xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 36bccb11)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24 
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27 
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 	struct address_space *mapping = META_MAPPING(sbi);
34 	struct page *page = NULL;
35 repeat:
36 	page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
37 	if (!page) {
38 		cond_resched();
39 		goto repeat;
40 	}
41 
42 	SetPageUptodate(page);
43 	return page;
44 }
45 
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 	struct address_space *mapping = META_MAPPING(sbi);
52 	struct page *page;
53 repeat:
54 	page = grab_cache_page(mapping, index);
55 	if (!page) {
56 		cond_resched();
57 		goto repeat;
58 	}
59 	if (PageUptodate(page))
60 		goto out;
61 
62 	if (f2fs_submit_page_bio(sbi, page, index,
63 				READ_SYNC | REQ_META | REQ_PRIO))
64 		goto repeat;
65 
66 	lock_page(page);
67 	if (unlikely(page->mapping != mapping)) {
68 		f2fs_put_page(page, 1);
69 		goto repeat;
70 	}
71 out:
72 	mark_page_accessed(page);
73 	return page;
74 }
75 
76 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
77 {
78 	switch (type) {
79 	case META_NAT:
80 		return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81 	case META_SIT:
82 		return SIT_BLK_CNT(sbi);
83 	case META_SSA:
84 	case META_CP:
85 		return 0;
86 	default:
87 		BUG();
88 	}
89 }
90 
91 /*
92  * Readahead CP/NAT/SIT/SSA pages
93  */
94 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
95 {
96 	block_t prev_blk_addr = 0;
97 	struct page *page;
98 	int blkno = start;
99 	int max_blks = get_max_meta_blks(sbi, type);
100 
101 	struct f2fs_io_info fio = {
102 		.type = META,
103 		.rw = READ_SYNC | REQ_META | REQ_PRIO
104 	};
105 
106 	for (; nrpages-- > 0; blkno++) {
107 		block_t blk_addr;
108 
109 		switch (type) {
110 		case META_NAT:
111 			/* get nat block addr */
112 			if (unlikely(blkno >= max_blks))
113 				blkno = 0;
114 			blk_addr = current_nat_addr(sbi,
115 					blkno * NAT_ENTRY_PER_BLOCK);
116 			break;
117 		case META_SIT:
118 			/* get sit block addr */
119 			if (unlikely(blkno >= max_blks))
120 				goto out;
121 			blk_addr = current_sit_addr(sbi,
122 					blkno * SIT_ENTRY_PER_BLOCK);
123 			if (blkno != start && prev_blk_addr + 1 != blk_addr)
124 				goto out;
125 			prev_blk_addr = blk_addr;
126 			break;
127 		case META_SSA:
128 		case META_CP:
129 			/* get ssa/cp block addr */
130 			blk_addr = blkno;
131 			break;
132 		default:
133 			BUG();
134 		}
135 
136 		page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137 		if (!page)
138 			continue;
139 		if (PageUptodate(page)) {
140 			mark_page_accessed(page);
141 			f2fs_put_page(page, 1);
142 			continue;
143 		}
144 
145 		f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146 		mark_page_accessed(page);
147 		f2fs_put_page(page, 0);
148 	}
149 out:
150 	f2fs_submit_merged_bio(sbi, META, READ);
151 	return blkno - start;
152 }
153 
154 static int f2fs_write_meta_page(struct page *page,
155 				struct writeback_control *wbc)
156 {
157 	struct inode *inode = page->mapping->host;
158 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159 
160 	if (unlikely(sbi->por_doing))
161 		goto redirty_out;
162 	if (wbc->for_reclaim)
163 		goto redirty_out;
164 
165 	/* Should not write any meta pages, if any IO error was occurred */
166 	if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167 		goto no_write;
168 
169 	f2fs_wait_on_page_writeback(page, META);
170 	write_meta_page(sbi, page);
171 no_write:
172 	dec_page_count(sbi, F2FS_DIRTY_META);
