1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 #include <linux/kthread.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "iostat.h" 22 #include <trace/events/f2fs.h> 23 24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *f2fs_inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 30 unsigned char reason) 31 { 32 f2fs_build_fault_attr(sbi, 0, 0); 33 set_ckpt_flags(sbi, CP_ERROR_FLAG); 34 if (!end_io) { 35 f2fs_flush_merged_writes(sbi); 36 37 f2fs_handle_stop(sbi, reason); 38 } 39 } 40 41 /* 42 * We guarantee no failure on the returned page. 43 */ 44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 45 { 46 struct address_space *mapping = META_MAPPING(sbi); 47 struct page *page; 48 repeat: 49 page = f2fs_grab_cache_page(mapping, index, false); 50 if (!page) { 51 cond_resched(); 52 goto repeat; 53 } 54 f2fs_wait_on_page_writeback(page, META, true, true); 55 if (!PageUptodate(page)) 56 SetPageUptodate(page); 57 return page; 58 } 59 60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 61 bool is_meta) 62 { 63 struct address_space *mapping = META_MAPPING(sbi); 64 struct page *page; 65 struct f2fs_io_info fio = { 66 .sbi = sbi, 67 .type = META, 68 .op = REQ_OP_READ, 69 .op_flags = REQ_META | REQ_PRIO, 70 .old_blkaddr = index, 71 .new_blkaddr = index, 72 .encrypted_page = NULL, 73 .is_por = !is_meta ? 1 : 0, 74 }; 75 int err; 76 77 if (unlikely(!is_meta)) 78 fio.op_flags &= ~REQ_META; 79 repeat: 80 page = f2fs_grab_cache_page(mapping, index, false); 81 if (!page) { 82 cond_resched(); 83 goto repeat; 84 } 85 if (PageUptodate(page)) 86 goto out; 87 88 fio.page = page; 89 90 err = f2fs_submit_page_bio(&fio); 91 if (err) { 92 f2fs_put_page(page, 1); 93 return ERR_PTR(err); 94 } 95 96 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE); 97 98 lock_page(page); 99 if (unlikely(page->mapping != mapping)) { 100 f2fs_put_page(page, 1); 101 goto repeat; 102 } 103 104 if (unlikely(!PageUptodate(page))) { 105 f2fs_handle_page_eio(sbi, page->index, META); 106 f2fs_put_page(page, 1); 107 return ERR_PTR(-EIO); 108 } 109 out: 110 return page; 111 } 112 113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 return __get_meta_page(sbi, index, true); 116 } 117 118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index) 119 { 120 struct page *page; 121 int count = 0; 122 123 retry: 124 page = __get_meta_page(sbi, index, true); 125 if (IS_ERR(page)) { 126 if (PTR_ERR(page) == -EIO && 127 ++count <= DEFAULT_RETRY_IO_COUNT) 128 goto retry; 129 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE); 130 } 131 return page; 132 } 133 134 /* for POR only */ 135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 136 { 137 return __get_meta_page(sbi, index, false); 138 } 139 140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 141 int type) 142 { 143 struct seg_entry *se; 144 unsigned int segno, offset; 145 bool exist; 146 147 if (type == DATA_GENERIC) 148 return true; 149 150 segno = GET_SEGNO(sbi, blkaddr); 151 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 152 se = get_seg_entry(sbi, segno); 153 154 exist = f2fs_test_bit(offset, se->cur_valid_map); 155 156 /* skip data, if we already have an error in checkpoint. */ 157 if (unlikely(f2fs_cp_error(sbi))) 158 return exist; 159 160 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) { 161 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 162 blkaddr, exist); 163 set_sbi_flag(sbi, SBI_NEED_FSCK); 164 return exist; 165 } 166 167 if (!exist && type == DATA_GENERIC_ENHANCE) { 168 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 169 blkaddr, exist); 170 set_sbi_flag(sbi, SBI_NEED_FSCK); 171 dump_stack(); 172 } 173 return exist; 174 } 175 176 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 177 block_t blkaddr, int type) 178 { 179 if (time_to_inject(sbi, FAULT_BLKADDR)) 180 return false; 181 182 switch (type) { 183 case META_NAT: 184 break; 185 case META_SIT: 186 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 187 return false; 188 break; 189 case META_SSA: 190 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 191 blkaddr < SM_I(sbi)->ssa_blkaddr)) 192 return false; 193 break; 194 case META_CP: 195 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 196 blkaddr < __start_cp_addr(sbi))) 197 return false; 198 break; 199 case META_POR: 200 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 201 blkaddr < MAIN_BLKADDR(sbi))) 202 return false; 203 break; 204 case DATA_GENERIC: 205 case DATA_GENERIC_ENHANCE: 206 case DATA_GENERIC_ENHANCE_READ: 207 case DATA_GENERIC_ENHANCE_UPDATE: 208 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 209 blkaddr < MAIN_BLKADDR(sbi))) { 210 211 /* Skip to emit an error message. */ 212 if (unlikely(f2fs_cp_error(sbi))) 213 return false; 214 215 f2fs_warn(sbi, "access invalid blkaddr:%u", 216 blkaddr); 217 set_sbi_flag(sbi, SBI_NEED_FSCK); 218 dump_stack(); 219 return false; 220 } else { 221 return __is_bitmap_valid(sbi, blkaddr, type); 222 } 223 break; 224 case META_GENERIC: 225 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 226 blkaddr >= MAIN_BLKADDR(sbi))) 227 return false; 228 break; 229 default: 230 BUG(); 231 } 232 233 return true; 234 } 235 236 /* 237 * Readahead CP/NAT/SIT/SSA/POR pages 238 */ 239 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 240 int type, bool sync) 241 { 242 struct page *page; 243 block_t blkno = start; 244 struct f2fs_io_info fio = { 245 .sbi = sbi, 246 .type = META, 247 .op = REQ_OP_READ, 248 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 249 .encrypted_page = NULL, 250 .in_list = 0, 251 .is_por = (type == META_POR) ? 1 : 0, 252 }; 253 struct blk_plug plug; 254 int err; 255 256 if (unlikely(type == META_POR)) 257 fio.op_flags &= ~REQ_META; 258 259 blk_start_plug(&plug); 260 for (; nrpages-- > 0; blkno++) { 261 262 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 263 goto out; 264 265 switch (type) { 266 case META_NAT: 267 if (unlikely(blkno >= 268 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 269 blkno = 0; 270 /* get nat block addr */ 271 fio.new_blkaddr = current_nat_addr(sbi, 272 blkno * NAT_ENTRY_PER_BLOCK); 273 break; 274 case META_SIT: 275 if (unlikely(blkno >= TOTAL_SEGS(sbi))) 276 goto out; 277 /* get sit block addr */ 278 fio.new_blkaddr = current_sit_addr(sbi, 279 blkno * SIT_ENTRY_PER_BLOCK); 280 break; 281 case META_SSA: 282 case META_CP: 283 case META_POR: 284 fio.new_blkaddr = blkno; 285 break; 286 default: 287 BUG(); 288 } 289 290 page = f2fs_grab_cache_page(META_MAPPING(sbi), 291 fio.new_blkaddr, false); 292 if (!page) 293 continue; 294 if (PageUptodate(page)) { 295 f2fs_put_page(page, 1); 296 continue; 297 } 298 299 fio.page = page; 300 err = f2fs_submit_page_bio(&fio); 301 f2fs_put_page(page, err ? 