xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 31b90347)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24 
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27 
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 	struct address_space *mapping = sbi->meta_inode->i_mapping;
34 	struct page *page = NULL;
35 repeat:
36 	page = grab_cache_page(mapping, index);
37 	if (!page) {
38 		cond_resched();
39 		goto repeat;
40 	}
41 
42 	/* We wait writeback only inside grab_meta_page() */
43 	wait_on_page_writeback(page);
44 	SetPageUptodate(page);
45 	return page;
46 }
47 
48 /*
49  * We guarantee no failure on the returned page.
50  */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53 	struct address_space *mapping = sbi->meta_inode->i_mapping;
54 	struct page *page;
55 repeat:
56 	page = grab_cache_page(mapping, index);
57 	if (!page) {
58 		cond_resched();
59 		goto repeat;
60 	}
61 	if (PageUptodate(page))
62 		goto out;
63 
64 	if (f2fs_readpage(sbi, page, index, READ_SYNC))
65 		goto repeat;
66 
67 	lock_page(page);
68 	if (page->mapping != mapping) {
69 		f2fs_put_page(page, 1);
70 		goto repeat;
71 	}
72 out:
73 	mark_page_accessed(page);
74 	return page;
75 }
76 
77 static int f2fs_write_meta_page(struct page *page,
78 				struct writeback_control *wbc)
79 {
80 	struct inode *inode = page->mapping->host;
81 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
82 
83 	/* Should not write any meta pages, if any IO error was occurred */
84 	if (wbc->for_reclaim || sbi->por_doing ||
85 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 		dec_page_count(sbi, F2FS_DIRTY_META);
87 		wbc->pages_skipped++;
88 		set_page_dirty(page);
89 		return AOP_WRITEPAGE_ACTIVATE;
90 	}
91 
92 	wait_on_page_writeback(page);
93 
94 	write_meta_page(sbi, page);
95 	dec_page_count(sbi, F2FS_DIRTY_META);
96 	unlock_page(page);
97 	return 0;
98 }
99 
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101 				struct writeback_control *wbc)
102 {
103 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 	struct block_device *bdev = sbi->sb->s_bdev;
105 	long written;
106 
107 	if (wbc->for_kupdate)
108 		return 0;
109 
110 	if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 		return 0;
112 
113 	/* if mounting is failed, skip writing node pages */
114 	mutex_lock(&sbi->cp_mutex);
115 	written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 	mutex_unlock(&sbi->cp_mutex);
117 	wbc->nr_to_write -= written;
118 	return 0;
119 }
120 
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 						long nr_to_write)
123 {
124 	struct address_space *mapping = sbi->meta_inode->i_mapping;
125 	pgoff_t index = 0, end = LONG_MAX;
126 	struct pagevec pvec;
127 	long nwritten = 0;
128 	struct writeback_control wbc = {
129 		.for_reclaim = 0,
130 	};
131 
132 	pagevec_init(&pvec, 0);
133 
134 	while (index <= end) {
135 		int i, nr_pages;
136 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 				PAGECACHE_TAG_DIRTY,
138 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 		if (nr_pages == 0)
140 			break;
141 
142 		for (i = 0; i < nr_pages; i++) {
143 			struct page *page = pvec.pages[i];
144 			lock_page(page);
145 			f2fs_bug_on(page->mapping != mapping);
146 			f2fs_bug_on(!PageDirty(page));
147 			clear_page_dirty_for_io(page);
148 			if (f2fs_write_meta_page(page, &wbc)) {
149 				unlock_page(page);
150 				break;
151 			}
152 			if (nwritten++ >= nr_to_write)
153 				break;
154 		}
155 		pagevec_release(&pvec);
156 		cond_resched();
157 	}
158 
159 	if (nwritten)
160 		f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161 
162 	return nwritten;
163 }
164 
165 static int f2fs_set_meta_page_dirty(struct page *page)
166 {
167 	struct address_space *mapping = page->mapping;
168 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169 
170 	trace_f2fs_set_page_dirty(page, META);
171 
172 	SetPageUptodate(page);
173 	if (!PageDirty(page)) {
174 		__set_page_dirty_nobuffers(page);
175 		inc_page_count(sbi, F2FS_DIRTY_META);
176 		return 1;
177 	}
178 	return 0;
179 }
180 