173 	unlock_page(page);
174 	return 0;
175 
176 redirty_out:
177 	dec_page_count(sbi, F2FS_DIRTY_META);
178 	wbc->pages_skipped++;
179 	account_page_redirty(page);
180 	set_page_dirty(page);
181 	return AOP_WRITEPAGE_ACTIVATE;
182 }
183 
184 static int f2fs_write_meta_pages(struct address_space *mapping,
185 				struct writeback_control *wbc)
186 {
187 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
188 	long diff, written;
189 
190 	/* collect a number of dirty meta pages and write together */
191 	if (wbc->for_kupdate ||
192 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
193 		goto skip_write;
194 
195 	/* if mounting is failed, skip writing node pages */
196 	mutex_lock(&sbi->cp_mutex);
197 	diff = nr_pages_to_write(sbi, META, wbc);
198 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
199 	mutex_unlock(&sbi->cp_mutex);
200 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
201 	return 0;
202 
203 skip_write:
204 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
205 	return 0;
206 }
207 
208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209 						long nr_to_write)
210 {
211 	struct address_space *mapping = META_MAPPING(sbi);
212 	pgoff_t index = 0, end = LONG_MAX;
213 	struct pagevec pvec;
214 	long nwritten = 0;
215 	struct writeback_control wbc = {
216 		.for_reclaim = 0,
217 	};
218 
219 	pagevec_init(&pvec, 0);
220 
221 	while (index <= end) {
222 		int i, nr_pages;
223 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224 				PAGECACHE_TAG_DIRTY,
225 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226 		if (unlikely(nr_pages == 0))
227 			break;
228 
229 		for (i = 0; i < nr_pages; i++) {
230 			struct page *page = pvec.pages[i];
231 
232 			lock_page(page);
233 
234 			if (unlikely(page->mapping != mapping)) {
235 continue_unlock:
236 				unlock_page(page);
237 				continue;
238 			}
239 			if (!PageDirty(page)) {
240 				/* someone wrote it for us */
241 				goto continue_unlock;
242 			}
243 
244 			if (!clear_page_dirty_for_io(page))
245 				goto continue_unlock;
246 
247 			if (f2fs_write_meta_page(page, &wbc)) {
248 				unlock_page(page);
249 				break;
250 			}
251 			nwritten++;
252 			if (unlikely(nwritten >= nr_to_write))
253 				break;
254 		}
255 		pagevec_release(&pvec);
256 		cond_resched();
257 	}
258 
259 	if (nwritten)
260 		f2fs_submit_merged_bio(sbi, type, WRITE);
261 
262 	return nwritten;
263 }
264 
265 static int f2fs_set_meta_page_dirty(struct page *page)
266 {
267 	struct address_space *mapping = page->mapping;
268 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269 
270 	trace_f2fs_set_page_dirty(page, META);
271 
272 	SetPageUptodate(page);
273 	if (!PageDirty(page)) {
274 		__set_page_dirty_nobuffers(page);
275 		inc_page_count(sbi, F2FS_DIRTY_META);
276 		return 1;
277 	}
278 	return 0;
279 }
280 
281 const struct address_space_operations f2fs_meta_aops = {
282 	.writepage	= f2fs_write_meta_page,
283 	.writepages	= f2fs_write_meta_pages,
284 	.set_page_dirty	= f2fs_set_meta_page_dirty,
285 };
286 
287 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
288 {
289 	int err = 0;
290 
291 	spin_lock(&sbi->orphan_inode_lock);
292 	if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293 		err = -ENOSPC;
294 	else
295 		sbi->n_orphans++;
296 	spin_unlock(&sbi->orphan_inode_lock);
297 
298 	return err;
299 }
300 
301 void release_orphan_inode(struct f2fs_sb_info *sbi)
302 {
303 	spin_lock(&sbi->orphan_inode_lock);
304 	f2fs_bug_on(sbi->n_orphans == 0);
305 	sbi->n_orphans--;
306 	spin_unlock(&sbi->orphan_inode_lock);
