1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/checkpoint.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/bio.h> 10 #include <linux/mpage.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/f2fs_fs.h> 14 #include <linux/pagevec.h> 15 #include <linux/swap.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 static struct kmem_cache *ino_entry_slab; 24 struct kmem_cache *f2fs_inode_entry_slab; 25 26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 27 { 28 f2fs_build_fault_attr(sbi, 0, 0); 29 set_ckpt_flags(sbi, CP_ERROR_FLAG); 30 if (!end_io) 31 f2fs_flush_merged_writes(sbi); 32 } 33 34 /* 35 * We guarantee no failure on the returned page. 36 */ 37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 38 { 39 struct address_space *mapping = META_MAPPING(sbi); 40 struct page *page = NULL; 41 repeat: 42 page = f2fs_grab_cache_page(mapping, index, false); 43 if (!page) { 44 cond_resched(); 45 goto repeat; 46 } 47 f2fs_wait_on_page_writeback(page, META, true, true); 48 if (!PageUptodate(page)) 49 SetPageUptodate(page); 50 return page; 51 } 52 53 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 54 bool is_meta) 55 { 56 struct address_space *mapping = META_MAPPING(sbi); 57 struct page *page; 58 struct f2fs_io_info fio = { 59 .sbi = sbi, 60 .type = META, 61 .op = REQ_OP_READ, 62 .op_flags = REQ_META | REQ_PRIO, 63 .old_blkaddr = index, 64 .new_blkaddr = index, 65 .encrypted_page = NULL, 66 .is_por = !is_meta, 67 }; 68 int err; 69 70 if (unlikely(!is_meta)) 71 fio.op_flags &= ~REQ_META; 72 repeat: 73 page = f2fs_grab_cache_page(mapping, index, false); 74 if (!page) { 75 cond_resched(); 76 goto repeat; 77 } 78 if (PageUptodate(page)) 79 goto out; 80 81 fio.page = page; 82 83 err = f2fs_submit_page_bio(&fio); 84 if (err) { 85 f2fs_put_page(page, 1); 86 return ERR_PTR(err); 87 } 88 89 lock_page(page); 90 if (unlikely(page->mapping != mapping)) { 91 f2fs_put_page(page, 1); 92 goto repeat; 93 } 94 95 if (unlikely(!PageUptodate(page))) { 96 f2fs_put_page(page, 1); 97 return ERR_PTR(-EIO); 98 } 99 out: 100 return page; 101 } 102 103 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 104 { 105 return __get_meta_page(sbi, index, true); 106 } 107 108 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index) 109 { 110 struct page *page; 111 int count = 0; 112 113 retry: 114 page = __get_meta_page(sbi, index, true); 115 if (IS_ERR(page)) { 116 if (PTR_ERR(page) == -EIO && 117 ++count <= DEFAULT_RETRY_IO_COUNT) 118 goto retry; 119 f2fs_stop_checkpoint(sbi, false); 120 } 121 return page; 122 } 123 124 /* for POR only */ 125 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 126 { 127 return __get_meta_page(sbi, index, false); 128 } 129 130 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr, 131 int type) 132 { 133 struct seg_entry *se; 134 unsigned int segno, offset; 135 bool exist; 136 137 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ) 138 return true; 139 140 segno = GET_SEGNO(sbi, blkaddr); 141 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 142 se = get_seg_entry(sbi, segno); 143 144 exist = f2fs_test_bit(offset, se->cur_valid_map); 145 if (!exist && type == DATA_GENERIC_ENHANCE) { 146 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d", 147 blkaddr, exist); 148 set_sbi_flag(sbi, SBI_NEED_FSCK); 149 WARN_ON(1); 150 } 151 return exist; 152 } 153 154 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 155 block_t blkaddr, int type) 156 { 157 switch (type) { 158 case META_NAT: 159 break; 160 case META_SIT: 161 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 162 return false; 163 break; 164 case META_SSA: 165 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 166 blkaddr < SM_I(sbi)->ssa_blkaddr)) 167 return false; 168 break; 169 case META_CP: 170 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 171 blkaddr < __start_cp_addr(sbi))) 172 return false; 173 break; 174 case META_POR: 175 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 176 blkaddr < MAIN_BLKADDR(sbi))) 177 return false; 178 break; 179 case DATA_GENERIC: 180 case DATA_GENERIC_ENHANCE: 181 case DATA_GENERIC_ENHANCE_READ: 182 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 183 blkaddr < MAIN_BLKADDR(sbi))) { 184 f2fs_warn(sbi, "access invalid blkaddr:%u", 185 blkaddr); 186 set_sbi_flag(sbi, SBI_NEED_FSCK); 187 WARN_ON(1); 188 return false; 189 } else { 190 return __is_bitmap_valid(sbi, blkaddr, type); 191 } 192 break; 193 case META_GENERIC: 194 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) || 195 blkaddr >= MAIN_BLKADDR(sbi))) 196 return false; 197 break; 198 default: 199 BUG(); 200 } 201 202 return true; 203 } 204 205 /* 206 * Readahead CP/NAT/SIT/SSA/POR pages 207 */ 208 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 209 int type, bool sync) 210 { 211 struct page *page; 212 block_t blkno = start; 213 struct f2fs_io_info fio = { 214 .sbi = sbi, 215 .type = META, 216 .op = REQ_OP_READ, 217 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 218 .encrypted_page = NULL, 219 .in_list = false, 220 .is_por = (type == META_POR), 221 }; 222 struct blk_plug plug; 223 224 if (unlikely(type == META_POR)) 225 fio.op_flags &= ~REQ_META; 226 227 blk_start_plug(&plug); 228 for (; nrpages-- > 0; blkno++) { 229 230 if (!f2fs_is_valid_blkaddr(sbi, blkno, type)) 231 goto out; 232 233 switch (type) { 234 case META_NAT: 235 if (unlikely(blkno >= 236 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 237 blkno = 0; 238 /* get nat block addr */ 239 fio.new_blkaddr = current_nat_addr(sbi, 240 blkno * NAT_ENTRY_PER_BLOCK); 241 break; 242 case META_SIT: 243 /* get sit block addr */ 244 fio.new_blkaddr = current_sit_addr(sbi, 245 blkno * SIT_ENTRY_PER_BLOCK); 246 break; 247 case META_SSA: 248 case META_CP: 249 case META_POR: 250 fio.new_blkaddr = blkno; 251 