1 : 0); 302 303 if (!err) 304 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, 305 F2FS_BLKSIZE); 306 } 307 out: 308 blk_finish_plug(&plug); 309 return blkno - start; 310 } 311 312 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 313 unsigned int ra_blocks) 314 { 315 struct page *page; 316 bool readahead = false; 317 318 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS) 319 return; 320 321 page = find_get_page(META_MAPPING(sbi), index); 322 if (!page || !PageUptodate(page)) 323 readahead = true; 324 f2fs_put_page(page, 0); 325 326 if (readahead) 327 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true); 328 } 329 330 static int __f2fs_write_meta_page(struct page *page, 331 struct writeback_control *wbc, 332 enum iostat_type io_type) 333 { 334 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 335 336 trace_f2fs_writepage(page, META); 337 338 if (unlikely(f2fs_cp_error(sbi))) { 339 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 340 ClearPageUptodate(page); 341 dec_page_count(sbi, F2FS_DIRTY_META); 342 unlock_page(page); 343 return 0; 344 } 345 goto redirty_out; 346 } 347 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 348 goto redirty_out; 349 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 350 goto redirty_out; 351 352 f2fs_do_write_meta_page(sbi, page, io_type); 353 dec_page_count(sbi, F2FS_DIRTY_META); 354 355 if (wbc->for_reclaim) 356 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 357 358 unlock_page(page); 359 360 if (unlikely(f2fs_cp_error(sbi))) 361 f2fs_submit_merged_write(sbi, META); 362 363 return 0; 364 365 redirty_out: 366 redirty_page_for_writepage(wbc, page); 367 return AOP_WRITEPAGE_ACTIVATE; 368 } 369 370 static int f2fs_write_meta_page(struct page *page, 371 struct writeback_control *wbc) 372 { 373 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 374 } 375 376 static int f2fs_write_meta_pages(struct address_space *mapping, 377 struct writeback_control *wbc) 378 { 379 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 380 long diff, written; 381 382 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 383 goto skip_write; 384 385 /* collect a number of dirty meta pages and write together */ 386 if (wbc->sync_mode != WB_SYNC_ALL && 387 get_pages(sbi, F2FS_DIRTY_META) < 388 nr_pages_to_skip(sbi, META)) 389 goto skip_write; 390 391 /* if locked failed, cp will flush dirty pages instead */ 392 if (!f2fs_down_write_trylock(&sbi->cp_global_sem)) 393 goto skip_write; 394 395 trace_f2fs_writepages(mapping->host, wbc, META); 396 diff = nr_pages_to_write(sbi, META, wbc); 397 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 398 f2fs_up_write(&sbi->cp_global_sem); 399 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 400 return 0; 401 402 skip_write: 403 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 404 trace_f2fs_writepages(mapping->host, wbc, META); 405 return 0; 406 } 407 408 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 409 long nr_to_write, enum iostat_type io_type) 410 { 411 struct address_space *mapping = META_MAPPING(sbi); 412 pgoff_t index = 0, prev = ULONG_MAX; 413 struct folio_batch fbatch; 414 long nwritten = 0; 415 int nr_folios; 416 struct writeback_control wbc = { 417 .for_reclaim = 0, 418 }; 419 struct blk_plug plug; 420 421 folio_batch_init(&fbatch); 422 423 blk_start_plug(&plug); 424 425 while ((nr_folios = filemap_get_folios_tag(mapping, &index, 426 (pgoff_t)-1, 427 PAGECACHE_TAG_DIRTY, &fbatch))) { 428 int i; 429 430 for (i = 0; i < nr_folios; i++) { 431 struct folio *folio = fbatch.folios[i]; 432 433 if (nr_to_write != LONG_MAX && i != 0 && 434 folio->index != prev + 435 folio_nr_pages(fbatch.folios[i-1])) { 436 folio_batch_release(&fbatch); 437 goto stop; 438 } 439 440 folio_lock(folio); 441 442 if (unlikely(folio->mapping != mapping)) { 443 continue_unlock: 444 folio_unlock(folio); 445 continue; 446 } 447 if (!folio_test_dirty(folio)) { 448 /* someone wrote it for us */ 449 goto continue_unlock; 450 } 451 452 f2fs_wait_on_page_writeback(&folio->page, META, 453 true, true); 454 455 if (!folio_clear_dirty_for_io(folio)) 456 goto continue_unlock; 457 458 if (__f2fs_write_meta_page(&folio->page, &wbc, 459 io_type)) { 460 folio_unlock(folio); 461 break; 462 } 463 nwritten += folio_nr_pages(folio); 464 prev = folio->index; 465 if (unlikely(nwritten >= nr_to_write)) 466 break; 467 } 468 folio_batch_release(&fbatch); 469 cond_resched(); 470 } 471 stop: 472 if (nwritten) 473 f2fs_submit_merged_write(sbi, type); 474 475 blk_finish_plug(&plug); 476 477 return nwritten; 478 } 479 480 static bool f2fs_dirty_meta_folio(struct address_space *mapping, 481 struct folio *folio) 482 { 483 trace_f2fs_set_page_dirty(&folio->page, META); 484 485 if (!folio_test_uptodate(folio)) 486 folio_mark_uptodate(folio); 487 if (filemap_dirty_folio(mapping, folio)) { 488 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META); 489 set_page_private_reference(&folio->page); 490 return true; 491 } 492 return false; 493 } 494 495 const struct address_space_operations f2fs_meta_aops = { 496 .writepage = f2fs_write_meta_page, 497 .writepages = f2fs_write_meta_pages, 498 .dirty_folio = f2fs_dirty_meta_folio, 499 .invalidate_folio = f2fs_invalidate_folio, 500 .release_folio = f2fs_release_folio, 501 .migrate_folio = filemap_migrate_folio, 502 }; 503 504 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 505 unsigned int devidx, int type) 506 { 507 struct inode_management *im = &sbi->im[type]; 508 struct ino_entry *e = NULL, *new = NULL; 509 510 if (type == FLUSH_INO) { 511 rcu_read_lock(); 512 e = radix_tree_lookup(&im->ino_root, ino); 513 rcu_read_unlock(); 514 } 515 516 retry: 517 if (!e) 518 new = f2fs_kmem_cache_alloc(ino_entry_slab, 519 GFP_NOFS, true, NULL); 520 521 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 522 523 spin_lock(&im->ino_lock); 524 e = radix_tree_lookup(&im->ino_root, ino); 525 if (!e) { 526 if (!new) { 527 spin_unlock(&im->ino_lock); 528 radix_tree_preload_end(); 529 goto retry; 530 } 531 e = new; 532 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 533 f2fs_bug_on(sbi, 1); 534 535 memset(e, 0, sizeof(struct ino_entry)); 536 e->ino = ino; 537 538 list_add_tail(&e->list, &im->ino_list); 539 if (type != ORPHAN_INO) 540 im->ino_num++; 541 } 542 543 if (type == FLUSH_INO) 544 f2fs_set_bit(devidx, (char *)&e->dirty_device); 545 546 spin_unlock(&im->ino_lock); 547 radix_tree_preload_end(); 548 549 if (new && e != new) 550 kmem_cache_free(ino_entry_slab, new); 551 } 552 553 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 554 { 555 struct inode_management *im = &sbi->im[type]; 556 struct ino_entry *e; 557 558 spin_lock(&im->ino_lock); 559 e = radix_tree_lookup(&im->ino_root, ino); 560 if (e) { 561 list_del(&e->list); 562 radix_tree_delete(&im->ino_root, ino); 563 im->ino_num--; 564 