307 }
308 
309 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310 {
311 	struct list_head *head;
312 	struct orphan_inode_entry *new, *orphan;
313 
314 	new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315 	new->ino = ino;
316 
317 	spin_lock(&sbi->orphan_inode_lock);
318 	head = &sbi->orphan_inode_list;
319 	list_for_each_entry(orphan, head, list) {
320 		if (orphan->ino == ino) {
321 			spin_unlock(&sbi->orphan_inode_lock);
322 			kmem_cache_free(orphan_entry_slab, new);
323 			return;
324 		}
325 
326 		if (orphan->ino > ino)
327 			break;
328 	}
329 
330 	/* add new orphan entry into list which is sorted by inode number */
331 	list_add_tail(&new->list, &orphan->list);
332 	spin_unlock(&sbi->orphan_inode_lock);
333 }
334 
335 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
336 {
337 	struct list_head *head;
338 	struct orphan_inode_entry *orphan;
339 
340 	spin_lock(&sbi->orphan_inode_lock);
341 	head = &sbi->orphan_inode_list;
342 	list_for_each_entry(orphan, head, list) {
343 		if (orphan->ino == ino) {
344 			list_del(&orphan->list);
345 			f2fs_bug_on(sbi->n_orphans == 0);
346 			sbi->n_orphans--;
347 			spin_unlock(&sbi->orphan_inode_lock);
348 			kmem_cache_free(orphan_entry_slab, orphan);
349 			return;
350 		}
351 	}
352 	spin_unlock(&sbi->orphan_inode_lock);
353 }
354 
355 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
356 {
357 	struct inode *inode = f2fs_iget(sbi->sb, ino);
358 	f2fs_bug_on(IS_ERR(inode));
359 	clear_nlink(inode);
360 
361 	/* truncate all the data during iput */
362 	iput(inode);
363 }
364 
365 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
366 {
367 	block_t start_blk, orphan_blkaddr, i, j;
368 
369 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
370 		return;
371 
372 	sbi->por_doing = true;
373 	start_blk = __start_cp_addr(sbi) + 1;
374 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
375 
376 	ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
377 
378 	for (i = 0; i < orphan_blkaddr; i++) {
379 		struct page *page = get_meta_page(sbi, start_blk + i);
380 		struct f2fs_orphan_block *orphan_blk;
381 
382 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385 			recover_orphan_inode(sbi, ino);
386 		}
387 		f2fs_put_page(page, 1);
388 	}
389 	/* clear Orphan Flag */
390 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391 	sbi->por_doing = false;
392 	return;
393 }
394 
395 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
396 {
397 	struct list_head *head;
398 	struct f2fs_orphan_block *orphan_blk = NULL;
399 	unsigned int nentries = 0;
400 	unsigned short index;
401 	unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403 	struct page *page = NULL;
404 	struct orphan_inode_entry *orphan = NULL;
405 
406 	for (index = 0; index < orphan_blocks; index++)
407 		grab_meta_page(sbi, start_blk + index);
408 
409 	index = 1;
410 	spin_lock(&sbi->orphan_inode_lock);
411 	head = &sbi->orphan_inode_list;
412 
413 	/* loop for each orphan inode entry and write them in Jornal block */
414 	list_for_each_entry(orphan, head, list) {
415 		if (!page) {
416 			page = find_get_page(META_MAPPING(sbi), start_blk++);
417 			f2fs_bug_on(!page);
418 			orphan_blk =
419 				(struct f2fs_orphan_block *)page_address(page);
420 			memset(orphan_blk, 0, sizeof(*orphan_blk));
421 			f2fs_put_page(page, 0);
422 		}
423 
424 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
425 
426 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
427 			/*
428 			 * an orphan block is full of 1020 entries,
429 			 * then we need to flush current orphan blocks