181 const struct address_space_operations f2fs_meta_aops = {
182 	.writepage	= f2fs_write_meta_page,
183 	.writepages	= f2fs_write_meta_pages,
184 	.set_page_dirty	= f2fs_set_meta_page_dirty,
185 };
186 
187 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
188 {
189 	unsigned int max_orphans;
190 	int err = 0;
191 
192 	/*
193 	 * considering 512 blocks in a segment 5 blocks are needed for cp
194 	 * and log segment summaries. Remaining blocks are used to keep
195 	 * orphan entries with the limitation one reserved segment
196 	 * for cp pack we can have max 1020*507 orphan entries
197 	 */
198 	max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
199 	mutex_lock(&sbi->orphan_inode_mutex);
200 	if (sbi->n_orphans >= max_orphans)
201 		err = -ENOSPC;
202 	else
203 		sbi->n_orphans++;
204 	mutex_unlock(&sbi->orphan_inode_mutex);
205 	return err;
206 }
207 
208 void release_orphan_inode(struct f2fs_sb_info *sbi)
209 {
210 	mutex_lock(&sbi->orphan_inode_mutex);
211 	f2fs_bug_on(sbi->n_orphans == 0);
212 	sbi->n_orphans--;
213 	mutex_unlock(&sbi->orphan_inode_mutex);
214 }
215 
216 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
217 {
218 	struct list_head *head, *this;
219 	struct orphan_inode_entry *new = NULL, *orphan = NULL;
220 
221 	mutex_lock(&sbi->orphan_inode_mutex);
222 	head = &sbi->orphan_inode_list;
223 	list_for_each(this, head) {
224 		orphan = list_entry(this, struct orphan_inode_entry, list);
225 		if (orphan->ino == ino)
226 			goto out;
227 		if (orphan->ino > ino)
228 			break;
229 		orphan = NULL;
230 	}
231 
232 	new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
233 	new->ino = ino;
234 
235 	/* add new_oentry into list which is sorted by inode number */
236 	if (orphan)
237 		list_add(&new->list, this->prev);
238 	else
239 		list_add_tail(&new->list, head);
240 out:
241 	mutex_unlock(&sbi->orphan_inode_mutex);
242 }
243 
244 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
245 {
246 	struct list_head *head;
247 	struct orphan_inode_entry *orphan;
248 
249 	mutex_lock(&sbi->orphan_inode_mutex);
250 	head = &sbi->orphan_inode_list;
251 	list_for_each_entry(orphan, head, list) {
252 		if (orphan->ino == ino) {
253 			list_del(&orphan->list);
254 			kmem_cache_free(orphan_entry_slab, orphan);
255 			f2fs_bug_on(sbi->n_orphans == 0);
256 			sbi->n_orphans--;
257 			break;
258 		}
259 	}
260 	mutex_unlock(&sbi->orphan_inode_mutex);
261 }
262 
263 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
264 {
265 	struct inode *inode = f2fs_iget(sbi->sb, ino);
266 	f2fs_bug_on(IS_ERR(inode));
267 	clear_nlink(inode);
268 
269 	/* truncate all the data during iput */
270 	iput(inode);
271 }
272 
273 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
274 {
275 	block_t start_blk, orphan_blkaddr, i, j;
276 
277 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
278 		return 0;
279 
280 	sbi->por_doing = true;
281 	start_blk = __start_cp_addr(sbi) + 1;
282 	orphan_blkaddr = __start_sum_addr(sbi) - 1;
283 
284 	for (i = 0; i < orphan_blkaddr; i++) {
285 		struct page *page = get_meta_page(sbi, start_blk + i);
286 		struct f2fs_orphan_block *orphan_blk;
287 
288 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
289 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
290 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
291 			recover_orphan_inode(sbi, ino);
292 		}
293 		f2fs_put_page(page, 1);
294 	}
295 	/* clear Orphan Flag */
296 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
297 	sbi->por_doing = false;
298 	return 0;
299 }
300 
301 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
302 {
303 	struct list_head *head, *this, *next;
304 	struct f2fs_orphan_block *orphan_blk = NULL;
305 	struct page *page = NULL;
306 	unsigned int nentries = 0;
307 	unsigned short index = 1;
308 	unsigned short orphan_blocks;
309 
310 	orphan_blocks = (unsigned short)((sbi->n_orphans +
311 		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
312 
313 	mutex_lock(&sbi->orphan_inode_mutex);
314 	head = &sbi->orphan_inode_list;
315 
316 	/* loop for each orphan inode entry and write them in Jornal block */
