1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *ino_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = META_MAPPING(sbi); 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 f2fs_wait_on_page_writeback(page, META); 42 SetPageUptodate(page); 43 return page; 44 } 45 46 /* 47 * We guarantee no failure on the returned page. 48 */ 49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 50 { 51 struct address_space *mapping = META_MAPPING(sbi); 52 struct page *page; 53 repeat: 54 page = grab_cache_page(mapping, index); 55 if (!page) { 56 cond_resched(); 57 goto repeat; 58 } 59 if (PageUptodate(page)) 60 goto out; 61 62 if (f2fs_submit_page_bio(sbi, page, index, 63 READ_SYNC | REQ_META | REQ_PRIO)) 64 goto repeat; 65 66 lock_page(page); 67 if (unlikely(page->mapping != mapping)) { 68 f2fs_put_page(page, 1); 69 goto repeat; 70 } 71 out: 72 return page; 73 } 74 75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type) 76 { 77 switch (type) { 78 case META_NAT: 79 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK; 80 case META_SIT: 81 return SIT_BLK_CNT(sbi); 82 case META_SSA: 83 case META_CP: 84 return 0; 85 default: 86 BUG(); 87 } 88 } 89 90 /* 91 * Readahead CP/NAT/SIT/SSA pages 92 */ 93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type) 94 { 95 block_t prev_blk_addr = 0; 96 struct page *page; 97 int blkno = start; 98 int max_blks = get_max_meta_blks(sbi, type); 99 100 struct f2fs_io_info fio = { 101 .type = META, 102 .rw = READ_SYNC | REQ_META | REQ_PRIO 103 }; 104 105 for (; nrpages-- > 0; blkno++) { 106 block_t blk_addr; 107 108 switch (type) { 109 case META_NAT: 110 /* get nat block addr */ 111 if (unlikely(blkno >= max_blks)) 112 blkno = 0; 113 blk_addr = current_nat_addr(sbi, 114 blkno * NAT_ENTRY_PER_BLOCK); 115 break; 116 case META_SIT: 117 /* get sit block addr */ 118 if (unlikely(blkno >= max_blks)) 119 goto out; 120 blk_addr = current_sit_addr(sbi, 121 blkno * SIT_ENTRY_PER_BLOCK); 122 if (blkno != start && prev_blk_addr + 1 != blk_addr) 123 goto out; 124 prev_blk_addr = blk_addr; 125 break; 126 case META_SSA: 127 case META_CP: 128 /* get ssa/cp block addr */ 129 blk_addr = blkno; 130 break; 131 default: 132 BUG(); 133 } 134 135 page = grab_cache_page(META_MAPPING(sbi), blk_addr); 136 if (!page) 137 continue; 138 if (PageUptodate(page)) { 139 f2fs_put_page(page, 1); 140 continue; 141 } 142 143 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio); 144 f2fs_put_page(page, 0); 145 } 146 out: 147 f2fs_submit_merged_bio(sbi, META, READ); 148 return blkno - start; 149 } 150 151 static int f2fs_write_meta_page(struct page *page, 152 struct writeback_control *wbc) 153 { 154 struct inode *inode = page->mapping->host; 155 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 156 157 trace_f2fs_writepage(page, META); 158 159 if (unlikely(sbi->por_doing)) 160 goto redirty_out; 161 if (wbc->for_reclaim) 162 goto redirty_out; 163 164 /* Should not write any meta pages, if any IO error was occurred */ 165 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG))) 166 goto no_write; 167 168 f2fs_wait_on_page_writeback(page, META); 169 write_meta_page(sbi, page); 170 no_write: 171 dec_page_count(sbi, F2FS_DIRTY_META); 172 unlock_page(page); 173 return 0; 174 175 redirty_out: 176 redirty_page_for_writepage(wbc, page); 177 return AOP_WRITEPAGE_ACTIVATE; 178 } 179 180 static int f2fs_write_meta_pages(struct address_space *mapping, 181 struct writeback_control *wbc) 182 { 183 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 184 long diff, written; 185 186 trace_f2fs_writepages(mapping->host, wbc, META); 187 188 /* collect a number of dirty meta pages and write together */ 189 if (wbc->for_kupdate || 190 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 191 goto skip_write; 192 193 /* if mounting is failed, skip writing node pages */ 194 mutex_lock(&sbi->cp_mutex); 195 diff = nr_pages_to_write(sbi, META, wbc); 196 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 197 mutex_unlock(&sbi->cp_mutex); 198 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 199 return 0; 200 201 skip_write: 202 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 203 return 0; 204 } 205 206 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 207 long nr_to_write) 208 { 209 struct address_space *mapping = META_MAPPING(sbi); 210 pgoff_t index = 0, end = LONG_MAX; 211 struct pagevec pvec; 212 long nwritten = 0; 213 struct writeback_control wbc = { 214 .for_reclaim = 0, 215 }; 216 217 pagevec_init(&pvec, 0); 218 219 while (index <= end) { 220 int i, nr_pages; 221 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 222 