spin_unlock(&im->ino_lock); 565 kmem_cache_free(ino_entry_slab, e); 566 return; 567 } 568 spin_unlock(&im->ino_lock); 569 } 570 571 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 572 { 573 /* add new dirty ino entry into list */ 574 __add_ino_entry(sbi, ino, 0, type); 575 } 576 577 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 578 { 579 /* remove dirty ino entry from list */ 580 __remove_ino_entry(sbi, ino, type); 581 } 582 583 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */ 584 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 585 { 586 struct inode_management *im = &sbi->im[mode]; 587 struct ino_entry *e; 588 589 spin_lock(&im->ino_lock); 590 e = radix_tree_lookup(&im->ino_root, ino); 591 spin_unlock(&im->ino_lock); 592 return e ? true : false; 593 } 594 595 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 596 { 597 struct ino_entry *e, *tmp; 598 int i; 599 600 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 601 struct inode_management *im = &sbi->im[i]; 602 603 spin_lock(&im->ino_lock); 604 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 605 list_del(&e->list); 606 radix_tree_delete(&im->ino_root, e->ino); 607 kmem_cache_free(ino_entry_slab, e); 608 im->ino_num--; 609 } 610 spin_unlock(&im->ino_lock); 611 } 612 } 613 614 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 615 unsigned int devidx, int type) 616 { 617 __add_ino_entry(sbi, ino, devidx, type); 618 } 619 620 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 621 unsigned int devidx, int type) 622 { 623 struct inode_management *im = &sbi->im[type]; 624 struct ino_entry *e; 625 bool is_dirty = false; 626 627 spin_lock(&im->ino_lock); 628 e = radix_tree_lookup(&im->ino_root, ino); 629 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 630 is_dirty = true; 631 spin_unlock(&im->ino_lock); 632 return is_dirty; 633 } 634 635 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 636 { 637 struct inode_management *im = &sbi->im[ORPHAN_INO]; 638 int err = 0; 639 640 spin_lock(&im->ino_lock); 641 642 if (time_to_inject(sbi, FAULT_ORPHAN)) { 643 spin_unlock(&im->ino_lock); 644 return -ENOSPC; 645 } 646 647 if (unlikely(im->ino_num >= sbi->max_orphans)) 648 err = -ENOSPC; 649 else 650 im->ino_num++; 651 spin_unlock(&im->ino_lock); 652 653 return err; 654 } 655 656 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 657 { 658 struct inode_management *im = &sbi->im[ORPHAN_INO]; 659 660 spin_lock(&im->ino_lock); 661 f2fs_bug_on(sbi, im->ino_num == 0); 662 im->ino_num--; 663 spin_unlock(&im->ino_lock); 664 } 665 666 void f2fs_add_orphan_inode(struct inode *inode) 667 { 668 /* add new orphan ino entry into list */ 669 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 670 f2fs_update_inode_page(inode); 671 } 672 673 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 674 { 675 /* remove orphan entry from orphan list */ 676 __remove_ino_entry(sbi, ino, ORPHAN_INO); 677 } 678 679 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 680 { 681 struct inode *inode; 682 struct node_info ni; 683 int err; 684 685 inode = f2fs_iget_retry(sbi->sb, ino); 686 if (IS_ERR(inode)) { 687 /* 688 * there should be a bug that we can't find the entry 689 * to orphan inode. 690 */ 691 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 692 return PTR_ERR(inode); 693 } 694 695 err = f2fs_dquot_initialize(inode); 696 if (err) { 697 iput(inode); 698 goto err_out; 699 } 700 701 clear_nlink(inode); 702 703 /* truncate all the data during iput */ 704 iput(inode); 705 706 err = f2fs_get_node_info(sbi, ino, &ni, false); 707 if (err) 708 goto err_out; 709 710 /* ENOMEM was fully retried in f2fs_evict_inode. */ 711 if (ni.blk_addr != NULL_ADDR) { 712 err = -EIO; 713 goto err_out; 714 } 715 return 0; 716 717 err_out: 718 set_sbi_flag(sbi, SBI_NEED_FSCK); 719 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 720 __func__, ino); 721 return err; 722 } 723 724 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 725 { 726 block_t start_blk, orphan_blocks, i, j; 727 int err = 0; 728 729 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 730 return 0; 731 732 if (f2fs_hw_is_readonly(sbi)) { 733 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 734 return 0; 735 } 736 737 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) 738 f2fs_info(sbi, "orphan cleanup on readonly fs"); 739 740 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 741 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 742 743 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 744 745 for (i = 0; i < orphan_blocks; i++) { 746 struct page *page; 747 struct f2fs_orphan_block *orphan_blk; 748 749 page = f2fs_get_meta_page(sbi, start_blk + i); 750 if (IS_ERR(page)) { 751 err = PTR_ERR(page); 752 goto out; 753 } 754 755 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 756 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 757 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 758 759 err = recover_orphan_inode(sbi, ino); 760 if (err) { 761 f2fs_put_page(page, 1); 762 goto out; 763 } 764 } 765 f2fs_put_page(page, 1); 766 } 767 /* clear Orphan Flag */ 768 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 769 out: 770 set_sbi_flag(sbi, SBI_IS_RECOVERED); 771 772 return err; 773 } 774 775 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 776 { 777 struct list_head *head; 778 struct f2fs_orphan_block *orphan_blk = NULL; 779 unsigned int nentries = 0; 780 unsigned short index = 1; 781 unsigned short orphan_blocks; 782 struct page *page = NULL; 783 struct ino_entry *orphan = NULL; 784 struct inode_management *im = &sbi->im[ORPHAN_INO]; 785 786 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 787 788 /* 789 * we don't need to do spin_lock(&im->ino_lock) here, since all the 790 * orphan inode operations are covered under f2fs_lock_op(). 791 * And, spin_lock should be avoided due to page operations below. 