430 			 * and bring another one in memory
431 			 */
432 			orphan_blk->blk_addr = cpu_to_le16(index);
433 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434 			orphan_blk->entry_count = cpu_to_le32(nentries);
435 			set_page_dirty(page);
436 			f2fs_put_page(page, 1);
437 			index++;
438 			nentries = 0;
439 			page = NULL;
440 		}
441 	}
442 
443 	if (page) {
444 		orphan_blk->blk_addr = cpu_to_le16(index);
445 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446 		orphan_blk->entry_count = cpu_to_le32(nentries);
447 		set_page_dirty(page);
448 		f2fs_put_page(page, 1);
449 	}
450 
451 	spin_unlock(&sbi->orphan_inode_lock);
452 }
453 
454 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455 				block_t cp_addr, unsigned long long *version)
456 {
457 	struct page *cp_page_1, *cp_page_2 = NULL;
458 	unsigned long blk_size = sbi->blocksize;
459 	struct f2fs_checkpoint *cp_block;
460 	unsigned long long cur_version = 0, pre_version = 0;
461 	size_t crc_offset;
462 	__u32 crc = 0;
463 
464 	/* Read the 1st cp block in this CP pack */
465 	cp_page_1 = get_meta_page(sbi, cp_addr);
466 
467 	/* get the version number */
468 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
470 	if (crc_offset >= blk_size)
471 		goto invalid_cp1;
472 
473 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475 		goto invalid_cp1;
476 
477 	pre_version = cur_cp_version(cp_block);
478 
479 	/* Read the 2nd cp block in this CP pack */
480 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481 	cp_page_2 = get_meta_page(sbi, cp_addr);
482 
483 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
485 	if (crc_offset >= blk_size)
486 		goto invalid_cp2;
487 
488 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
490 		goto invalid_cp2;
491 
492 	cur_version = cur_cp_version(cp_block);
493 
494 	if (cur_version == pre_version) {
495 		*version = cur_version;
496 		f2fs_put_page(cp_page_2, 1);
497 		return cp_page_1;
498 	}
499 invalid_cp2:
500 	f2fs_put_page(cp_page_2, 1);
501 invalid_cp1:
502 	f2fs_put_page(cp_page_1, 1);
503 	return NULL;
504 }
505 
506 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
507 {
508 	struct f2fs_checkpoint *cp_block;
509 	struct f2fs_super_block *fsb = sbi->raw_super;
510 	struct page *cp1, *cp2, *cur_page;
511 	unsigned long blk_size = sbi->blocksize;
512 	unsigned long long cp1_version = 0, cp2_version = 0;
513 	unsigned long long cp_start_blk_no;
514 
515 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
516 	if (!sbi->ckpt)
517 		return -ENOMEM;
518 	/*
519 	 * Finding out valid cp block involves read both
520 	 * sets( cp pack1 and cp pack 2)
521 	 */
522 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
523 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
524 
525 	/* The second checkpoint pack should start at the next segment */
526 	cp_start_blk_no += ((unsigned long long)1) <<
527 				le32_to_cpu(fsb->log_blocks_per_seg);
528 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
529 
530 	if (cp1 && cp2) {
531 		if (ver_after(cp2_version, cp1_version))
532 			cur_page = cp2;
533 		else
534 			cur_page = cp1;
535 	} else if (cp1) {
536 		cur_page = cp1;
537 	} else if (cp2) {
538 		cur_page = cp2;
539 	} else {
540 		goto fail_no_cp;
541 	}
542 
543 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
544 	memcpy(sbi->ckpt, cp_block, blk_size);
545 
546 	f2fs_put_page(cp1, 1);
547 	f2fs_put_page(cp2, 1);
548 	return 0;
549 
550 fail_no_cp:
551 	kfree(sbi->ckpt);
552 	return -EINVAL;
553 }
554 
555 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
