1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ 58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .rw = READ_SYNC | REQ_META | REQ_PRIO, 67 .old_blkaddr = index, 68 .new_blkaddr = index, 69 .encrypted_page = NULL, 70 }; 71 72 if (unlikely(!is_meta)) 73 fio.rw &= ~REQ_META; 74 repeat: 75 page = f2fs_grab_cache_page(mapping, index, false); 76 if (!page) { 77 cond_resched(); 78 goto repeat; 79 } 80 if (PageUptodate(page)) 81 goto out; 82 83 fio.page = page; 84 85 if (f2fs_submit_page_bio(&fio)) { 86 f2fs_put_page(page, 1); 87 goto repeat; 88 } 89 90 lock_page(page); 91 if (unlikely(page->mapping != mapping)) { 92 f2fs_put_page(page, 1); 93 goto repeat; 94 } 95 96 /* 97 * if there is any IO error when accessing device, make our filesystem 98 * readonly and make sure do not write checkpoint with non-uptodate 99 * meta page. 100 */ 101 if (unlikely(!PageUptodate(page))) 102 f2fs_stop_checkpoint(sbi, false); 103 out: 104 return page; 105 } 106 107 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 108 { 109 return __get_meta_page(sbi, index, true); 110 } 111 112 /* for POR only */ 113 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 114 { 115 return __get_meta_page(sbi, index, false); 116 } 117 118 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 119 { 120 switch (type) { 121 case META_NAT: 122 break; 123 case META_SIT: 124 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 125 return false; 126 break; 127 case META_SSA: 128 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 129 blkaddr < SM_I(sbi)->ssa_blkaddr)) 130 return false; 131 break; 132 case META_CP: 133 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 134 blkaddr < __start_cp_addr(sbi))) 135 return false; 136 break; 137 case META_POR: 138 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 139 blkaddr < MAIN_BLKADDR(sbi))) 140 return false; 141 break; 142 default: 143 BUG(); 144 } 145 146 return true; 147 } 148 149 /* 150 * Readahead CP/NAT/SIT/SSA pages 151 */ 152 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 153 int type, bool sync) 154 { 155 struct page *page; 156 block_t blkno = start; 157 struct f2fs_io_info fio = { 158 .sbi = sbi, 159 .type = META, 160 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA, 161 .encrypted_page = NULL, 162 }; 163 struct blk_plug plug; 164 165 if (unlikely(type == META_POR)) 166 fio.rw &= ~REQ_META; 167 168 blk_start_plug(&plug); 169 for (; nrpages-- > 0; blkno++) { 170 171 if (!is_valid_blkaddr(sbi, blkno, type)) 172 goto out; 173 174 switch (type) { 175 case META_NAT: 176 if (unlikely(blkno >= 177 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 178 blkno = 0; 179 /* get nat block addr */ 180 fio.new_blkaddr = current_nat_addr(sbi, 181 blkno * NAT_ENTRY_PER_BLOCK); 182 break; 183 case META_SIT: 184 /* get sit block addr */ 185 fio.new_blkaddr = current_sit_addr(sbi, 186 blkno * SIT_ENTRY_PER_BLOCK); 187 break; 188 case META_SSA: 189 case META_CP: 190 case META_POR: 191 fio.new_blkaddr = blkno; 192 break; 193 default: 194 BUG(); 195 } 196 197 page = f2fs_grab_cache_page(META_MAPPING(sbi), 198 fio.new_blkaddr, false); 199 if (!page) 200 continue; 201 if (PageUptodate(page)) { 202 f2fs_put_page(page, 1); 203 continue; 204 } 205 206 fio.page = page; 207 fio.old_blkaddr = fio.new_blkaddr; 208 f2fs_submit_page_mbio(&fio); 209 f2fs_put_page(page, 0); 210 } 211 out: 212 f2fs_submit_merged_bio(sbi, META, READ); 213 blk_finish_plug(&plug); 214 return blkno - start; 215 } 216 217 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 218 { 219 struct page *page; 220 bool readahead = false; 221 222 page = find_get_page(META_MAPPING(sbi), index); 223 if (!page || !PageUptodate(page)) 224 readahead = true; 225 f2fs_put_page(page, 0); 226 227 if (readahead) 228 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true); 229 } 230 231 static int f2fs_write_meta_page(struct page *page, 232 struct writeback_control *wbc) 233 { 234 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 