317 	list_for_each_safe(this, next, head) {
318 		struct orphan_inode_entry *orphan;
319 
320 		orphan = list_entry(this, struct orphan_inode_entry, list);
321 
322 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
323 			/*
324 			 * an orphan block is full of 1020 entries,
325 			 * then we need to flush current orphan blocks
326 			 * and bring another one in memory
327 			 */
328 			orphan_blk->blk_addr = cpu_to_le16(index);
329 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
330 			orphan_blk->entry_count = cpu_to_le32(nentries);
331 			set_page_dirty(page);
332 			f2fs_put_page(page, 1);
333 			index++;
334 			start_blk++;
335 			nentries = 0;
336 			page = NULL;
337 		}
338 		if (page)
339 			goto page_exist;
340 
341 		page = grab_meta_page(sbi, start_blk);
342 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
343 		memset(orphan_blk, 0, sizeof(*orphan_blk));
344 page_exist:
345 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
346 	}
347 	if (!page)
348 		goto end;
349 
350 	orphan_blk->blk_addr = cpu_to_le16(index);
351 	orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
352 	orphan_blk->entry_count = cpu_to_le32(nentries);
353 	set_page_dirty(page);
354 	f2fs_put_page(page, 1);
355 end:
356 	mutex_unlock(&sbi->orphan_inode_mutex);
357 }
358 
359 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
360 				block_t cp_addr, unsigned long long *version)
361 {
362 	struct page *cp_page_1, *cp_page_2 = NULL;
363 	unsigned long blk_size = sbi->blocksize;
364 	struct f2fs_checkpoint *cp_block;
365 	unsigned long long cur_version = 0, pre_version = 0;
366 	size_t crc_offset;
367 	__u32 crc = 0;
368 
369 	/* Read the 1st cp block in this CP pack */
370 	cp_page_1 = get_meta_page(sbi, cp_addr);
371 
372 	/* get the version number */
373 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
374 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
375 	if (crc_offset >= blk_size)
376 		goto invalid_cp1;
377 
378 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
379 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
380 		goto invalid_cp1;
381 
382 	pre_version = cur_cp_version(cp_block);
383 
384 	/* Read the 2nd cp block in this CP pack */
385 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
386 	cp_page_2 = get_meta_page(sbi, cp_addr);
387 
388 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
389 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
390 	if (crc_offset >= blk_size)
391 		goto invalid_cp2;
392 
393 	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
394 	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
395 		goto invalid_cp2;
396 
397 	cur_version = cur_cp_version(cp_block);
398 
399 	if (cur_version == pre_version) {
400 		*version = cur_version;
401 		f2fs_put_page(cp_page_2, 1);
402 		return cp_page_1;
403 	}
404 invalid_cp2:
405 	f2fs_put_page(cp_page_2, 1);
406 invalid_cp1:
407 	f2fs_put_page(cp_page_1, 1);
408 	return NULL;
409 }
410 
411 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
412 {
413 	struct f2fs_checkpoint *cp_block;
414 	struct f2fs_super_block *fsb = sbi->raw_super;
415 	struct page *cp1, *cp2, *cur_page;
416 	unsigned long blk_size = sbi->blocksize;
417 	unsigned long long cp1_version = 0, cp2_version = 0;
418 	unsigned long long cp_start_blk_no;
419 
420 	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
421 	if (!sbi->ckpt)
422 		return -ENOMEM;
423 	/*
424 	 * Finding out valid cp block involves read both
425 	 * sets( cp pack1 and cp pack 2)
426 	 */
427 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
428 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
429 
430 	/* The second checkpoint pack should start at the next segment */
431 	cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
432 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
433 
434 	if (cp1 && cp2) {
435 		if (ver_after(cp2_version, cp1_version))
436 			cur_page = cp2;
437 		else
438 			cur_page = cp1;
439 	} else if (cp1) {
440 		cur_page = cp1;
441 	} else if (cp2) {