792 */ 793 head = &im->ino_list; 794 795 /* loop for each orphan inode entry and write them in journal block */ 796 list_for_each_entry(orphan, head, list) { 797 if (!page) { 798 page = f2fs_grab_meta_page(sbi, start_blk++); 799 orphan_blk = 800 (struct f2fs_orphan_block *)page_address(page); 801 memset(orphan_blk, 0, sizeof(*orphan_blk)); 802 } 803 804 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 805 806 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 807 /* 808 * an orphan block is full of 1020 entries, 809 * then we need to flush current orphan blocks 810 * and bring another one in memory 811 */ 812 orphan_blk->blk_addr = cpu_to_le16(index); 813 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 814 orphan_blk->entry_count = cpu_to_le32(nentries); 815 set_page_dirty(page); 816 f2fs_put_page(page, 1); 817 index++; 818 nentries = 0; 819 page = NULL; 820 } 821 } 822 823 if (page) { 824 orphan_blk->blk_addr = cpu_to_le16(index); 825 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 826 orphan_blk->entry_count = cpu_to_le32(nentries); 827 set_page_dirty(page); 828 f2fs_put_page(page, 1); 829 } 830 } 831 832 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 833 struct f2fs_checkpoint *ckpt) 834 { 835 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 836 __u32 chksum; 837 838 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 839 if (chksum_ofs < CP_CHKSUM_OFFSET) { 840 chksum_ofs += sizeof(chksum); 841 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 842 F2FS_BLKSIZE - chksum_ofs); 843 } 844 return chksum; 845 } 846 847 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 848 struct f2fs_checkpoint **cp_block, struct page **cp_page, 849 unsigned long long *version) 850 { 851 size_t crc_offset = 0; 852 __u32 crc; 853 854 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 855 if (IS_ERR(*cp_page)) 856 return PTR_ERR(*cp_page); 857 858 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 859 860 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 861 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 862 crc_offset > CP_CHKSUM_OFFSET) { 863 f2fs_put_page(*cp_page, 1); 864 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 865 return -EINVAL; 866 } 867 868 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 869 if (crc != cur_cp_crc(*cp_block)) { 870 f2fs_put_page(*cp_page, 1); 871 f2fs_warn(sbi, "invalid crc value"); 872 return -EINVAL; 873 } 874 875 *version = cur_cp_version(*cp_block); 876 return 0; 877 } 878 879 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 880 block_t cp_addr, unsigned long long *version) 881 { 882 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 883 struct f2fs_checkpoint *cp_block = NULL; 884 unsigned long long cur_version = 0, pre_version = 0; 885 unsigned int cp_blocks; 886 int err; 887 888 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 889 &cp_page_1, version); 890 if (err) 891 return NULL; 892 893 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count); 894 895 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) { 896 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 897 le32_to_cpu(cp_block->cp_pack_total_block_count)); 898 goto invalid_cp; 899 } 900 pre_version = *version; 901 902 cp_addr += cp_blocks - 1; 903 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 904 &cp_page_2, version); 905 if (err) 906 goto invalid_cp; 907 cur_version = *version; 908 909 if (cur_version == pre_version) { 910 *version = cur_version; 911 f2fs_put_page(cp_page_2, 1); 912 return cp_page_1; 913 } 914 f2fs_put_page(cp_page_2, 1); 915 invalid_cp: 916 f2fs_put_page(cp_page_1, 1); 917 return NULL; 918 } 919 920 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 921 { 922 struct f2fs_checkpoint *cp_block; 923 struct f2fs_super_block *fsb = sbi->raw_super; 924 struct page *cp1, *cp2, *cur_page; 925 unsigned long blk_size = sbi->blocksize; 926 unsigned long long cp1_version = 0, cp2_version = 0; 927 unsigned long long cp_start_blk_no; 928 unsigned int cp_blks = 1 + __cp_payload(sbi); 929 block_t cp_blk_no; 930 int i; 931 int err; 932 933 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks), 934 GFP_KERNEL); 935 if (!sbi->ckpt) 936 return -ENOMEM; 937 /* 938 * Finding out valid cp block involves read both 939 * sets( cp pack 1 and cp pack 2) 940 */ 941 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 942 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 943 944 /* The second checkpoint pack should start at the next segment */ 945 cp_start_blk_no += ((unsigned long long)1) << 946 le32_to_cpu(fsb->log_blocks_per_seg); 947 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 948 949 if (cp1 && cp2) { 950 if (ver_after(cp2_version, cp1_version)) 951 cur_page = cp2; 952 else 953 cur_page = cp1; 954 } else if (cp1) { 955 cur_page = cp1; 956 } else if (cp2) { 957 cur_page = cp2; 958 } else { 959 err = -EFSCORRUPTED; 960 goto fail_no_cp; 961 } 962 963 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 964 memcpy(sbi->ckpt, cp_block, blk_size); 965 966 if (cur_page == cp1) 967 sbi->cur_cp_pack = 1; 968 else 969 sbi->cur_cp_pack = 2; 970 971 /* Sanity checking of checkpoint */ 972 if (f2fs_sanity_check_ckpt(sbi)) { 973 err = -EFSCORRUPTED; 974 goto free_fail_no_cp; 975 } 976 977 if (cp_blks <= 1) 978 goto done; 979 980 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 981 if (cur_page == cp2) 982 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg)); 983 984 for (i = 1; i < cp_blks; i++) { 985 void *sit_bitmap_ptr; 986 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 987 988 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 989 if (IS_ERR(cur_page)) { 990 err = PTR_ERR(cur_page); 991 goto free_fail_no_cp; 992 } 993 sit_bitmap_ptr = page_address(cur_page); 994 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 995 f2fs_put_page(cur_page, 1); 996 } 997 done: 998 f2fs_put_page(cp1, 1); 999 f2fs_put_page(cp2, 1); 1000 return 0; 1001 1002 free_fail_no_cp: 1003 f2fs_put_page(cp1, 1); 1004 f2fs_put_page(cp2, 1); 1005 fail_no_cp: 1006 kvfree(sbi->ckpt); 1007 return err; 1008 } 1009 1010 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 1011 { 1012 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1013 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1014 1015 if (is_inode_flag_set(inode, flag)) 1016 return; 1017 1018 set_inode_flag(inode, flag); 1019 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 1020 stat_inc_dirty_inode(sbi, type); 1021 } 1022 1023 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 1024 { 1025 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 1026 1027 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 1028 return; 1029 1030 list_del_init(&F2FS_I(inode)->dirty_list); 1031 clear_inode_flag(inode, flag); 1032 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 1033 } 1034 1035 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio) 1036 { 1037 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1038 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1039 1040 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1041 !S_ISLNK(inode->i_mode)) 1042 return; 1043 1044 spin_lock(&sbi->inode_lock[type]); 1045 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1046 __add_dirty_inode(inode, type); 1047 inode_inc_dirty_pages(inode); 1048 spin_unlock(&sbi->inode_lock[type]); 1049 1050 set_page_private_reference(&folio->page); 1051 } 1052 1053 void f2fs_remove_dirty_inode(struct inode *inode) 1054 { 1055 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1056 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1057 1058 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1059 !S_ISLNK(inode->i_mode)) 1060 return; 1061 1062 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1063 return; 1064 1065 spin_lock(&sbi->inode_lock[type]); 1066 __remove_dirty_inode(inode, type); 1067 spin_unlock(&sbi->inode_lock[type]); 1068 } 1069 1070 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 1071 bool from_cp) 1072 { 1073 struct list_head *head; 1074 struct inode *inode; 1075 struct f2fs_inode_info *fi; 1076 bool is_dir = (type == DIR_INODE); 1077 unsigned long ino = 0; 1078 1079 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1080 get_pages(sbi, is_dir ? 