break; 252 default: 253 BUG(); 254 } 255 256 page = f2fs_grab_cache_page(META_MAPPING(sbi), 257 fio.new_blkaddr, false); 258 if (!page) 259 continue; 260 if (PageUptodate(page)) { 261 f2fs_put_page(page, 1); 262 continue; 263 } 264 265 fio.page = page; 266 f2fs_submit_page_bio(&fio); 267 f2fs_put_page(page, 0); 268 } 269 out: 270 blk_finish_plug(&plug); 271 return blkno - start; 272 } 273 274 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 275 { 276 struct page *page; 277 bool readahead = false; 278 279 page = find_get_page(META_MAPPING(sbi), index); 280 if (!page || !PageUptodate(page)) 281 readahead = true; 282 f2fs_put_page(page, 0); 283 284 if (readahead) 285 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 286 } 287 288 static int __f2fs_write_meta_page(struct page *page, 289 struct writeback_control *wbc, 290 enum iostat_type io_type) 291 { 292 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 293 294 trace_f2fs_writepage(page, META); 295 296 if (unlikely(f2fs_cp_error(sbi))) 297 goto redirty_out; 298 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 299 goto redirty_out; 300 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 301 goto redirty_out; 302 303 f2fs_do_write_meta_page(sbi, page, io_type); 304 dec_page_count(sbi, F2FS_DIRTY_META); 305 306 if (wbc->for_reclaim) 307 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META); 308 309 unlock_page(page); 310 311 if (unlikely(f2fs_cp_error(sbi))) 312 f2fs_submit_merged_write(sbi, META); 313 314 return 0; 315 316 redirty_out: 317 redirty_page_for_writepage(wbc, page); 318 return AOP_WRITEPAGE_ACTIVATE; 319 } 320 321 static int f2fs_write_meta_page(struct page *page, 322 struct writeback_control *wbc) 323 { 324 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 325 } 326 327 static int f2fs_write_meta_pages(struct address_space *mapping, 328 struct writeback_control *wbc) 329 { 330 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 331 long diff, written; 332 333 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 334 goto skip_write; 335 336 /* collect a number of dirty meta pages and write together */ 337 if (wbc->sync_mode != WB_SYNC_ALL && 338 get_pages(sbi, F2FS_DIRTY_META) < 339 nr_pages_to_skip(sbi, META)) 340 goto skip_write; 341 342 /* if locked failed, cp will flush dirty pages instead */ 343 if (!mutex_trylock(&sbi->cp_mutex)) 344 goto skip_write; 345 346 trace_f2fs_writepages(mapping->host, wbc, META); 347 diff = nr_pages_to_write(sbi, META, wbc); 348 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 349 mutex_unlock(&sbi->cp_mutex); 350 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 351 return 0; 352 353 skip_write: 354 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 355 trace_f2fs_writepages(mapping->host, wbc, META); 356 return 0; 357 } 358 359 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 360 long nr_to_write, enum iostat_type io_type) 361 { 362 struct address_space *mapping = META_MAPPING(sbi); 363 pgoff_t index = 0, prev = ULONG_MAX; 364 struct pagevec pvec; 365 long nwritten = 0; 366 int nr_pages; 367 struct writeback_control wbc = { 368 .for_reclaim = 0, 369 }; 370 struct blk_plug plug; 371 372 pagevec_init(&pvec); 373 374 blk_start_plug(&plug); 375 376 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 377 PAGECACHE_TAG_DIRTY))) { 378 int i; 379 380 for (i = 0; i < nr_pages; i++) { 381 struct page *page = pvec.pages[i]; 382 383 if (prev == ULONG_MAX) 384 prev = page->index - 1; 385 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 386 pagevec_release(&pvec); 387 goto stop; 388 } 389 390 lock_page(page); 391 392 if (unlikely(page->mapping != mapping)) { 393 continue_unlock: 394 unlock_page(page); 395 continue; 396 } 397 if (!PageDirty(page)) { 398 /* someone wrote it for us */ 399 goto continue_unlock; 400 } 401 402 f2fs_wait_on_page_writeback(page, META, true, true); 403 404 if (!clear_page_dirty_for_io(page)) 405 goto continue_unlock; 406 407 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 408 unlock_page(page); 409 break; 410 } 411 nwritten++; 412 prev = page->index; 413 if (unlikely(nwritten >= nr_to_write)) 414 break; 415 } 416 pagevec_release(&pvec); 417 cond_resched(); 418 } 419 stop: 420 if (nwritten) 421 f2fs_submit_merged_write(sbi, type); 422 423 blk_finish_plug(&plug); 424 425 return nwritten; 426 } 427 428 static int f2fs_set_meta_page_dirty(struct page *page) 429 { 430 trace_f2fs_set_page_dirty(page, META); 431 432 if (!PageUptodate(page)) 433 SetPageUptodate(page); 434 if (!PageDirty(page)) { 435 __set_page_dirty_nobuffers(page); 436 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 437 f2fs_set_page_private(page, 0); 438 f2fs_trace_pid(page); 439 return 1; 440 } 441 return 0; 442 } 443 444 const struct address_space_operations f2fs_meta_aops = { 445 .writepage = f2fs_write_meta_page, 446 .writepages = f2fs_write_meta_pages, 447 .set_page_dirty = f2fs_set_meta_page_dirty, 448 .invalidatepage = f2fs_invalidate_page, 449 .releasepage = f2fs_release_page, 450 #ifdef CONFIG_MIGRATION 451 .migratepage = f2fs_migrate_page, 452 #endif 453 }; 454 455 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 456 unsigned int devidx, int type) 457 { 458 struct inode_management *im = &sbi->im[type]; 459 struct ino_entry *e, *tmp; 460 461 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 462 463 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 464 465 spin_lock(&im->ino_lock); 466 e = radix_tree_lookup(&im->ino_root, ino); 467 if (!e) { 468 e = tmp; 469 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 470 f2fs_bug_on(sbi, 1); 471 472 memset(e, 0, sizeof(struct ino_entry)); 473 e->ino = ino; 474 475 list_add_tail(&e->list, &im->ino_list); 476 if (type != ORPHAN_INO) 477 im->ino_num++; 478 } 479 480 if (type == FLUSH_INO) 481 f2fs_set_bit(devidx, (char *)&e->dirty_device); 482 483 spin_unlock(&im->ino_lock); 484 radix_tree_preload_end(); 485 486 if (e != tmp) 487 kmem_cache_free(ino_entry_slab, tmp); 488 } 489 490 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 491 { 492 struct inode_management *im = &sbi->im[type]; 493 struct ino_entry *e; 494 495 spin_lock(&im->ino_lock); 496 e = radix_tree_lookup(&im->ino_root, ino); 497 if (e) { 498 list_del(&e->list); 499 radix_tree_delete(&im->ino_root, ino); 500 im->ino_num--; 501 spin_unlock(&im->ino_lock); 502 kmem_cache_free(ino_entry_slab, e); 503 return; 504 } 505 spin_unlock(&im->ino_lock); 506 } 507 508 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 509 { 510 /* add new dirty ino entry into list */ 511 __add_ino_entry(sbi, ino, 0, type); 512 } 513 514 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 515 { 516 /* remove dirty ino entry from list */ 517 __remove_ino_entry(sbi, ino, type); 518 } 519 520 /* mode should be APPEND_INO or UPDATE_INO */ 521 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 522 { 523 struct inode_management *im = &sbi->im[mode]; 524 struct ino_entry *e; 525 526 spin_lock(&im->ino_lock); 527 e = radix_tree_lookup(&im->ino_root, ino); 528 spin_unlock(&im->ino_lock); 529 return e ? true : false; 530 } 531 532 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all) 533 { 534 struct ino_entry *e, *tmp; 535 int i; 536 537 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 538 struct inode_management *im = &sbi->im[i]; 539 540 spin_lock(&im->ino_lock); 541 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 542 list_del(&e->list); 543 radix_tree_delete(&im->ino_root, e->ino); 544 kmem_cache_free(ino_entry_slab, e); 545 im->ino_num--; 546 } 547 spin_unlock(&im->ino_lock); 548 } 549 } 550 551 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 552 unsigned int devidx, int type) 553 { 554 __add_ino_entry(sbi, ino, devidx, type); 555 } 556 557 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 558 unsigned int devidx, int type) 559 { 560 struct inode_management *im = &sbi->im[type]; 561 struct ino_entry *e; 562 bool is_dirty = false; 563 564 spin_lock(&im->ino_lock); 565 e = radix_tree_lookup(&im->ino_root, ino); 566 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 567 is_dirty = true; 568 spin_unlock(&im->ino_lock); 569 return is_dirty; 570 } 571 572 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi) 573 { 574 struct inode_management *im = &sbi->im[ORPHAN_INO]; 575 int err = 0; 576 577 spin_lock(&im->ino_lock); 578 579 if (time_to_inject(sbi, FAULT_ORPHAN)) { 580 spin_unlock(&im->ino_lock); 581 f2fs_show_injection_info(sbi, FAULT_ORPHAN); 582 return -ENOSPC; 583 } 584 585 if (unlikely(im->ino_num >= sbi->max_orphans)) 586 err = -ENOSPC; 587 else 588 im->ino_num++; 589 spin_unlock(&im->ino_lock); 590 591 return err; 592 } 593 594 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi) 595 { 596 struct inode_management *im = &sbi->im[ORPHAN_INO]; 597 598 spin_lock(&im->ino_lock); 599 f2fs_bug_on(sbi, im->ino_num == 0); 600 im->ino_num--; 601 spin_unlock(&im->ino_lock); 602 } 603 604 void f2fs_add_orphan_inode(struct inode *inode) 605 { 606 /* add new orphan ino entry into list */ 607 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 608 f2fs_update_inode_page(inode); 609 } 610 611 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 612 { 613 /* remove orphan entry from orphan list */ 614 __remove_ino_entry(sbi, ino, ORPHAN_INO); 615 } 616 617 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 618 { 619 struct inode *inode; 620 struct node_info ni; 621 int err; 622 623 inode = f2fs_iget_retry(sbi->sb, ino); 624 if (IS_ERR(inode)) { 625 /* 626 * there should be a bug that we can't find the entry 627 * to orphan inode. 628 */ 629 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 630 return PTR_ERR(inode); 631 } 632 633 err = dquot_initialize(inode); 634 if (err) { 635 iput(inode); 636 goto err_out; 637 } 638 639 clear_nlink(inode); 640 641 /* truncate all the data during iput */ 642 iput(inode); 643 644 err = f2fs_get_node_info(sbi, ino, &ni); 645 if (err) 646 goto err_out; 647 648 /* ENOMEM was fully retried in f2fs_evict_inode. */ 649 if (ni.blk_addr != NULL_ADDR) { 650 err = -EIO; 651 goto err_out; 652 } 653 return 0; 654 655 err_out: 656 set_sbi_flag(sbi, SBI_NEED_FSCK); 657 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.", 658 __func__, ino); 659 return err; 660 } 661 662 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi) 663 { 664 block_t start_blk, orphan_blocks, i, j; 665 unsigned int s_flags = sbi->sb->s_flags; 666 int err = 0; 667 #ifdef CONFIG_QUOTA 668 int quota_enabled; 669 #endif 670 671 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 672 return 0; 673 674 if (bdev_read_only(sbi->sb->s_bdev)) { 675 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup"); 676 return 0; 677 } 678 679 if (s_flags & SB_RDONLY) { 680 f2fs_info(sbi, "orphan cleanup on readonly fs"); 681 sbi->sb->s_flags &= ~SB_RDONLY; 682 } 683 684 #ifdef CONFIG_QUOTA 685 /* Needed for iput() to work correctly and not trash data */ 686 sbi->sb->s_flags |= SB_ACTIVE; 687 688 /* 689 * Turn on quotas which were not enabled for read-only mounts if 690 * filesystem has quota feature, so that they are updated correctly. 