235 236 trace_f2fs_writepage(page, META); 237 238 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 239 goto redirty_out; 240 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 241 goto redirty_out; 242 if (unlikely(f2fs_cp_error(sbi))) 243 goto redirty_out; 244 245 write_meta_page(sbi, page); 246 dec_page_count(sbi, F2FS_DIRTY_META); 247 248 if (wbc->for_reclaim) 249 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE); 250 251 unlock_page(page); 252 253 if (unlikely(f2fs_cp_error(sbi))) 254 f2fs_submit_merged_bio(sbi, META, WRITE); 255 256 return 0; 257 258 redirty_out: 259 redirty_page_for_writepage(wbc, page); 260 return AOP_WRITEPAGE_ACTIVATE; 261 } 262 263 static int f2fs_write_meta_pages(struct address_space *mapping, 264 struct writeback_control *wbc) 265 { 266 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 267 long diff, written; 268 269 /* collect a number of dirty meta pages and write together */ 270 if (wbc->for_kupdate || 271 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 272 goto skip_write; 273 274 trace_f2fs_writepages(mapping->host, wbc, META); 275 276 /* if mounting is failed, skip writing node pages */ 277 mutex_lock(&sbi->cp_mutex); 278 diff = nr_pages_to_write(sbi, META, wbc); 279 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 280 mutex_unlock(&sbi->cp_mutex); 281 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 282 return 0; 283 284 skip_write: 285 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 286 trace_f2fs_writepages(mapping->host, wbc, META); 287 return 0; 288 } 289 290 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 291 long nr_to_write) 292 { 293 struct address_space *mapping = META_MAPPING(sbi); 294 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 295 struct pagevec pvec; 296 long nwritten = 0; 297 struct writeback_control wbc = { 298 .for_reclaim = 0, 299 }; 300 struct blk_plug plug; 301 302 pagevec_init(&pvec, 0); 303 304 blk_start_plug(&plug); 305 306 while (index <= end) { 307 int i, nr_pages; 308 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 309 PAGECACHE_TAG_DIRTY, 310 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 311 if (unlikely(nr_pages == 0)) 312 break; 313 314 for (i = 0; i < nr_pages; i++) { 315 struct page *page = pvec.pages[i]; 316 317 if (prev == ULONG_MAX) 318 prev = page->index - 1; 319 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 320 pagevec_release(&pvec); 321 goto stop; 322 } 323 324 lock_page(page); 325 326 if (unlikely(page->mapping != mapping)) { 327 continue_unlock: 328 unlock_page(page); 329 continue; 330 } 331 if (!PageDirty(page)) { 332 /* someone wrote it for us */ 333 goto continue_unlock; 334 } 335 336 f2fs_wait_on_page_writeback(page, META, true); 337 338 BUG_ON(PageWriteback(page)); 339 if (!clear_page_dirty_for_io(page)) 340 goto continue_unlock; 341 342 if (mapping->a_ops->writepage(page, &wbc)) { 343 unlock_page(page); 344 break; 345 } 346 nwritten++; 347 prev = page->index; 348 if (unlikely(nwritten >= nr_to_write)) 349 break; 350 } 351 pagevec_release(&pvec); 352 cond_resched(); 353 } 354 stop: 355 if (nwritten) 356 f2fs_submit_merged_bio(sbi, type, WRITE); 357 358 blk_finish_plug(&plug); 359 360 return nwritten; 361 } 362 363 static int f2fs_set_meta_page_dirty(struct page *page) 364 { 365 trace_f2fs_set_page_dirty(page, META); 366 367 SetPageUptodate(page); 368 if (!PageDirty(page)) { 369 __set_page_dirty_nobuffers(page); 370 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 371 SetPagePrivate(page); 372 f2fs_trace_pid(page); 373 return 1; 374 } 375 return 0; 376 } 377 378 const struct address_space_operations f2fs_meta_aops = { 379 .writepage = f2fs_write_meta_page, 380 .writepages = f2fs_write_meta_pages, 381 .set_page_dirty = f2fs_set_meta_page_dirty, 382 .invalidatepage = f2fs_invalidate_page, 383 .releasepage = f2fs_release_page, 384 }; 385 386 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 387 { 388 struct inode_management *im = &sbi->im[type]; 389 struct ino_entry *e, *tmp; 390 391 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 392 retry: 393 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 394 395 spin_lock(&im->ino_lock); 396 e = radix_tree_lookup(&im->ino_root, ino); 397 if (!e) { 398 e = tmp; 399 if (radix_tree_insert(&im->ino_root, ino, e)) { 400 spin_unlock(&im->ino_lock); 401 radix_tree_preload_end(); 402 goto retry; 403 } 404 memset(e, 0, sizeof(struct ino_entry)); 405 e->ino = ino; 406 407 list_add_tail(&e->list, &im->ino_list); 408 if (type != ORPHAN_INO) 409 im->ino_num++; 410 } 411 spin_unlock(&im->ino_lock); 412 radix_tree_preload_end(); 413 414 if (e != tmp) 415 kmem_cache_free(ino_entry_slab, tmp); 416 } 417 418 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 419 { 420 struct inode_management *im = &sbi->im[type]; 421 struct ino_entry *e; 422 423 spin_lock(&im->ino_lock); 424 e = radix_tree_lookup(&im->ino_root, ino); 425 if (e) { 426 list_del(&e->list); 427 radix_tree_delete(&im->ino_root, ino); 428 im->ino_num--; 429 spin_unlock(&im->ino_lock); 430 kmem_cache_free(ino_entry_slab, e); 431 return; 432 } 433 spin_unlock(&im->ino_lock); 434 } 435 436 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 437 { 438 /* add new dirty ino entry into list */ 439 __add_ino_entry(sbi, ino, type); 440 } 441 442 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 443 { 444 /* remove dirty ino entry from list */ 445 __remove_ino_entry(sbi, ino, type); 446 } 447 448 /* mode should be APPEND_INO or UPDATE_INO */ 449 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 450 { 451 struct inode_management *im = &sbi->im[mode]; 452 struct ino_entry *e; 453 454 spin_lock(&im->ino_lock); 455 e = radix_tree_lookup(&im->ino_root, ino); 456 spin_unlock(&im->ino_lock); 457 return e ? true : false; 458 } 459 460 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 461 { 462 struct ino_entry *e, *tmp; 463 int i; 464 465 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 466 struct inode_management *im = &sbi->im[i]; 467 468 spin_lock(&im->ino_lock); 469 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 470 list_del(&e->list); 471 radix_tree_delete(&im->ino_root, e->ino); 472 kmem_cache_free(ino_entry_slab, e); 473 im->ino_num--; 474 } 475 spin_unlock(&im->ino_lock); 476 } 477 } 478 479 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 480 { 481 struct inode_management *im = &sbi->im[ORPHAN_INO]; 482 int err = 0; 483 484 spin_lock(&im->ino_lock); 485 486 #ifdef CONFIG_F2FS_FAULT_INJECTION 487 if (time_to_inject(FAULT_ORPHAN)) { 488 spin_unlock(&im->ino_lock); 489 return -ENOSPC; 490 } 491 #endif 492 if (unlikely(im->ino_num >= sbi->max_orphans)) 493 err = -ENOSPC; 494 else 495 im->ino_num++; 496 spin_unlock(&im->ino_lock); 497 498 return err; 499 } 500 501 void release_orphan_inode(struct f2fs_sb_info *sbi) 502 { 503 struct inode_management *im = &sbi->im[ORPHAN_INO]; 504 505 spin_lock(&im->ino_lock); 506 f2fs_bug_on(sbi, im->ino_num == 0); 507 im->ino_num--; 508 spin_unlock(&im->ino_lock); 509 } 510 511 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 512 { 513 /* add new orphan ino entry into list */ 514 __add_ino_entry(sbi, ino, ORPHAN_INO); 515 } 516 517 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 518 { 519 /* remove orphan entry from orphan list */ 520 __remove_ino_entry(sbi, ino, ORPHAN_INO); 521 } 522 523 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 524 { 525 struct inode *inode; 526 527 inode = f2fs_iget(sbi->sb, ino); 528 if (IS_ERR(inode)) { 529 /* 530 * there should be a bug that we can't find the entry 531 * to orphan inode. 