1081 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1082 retry: 1083 if (unlikely(f2fs_cp_error(sbi))) { 1084 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1085 get_pages(sbi, is_dir ? 1086 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1087 return -EIO; 1088 } 1089 1090 spin_lock(&sbi->inode_lock[type]); 1091 1092 head = &sbi->inode_list[type]; 1093 if (list_empty(head)) { 1094 spin_unlock(&sbi->inode_lock[type]); 1095 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1096 get_pages(sbi, is_dir ? 1097 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1098 return 0; 1099 } 1100 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1101 inode = igrab(&fi->vfs_inode); 1102 spin_unlock(&sbi->inode_lock[type]); 1103 if (inode) { 1104 unsigned long cur_ino = inode->i_ino; 1105 1106 if (from_cp) 1107 F2FS_I(inode)->cp_task = current; 1108 F2FS_I(inode)->wb_task = current; 1109 1110 filemap_fdatawrite(inode->i_mapping); 1111 1112 F2FS_I(inode)->wb_task = NULL; 1113 if (from_cp) 1114 F2FS_I(inode)->cp_task = NULL; 1115 1116 iput(inode); 1117 /* We need to give cpu to another writers. */ 1118 if (ino == cur_ino) 1119 cond_resched(); 1120 else 1121 ino = cur_ino; 1122 } else { 1123 /* 1124 * We should submit bio, since it exists several 1125 * writebacking dentry pages in the freeing inode. 1126 */ 1127 f2fs_submit_merged_write(sbi, DATA); 1128 cond_resched(); 1129 } 1130 goto retry; 1131 } 1132 1133 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1134 { 1135 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1136 struct inode *inode; 1137 struct f2fs_inode_info *fi; 1138 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1139 1140 while (total--) { 1141 if (unlikely(f2fs_cp_error(sbi))) 1142 return -EIO; 1143 1144 spin_lock(&sbi->inode_lock[DIRTY_META]); 1145 if (list_empty(head)) { 1146 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1147 return 0; 1148 } 1149 fi = list_first_entry(head, struct f2fs_inode_info, 1150 gdirty_list); 1151 inode = igrab(&fi->vfs_inode); 1152 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1153 if (inode) { 1154 sync_inode_metadata(inode, 0); 1155 1156 /* it's on eviction */ 1157 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1158 f2fs_update_inode_page(inode); 1159 iput(inode); 1160 } 1161 } 1162 return 0; 1163 } 1164 1165 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1166 { 1167 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1168 struct f2fs_nm_info *nm_i = NM_I(sbi); 1169 nid_t last_nid = nm_i->next_scan_nid; 1170 1171 next_free_nid(sbi, &last_nid); 1172 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1173 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1174 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1175 ckpt->next_free_nid = cpu_to_le32(last_nid); 1176 } 1177 1178 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1179 { 1180 bool ret = false; 1181 1182 if (!is_journalled_quota(sbi)) 1183 return false; 1184 1185 if (!f2fs_down_write_trylock(&sbi->quota_sem)) 1186 return true; 1187 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1188 ret = false; 1189 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1190 ret = false; 1191 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1192 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1193 ret = true; 1194 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1195 ret = true; 1196 } 1197 f2fs_up_write(&sbi->quota_sem); 1198 return ret; 1199 } 1200 1201 /* 1202 * Freeze all the FS-operations for checkpoint. 1203 */ 1204 static int block_operations(struct f2fs_sb_info *sbi) 1205 { 1206 struct writeback_control wbc = { 1207 .sync_mode = WB_SYNC_ALL, 1208 .nr_to_write = LONG_MAX, 1209 .for_reclaim = 0, 1210 }; 1211 int err = 0, cnt = 0; 1212 1213 /* 1214 * Let's flush inline_data in dirty node pages. 1215 */ 1216 f2fs_flush_inline_data(sbi); 1217 1218 retry_flush_quotas: 1219 f2fs_lock_all(sbi); 1220 if (__need_flush_quota(sbi)) { 1221 int locked; 1222 1223 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1224 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1225 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1226 goto retry_flush_dents; 1227 } 1228 f2fs_unlock_all(sbi); 1229 1230 /* only failed during mount/umount/freeze/quotactl */ 1231 locked = down_read_trylock(&sbi->sb->s_umount); 1232 f2fs_quota_sync(sbi->sb, -1); 1233 if (locked) 1234 up_read(&sbi->sb->s_umount); 1235 cond_resched(); 1236 goto retry_flush_quotas; 1237 } 1238 1239 retry_flush_dents: 1240 /* write all the dirty dentry pages */ 1241 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1242 f2fs_unlock_all(sbi); 1243 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true); 1244 if (err) 1245 return err; 1246 cond_resched(); 1247 goto retry_flush_quotas; 1248 } 1249 1250 /* 1251 * POR: we should ensure that there are no dirty node pages 1252 * until finishing nat/sit flush. inode->i_blocks can be updated. 1253 */ 1254 f2fs_down_write(&sbi->node_change); 1255 1256 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1257 f2fs_up_write(&sbi->node_change); 1258 f2fs_unlock_all(sbi); 1259 err = f2fs_sync_inode_meta(sbi); 1260 if (err) 1261 return err; 1262 cond_resched(); 1263 goto retry_flush_quotas; 1264 } 1265 1266 retry_flush_nodes: 1267 f2fs_down_write(&sbi->node_write); 1268 1269 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1270 f2fs_up_write(&sbi->node_write); 1271 atomic_inc(&sbi->wb_sync_req[NODE]); 1272 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1273 atomic_dec(&sbi->wb_sync_req[NODE]); 1274 if (err) { 1275 f2fs_up_write(&sbi->node_change); 1276 f2fs_unlock_all(sbi); 1277 return err; 1278 } 1279 cond_resched(); 1280 goto retry_flush_nodes; 1281 } 1282 1283 /* 1284 * sbi->node_change is used only for AIO write_begin path which produces 1285 * dirty node blocks and some checkpoint values by block allocation. 