556 {
557 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
558 	struct list_head *head = &sbi->dir_inode_list;
559 	struct dir_inode_entry *entry;
560 
561 	list_for_each_entry(entry, head, list)
562 		if (unlikely(entry->inode == inode))
563 			return -EEXIST;
564 
565 	list_add_tail(&new->list, head);
566 	stat_inc_dirty_dir(sbi);
567 	return 0;
568 }
569 
570 void set_dirty_dir_page(struct inode *inode, struct page *page)
571 {
572 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
573 	struct dir_inode_entry *new;
574 	int ret = 0;
575 
576 	if (!S_ISDIR(inode->i_mode))
577 		return;
578 
579 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
580 	new->inode = inode;
581 	INIT_LIST_HEAD(&new->list);
582 
583 	spin_lock(&sbi->dir_inode_lock);
584 	ret = __add_dirty_inode(inode, new);
585 	inode_inc_dirty_dents(inode);
586 	SetPagePrivate(page);
587 	spin_unlock(&sbi->dir_inode_lock);
588 
589 	if (ret)
590 		kmem_cache_free(inode_entry_slab, new);
591 }
592 
593 void add_dirty_dir_inode(struct inode *inode)
594 {
595 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
596 	struct dir_inode_entry *new =
597 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
598 	int ret = 0;
599 
600 	new->inode = inode;
601 	INIT_LIST_HEAD(&new->list);
602 
603 	spin_lock(&sbi->dir_inode_lock);
604 	ret = __add_dirty_inode(inode, new);
605 	spin_unlock(&sbi->dir_inode_lock);
606 
607 	if (ret)
608 		kmem_cache_free(inode_entry_slab, new);
609 }
610 
611 void remove_dirty_dir_inode(struct inode *inode)
612 {
613 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
614 	struct list_head *head;
615 	struct dir_inode_entry *entry;
616 
617 	if (!S_ISDIR(inode->i_mode))
618 		return;
619 
620 	spin_lock(&sbi->dir_inode_lock);
621 	if (get_dirty_dents(inode)) {
622 		spin_unlock(&sbi->dir_inode_lock);
623 		return;
624 	}
625 
626 	head = &sbi->dir_inode_list;
627 	list_for_each_entry(entry, head, list) {
628 		if (entry->inode == inode) {
629 			list_del(&entry->list);
630 			stat_dec_dirty_dir(sbi);
631 			spin_unlock(&sbi->dir_inode_lock);
632 			kmem_cache_free(inode_entry_slab, entry);
633 			goto done;
634 		}
635 	}
636 	spin_unlock(&sbi->dir_inode_lock);
637 
638 done:
639 	/* Only from the recovery routine */
640 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
641 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
642 		iput(inode);
643 	}
644 }
645 
646 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648 
649 	struct list_head *head;
650 	struct inode *inode = NULL;
651 	struct dir_inode_entry *entry;
652 
653 	spin_lock(&sbi->dir_inode_lock);
654 
655 	head = &sbi->dir_inode_list;
656 	list_for_each_entry(entry, head, list) {
657 		if (entry->inode->i_ino == ino) {
658 			inode = entry->inode;
659 			break;
660 		}
661 	}
662 	spin_unlock(&sbi->dir_inode_lock);
663 	return inode;
664 }
665 
666 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
667 {
668 	struct list_head *head;
669 	struct dir_inode_entry *entry;
670 	struct inode *inode;
671 retry:
672 	spin_lock(&sbi->dir_inode_lock);
673 
674 	head = &sbi->dir_inode_list;
675 	if (list_empty(head)) {
676 		spin_unlock(&sbi->dir_inode_lock);
677 		return;
678 	}
679 	entry = list_entry(head->next, struct dir_inode_entry, list);
680 	inode = igrab(entry->inode);
681 	spin_unlock(&sbi->dir_inode_lock);
682 	if (inode) {
683 		filemap_fdatawrite(inode->i_mapping);
684 		iput(inode);
685 	} else {
686 		/*
687 		 * We should submit bio, since it exists several
688 		 * wribacking dentry pages in the freeing inode.