691 */ 692 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 693 #endif 694 695 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 696 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 697 698 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 699 700 for (i = 0; i < orphan_blocks; i++) { 701 struct page *page; 702 struct f2fs_orphan_block *orphan_blk; 703 704 page = f2fs_get_meta_page(sbi, start_blk + i); 705 if (IS_ERR(page)) { 706 err = PTR_ERR(page); 707 goto out; 708 } 709 710 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 711 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 712 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 713 err = recover_orphan_inode(sbi, ino); 714 if (err) { 715 f2fs_put_page(page, 1); 716 goto out; 717 } 718 } 719 f2fs_put_page(page, 1); 720 } 721 /* clear Orphan Flag */ 722 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 723 out: 724 set_sbi_flag(sbi, SBI_IS_RECOVERED); 725 726 #ifdef CONFIG_QUOTA 727 /* Turn quotas off */ 728 if (quota_enabled) 729 f2fs_quota_off_umount(sbi->sb); 730 #endif 731 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 732 733 return err; 734 } 735 736 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 737 { 738 struct list_head *head; 739 struct f2fs_orphan_block *orphan_blk = NULL; 740 unsigned int nentries = 0; 741 unsigned short index = 1; 742 unsigned short orphan_blocks; 743 struct page *page = NULL; 744 struct ino_entry *orphan = NULL; 745 struct inode_management *im = &sbi->im[ORPHAN_INO]; 746 747 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 748 749 /* 750 * we don't need to do spin_lock(&im->ino_lock) here, since all the 751 * orphan inode operations are covered under f2fs_lock_op(). 752 * And, spin_lock should be avoided due to page operations below. 753 */ 754 head = &im->ino_list; 755 756 /* loop for each orphan inode entry and write them in Jornal block */ 757 list_for_each_entry(orphan, head, list) { 758 if (!page) { 759 page = f2fs_grab_meta_page(sbi, start_blk++); 760 orphan_blk = 761 (struct f2fs_orphan_block *)page_address(page); 762 memset(orphan_blk, 0, sizeof(*orphan_blk)); 763 } 764 765 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 766 767 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 768 /* 769 * an orphan block is full of 1020 entries, 770 * then we need to flush current orphan blocks 771 * and bring another one in memory 772 */ 773 orphan_blk->blk_addr = cpu_to_le16(index); 774 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 775 orphan_blk->entry_count = cpu_to_le32(nentries); 776 set_page_dirty(page); 777 f2fs_put_page(page, 1); 778 index++; 779 nentries = 0; 780 page = NULL; 781 } 782 } 783 784 if (page) { 785 orphan_blk->blk_addr = cpu_to_le16(index); 786 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 787 orphan_blk->entry_count = cpu_to_le32(nentries); 788 set_page_dirty(page); 789 f2fs_put_page(page, 1); 790 } 791 } 792 793 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi, 794 struct f2fs_checkpoint *ckpt) 795 { 796 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset); 797 __u32 chksum; 798 799 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs); 800 if (chksum_ofs < CP_CHKSUM_OFFSET) { 801 chksum_ofs += sizeof(chksum); 802 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs, 803 F2FS_BLKSIZE - chksum_ofs); 804 } 805 return chksum; 806 } 807 808 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 809 struct f2fs_checkpoint **cp_block, struct page **cp_page, 810 unsigned long long *version) 811 { 812 size_t crc_offset = 0; 813 __u32 crc; 814 815 *cp_page = f2fs_get_meta_page(sbi, cp_addr); 816 if (IS_ERR(*cp_page)) 817 return PTR_ERR(*cp_page); 818 819 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 820 821 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 822 if (crc_offset < CP_MIN_CHKSUM_OFFSET || 823 crc_offset > CP_CHKSUM_OFFSET) { 824 f2fs_put_page(*cp_page, 1); 825 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset); 826 return -EINVAL; 827 } 828 829 crc = f2fs_checkpoint_chksum(sbi, *cp_block); 830 if (crc != cur_cp_crc(*cp_block)) { 831 f2fs_put_page(*cp_page, 1); 832 f2fs_warn(sbi, "invalid crc value"); 833 return -EINVAL; 834 } 835 836 *version = cur_cp_version(*cp_block); 837 return 0; 838 } 839 840 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 841 block_t cp_addr, unsigned long long *version) 842 { 843 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 844 struct f2fs_checkpoint *cp_block = NULL; 845 unsigned long long cur_version = 0, pre_version = 0; 846 int err; 847 848 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 849 &cp_page_1, version); 850 if (err) 851 return NULL; 852 853 if (le32_to_cpu(cp_block->cp_pack_total_block_count) > 854 sbi->blocks_per_seg) { 855 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u", 856 le32_to_cpu(cp_block->cp_pack_total_block_count)); 857 goto invalid_cp; 858 } 859 pre_version = *version; 860 861 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 862 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 863 &cp_page_2, version); 864 if (err) 865 goto invalid_cp; 866 cur_version = *version; 867 868 if (cur_version == pre_version) { 869 *version = cur_version; 870 f2fs_put_page(cp_page_2, 1); 871 return cp_page_1; 872 } 873 f2fs_put_page(cp_page_2, 1); 874 invalid_cp: 875 f2fs_put_page(cp_page_1, 1); 876 return NULL; 877 } 878 879 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi) 880 { 881 struct f2fs_checkpoint *cp_block; 882 struct f2fs_super_block *fsb = sbi->raw_super; 883 struct page *cp1, *cp2, *cur_page; 884 unsigned long blk_size = sbi->blocksize; 885 unsigned long long cp1_version = 0, cp2_version = 0; 886 unsigned long long cp_start_blk_no; 887 unsigned int cp_blks = 1 + __cp_payload(sbi); 888 block_t cp_blk_no; 889 int i; 890 int err; 891 892 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks), 893 GFP_KERNEL); 894 if (!sbi->ckpt) 895 return -ENOMEM; 896 /* 897 * Finding out valid cp block involves read both 898 * sets( cp pack 1 and cp pack 2) 899 */ 900 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 901 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 902 903 /* The second checkpoint pack should start at the next