1286 */ 1287 __prepare_cp_block(sbi); 1288 f2fs_up_write(&sbi->node_change); 1289 return err; 1290 } 1291 1292 static void unblock_operations(struct f2fs_sb_info *sbi) 1293 { 1294 f2fs_up_write(&sbi->node_write); 1295 f2fs_unlock_all(sbi); 1296 } 1297 1298 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1299 { 1300 DEFINE_WAIT(wait); 1301 1302 for (;;) { 1303 if (!get_pages(sbi, type)) 1304 break; 1305 1306 if (unlikely(f2fs_cp_error(sbi) && 1307 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))) 1308 break; 1309 1310 if (type == F2FS_DIRTY_META) 1311 f2fs_sync_meta_pages(sbi, META, LONG_MAX, 1312 FS_CP_META_IO); 1313 else if (type == F2FS_WB_CP_DATA) 1314 f2fs_submit_merged_write(sbi, DATA); 1315 1316 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1317 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1318 } 1319 finish_wait(&sbi->cp_wait, &wait); 1320 } 1321 1322 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1323 { 1324 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1325 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1326 unsigned long flags; 1327 1328 if (cpc->reason & CP_UMOUNT) { 1329 if (le32_to_cpu(ckpt->cp_pack_total_block_count) + 1330 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) { 1331 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1332 f2fs_notice(sbi, "Disable nat_bits due to no space"); 1333 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) && 1334 f2fs_nat_bitmap_enabled(sbi)) { 1335 f2fs_enable_nat_bits(sbi); 1336 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1337 f2fs_notice(sbi, "Rebuild and enable nat_bits"); 1338 } 1339 } 1340 1341 spin_lock_irqsave(&sbi->cp_lock, flags); 1342 1343 if (cpc->reason & CP_TRIMMED) 1344 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1345 else 1346 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1347 1348 if (cpc->reason & CP_UMOUNT) 1349 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1350 else 1351 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1352 1353 if (cpc->reason & CP_FASTBOOT) 1354 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1355 else 1356 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1357 1358 if (orphan_num) 1359 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1360 else 1361 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1362 1363 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1364 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1365 1366 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1367 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1368 else 1369 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1370 1371 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1372 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1373 else 1374 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1375 1376 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1377 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1378 else 1379 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1380 1381 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1382 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1383 else 1384 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1385 1386 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1387 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1388 1389 /* set this flag to activate crc|cp_ver for recovery */ 1390 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1391 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1392 1393 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1394 } 1395 1396 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1397 void *src, block_t blk_addr) 1398 { 1399 struct writeback_control wbc = { 1400 .for_reclaim = 0, 1401 }; 1402 1403 /* 1404 * filemap_get_folios_tag and lock_page again will take 1405 * some extra time. Therefore, f2fs_update_meta_pages and 1406 * f2fs_sync_meta_pages are combined in this function. 1407 */ 1408 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1409 int err; 1410 1411 f2fs_wait_on_page_writeback(page, META, true, true); 1412 1413 memcpy(page_address(page), src, PAGE_SIZE); 1414 1415 set_page_dirty(page); 1416 if (unlikely(!clear_page_dirty_for_io(page))) 1417 f2fs_bug_on(sbi, 1); 1418 1419 /* writeout cp pack 2 page */ 1420 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1421 if (unlikely(err && f2fs_cp_error(sbi))) { 1422 f2fs_put_page(page, 1); 1423 return; 1424 } 1425 1426 f2fs_bug_on(sbi, err); 1427 f2fs_put_page(page, 0); 1428 1429 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1430 f2fs_submit_merged_write(sbi, META_FLUSH); 1431 } 1432 1433 static inline u64 get_sectors_written(struct block_device *bdev) 1434 { 1435 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]); 1436 } 1437 1438 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi) 1439 { 1440 if (f2fs_is_multi_device(sbi)) { 1441 u64 sectors = 0; 1442 int i; 1443 1444 for (i = 0; i < sbi->s_ndevs; i++) 1445 sectors += get_sectors_written(FDEV(i).bdev); 1446 1447 return sectors; 1448 } 1449 1450 return get_sectors_written(sbi->sb->s_bdev); 1451 } 1452 1453 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1454 { 1455 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1456 struct f2fs_nm_info *nm_i = NM_I(sbi); 1457 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1458 block_t start_blk; 1459 unsigned int data_sum_blocks, orphan_blocks; 1460 __u32 crc32 = 0; 1461 int i; 1462 int cp_payload_blks = __cp_payload(sbi); 1463 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1464 u64 kbytes_written; 1465 int err; 1466 1467 /* Flush all the NAT/SIT pages */ 1468 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1469 1470 /* start to update checkpoint, cp ver is already updated previously */ 1471 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1472 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1473 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1474 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE); 1475 1476 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno); 1477 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1478 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type; 1479 } 1480 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1481 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA); 1482 1483 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno); 1484 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff); 1485 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type; 1486 } 1487 1488 /* 2 cp + n data seg summary + orphan inode blocks */ 1489 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1490 spin_lock_irqsave(&sbi->cp_lock, flags); 1491 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1492 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1493 else 1494 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1495 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1496 1497 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1498 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1499 