442 		cur_page = cp2;
443 	} else {
444 		goto fail_no_cp;
445 	}
446 
447 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
448 	memcpy(sbi->ckpt, cp_block, blk_size);
449 
450 	f2fs_put_page(cp1, 1);
451 	f2fs_put_page(cp2, 1);
452 	return 0;
453 
454 fail_no_cp:
455 	kfree(sbi->ckpt);
456 	return -EINVAL;
457 }
458 
459 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
460 {
461 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
462 	struct list_head *head = &sbi->dir_inode_list;
463 	struct list_head *this;
464 
465 	list_for_each(this, head) {
466 		struct dir_inode_entry *entry;
467 		entry = list_entry(this, struct dir_inode_entry, list);
468 		if (entry->inode == inode)
469 			return -EEXIST;
470 	}
471 	list_add_tail(&new->list, head);
472 	stat_inc_dirty_dir(sbi);
473 	return 0;
474 }
475 
476 void set_dirty_dir_page(struct inode *inode, struct page *page)
477 {
478 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
479 	struct dir_inode_entry *new;
480 
481 	if (!S_ISDIR(inode->i_mode))
482 		return;
483 
484 	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
485 	new->inode = inode;
486 	INIT_LIST_HEAD(&new->list);
487 
488 	spin_lock(&sbi->dir_inode_lock);
489 	if (__add_dirty_inode(inode, new))
490 		kmem_cache_free(inode_entry_slab, new);
491 
492 	inc_page_count(sbi, F2FS_DIRTY_DENTS);
493 	inode_inc_dirty_dents(inode);
494 	SetPagePrivate(page);
495 	spin_unlock(&sbi->dir_inode_lock);
496 }
497 
498 void add_dirty_dir_inode(struct inode *inode)
499 {
500 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
501 	struct dir_inode_entry *new =
502 			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
503 
504 	new->inode = inode;
505 	INIT_LIST_HEAD(&new->list);
506 
507 	spin_lock(&sbi->dir_inode_lock);
508 	if (__add_dirty_inode(inode, new))
509 		kmem_cache_free(inode_entry_slab, new);
510 	spin_unlock(&sbi->dir_inode_lock);
511 }
512 
513 void remove_dirty_dir_inode(struct inode *inode)
514 {
515 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
516 	struct list_head *head = &sbi->dir_inode_list;
517 	struct list_head *this;
518 
519 	if (!S_ISDIR(inode->i_mode))
520 		return;
521 
522 	spin_lock(&sbi->dir_inode_lock);
523 	if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
524 		spin_unlock(&sbi->dir_inode_lock);
525 		return;
526 	}
527 
528 	list_for_each(this, head) {
529 		struct dir_inode_entry *entry;
530 		entry = list_entry(this, struct dir_inode_entry, list);
531 		if (entry->inode == inode) {
532 			list_del(&entry->list);
533 			kmem_cache_free(inode_entry_slab, entry);
534 			stat_dec_dirty_dir(sbi);
535 			break;
536 		}
537 	}
538 	spin_unlock(&sbi->dir_inode_lock);
539 
540 	/* Only from the recovery routine */
541 	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
542 		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
543 		iput(inode);
544 	}
545 }
546 
547 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
548 {
549 	struct list_head *head = &sbi->dir_inode_list;
550 	struct list_head *this;
551 	struct inode *inode = NULL;
552 
553 	spin_lock(&sbi->dir_inode_lock);
554 	list_for_each(this, head) {
555 		struct dir_inode_entry *entry;
556 		entry = list_entry(this, struct dir_inode_entry, list);
557 		if (entry->inode->i_ino == ino) {
558 			inode = entry->inode;
559 			break;
560 		}
561 	}
562 	spin_unlock(&sbi->dir_inode_lock);
563 	return inode;
564 }
565 
566 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
567 {
568 	struct list_head *head = &sbi->dir_inode_list;
569 	struct dir_inode_entry *entry;
570 	struct inode *inode;
571 retry:
572 	spin_lock(&sbi->dir_inode_lock);
573 	if (list_empty(head)) {
574 		spin_unlock(&sbi->dir_inode_lock);
575 		return;
576 	}
577 	entry = list_entry(head->next, struct dir_inode_entry, list);
578 	inode = igrab(entry->inode);
579 	spin_unlock(&sbi->dir_inode_lock);
580 	if (inode) {
581 		filemap_flush(inode->i_mapping);
582 		iput(inode);
583 	} else {
584 		/*
585 		 * We should submit bio, since it exists several
586 		 * wribacking dentry pages in the freeing inode.