689 		 */
690 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
691 	}
692 	goto retry;
693 }
694 
695 /*
696  * Freeze all the FS-operations for checkpoint.
697  */
698 static void block_operations(struct f2fs_sb_info *sbi)
699 {
700 	struct writeback_control wbc = {
701 		.sync_mode = WB_SYNC_ALL,
702 		.nr_to_write = LONG_MAX,
703 		.for_reclaim = 0,
704 	};
705 	struct blk_plug plug;
706 
707 	blk_start_plug(&plug);
708 
709 retry_flush_dents:
710 	f2fs_lock_all(sbi);
711 	/* write all the dirty dentry pages */
712 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
713 		f2fs_unlock_all(sbi);
714 		sync_dirty_dir_inodes(sbi);
715 		goto retry_flush_dents;
716 	}
717 
718 	/*
719 	 * POR: we should ensure that there is no dirty node pages
720 	 * until finishing nat/sit flush.
721 	 */
722 retry_flush_nodes:
723 	mutex_lock(&sbi->node_write);
724 
725 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
726 		mutex_unlock(&sbi->node_write);
727 		sync_node_pages(sbi, 0, &wbc);
728 		goto retry_flush_nodes;
729 	}
730 	blk_finish_plug(&plug);
731 }
732 
733 static void unblock_operations(struct f2fs_sb_info *sbi)
734 {
735 	mutex_unlock(&sbi->node_write);
736 	f2fs_unlock_all(sbi);
737 }
738 
739 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
740 {
741 	DEFINE_WAIT(wait);
742 
743 	for (;;) {
744 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
745 
746 		if (!get_pages(sbi, F2FS_WRITEBACK))
747 			break;
748 
749 		io_schedule();
750 	}
751 	finish_wait(&sbi->cp_wait, &wait);
752 }
753 
754 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
755 {
756 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
757 	nid_t last_nid = 0;
758 	block_t start_blk;
759 	struct page *cp_page;
760 	unsigned int data_sum_blocks, orphan_blocks;
761 	__u32 crc32 = 0;
762 	void *kaddr;
763 	int i;
764 
765 	/* Flush all the NAT/SIT pages */
766 	while (get_pages(sbi, F2FS_DIRTY_META))
767 		sync_meta_pages(sbi, META, LONG_MAX);
768 
769 	next_free_nid(sbi, &last_nid);
770 
771 	/*
772 	 * modify checkpoint
773 	 * version number is already updated
774 	 */
775 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
776 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
777 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
778 	for (i = 0; i < 3; i++) {
779 		ckpt->cur_node_segno[i] =
780 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
781 		ckpt->cur_node_blkoff[i] =
782 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
783 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
784 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
785 	}
786 	for (i = 0; i < 3; i++) {
787 		ckpt->cur_data_segno[i] =
788 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
789 		ckpt->cur_data_blkoff[i] =
790 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
791 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
792 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
793 	}
794 
795 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
796 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
797 	ckpt->next_free_nid = cpu_to_le32(last_nid);
798 
799 	/* 2 cp  + n data seg summary + orphan inode blocks */
800 	data_sum_blocks = npages_for_summary_flush(sbi);
801 	if (data_sum_blocks < 3)
802 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
803 	else
804 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
805 
806 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
807 					/ F2FS_ORPHANS_PER_BLOCK;
808 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
809 
810 	if (is_umount) {
811 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
812 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
813 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
814 	} else {
815 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
816 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
817 			data_sum_blocks + orphan_blocks);
818 	}
819 
820 	if (sbi->n_orphans)
821 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
822 	else
823 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
824 
825 	/* update SIT/NAT bitmap */
826 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