orphan_blocks); 1500 1501 if (__remain_node_summaries(cpc->reason)) 1502 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1503 cp_payload_blks + data_sum_blocks + 1504 orphan_blocks + NR_CURSEG_NODE_TYPE); 1505 else 1506 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1507 cp_payload_blks + data_sum_blocks + 1508 orphan_blocks); 1509 1510 /* update ckpt flag for checkpoint */ 1511 update_ckpt_flags(sbi, cpc); 1512 1513 /* update SIT/NAT bitmap */ 1514 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1515 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1516 1517 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1518 *((__le32 *)((unsigned char *)ckpt + 1519 le32_to_cpu(ckpt->checksum_offset))) 1520 = cpu_to_le32(crc32); 1521 1522 start_blk = __start_cp_next_addr(sbi); 1523 1524 /* write nat bits */ 1525 if ((cpc->reason & CP_UMOUNT) && 1526 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) { 1527 __u64 cp_ver = cur_cp_version(ckpt); 1528 block_t blk; 1529 1530 cp_ver |= ((__u64)crc32 << 32); 1531 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1532 1533 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1534 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1535 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1536 (i << F2FS_BLKSIZE_BITS), blk + i); 1537 } 1538 1539 /* write out checkpoint buffer at block 0 */ 1540 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1541 1542 for (i = 1; i < 1 + cp_payload_blks; i++) 1543 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1544 start_blk++); 1545 1546 if (orphan_num) { 1547 write_orphan_inodes(sbi, start_blk); 1548 start_blk += orphan_blocks; 1549 } 1550 1551 f2fs_write_data_summaries(sbi, start_blk); 1552 start_blk += data_sum_blocks; 1553 1554 /* Record write statistics in the hot node summary */ 1555 kbytes_written = sbi->kbytes_written; 1556 kbytes_written += (f2fs_get_sectors_written(sbi) - 1557 sbi->sectors_written_start) >> 1; 1558 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1559 1560 if (__remain_node_summaries(cpc->reason)) { 1561 f2fs_write_node_summaries(sbi, start_blk); 1562 start_blk += NR_CURSEG_NODE_TYPE; 1563 } 1564 1565 /* update user_block_counts */ 1566 sbi->last_valid_block_count = sbi->total_valid_block_count; 1567 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1568 percpu_counter_set(&sbi->rf_node_block_count, 0); 1569 1570 /* Here, we have one bio having CP pack except cp pack 2 page */ 1571 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1572 /* Wait for all dirty meta pages to be submitted for IO */ 1573 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1574 1575 /* wait for previous submitted meta pages writeback */ 1576 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1577 1578 /* flush all device cache */ 1579 err = f2fs_flush_device_cache(sbi); 1580 if (err) 1581 return err; 1582 1583 /* barrier and flush checkpoint cp pack 2 page if it can */ 1584 commit_checkpoint(sbi, ckpt, start_blk); 1585 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1586 1587 /* 1588 * invalidate intermediate page cache borrowed from meta inode which are 1589 * used for migration of encrypted, verity or compressed inode's blocks. 1590 */ 1591 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) || 1592 f2fs_sb_has_compression(sbi)) 1593 invalidate_mapping_pages(META_MAPPING(sbi), 1594 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1595 1596 f2fs_release_ino_entry(sbi, false); 1597 1598 f2fs_reset_fsync_node_info(sbi); 1599 1600 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1601 clear_sbi_flag(sbi, SBI_NEED_CP); 1602 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1603 1604 spin_lock(&sbi->stat_lock); 1605 sbi->unusable_block_count = 0; 1606 spin_unlock(&sbi->stat_lock); 1607 1608 __set_cp_next_pack(sbi); 1609 1610 /* 1611 * redirty superblock if metadata like node page or inode cache is 1612 * updated during writing checkpoint. 1613 */ 1614 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1615 get_pages(sbi, F2FS_DIRTY_IMETA)) 1616 set_sbi_flag(sbi, SBI_IS_DIRTY); 1617 1618 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1619 1620 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1621 } 1622 1623 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1624 { 1625 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1626 unsigned long long ckpt_ver; 1627 int err = 0; 1628 1629 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1630 return -EROFS; 1631 1632 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1633 if (cpc->reason != CP_PAUSE) 1634 return 0; 1635 f2fs_warn(sbi, "Start checkpoint disabled!"); 1636 } 1637 if (cpc->reason != CP_RESIZE) 1638 f2fs_down_write(&sbi->cp_global_sem); 1639 1640 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1641 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1642 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1643 goto out; 1644 if (unlikely(f2fs_cp_error(sbi))) { 1645 err = -EIO; 1646 goto out; 1647 } 1648 1649 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1650 1651 err = block_operations(sbi); 1652 if (err) 1653 goto out; 1654 1655 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1656 1657 f2fs_flush_merged_writes(sbi); 1658 1659 /* this is the case of multiple fstrims without any changes */ 1660 if (cpc->reason & CP_DISCARD) { 1661 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1662 unblock_operations(sbi); 1663 goto out; 1664 } 1665 1666 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 && 1667 SIT_I(sbi)->dirty_sentries == 0 && 1668 prefree_segments(sbi) == 0) { 1669 f2fs_flush_sit_entries(sbi, cpc); 1670 f2fs_clear_prefree_segments(sbi, cpc); 1671 unblock_operations(sbi); 1672 goto out; 1673 } 1674 } 1675 1676 /* 1677 * update checkpoint pack index 1678 * Increase the version number so that 1679 * SIT entries and seg summaries are written at correct place 1680 */ 1681 ckpt_ver = cur_cp_version(ckpt); 1682 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1683 1684 /* write cached NAT/SIT entries to NAT/SIT area */ 1685 err = f2fs_flush_nat_entries(sbi, cpc); 1686 if (err) { 1687 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err); 1688 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1689 goto stop; 1690 } 1691 1692 f2fs_flush_sit_entries(sbi, cpc); 1693 1694 /* save inmem log status */ 1695 f2fs_save_inmem_curseg(sbi); 1696 1697 err = do_checkpoint(sbi, cpc); 1698 if (err) { 1699 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err); 1700 f2fs_bug_on(sbi, !f2fs_cp_error(sbi)); 1701 f2fs_release_discard_addrs(sbi); 1702 } else { 1703 f2fs_clear_prefree_segments(sbi, cpc); 1704 } 1705 1706 f2fs_restore_inmem_curseg(sbi); 1707 stop: 1708 unblock_operations(sbi); 1709 stat_inc_cp_count(sbi->stat_info); 