532 */ 533 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 534 return PTR_ERR(inode); 535 } 536 537 clear_nlink(inode); 538 539 /* truncate all the data during iput */ 540 iput(inode); 541 return 0; 542 } 543 544 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 545 { 546 block_t start_blk, orphan_blocks, i, j; 547 int err; 548 549 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 550 return 0; 551 552 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 553 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 554 555 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 556 557 for (i = 0; i < orphan_blocks; i++) { 558 struct page *page = get_meta_page(sbi, start_blk + i); 559 struct f2fs_orphan_block *orphan_blk; 560 561 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 562 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 563 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 564 err = recover_orphan_inode(sbi, ino); 565 if (err) { 566 f2fs_put_page(page, 1); 567 return err; 568 } 569 } 570 f2fs_put_page(page, 1); 571 } 572 /* clear Orphan Flag */ 573 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 574 return 0; 575 } 576 577 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 578 { 579 struct list_head *head; 580 struct f2fs_orphan_block *orphan_blk = NULL; 581 unsigned int nentries = 0; 582 unsigned short index = 1; 583 unsigned short orphan_blocks; 584 struct page *page = NULL; 585 struct ino_entry *orphan = NULL; 586 struct inode_management *im = &sbi->im[ORPHAN_INO]; 587 588 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 589 590 /* 591 * we don't need to do spin_lock(&im->ino_lock) here, since all the 592 * orphan inode operations are covered under f2fs_lock_op(). 593 * And, spin_lock should be avoided due to page operations below. 594 */ 595 head = &im->ino_list; 596 597 /* loop for each orphan inode entry and write them in Jornal block */ 598 list_for_each_entry(orphan, head, list) { 599 if (!page) { 600 page = grab_meta_page(sbi, start_blk++); 601 orphan_blk = 602 (struct f2fs_orphan_block *)page_address(page); 603 memset(orphan_blk, 0, sizeof(*orphan_blk)); 604 } 605 606 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 607 608 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 609 /* 610 * an orphan block is full of 1020 entries, 611 * then we need to flush current orphan blocks 612 * and bring another one in memory 613 */ 614 orphan_blk->blk_addr = cpu_to_le16(index); 615 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 616 orphan_blk->entry_count = cpu_to_le32(nentries); 617 set_page_dirty(page); 618 f2fs_put_page(page, 1); 619 index++; 620 nentries = 0; 621 page = NULL; 622 } 623 } 624 625 if (page) { 626 orphan_blk->blk_addr = cpu_to_le16(index); 627 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 628 orphan_blk->entry_count = cpu_to_le32(nentries); 629 set_page_dirty(page); 630 f2fs_put_page(page, 1); 631 } 632 } 633 634 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 635 block_t cp_addr, unsigned long long *version) 636 { 637 struct page *cp_page_1, *cp_page_2 = NULL; 638 unsigned long blk_size = sbi->blocksize; 639 struct f2fs_checkpoint *cp_block; 640 unsigned long long cur_version = 0, pre_version = 0; 641 size_t crc_offset; 642 __u32 crc = 0; 643 644 /* Read the 1st cp block in this CP pack */ 645 cp_page_1 = get_meta_page(sbi, cp_addr); 646 647 /* get the version number */ 648 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 649 crc_offset = le32_to_cpu(cp_block->checksum_offset); 650 if (crc_offset >= blk_size) 651 goto invalid_cp1; 652 653 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 654 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 655 goto invalid_cp1; 656 657 pre_version = cur_cp_version(cp_block); 658 659 /* Read the 2nd cp block in this CP pack */ 660 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 661 cp_page_2 = get_meta_page(sbi, cp_addr); 662 663 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 664 crc_offset = le32_to_cpu(cp_block->checksum_offset); 665 if (crc_offset >= blk_size) 666 goto invalid_cp2; 667 668 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 669 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 670 goto invalid_cp2; 671 672 cur_version = cur_cp_version(cp_block); 673 674 if (cur_version == pre_version) { 