segment */ 904 cp_start_blk_no += ((unsigned long long)1) << 905 le32_to_cpu(fsb->log_blocks_per_seg); 906 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 907 908 if (cp1 && cp2) { 909 if (ver_after(cp2_version, cp1_version)) 910 cur_page = cp2; 911 else 912 cur_page = cp1; 913 } else if (cp1) { 914 cur_page = cp1; 915 } else if (cp2) { 916 cur_page = cp2; 917 } else { 918 err = -EFSCORRUPTED; 919 goto fail_no_cp; 920 } 921 922 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 923 memcpy(sbi->ckpt, cp_block, blk_size); 924 925 if (cur_page == cp1) 926 sbi->cur_cp_pack = 1; 927 else 928 sbi->cur_cp_pack = 2; 929 930 /* Sanity checking of checkpoint */ 931 if (f2fs_sanity_check_ckpt(sbi)) { 932 err = -EFSCORRUPTED; 933 goto free_fail_no_cp; 934 } 935 936 if (cp_blks <= 1) 937 goto done; 938 939 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 940 if (cur_page == cp2) 941 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 942 943 for (i = 1; i < cp_blks; i++) { 944 void *sit_bitmap_ptr; 945 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 946 947 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i); 948 if (IS_ERR(cur_page)) { 949 err = PTR_ERR(cur_page); 950 goto free_fail_no_cp; 951 } 952 sit_bitmap_ptr = page_address(cur_page); 953 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 954 f2fs_put_page(cur_page, 1); 955 } 956 done: 957 f2fs_put_page(cp1, 1); 958 f2fs_put_page(cp2, 1); 959 return 0; 960 961 free_fail_no_cp: 962 f2fs_put_page(cp1, 1); 963 f2fs_put_page(cp2, 1); 964 fail_no_cp: 965 kvfree(sbi->ckpt); 966 return err; 967 } 968 969 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 970 { 971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 972 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 973 974 if (is_inode_flag_set(inode, flag)) 975 return; 976 977 set_inode_flag(inode, flag); 978 if (!f2fs_is_volatile_file(inode)) 979 list_add_tail(&F2FS_I(inode)->dirty_list, 980 &sbi->inode_list[type]); 981 stat_inc_dirty_inode(sbi, type); 982 } 983 984 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 985 { 986 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 987 988 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 989 return; 990 991 list_del_init(&F2FS_I(inode)->dirty_list); 992 clear_inode_flag(inode, flag); 993 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 994 } 995 996 void f2fs_update_dirty_page(struct inode *inode, struct page *page) 997 { 998 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 999 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1000 1001 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1002 !S_ISLNK(inode->i_mode)) 1003 return; 1004 1005 spin_lock(&sbi->inode_lock[type]); 1006 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 1007 __add_dirty_inode(inode, type); 1008 inode_inc_dirty_pages(inode); 1009 spin_unlock(&sbi->inode_lock[type]); 1010 1011 f2fs_set_page_private(page, 0); 1012 f2fs_trace_pid(page); 1013 } 1014 1015 void f2fs_remove_dirty_inode(struct inode *inode) 1016 { 1017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1018 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 1019 1020 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1021 !S_ISLNK(inode->i_mode)) 1022 return; 1023 1024 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 1025 return; 1026 1027 spin_lock(&sbi->inode_lock[type]); 1028 __remove_dirty_inode(inode, type); 1029 spin_unlock(&sbi->inode_lock[type]); 1030 } 1031 1032 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 1033 { 1034 struct list_head *head; 1035 struct inode *inode; 1036 struct f2fs_inode_info *fi; 1037 bool is_dir = (type == DIR_INODE); 1038 unsigned long ino = 0; 1039 1040 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 1041 get_pages(sbi, is_dir ? 1042 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1043 retry: 1044 if (unlikely(f2fs_cp_error(sbi))) 1045 return -EIO; 1046 1047 spin_lock(&sbi->inode_lock[type]); 1048 1049 head = &sbi->inode_list[type]; 1050 if (list_empty(head)) { 1051 spin_unlock(&sbi->inode_lock[type]); 1052 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 1053 get_pages(sbi, is_dir ? 1054 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 1055 return 0; 1056 } 1057 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 1058 inode = igrab(&fi->vfs_inode); 1059 spin_unlock(&sbi->inode_lock[type]); 1060 if (inode) { 1061 unsigned long cur_ino = inode->i_ino; 1062 1063 F2FS_I(inode)->cp_task = current; 1064 1065 filemap_fdatawrite(inode->i_mapping); 1066 1067 F2FS_I(inode)->cp_task = NULL; 1068 1069 iput(inode); 1070 /* We need to give cpu to another writers. */ 1071 if (ino == cur_ino) 1072 cond_resched(); 1073 else 1074 ino = cur_ino; 1075 } else { 1076 /* 1077 * We should submit bio, since it exists several 1078 * wribacking dentry pages in the freeing inode. 1079 */ 1080 f2fs_submit_merged_write(sbi, DATA); 1081 cond_resched(); 1082 } 1083 goto retry; 1084 } 1085 1086 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 1087 { 1088 struct list_head *head = &sbi->inode_list[DIRTY_META]; 1089 struct inode *inode; 1090 struct f2fs_inode_info *fi; 1091 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 1092 1093 while (total--) { 1094 if (unlikely(f2fs_cp_error(sbi))) 1095 return -EIO; 1096 1097 spin_lock(&sbi->inode_lock[DIRTY_META]); 1098 if (list_empty(head)) { 1099 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1100 return 0; 1101 } 1102 fi = list_first_entry(head, struct f2fs_inode_info, 1103 gdirty_list); 1104 inode = igrab(&fi->vfs_inode); 1105 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1106 if (inode) { 1107 sync_inode_metadata(inode, 0); 1108 1109 /* it's on eviction */ 1110 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1111 