827 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
828 
829 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
830 	*((__le32 *)((unsigned char *)ckpt +
831 				le32_to_cpu(ckpt->checksum_offset)))
832 				= cpu_to_le32(crc32);
833 
834 	start_blk = __start_cp_addr(sbi);
835 
836 	/* write out checkpoint buffer at block 0 */
837 	cp_page = grab_meta_page(sbi, start_blk++);
838 	kaddr = page_address(cp_page);
839 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
840 	set_page_dirty(cp_page);
841 	f2fs_put_page(cp_page, 1);
842 
843 	if (sbi->n_orphans) {
844 		write_orphan_inodes(sbi, start_blk);
845 		start_blk += orphan_blocks;
846 	}
847 
848 	write_data_summaries(sbi, start_blk);
849 	start_blk += data_sum_blocks;
850 	if (is_umount) {
851 		write_node_summaries(sbi, start_blk);
852 		start_blk += NR_CURSEG_NODE_TYPE;
853 	}
854 
855 	/* writeout checkpoint block */
856 	cp_page = grab_meta_page(sbi, start_blk);
857 	kaddr = page_address(cp_page);
858 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
859 	set_page_dirty(cp_page);
860 	f2fs_put_page(cp_page, 1);
861 
862 	/* wait for previous submitted node/meta pages writeback */
863 	wait_on_all_pages_writeback(sbi);
864 
865 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
866 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
867 
868 	/* update user_block_counts */
869 	sbi->last_valid_block_count = sbi->total_valid_block_count;
870 	sbi->alloc_valid_block_count = 0;
871 
872 	/* Here, we only have one bio having CP pack */
873 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
874 
875 	if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
876 		clear_prefree_segments(sbi);
877 		F2FS_RESET_SB_DIRT(sbi);
878 	}
879 }
880 
881 /*
882  * We guarantee that this checkpoint procedure should not fail.
883  */
884 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
885 {
886 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
887 	unsigned long long ckpt_ver;
888 
889 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
890 
891 	mutex_lock(&sbi->cp_mutex);
892 	block_operations(sbi);
893 
894 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
895 
896 	f2fs_submit_merged_bio(sbi, DATA, WRITE);
897 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
898 	f2fs_submit_merged_bio(sbi, META, WRITE);
899 
900 	/*
901 	 * update checkpoint pack index
902 	 * Increase the version number so that
903 	 * SIT entries and seg summaries are written at correct place
904 	 */
905 	ckpt_ver = cur_cp_version(ckpt);
906 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
907 
908 	/* write cached NAT/SIT entries to NAT/SIT area */
909 	flush_nat_entries(sbi);
910 	flush_sit_entries(sbi);
911 
912 	/* unlock all the fs_lock[] in do_checkpoint() */
913 	do_checkpoint(sbi, is_umount);
914 
915 	unblock_operations(sbi);
916 	mutex_unlock(&sbi->cp_mutex);
917 
918 	stat_inc_cp_count(sbi->stat_info);
919 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
920 }
921 
922 void init_orphan_info(struct f2fs_sb_info *sbi)
923 {
924 	spin_lock_init(&sbi->orphan_inode_lock);
925 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
926 	sbi->n_orphans = 0;
927 	/*
928 	 * considering 512 blocks in a segment 8 blocks are needed for cp
929 	 * and log segment summaries. Remaining blocks are used to keep
930 	 * orphan entries with the limitation one reserved segment
931 	 * for cp pack we can have max 1020*504 orphan entries
932 	 */
933 	sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
934 				* F2FS_ORPHANS_PER_BLOCK;
935 }
936 
937 int __init create_checkpoint_caches(void)
938 {
939 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
940 			sizeof(struct orphan_inode_entry));
941 	if (!orphan_entry_slab)
942 		return -ENOMEM;
943 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
944 			sizeof(struct dir_inode_entry));
945 	if (!inode_entry_slab) {
946 		kmem_cache_destroy(orphan_entry_slab);
947 		return -ENOMEM;
948 	}
949 	return 0;
950 }
951 
952 void destroy_checkpoint_caches(void)
953 {
954 	kmem_cache_destroy(orphan_entry_slab);
955 	kmem_cache_destroy(inode_entry_slab);
956 }
957