675 *version = cur_version; 676 f2fs_put_page(cp_page_2, 1); 677 return cp_page_1; 678 } 679 invalid_cp2: 680 f2fs_put_page(cp_page_2, 1); 681 invalid_cp1: 682 f2fs_put_page(cp_page_1, 1); 683 return NULL; 684 } 685 686 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 687 { 688 struct f2fs_checkpoint *cp_block; 689 struct f2fs_super_block *fsb = sbi->raw_super; 690 struct page *cp1, *cp2, *cur_page; 691 unsigned long blk_size = sbi->blocksize; 692 unsigned long long cp1_version = 0, cp2_version = 0; 693 unsigned long long cp_start_blk_no; 694 unsigned int cp_blks = 1 + __cp_payload(sbi); 695 block_t cp_blk_no; 696 int i; 697 698 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 699 if (!sbi->ckpt) 700 return -ENOMEM; 701 /* 702 * Finding out valid cp block involves read both 703 * sets( cp pack1 and cp pack 2) 704 */ 705 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 706 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 707 708 /* The second checkpoint pack should start at the next segment */ 709 cp_start_blk_no += ((unsigned long long)1) << 710 le32_to_cpu(fsb->log_blocks_per_seg); 711 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 712 713 if (cp1 && cp2) { 714 if (ver_after(cp2_version, cp1_version)) 715 cur_page = cp2; 716 else 717 cur_page = cp1; 718 } else if (cp1) { 719 cur_page = cp1; 720 } else if (cp2) { 721 cur_page = cp2; 722 } else { 723 goto fail_no_cp; 724 } 725 726 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 727 memcpy(sbi->ckpt, cp_block, blk_size); 728 729 /* Sanity checking of checkpoint */ 730 if (sanity_check_ckpt(sbi)) 731 goto fail_no_cp; 732 733 if (cp_blks <= 1) 734 goto done; 735 736 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 737 if (cur_page == cp2) 738 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 739 740 for (i = 1; i < cp_blks; i++) { 741 void *sit_bitmap_ptr; 742 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 743 744 cur_page = get_meta_page(sbi, cp_blk_no + i); 745 sit_bitmap_ptr = page_address(cur_page); 746 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 747 f2fs_put_page(cur_page, 1); 748 } 749 done: 750 f2fs_put_page(cp1, 1); 751 f2fs_put_page(cp2, 1); 752 return 0; 753 754 fail_no_cp: 755 kfree(sbi->ckpt); 756 return -EINVAL; 757 } 758 759 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 760 { 761 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 762 struct f2fs_inode_info *fi = F2FS_I(inode); 763 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 764 765 if (is_inode_flag_set(fi, flag)) 766 return; 767 768 set_inode_flag(fi, flag); 769 list_add_tail(&fi->dirty_list, &sbi->inode_list[type]); 770 stat_inc_dirty_inode(sbi, type); 771 } 772 773 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 774 { 775 struct f2fs_inode_info *fi = F2FS_I(inode); 776 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 777 778 if (get_dirty_pages(inode) || 779 !is_inode_flag_set(F2FS_I(inode), flag)) 780 return; 781 782 list_del_init(&fi->dirty_list); 783 clear_inode_flag(fi, flag); 784 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 785 } 786 787 void update_dirty_page(struct inode *inode, struct page *page) 788 { 789 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 790 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 791 792 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 793 !S_ISLNK(inode->i_mode)) 794 return; 795 796 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) { 797 spin_lock(&sbi->inode_lock[type]); 798 __add_dirty_inode(inode, type); 799 spin_unlock(&sbi->inode_lock[type]); 800 } 801 802 inode_inc_dirty_pages(inode); 803 SetPagePrivate(page); 804 f2fs_trace_pid(page); 805 } 806 807 void remove_dirty_inode(struct inode *inode) 808 { 809 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 810 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 811 812 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 813 !S_ISLNK(inode->i_mode)) 814 return; 815 816 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 817 return; 818 819 spin_lock(&sbi->inode_lock[type]); 820 __remove_dirty_inode(inode, type); 821 spin_unlock(&sbi->inode_lock[type]); 822 } 823 824 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 825 { 826 struct list_head *head; 827 struct inode *inode; 828 struct f2fs_inode_info *fi; 829 bool is_dir = (type == DIR_INODE); 830 831 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 832 get_pages(sbi, is_dir ? 