f2fs_update_inode_page(inode); 1112 iput(inode); 1113 } 1114 } 1115 return 0; 1116 } 1117 1118 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1119 { 1120 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1121 struct f2fs_nm_info *nm_i = NM_I(sbi); 1122 nid_t last_nid = nm_i->next_scan_nid; 1123 1124 next_free_nid(sbi, &last_nid); 1125 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1126 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1127 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1128 ckpt->next_free_nid = cpu_to_le32(last_nid); 1129 } 1130 1131 static bool __need_flush_quota(struct f2fs_sb_info *sbi) 1132 { 1133 bool ret = false; 1134 1135 if (!is_journalled_quota(sbi)) 1136 return false; 1137 1138 down_write(&sbi->quota_sem); 1139 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) { 1140 ret = false; 1141 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) { 1142 ret = false; 1143 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) { 1144 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1145 ret = true; 1146 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) { 1147 ret = true; 1148 } 1149 up_write(&sbi->quota_sem); 1150 return ret; 1151 } 1152 1153 /* 1154 * Freeze all the FS-operations for checkpoint. 1155 */ 1156 static int block_operations(struct f2fs_sb_info *sbi) 1157 { 1158 struct writeback_control wbc = { 1159 .sync_mode = WB_SYNC_ALL, 1160 .nr_to_write = LONG_MAX, 1161 .for_reclaim = 0, 1162 }; 1163 struct blk_plug plug; 1164 int err = 0, cnt = 0; 1165 1166 blk_start_plug(&plug); 1167 1168 retry_flush_quotas: 1169 f2fs_lock_all(sbi); 1170 if (__need_flush_quota(sbi)) { 1171 int locked; 1172 1173 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) { 1174 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1175 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 1176 goto retry_flush_dents; 1177 } 1178 f2fs_unlock_all(sbi); 1179 1180 /* only failed during mount/umount/freeze/quotactl */ 1181 locked = down_read_trylock(&sbi->sb->s_umount); 1182 f2fs_quota_sync(sbi->sb, -1); 1183 if (locked) 1184 up_read(&sbi->sb->s_umount); 1185 cond_resched(); 1186 goto retry_flush_quotas; 1187 } 1188 1189 retry_flush_dents: 1190 /* write all the dirty dentry pages */ 1191 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1192 f2fs_unlock_all(sbi); 1193 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE); 1194 if (err) 1195 goto out; 1196 cond_resched(); 1197 goto retry_flush_quotas; 1198 } 1199 1200 /* 1201 * POR: we should ensure that there are no dirty node pages 1202 * until finishing nat/sit flush. inode->i_blocks can be updated. 1203 */ 1204 down_write(&sbi->node_change); 1205 1206 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1207 up_write(&sbi->node_change); 1208 f2fs_unlock_all(sbi); 1209 err = f2fs_sync_inode_meta(sbi); 1210 if (err) 1211 goto out; 1212 cond_resched(); 1213 goto retry_flush_quotas; 1214 } 1215 1216 retry_flush_nodes: 1217 down_write(&sbi->node_write); 1218 1219 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1220 up_write(&sbi->node_write); 1221 atomic_inc(&sbi->wb_sync_req[NODE]); 1222 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1223 atomic_dec(&sbi->wb_sync_req[NODE]); 1224 if (err) { 1225 up_write(&sbi->node_change); 1226 f2fs_unlock_all(sbi); 1227 goto out; 1228 } 1229 cond_resched(); 1230 goto retry_flush_nodes; 1231 } 1232 1233 /* 1234 * sbi->node_change is used only for AIO write_begin path which produces 1235 * dirty node blocks and some checkpoint values by block allocation. 1236 */ 1237 __prepare_cp_block(sbi); 1238 up_write(&sbi->node_change); 1239 out: 1240 blk_finish_plug(&plug); 1241 return err; 1242 } 1243 1244 static void unblock_operations(struct f2fs_sb_info *sbi) 1245 { 1246 up_write(&sbi->node_write); 1247 f2fs_unlock_all(sbi); 1248 } 1249 1250 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type) 1251 { 1252 DEFINE_WAIT(wait); 1253 1254 for (;;) { 1255 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1256 1257 if (!get_pages(sbi, type)) 1258 break; 1259 1260 if (unlikely(f2fs_cp_error(sbi))) 1261 break; 1262 1263 io_schedule_timeout(DEFAULT_IO_TIMEOUT); 1264 } 1265 finish_wait(&sbi->cp_wait, &wait); 1266 } 1267 1268 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1269 { 1270 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1271 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1272 unsigned long flags; 1273 1274 spin_lock_irqsave(&sbi->cp_lock, flags); 1275 1276 if ((cpc->reason & CP_UMOUNT) && 1277 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1278 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1279 disable_nat_bits(sbi, false); 1280 1281 if (cpc->reason & CP_TRIMMED) 1282 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1283 else 1284 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1285 1286 if (cpc->reason & CP_UMOUNT) 1287 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1288 else 1289 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1290 1291 if (cpc->reason & CP_FASTBOOT) 1292 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1293 else 1294 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1295 1296 if (orphan_num) 1297 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1298 else 1299 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1300 1301 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1302 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1303 1304 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS)) 1305 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1306 else 1307 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG); 1308 1309 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1310 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1311 else 1312 