587 		 */
588 		f2fs_submit_bio(sbi, DATA, true);
589 	}
590 	goto retry;
591 }
592 
593 /*
594  * Freeze all the FS-operations for checkpoint.
595  */
596 static void block_operations(struct f2fs_sb_info *sbi)
597 {
598 	struct writeback_control wbc = {
599 		.sync_mode = WB_SYNC_ALL,
600 		.nr_to_write = LONG_MAX,
601 		.for_reclaim = 0,
602 	};
603 	struct blk_plug plug;
604 
605 	blk_start_plug(&plug);
606 
607 retry_flush_dents:
608 	f2fs_lock_all(sbi);
609 	/* write all the dirty dentry pages */
610 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
611 		f2fs_unlock_all(sbi);
612 		sync_dirty_dir_inodes(sbi);
613 		goto retry_flush_dents;
614 	}
615 
616 	/*
617 	 * POR: we should ensure that there is no dirty node pages
618 	 * until finishing nat/sit flush.
619 	 */
620 retry_flush_nodes:
621 	mutex_lock(&sbi->node_write);
622 
623 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
624 		mutex_unlock(&sbi->node_write);
625 		sync_node_pages(sbi, 0, &wbc);
626 		goto retry_flush_nodes;
627 	}
628 	blk_finish_plug(&plug);
629 }
630 
631 static void unblock_operations(struct f2fs_sb_info *sbi)
632 {
633 	mutex_unlock(&sbi->node_write);
634 	f2fs_unlock_all(sbi);
635 }
636 
637 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
638 {
639 	DEFINE_WAIT(wait);
640 
641 	for (;;) {
642 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
643 
644 		if (!get_pages(sbi, F2FS_WRITEBACK))
645 			break;
646 
647 		io_schedule();
648 	}
649 	finish_wait(&sbi->cp_wait, &wait);
650 }
651 
652 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
653 {
654 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
655 	nid_t last_nid = 0;
656 	block_t start_blk;
657 	struct page *cp_page;
658 	unsigned int data_sum_blocks, orphan_blocks;
659 	__u32 crc32 = 0;
660 	void *kaddr;
661 	int i;
662 
663 	/* Flush all the NAT/SIT pages */
664 	while (get_pages(sbi, F2FS_DIRTY_META))
665 		sync_meta_pages(sbi, META, LONG_MAX);
666 
667 	next_free_nid(sbi, &last_nid);
668 
669 	/*
670 	 * modify checkpoint
671 	 * version number is already updated
672 	 */
673 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
674 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
675 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
676 	for (i = 0; i < 3; i++) {
677 		ckpt->cur_node_segno[i] =
678 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
679 		ckpt->cur_node_blkoff[i] =
680 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
681 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
682 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
683 	}
684 	for (i = 0; i < 3; i++) {
685 		ckpt->cur_data_segno[i] =
686 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
687 		ckpt->cur_data_blkoff[i] =
688 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
689 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
690 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
691 	}
692 
693 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
694 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
695 	ckpt->next_free_nid = cpu_to_le32(last_nid);
696 
697 	/* 2 cp  + n data seg summary + orphan inode blocks */
698 	data_sum_blocks = npages_for_summary_flush(sbi);
699 	if (data_sum_blocks < 3)
700 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
701 	else
702 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
703 
704 	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
705 					/ F2FS_ORPHANS_PER_BLOCK;
706 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
707 
708 	if (is_umount) {
709 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
710 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
711 			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
712 	} else {
713 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
714 		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
715 			data_sum_blocks + orphan_blocks);
716 	}
717 
718 	if (sbi->n_orphans)