833 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 834 retry: 835 if (unlikely(f2fs_cp_error(sbi))) 836 return -EIO; 837 838 spin_lock(&sbi->inode_lock[type]); 839 840 head = &sbi->inode_list[type]; 841 if (list_empty(head)) { 842 spin_unlock(&sbi->inode_lock[type]); 843 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 844 get_pages(sbi, is_dir ? 845 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 846 return 0; 847 } 848 fi = list_entry(head->next, struct f2fs_inode_info, dirty_list); 849 inode = igrab(&fi->vfs_inode); 850 spin_unlock(&sbi->inode_lock[type]); 851 if (inode) { 852 filemap_fdatawrite(inode->i_mapping); 853 iput(inode); 854 } else { 855 /* 856 * We should submit bio, since it exists several 857 * wribacking dentry pages in the freeing inode. 858 */ 859 f2fs_submit_merged_bio(sbi, DATA, WRITE); 860 cond_resched(); 861 } 862 goto retry; 863 } 864 865 /* 866 * Freeze all the FS-operations for checkpoint. 867 */ 868 static int block_operations(struct f2fs_sb_info *sbi) 869 { 870 struct writeback_control wbc = { 871 .sync_mode = WB_SYNC_ALL, 872 .nr_to_write = LONG_MAX, 873 .for_reclaim = 0, 874 }; 875 struct blk_plug plug; 876 int err = 0; 877 878 blk_start_plug(&plug); 879 880 retry_flush_dents: 881 f2fs_lock_all(sbi); 882 /* write all the dirty dentry pages */ 883 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 884 f2fs_unlock_all(sbi); 885 err = sync_dirty_inodes(sbi, DIR_INODE); 886 if (err) 887 goto out; 888 goto retry_flush_dents; 889 } 890 891 /* 892 * POR: we should ensure that there are no dirty node pages 893 * until finishing nat/sit flush. 894 */ 895 retry_flush_nodes: 896 down_write(&sbi->node_write); 897 898 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 899 up_write(&sbi->node_write); 900 err = sync_node_pages(sbi, &wbc); 901 if (err) { 902 f2fs_unlock_all(sbi); 903 goto out; 904 } 905 goto retry_flush_nodes; 906 } 907 out: 908 blk_finish_plug(&plug); 909 return err; 910 } 911 912 static void unblock_operations(struct f2fs_sb_info *sbi) 913 { 914 up_write(&sbi->node_write); 915 f2fs_unlock_all(sbi); 916 } 917 918 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 919 { 920 DEFINE_WAIT(wait); 921 922 for (;;) { 923 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 924 925 if (!atomic_read(&sbi->nr_wb_bios)) 926 break; 927 928 io_schedule_timeout(5*HZ); 929 } 930 finish_wait(&sbi->cp_wait, &wait); 931 } 932 933 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 934 { 935 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 936 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 937 struct f2fs_nm_info *nm_i = NM_I(sbi); 938 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 939 nid_t last_nid = nm_i->next_scan_nid; 940 block_t start_blk; 941 unsigned int data_sum_blocks, orphan_blocks; 942 __u32 crc32 = 0; 943 int i; 944 int cp_payload_blks = __cp_payload(sbi); 945 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg); 946 bool invalidate = false; 947 struct super_block *sb = sbi->sb; 948 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 949 u64 kbytes_written; 950 951 /* 952 * This avoids to conduct wrong roll-forward operations and uses 953 * metapages, so should be called prior to sync_meta_pages below. 