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG); 1313 1314 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK)) 1315 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1316 else 1317 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG); 1318 1319 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) 1320 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1321 else 1322 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1323 1324 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) 1325 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG); 1326 1327 /* set this flag to activate crc|cp_ver for recovery */ 1328 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1329 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG); 1330 1331 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1332 } 1333 1334 static void commit_checkpoint(struct f2fs_sb_info *sbi, 1335 void *src, block_t blk_addr) 1336 { 1337 struct writeback_control wbc = { 1338 .for_reclaim = 0, 1339 }; 1340 1341 /* 1342 * pagevec_lookup_tag and lock_page again will take 1343 * some extra time. Therefore, f2fs_update_meta_pages and 1344 * f2fs_sync_meta_pages are combined in this function. 1345 */ 1346 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1347 int err; 1348 1349 f2fs_wait_on_page_writeback(page, META, true, true); 1350 1351 memcpy(page_address(page), src, PAGE_SIZE); 1352 1353 set_page_dirty(page); 1354 if (unlikely(!clear_page_dirty_for_io(page))) 1355 f2fs_bug_on(sbi, 1); 1356 1357 /* writeout cp pack 2 page */ 1358 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO); 1359 if (unlikely(err && f2fs_cp_error(sbi))) { 1360 f2fs_put_page(page, 1); 1361 return; 1362 } 1363 1364 f2fs_bug_on(sbi, err); 1365 f2fs_put_page(page, 0); 1366 1367 /* submit checkpoint (with barrier if NOBARRIER is not set) */ 1368 f2fs_submit_merged_write(sbi, META_FLUSH); 1369 } 1370 1371 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1372 { 1373 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1374 struct f2fs_nm_info *nm_i = NM_I(sbi); 1375 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1376 block_t start_blk; 1377 unsigned int data_sum_blocks, orphan_blocks; 1378 __u32 crc32 = 0; 1379 int i; 1380 int cp_payload_blks = __cp_payload(sbi); 1381 struct super_block *sb = sbi->sb; 1382 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1383 u64 kbytes_written; 1384 int err; 1385 1386 /* Flush all the NAT/SIT pages */ 1387 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1388 1389 /* start to update checkpoint, cp ver is already updated previously */ 1390 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true)); 1391 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1392 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1393 ckpt->cur_node_segno[i] = 1394 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1395 ckpt->cur_node_blkoff[i] = 1396 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1397 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1398 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1399 } 1400 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1401 ckpt->cur_data_segno[i] = 1402 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1403 ckpt->cur_data_blkoff[i] = 1404 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1405 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1406 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1407 } 1408 1409 /* 2 cp + n data seg summary + orphan inode blocks */ 1410 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false); 1411 spin_lock_irqsave(&sbi->cp_lock, flags); 1412 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1413 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1414 else 1415 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1416 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1417 1418 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1419 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1420 orphan_blocks); 1421 1422 if (__remain_node_summaries(cpc->reason)) 1423 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1424 cp_payload_blks + data_sum_blocks + 1425 orphan_blocks + NR_CURSEG_NODE_TYPE); 1426 else 1427 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1428 cp_payload_blks + data_sum_blocks + 1429 orphan_blocks); 1430 1431 /* update ckpt flag for checkpoint */ 1432 update_ckpt_flags(sbi, cpc); 1433 1434 /* update SIT/NAT bitmap */ 1435 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1436 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1437 1438 crc32 = f2fs_checkpoint_chksum(sbi, ckpt); 1439 *((__le32 *)((unsigned char *)ckpt + 1440 le32_to_cpu(ckpt->checksum_offset))) 1441 = cpu_to_le32(crc32); 1442 1443 start_blk = __start_cp_next_addr(sbi); 1444 1445 /* write nat bits */ 1446 if (enabled_nat_bits(sbi, cpc)) { 1447 __u64 cp_ver = cur_cp_version(ckpt); 1448 block_t blk; 1449 1450 cp_ver |= ((__u64)crc32 << 32); 1451 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1452 1453 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1454 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1455 f2fs_update_meta_page(sbi, nm_i->nat_bits + 1456 (i << F2FS_BLKSIZE_BITS), blk + i); 1457 } 1458 1459 /* write out checkpoint buffer at block 0 */ 1460 f2fs_update_meta_page(sbi, ckpt, start_blk++); 1461 1462 for (i = 1; i < 1 + cp_payload_blks; i++) 1463 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1464 start_blk++); 1465 1466 if (orphan_num) { 1467 write_orphan_inodes(sbi, start_blk); 1468 start_blk += orphan_blocks; 1469 } 1470 1471 f2fs_write_data_summaries(sbi, start_blk); 1472 start_blk += data_sum_blocks; 1473 1474 /* Record write statistics in the hot node summary */ 1475 kbytes_written = sbi->kbytes_written; 1476 if (sb->s_bdev->bd_part) 1477 