last_nid); 679 680 /* 681 * modify checkpoint 682 * version number is already updated 683 */ 684 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 685 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 686 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 687 for (i = 0; i < 3; i++) { 688 ckpt->cur_node_segno[i] = 689 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 690 ckpt->cur_node_blkoff[i] = 691 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 692 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 693 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 694 } 695 for (i = 0; i < 3; i++) { 696 ckpt->cur_data_segno[i] = 697 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 698 ckpt->cur_data_blkoff[i] = 699 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 700 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 701 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 702 } 703 704 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 705 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 706 ckpt->next_free_nid = cpu_to_le32(last_nid); 707 708 /* 2 cp + n data seg summary + orphan inode blocks */ 709 data_sum_blocks = npages_for_summary_flush(sbi); 710 if (data_sum_blocks < 3) 711 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 712 else 713 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 714 715 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 716 / F2FS_ORPHANS_PER_BLOCK; 717 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 718 719 if (is_umount) { 720 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 721 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 722 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 723 } else { 724 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 725 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 726 data_sum_blocks + orphan_blocks); 727 } 728 729 if (sbi->n_orphans) 730 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 731 else 732 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 733 734 /* update SIT/NAT bitmap */ 735 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 736 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 737 738 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 739 *((__le32 *)((unsigned char *)ckpt + 740 le32_to_cpu(ckpt->checksum_offset))) 741 = cpu_to_le32(crc32); 742 743 start_blk = __start_cp_addr(sbi); 744 745 /* write out checkpoint buffer at block 0 */ 746 cp_page = grab_meta_page(sbi, start_blk++); 747 kaddr = page_address(cp_page); 748 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 749 set_page_dirty(cp_page); 750 f2fs_put_page(cp_page, 1); 751 752 if (sbi->n_orphans) { 753 write_orphan_inodes(sbi, start_blk); 754 start_blk += orphan_blocks; 755 } 756 757 write_data_summaries(sbi, start_blk); 758 start_blk += data_sum_blocks; 759 if (is_umount) { 760 write_node_summaries(sbi, start_blk); 761 start_blk += NR_CURSEG_NODE_TYPE; 762 } 763 764 /* writeout checkpoint block */ 765 cp_page = grab_meta_page(sbi, start_blk); 766 kaddr = page_address(cp_page); 767 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 768 set_page_dirty(cp_page); 769 f2fs_put_page(cp_page, 1); 770 771 /* wait for previous submitted node/meta pages writeback */ 772 wait_on_all_pages_writeback(sbi); 773 774 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 775 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 776 777 /* update user_block_counts */ 778 sbi->last_valid_block_count = sbi->total_valid_block_count; 779 sbi->alloc_valid_block_count = 0; 780 781 /* Here, we only have one bio having CP pack */ 782 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 783 784 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) { 785 clear_prefree_segments(sbi); 786 F2FS_RESET_SB_DIRT(sbi); 787 } 788 } 789 790 /* 791 * We guarantee that this checkpoint procedure should not fail. 792 */ 793 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 794 { 795 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 796 unsigned long long ckpt_ver; 797 798 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 799 800 mutex_lock(&sbi->cp_mutex); 801 block_operations(sbi); 802 803 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 804 805 f2fs_submit_merged_bio(sbi, DATA, WRITE); 806 f2fs_submit_merged_bio(sbi, NODE, WRITE); 807 f2fs_submit_merged_bio(sbi, META, WRITE); 808 809 /* 810 * update checkpoint pack index 811 * Increase the version number so that 812 * SIT entries and seg summaries are written at correct place 813 */ 814 ckpt_ver = cur_cp_version(ckpt); 815 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 816 817 /* write cached NAT/SIT entries to NAT/SIT area */ 818 flush_nat_entries(sbi); 819 flush_sit_entries(sbi); 820 821 /* unlock all the fs_lock[] in do_checkpoint() */ 822 do_checkpoint(sbi, is_umount); 823 824 unblock_operations(sbi); 825 mutex_unlock(&sbi->cp_mutex); 826 827 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 828 } 829 830 void init_orphan_info(struct f2fs_sb_info *sbi) 831 { 832 spin_lock_init(&sbi->orphan_inode_lock); 833 INIT_LIST_HEAD(&sbi->orphan_inode_list); 834 sbi->n_orphans = 0; 835 /* 836 * considering 512 blocks in a segment 8 blocks are needed for cp 837 * and log segment summaries. Remaining blocks are used to keep 838 * orphan entries with the limitation one reserved segment 839 * for cp pack we can have max 1020*504 orphan entries 840 */ 841 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE) 842 * F2FS_ORPHANS_PER_BLOCK; 843 } 844 845 int __init create_checkpoint_caches(void) 846 { 847 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 848 sizeof(struct orphan_inode_entry), NULL); 849 if (!orphan_entry_slab) 850 return -ENOMEM; 851 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 852 sizeof(struct dir_inode_entry), NULL); 853 if (!inode_entry_slab) { 854 kmem_cache_destroy(orphan_entry_slab); 855 return -ENOMEM; 856 } 857 return 0; 858 } 859 860 void destroy_checkpoint_caches(void) 861 { 862 kmem_cache_destroy(orphan_entry_slab); 863 kmem_cache_destroy(inode_entry_slab); 864 } 865