1710 1711 if (cpc->reason & CP_RECOVERY) 1712 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1713 1714 /* update CP_TIME to trigger checkpoint periodically */ 1715 f2fs_update_time(sbi, CP_TIME); 1716 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1717 out: 1718 if (cpc->reason != CP_RESIZE) 1719 f2fs_up_write(&sbi->cp_global_sem); 1720 return err; 1721 } 1722 1723 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1724 { 1725 int i; 1726 1727 for (i = 0; i < MAX_INO_ENTRY; i++) { 1728 struct inode_management *im = &sbi->im[i]; 1729 1730 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1731 spin_lock_init(&im->ino_lock); 1732 INIT_LIST_HEAD(&im->ino_list); 1733 im->ino_num = 0; 1734 } 1735 1736 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1737 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) * 1738 F2FS_ORPHANS_PER_BLOCK; 1739 } 1740 1741 int __init f2fs_create_checkpoint_caches(void) 1742 { 1743 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1744 sizeof(struct ino_entry)); 1745 if (!ino_entry_slab) 1746 return -ENOMEM; 1747 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1748 sizeof(struct inode_entry)); 1749 if (!f2fs_inode_entry_slab) { 1750 kmem_cache_destroy(ino_entry_slab); 1751 return -ENOMEM; 1752 } 1753 return 0; 1754 } 1755 1756 void f2fs_destroy_checkpoint_caches(void) 1757 { 1758 kmem_cache_destroy(ino_entry_slab); 1759 kmem_cache_destroy(f2fs_inode_entry_slab); 1760 } 1761 1762 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi) 1763 { 1764 struct cp_control cpc = { .reason = CP_SYNC, }; 1765 int err; 1766 1767 f2fs_down_write(&sbi->gc_lock); 1768 err = f2fs_write_checkpoint(sbi, &cpc); 1769 f2fs_up_write(&sbi->gc_lock); 1770 1771 return err; 1772 } 1773 1774 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi) 1775 { 1776 struct ckpt_req_control *cprc = &sbi->cprc_info; 1777 struct ckpt_req *req, *next; 1778 struct llist_node *dispatch_list; 1779 u64 sum_diff = 0, diff, count = 0; 1780 int ret; 1781 1782 dispatch_list = llist_del_all(&cprc->issue_list); 1783 if (!dispatch_list) 1784 return; 1785 dispatch_list = llist_reverse_order(dispatch_list); 1786 1787 ret = __write_checkpoint_sync(sbi); 1788 atomic_inc(&cprc->issued_ckpt); 1789 1790 llist_for_each_entry_safe(req, next, dispatch_list, llnode) { 1791 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time); 1792 req->ret = ret; 1793 complete(&req->wait); 1794 1795 sum_diff += diff; 1796 count++; 1797 } 1798 atomic_sub(count, &cprc->queued_ckpt); 1799 atomic_add(count, &cprc->total_ckpt); 1800 1801 spin_lock(&cprc->stat_lock); 1802 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count); 1803 if (cprc->peak_time < cprc->cur_time) 1804 cprc->peak_time = cprc->cur_time; 1805 spin_unlock(&cprc->stat_lock); 1806 } 1807 1808 static int issue_checkpoint_thread(void *data) 1809 { 1810 struct f2fs_sb_info *sbi = data; 1811 struct ckpt_req_control *cprc = &sbi->cprc_info; 1812 wait_queue_head_t *q = &cprc->ckpt_wait_queue; 1813 repeat: 1814 if (kthread_should_stop()) 1815 return 0; 1816 1817 if (!llist_empty(&cprc->issue_list)) 1818 __checkpoint_and_complete_reqs(sbi); 1819 1820 wait_event_interruptible(*q, 1821 kthread_should_stop() || !llist_empty(&cprc->issue_list)); 1822 goto repeat; 1823 } 1824 1825 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi, 1826 struct ckpt_req *wait_req) 1827 { 1828 struct ckpt_req_control *cprc = &sbi->cprc_info; 1829 1830 if (!llist_empty(&cprc->issue_list)) { 1831 __checkpoint_and_complete_reqs(sbi); 1832 } else { 1833 /* already dispatched by issue_checkpoint_thread */ 1834 if (wait_req) 1835 wait_for_completion(&wait_req->wait); 1836 } 1837 } 1838 1839 static void init_ckpt_req(struct ckpt_req *req) 1840 { 1841 memset(req, 0, sizeof(struct ckpt_req)); 1842 1843 init_completion(&req->wait); 1844 req->queue_time = ktime_get(); 1845 } 1846 1847 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi) 1848 { 1849 struct ckpt_req_control *cprc = &sbi->cprc_info; 1850 struct ckpt_req req; 1851 struct cp_control cpc; 1852 1853 cpc.reason = __get_cp_reason(sbi); 1854 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) { 1855 int ret; 1856 1857 f2fs_down_write(&sbi->gc_lock); 1858 ret = f2fs_write_checkpoint(sbi, &cpc); 1859 f2fs_up_write(&sbi->gc_lock); 1860 1861 return ret; 1862 } 1863 1864 if (!cprc->f2fs_issue_ckpt) 1865 return __write_checkpoint_sync(sbi); 1866 1867 init_ckpt_req(&req); 1868 1869 llist_add(&req.llnode, &cprc->issue_list); 1870 atomic_inc(&cprc->queued_ckpt); 1871 1872 /* 1873 * update issue_list before we wake up issue_checkpoint thread, 1874 * this smp_mb() pairs with another barrier in ___wait_event(), 1875 * see more details in comments of waitqueue_active(). 1876 */ 1877 smp_mb(); 1878 1879 if (waitqueue_active(&cprc->ckpt_wait_queue)) 1880 wake_up(&cprc->ckpt_wait_queue); 1881 1882 if (cprc->f2fs_issue_ckpt) 1883 wait_for_completion(&req.wait); 1884 else 1885 flush_remained_ckpt_reqs(sbi, &req); 1886 1887 return req.ret; 1888 } 1889 1890 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi) 1891 { 1892 dev_t dev = sbi->sb->s_bdev->bd_dev; 1893 struct ckpt_req_control *cprc = &sbi->cprc_info; 1894 1895 if (cprc->f2fs_issue_ckpt) 1896 return 0; 1897 1898 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi, 1899 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev)); 1900 if (IS_ERR(cprc->f2fs_issue_ckpt)) { 1901 int err = PTR_ERR(cprc->f2fs_issue_ckpt); 1902 1903 cprc->f2fs_issue_ckpt = NULL; 1904 return err; 1905 } 1906 1907 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio); 1908 1909 return 0; 1910 } 1911 1912 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi) 1913 { 1914 struct ckpt_req_control *cprc = &sbi->cprc_info; 1915 struct task_struct *ckpt_task; 1916 1917 if (!cprc->f2fs_issue_ckpt) 1918 return; 1919 1920 ckpt_task = cprc->f2fs_issue_ckpt; 1921 cprc->f2fs_issue_ckpt = NULL; 1922 kthread_stop(ckpt_task); 1923 1924 f2fs_flush_ckpt_thread(sbi); 1925 } 1926 1927 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi) 1928 { 1929 struct ckpt_req_control *cprc = &sbi->cprc_info; 1930 1931 flush_remained_ckpt_reqs(sbi, NULL); 1932 1933 /* Let's wait for the previous dispatched checkpoint. */ 1934 while (atomic_read(&cprc->queued_ckpt)) 1935 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1936 } 1937 1938 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi) 1939 { 1940 struct ckpt_req_control *cprc = &sbi->cprc_info; 1941 1942 atomic_set(&cprc->issued_ckpt, 0); 1943 atomic_set(&cprc->total_ckpt, 0); 1944 atomic_set(&cprc->queued_ckpt, 0); 1945 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO; 1946 init_waitqueue_head(&cprc->ckpt_wait_queue); 1947 init_llist_head(&cprc->issue_list); 1948 spin_lock_init(&cprc->stat_lock); 1949 } 1950