kbytes_written += BD_PART_WRITTEN(sbi); 1478 1479 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1480 1481 if (__remain_node_summaries(cpc->reason)) { 1482 f2fs_write_node_summaries(sbi, start_blk); 1483 start_blk += NR_CURSEG_NODE_TYPE; 1484 } 1485 1486 /* update user_block_counts */ 1487 sbi->last_valid_block_count = sbi->total_valid_block_count; 1488 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1489 1490 /* Here, we have one bio having CP pack except cp pack 2 page */ 1491 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1492 /* Wait for all dirty meta pages to be submitted for IO */ 1493 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META); 1494 1495 /* wait for previous submitted meta pages writeback */ 1496 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1497 1498 /* flush all device cache */ 1499 err = f2fs_flush_device_cache(sbi); 1500 if (err) 1501 return err; 1502 1503 /* barrier and flush checkpoint cp pack 2 page if it can */ 1504 commit_checkpoint(sbi, ckpt, start_blk); 1505 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1506 1507 /* 1508 * invalidate intermediate page cache borrowed from meta inode which are 1509 * used for migration of encrypted or verity inode's blocks. 1510 */ 1511 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi)) 1512 invalidate_mapping_pages(META_MAPPING(sbi), 1513 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1); 1514 1515 f2fs_release_ino_entry(sbi, false); 1516 1517 f2fs_reset_fsync_node_info(sbi); 1518 1519 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1520 clear_sbi_flag(sbi, SBI_NEED_CP); 1521 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH); 1522 1523 spin_lock(&sbi->stat_lock); 1524 sbi->unusable_block_count = 0; 1525 spin_unlock(&sbi->stat_lock); 1526 1527 __set_cp_next_pack(sbi); 1528 1529 /* 1530 * redirty superblock if metadata like node page or inode cache is 1531 * updated during writing checkpoint. 1532 */ 1533 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1534 get_pages(sbi, F2FS_DIRTY_IMETA)) 1535 set_sbi_flag(sbi, SBI_IS_DIRTY); 1536 1537 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1538 1539 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0; 1540 } 1541 1542 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1543 { 1544 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1545 unsigned long long ckpt_ver; 1546 int err = 0; 1547 1548 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi)) 1549 return -EROFS; 1550 1551 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1552 if (cpc->reason != CP_PAUSE) 1553 return 0; 1554 f2fs_warn(sbi, "Start checkpoint disabled!"); 1555 } 1556 mutex_lock(&sbi->cp_mutex); 1557 1558 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1559 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1560 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1561 goto out; 1562 if (unlikely(f2fs_cp_error(sbi))) { 1563 err = -EIO; 1564 goto out; 1565 } 1566 1567 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1568 1569 err = block_operations(sbi); 1570 if (err) 1571 goto out; 1572 1573 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1574 1575 f2fs_flush_merged_writes(sbi); 1576 1577 /* this is the case of multiple fstrims without any changes */ 1578 if (cpc->reason & CP_DISCARD) { 1579 if (!f2fs_exist_trim_candidates(sbi, cpc)) { 1580 unblock_operations(sbi); 1581 goto out; 1582 } 1583 1584 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1585 SIT_I(sbi)->dirty_sentries == 0 && 1586 prefree_segments(sbi) == 0) { 1587 f2fs_flush_sit_entries(sbi, cpc); 1588 f2fs_clear_prefree_segments(sbi, cpc); 1589 unblock_operations(sbi); 1590 goto out; 1591 } 1592 } 1593 1594 /* 1595 * update checkpoint pack index 1596 * Increase the version number so that 1597 * SIT entries and seg summaries are written at correct place 1598 */ 1599 ckpt_ver = cur_cp_version(ckpt); 1600 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1601 1602 /* write cached NAT/SIT entries to NAT/SIT area */ 1603 err = f2fs_flush_nat_entries(sbi, cpc); 1604 if (err) 1605 goto stop; 1606 1607 f2fs_flush_sit_entries(sbi, cpc); 1608 1609 err = do_checkpoint(sbi, cpc); 1610 if (err) 1611 f2fs_release_discard_addrs(sbi); 1612 else 1613 f2fs_clear_prefree_segments(sbi, cpc); 1614 stop: 1615 unblock_operations(sbi); 1616 stat_inc_cp_count(sbi->stat_info); 1617 1618 if (cpc->reason & CP_RECOVERY) 1619 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver); 1620 1621 /* update CP_TIME to trigger checkpoint periodically */ 1622 f2fs_update_time(sbi, CP_TIME); 1623 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1624 out: 1625 mutex_unlock(&sbi->cp_mutex); 1626 return err; 1627 } 1628 1629 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi) 1630 { 1631 int i; 1632 1633 for (i = 0; i < MAX_INO_ENTRY; i++) { 1634 struct inode_management *im = &sbi->im[i]; 1635 1636 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1637 spin_lock_init(&im->ino_lock); 1638 INIT_LIST_HEAD(&im->ino_list); 1639 im->ino_num = 0; 1640 } 1641 1642 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1643 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1644 F2FS_ORPHANS_PER_BLOCK; 1645 } 1646 1647 int __init f2fs_create_checkpoint_caches(void) 1648 { 1649 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1650 sizeof(struct ino_entry)); 1651 if (!ino_entry_slab) 1652 return -ENOMEM; 1653 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1654 sizeof(struct inode_entry)); 1655 if (!f2fs_inode_entry_slab) { 1656 kmem_cache_destroy(ino_entry_slab); 1657 return -ENOMEM; 1658 } 1659 return 0; 1660 } 1661 1662 void f2fs_destroy_checkpoint_caches(void) 1663 { 1664 kmem_cache_destroy(ino_entry_slab); 1665 kmem_cache_destroy(f2fs_inode_entry_slab); 1666 } 1667