719 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
720 	else
721 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
722 
723 	/* update SIT/NAT bitmap */
724 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
725 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
726 
727 	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
728 	*((__le32 *)((unsigned char *)ckpt +
729 				le32_to_cpu(ckpt->checksum_offset)))
730 				= cpu_to_le32(crc32);
731 
732 	start_blk = __start_cp_addr(sbi);
733 
734 	/* write out checkpoint buffer at block 0 */
735 	cp_page = grab_meta_page(sbi, start_blk++);
736 	kaddr = page_address(cp_page);
737 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
738 	set_page_dirty(cp_page);
739 	f2fs_put_page(cp_page, 1);
740 
741 	if (sbi->n_orphans) {
742 		write_orphan_inodes(sbi, start_blk);
743 		start_blk += orphan_blocks;
744 	}
745 
746 	write_data_summaries(sbi, start_blk);
747 	start_blk += data_sum_blocks;
748 	if (is_umount) {
749 		write_node_summaries(sbi, start_blk);
750 		start_blk += NR_CURSEG_NODE_TYPE;
751 	}
752 
753 	/* writeout checkpoint block */
754 	cp_page = grab_meta_page(sbi, start_blk);
755 	kaddr = page_address(cp_page);
756 	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
757 	set_page_dirty(cp_page);
758 	f2fs_put_page(cp_page, 1);
759 
760 	/* wait for previous submitted node/meta pages writeback */
761 	wait_on_all_pages_writeback(sbi);
762 
763 	filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
764 	filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
765 
766 	/* update user_block_counts */
767 	sbi->last_valid_block_count = sbi->total_valid_block_count;
768 	sbi->alloc_valid_block_count = 0;
769 
770 	/* Here, we only have one bio having CP pack */
771 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
772 
773 	if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
774 		clear_prefree_segments(sbi);
775 		F2FS_RESET_SB_DIRT(sbi);
776 	}
777 }
778 
779 /*
780  * We guarantee that this checkpoint procedure should not fail.
781  */
782 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
783 {
784 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
785 	unsigned long long ckpt_ver;
786 
787 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
788 
789 	mutex_lock(&sbi->cp_mutex);
790 	block_operations(sbi);
791 
792 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
793 
794 	f2fs_submit_bio(sbi, DATA, true);
795 	f2fs_submit_bio(sbi, NODE, true);
796 	f2fs_submit_bio(sbi, META, true);
797 
798 	/*
799 	 * update checkpoint pack index
800 	 * Increase the version number so that
801 	 * SIT entries and seg summaries are written at correct place
802 	 */
803 	ckpt_ver = cur_cp_version(ckpt);
804 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
805 
806 	/* write cached NAT/SIT entries to NAT/SIT area */
807 	flush_nat_entries(sbi);
808 	flush_sit_entries(sbi);
809 
810 	/* unlock all the fs_lock[] in do_checkpoint() */
811 	do_checkpoint(sbi, is_umount);
812 
813 	unblock_operations(sbi);
814 	mutex_unlock(&sbi->cp_mutex);
815 
816 	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
817 }
818 
819 void init_orphan_info(struct f2fs_sb_info *sbi)
820 {
821 	mutex_init(&sbi->orphan_inode_mutex);
822 	INIT_LIST_HEAD(&sbi->orphan_inode_list);
823 	sbi->n_orphans = 0;
824 }
825 
826 int __init create_checkpoint_caches(void)
827 {
828 	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
829 			sizeof(struct orphan_inode_entry), NULL);
830 	if (unlikely(!orphan_entry_slab))
831 		return -ENOMEM;
832 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
833 			sizeof(struct dir_inode_entry), NULL);
834 	if (unlikely(!inode_entry_slab)) {
835 		kmem_cache_destroy(orphan_entry_slab);
836 		return -ENOMEM;
837 	}
838 	return 0;
839 }
840 
841 void destroy_checkpoint_caches(void)
842 {
843 	kmem_cache_destroy(orphan_entry_slab);
844 	kmem_cache_destroy(inode_entry_slab);
845 }
846