954 */ 955 if (discard_next_dnode(sbi, discard_blk)) 956 invalidate = true; 957 958 /* Flush all the NAT/SIT pages */ 959 while (get_pages(sbi, F2FS_DIRTY_META)) { 960 sync_meta_pages(sbi, META, LONG_MAX); 961 if (unlikely(f2fs_cp_error(sbi))) 962 return -EIO; 963 } 964 965 next_free_nid(sbi, &last_nid); 966 967 /* 968 * modify checkpoint 969 * version number is already updated 970 */ 971 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 972 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 973 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 974 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 975 ckpt->cur_node_segno[i] = 976 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 977 ckpt->cur_node_blkoff[i] = 978 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 979 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 980 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 981 } 982 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 983 ckpt->cur_data_segno[i] = 984 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 985 ckpt->cur_data_blkoff[i] = 986 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 987 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 988 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 989 } 990 991 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 992 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 993 ckpt->next_free_nid = cpu_to_le32(last_nid); 994 995 /* 2 cp + n data seg summary + orphan inode blocks */ 996 data_sum_blocks = npages_for_summary_flush(sbi, false); 997 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 998 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 999 else 1000 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1001 1002 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1003 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1004 orphan_blocks); 1005 1006 if (__remain_node_summaries(cpc->reason)) 1007 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1008 cp_payload_blks + data_sum_blocks + 1009 orphan_blocks + NR_CURSEG_NODE_TYPE); 1010 else 1011 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1012 cp_payload_blks + data_sum_blocks + 1013 orphan_blocks); 1014 1015 if (cpc->reason == CP_UMOUNT) 1016 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1017 else 1018 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1019 1020 if (cpc->reason == CP_FASTBOOT) 1021 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1022 else 1023 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1024 1025 if (orphan_num) 1026 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1027 else 1028 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1029 1030 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1031 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1032 1033 /* update SIT/NAT bitmap */ 1034 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1035 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1036 1037 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1038 *((__le32 *)((unsigned char *)ckpt + 1039 le32_to_cpu(ckpt->checksum_offset))) 1040 = cpu_to_le32(crc32); 1041 1042 start_blk = __start_cp_addr(sbi); 1043 1044 /* need to wait for end_io results */ 1045 wait_on_all_pages_writeback(sbi); 1046 if (unlikely(f2fs_cp_error(sbi))) 1047 return -EIO; 1048 1049 /* write out checkpoint buffer at block 0 */ 1050 update_meta_page(sbi, ckpt, start_blk++); 1051 1052 for (i = 1; i < 1 + cp_payload_blks; i++) 1053 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1054 start_blk++); 1055 1056 if (orphan_num) { 1057 write_orphan_inodes(sbi, start_blk); 1058 start_blk += orphan_blocks; 1059 } 1060 1061 write_data_summaries(sbi, start_blk); 1062 start_blk += data_sum_blocks; 1063 1064 /* Record write statistics in the hot node summary */ 1065 kbytes_written = sbi->kbytes_written; 1066 if (sb->s_bdev->bd_part) 1067 kbytes_written += BD_PART_WRITTEN(sbi); 1068 1069 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1070 1071 if (__remain_node_summaries(cpc->reason)) { 1072 write_node_summaries(sbi, start_blk); 1073 start_blk += NR_CURSEG_NODE_TYPE; 1074 } 1075 1076 /* writeout checkpoint block */ 1077 update_meta_page(sbi, ckpt, start_blk); 1078 1079 /* wait for previous submitted node/meta pages writeback */ 1080 wait_on_all_pages_writeback(sbi); 1081 1082 if (unlikely(f2fs_cp_error(sbi))) 1083 return -EIO; 1084 1085 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1086 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1087 1088 /* update user_block_counts */ 1089 sbi->last_valid_block_count = sbi->total_valid_block_count; 1090 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1091 1092 /* Here, we only have one bio having CP pack */ 1093 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1094 1095 /* wait for previous submitted meta pages writeback */ 1096 wait_on_all_pages_writeback(sbi); 1097 1098 /* 1099 * invalidate meta page which is used temporarily for zeroing out 1100 * block at the end of warm node chain. 1101 */ 1102 if (invalidate) 1103 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk, 1104 discard_blk); 1105 1106 release_ino_entry(sbi, false); 1107 1108 if (unlikely(f2fs_cp_error(sbi))) 1109 return -EIO; 1110 1111 clear_prefree_segments(sbi, cpc); 1112 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1113 1114 return 0; 1115 } 1116 1117 /* 1118 * We guarantee that this checkpoint procedure will not fail. 1119 */ 1120 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1121 { 1122 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1123 unsigned long long ckpt_ver; 1124 int err = 0; 1125 1126 mutex_lock(&sbi->cp_mutex); 1127 1128 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1129 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1130 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1131 goto out; 1132 if (unlikely(f2fs_cp_error(sbi))) { 1133 err = -EIO; 1134 goto out; 1135 } 1136 if (f2fs_readonly(sbi->sb)) { 1137 err = -EROFS; 1138 goto out; 1139 } 1140 1141 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1142 1143 err = block_operations(sbi); 1144 if (err) 1145 goto out; 1146 1147 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1148 1149 f2fs_flush_merged_bios(sbi); 1150 1151 /* 1152 * update checkpoint pack index 1153 * Increase the version number so that 1154 * SIT entries and seg summaries are written at correct place 1155 */ 1156 ckpt_ver = cur_cp_version(ckpt); 1157 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1158 1159 /* write cached NAT/SIT entries to NAT/SIT area */ 1160 flush_nat_entries(sbi); 1161 flush_sit_entries(sbi, cpc); 1162 1163 /* unlock all the fs_lock[] in do_checkpoint() */ 1164 err = do_checkpoint(sbi, cpc); 1165 1166 unblock_operations(sbi); 1167 stat_inc_cp_count(sbi->stat_info); 1168 1169 if (cpc->reason == CP_RECOVERY) 1170 f2fs_msg(sbi->sb, KERN_NOTICE, 1171 "checkpoint: version = %llx", ckpt_ver); 1172 1173 /* do checkpoint periodically */ 1174 f2fs_update_time(sbi, CP_TIME); 1175 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1176 out: 1177 mutex_unlock(&sbi->cp_mutex); 1178 return err; 1179 } 1180 1181 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1182 { 1183 int i; 1184 1185 for (i = 0; i < MAX_INO_ENTRY; i++) { 1186 struct inode_management *im = &sbi->im[i]; 1187 1188 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1189 spin_lock_init(&im->ino_lock); 1190 INIT_LIST_HEAD(&im->ino_list); 1191 im->ino_num = 0; 1192 } 1193 1194 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1195 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1196 F2FS_ORPHANS_PER_BLOCK; 1197 } 1198 1199 int __init create_checkpoint_caches(void) 1200 { 1201 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1202 sizeof(struct ino_entry)); 1203 if (!ino_entry_slab) 1204 return -ENOMEM; 1205 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1206 sizeof(struct inode_entry)); 1207 if (!inode_entry_slab) { 1208 kmem_cache_destroy(ino_entry_slab); 1209 return -ENOMEM; 1210 } 1211 return 0; 1212 } 1213 1214 void destroy_checkpoint_caches(void) 1215 { 1216 kmem_cache_destroy(ino_entry_slab); 1217 kmem_cache_destroy(inode_entry_slab); 1218 } 1219