PAGECACHE_TAG_DIRTY, 223 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 224 if (unlikely(nr_pages == 0)) 225 break; 226 227 for (i = 0; i < nr_pages; i++) { 228 struct page *page = pvec.pages[i]; 229 230 lock_page(page); 231 232 if (unlikely(page->mapping != mapping)) { 233 continue_unlock: 234 unlock_page(page); 235 continue; 236 } 237 if (!PageDirty(page)) { 238 /* someone wrote it for us */ 239 goto continue_unlock; 240 } 241 242 if (!clear_page_dirty_for_io(page)) 243 goto continue_unlock; 244 245 if (f2fs_write_meta_page(page, &wbc)) { 246 unlock_page(page); 247 break; 248 } 249 nwritten++; 250 if (unlikely(nwritten >= nr_to_write)) 251 break; 252 } 253 pagevec_release(&pvec); 254 cond_resched(); 255 } 256 257 if (nwritten) 258 f2fs_submit_merged_bio(sbi, type, WRITE); 259 260 return nwritten; 261 } 262 263 static int f2fs_set_meta_page_dirty(struct page *page) 264 { 265 struct address_space *mapping = page->mapping; 266 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 267 268 trace_f2fs_set_page_dirty(page, META); 269 270 SetPageUptodate(page); 271 if (!PageDirty(page)) { 272 __set_page_dirty_nobuffers(page); 273 inc_page_count(sbi, F2FS_DIRTY_META); 274 return 1; 275 } 276 return 0; 277 } 278 279 const struct address_space_operations f2fs_meta_aops = { 280 .writepage = f2fs_write_meta_page, 281 .writepages = f2fs_write_meta_pages, 282 .set_page_dirty = f2fs_set_meta_page_dirty, 283 }; 284 285 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 286 { 287 struct ino_entry *e; 288 retry: 289 spin_lock(&sbi->ino_lock[type]); 290 291 e = radix_tree_lookup(&sbi->ino_root[type], ino); 292 if (!e) { 293 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC); 294 if (!e) { 295 spin_unlock(&sbi->ino_lock[type]); 296 goto retry; 297 } 298 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) { 299 spin_unlock(&sbi->ino_lock[type]); 300 kmem_cache_free(ino_entry_slab, e); 301 goto retry; 302 } 303 memset(e, 0, sizeof(struct ino_entry)); 304 e->ino = ino; 305 306 list_add_tail(&e->list, &sbi->ino_list[type]); 307 } 308 spin_unlock(&sbi->ino_lock[type]); 309 } 310 311 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 312 { 313 struct ino_entry *e; 314 315 spin_lock(&sbi->ino_lock[type]); 316 e = radix_tree_lookup(&sbi->ino_root[type], ino); 317 if (e) { 318 list_del(&e->list); 319 radix_tree_delete(&sbi->ino_root[type], ino); 320 if (type == ORPHAN_INO) 321 sbi->n_orphans--; 322 spin_unlock(&sbi->ino_lock[type]); 323 kmem_cache_free(ino_entry_slab, e); 324 return; 325 } 326 spin_unlock(&sbi->ino_lock[type]); 327 } 328 329 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 330 { 331 /* add new dirty ino entry into list */ 332 __add_ino_entry(sbi, ino, type); 333 } 334 335 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type) 336 { 337 /* remove dirty ino entry from list */ 338 __remove_ino_entry(sbi, ino, type); 339 } 340 341 /* mode should be APPEND_INO or UPDATE_INO */ 342 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 343 { 344 struct ino_entry *e; 345 spin_lock(&sbi->ino_lock[mode]); 346 e = radix_tree_lookup(&sbi->ino_root[mode], ino); 347 spin_unlock(&sbi->ino_lock[mode]); 348 return e ? true : false; 349 } 350 351 static void release_dirty_inode(struct f2fs_sb_info *sbi) 352 { 353 struct ino_entry *e, *tmp; 354 int i; 355 356 for (i = APPEND_INO; i <= UPDATE_INO; i++) { 357 spin_lock(&sbi->ino_lock[i]); 358 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) { 359 list_del(&e->list); 360 radix_tree_delete(&sbi->ino_root[i], e->ino); 361 kmem_cache_free(ino_entry_slab, e); 362 } 363 spin_unlock(&sbi->ino_lock[i]); 364 } 365 } 366 367 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 368 { 369 int err = 0; 370 371 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 372 if (unlikely(sbi->n_orphans >= sbi->max_orphans)) 373 err = -ENOSPC; 374 else 375 sbi->n_orphans++; 376 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 377 378 return err; 379 } 380 381 void release_orphan_inode(struct f2fs_sb_info *sbi) 382 { 383 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 384 f2fs_bug_on(sbi->n_orphans == 0); 385 sbi->n_orphans--; 386 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 387 } 388 389 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 390 { 391 /* add new orphan ino entry into list */ 392 __add_ino_entry(sbi, ino, ORPHAN_INO); 393 } 394 395 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 396 { 397 /* remove orphan entry from orphan list */ 398 __remove_ino_entry(sbi, ino, ORPHAN_INO); 399 } 400 401 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 402 { 403 struct inode *inode = f2fs_iget(sbi->sb, ino); 404 f2fs_bug_on(IS_ERR(inode)); 405 clear_nlink(inode); 406 407 /* truncate all the data during iput */ 408 iput(inode); 409 } 410 411 void recover_orphan_inodes(struct f2fs_sb_info *sbi) 412 { 413 block_t start_blk, orphan_blkaddr, i, j; 414 415 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 416 return; 417 418 sbi->por_doing = true; 419 420 start_blk = __start_cp_addr(sbi) + 1 + 421 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 422 orphan_blkaddr = __start_sum_addr(sbi) - 1; 423 424 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP); 425 426 for (i = 0; i < orphan_blkaddr; i++) { 427 struct page *page = get_meta_page(sbi, start_blk + i); 428 struct f2fs_orphan_block *orphan_blk; 429 430 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 431 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 432 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 433 recover_orphan_inode(sbi, ino); 434 } 435 f2fs_put_page(page, 1); 436 } 437 /* clear Orphan Flag */ 438 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 439 sbi->por_doing = false; 440 return; 441 } 442 443 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 444 { 445 struct list_head *head; 446 struct f2fs_orphan_block *orphan_blk = NULL; 447 unsigned int nentries = 0; 448 unsigned short index; 449 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans + 450 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 451 struct page *page = NULL; 452 struct ino_entry *orphan = NULL; 453 454 for (index = 0; index < orphan_blocks; index++) 455 grab_meta_page(sbi, start_blk + index); 456 457 index = 1; 458 spin_lock(&sbi->ino_lock[ORPHAN_INO]); 459 head = &sbi->ino_list[ORPHAN_INO]; 460 461 /* loop for each orphan inode entry and write them in Jornal block */ 462 list_for_each_entry(orphan, head, list) { 463 if (!page) { 464 page = find_get_page(META_MAPPING(sbi), start_blk++); 465 f2fs_bug_on(!page); 466 orphan_blk = 467 (struct f2fs_orphan_block *)page_address(page); 468 memset(orphan_blk, 0, sizeof(*orphan_blk)); 469 f2fs_put_page(page, 0); 470 } 471 472 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 473 474 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 475 /* 476 * an orphan block is full of 1020 entries, 477 * then we need to flush current orphan blocks 478 * and bring another one in memory 479 */ 480 orphan_blk->blk_addr = cpu_to_le16(index); 481 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 482 orphan_blk->entry_count = cpu_to_le32(nentries); 483 set_page_dirty(page); 484 f2fs_put_page(page, 1); 485 index++; 486 nentries = 0; 487 page = NULL; 488 } 489 } 490 491 if (page) { 492 orphan_blk->blk_addr = cpu_to_le16(index); 493 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 494 orphan_blk->entry_count = cpu_to_le32(nentries); 495 set_page_dirty(page); 496 f2fs_put_page(page, 1); 497 } 498 499 spin_unlock(&sbi->ino_lock[ORPHAN_INO]); 500 } 501 502 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 503 block_t cp_addr, unsigned long long *version) 504 { 505 struct page *cp_page_1, *cp_page_2 = NULL; 506 unsigned long blk_size = sbi->blocksize; 507 struct f2fs_checkpoint *cp_block; 508 unsigned long long cur_version = 0, pre_version = 0; 509 size_t crc_offset; 510 __u32 crc = 0; 511 512 /* Read the 1st cp block in this CP pack */ 513 cp_page_1 = get_meta_page(sbi, cp_addr); 514 515 /* get the version number */ 516 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 517 crc_offset = le32_to_cpu(cp_block->checksum_offset); 518 if (crc_offset >= blk_size) 519 goto invalid_cp1; 520 521 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 522 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 523 goto invalid_cp1; 524 525 pre_version = cur_cp_version(cp_block); 526 527 /* Read the 2nd cp block in this CP pack */ 528 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 529 cp_page_2 = get_meta_page(sbi, cp_addr); 530 531 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 532 crc_offset = le32_to_cpu(cp_block->checksum_offset); 533 if (crc_offset >= blk_size) 534 goto invalid_cp2; 535 536 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 537 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 538 goto invalid_cp2; 539 540 cur_version = cur_cp_version(cp_block); 541 542 if (cur_version == pre_version) { 543 *version = cur_version; 544 f2fs_put_page(cp_page_2, 1); 545 return cp_page_1; 546 } 547 invalid_cp2: 548 f2fs_put_page(cp_page_2, 1); 549 invalid_cp1: 550 f2fs_put_page(cp_page_1, 1); 551 return NULL; 552 } 553 554 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 555 { 556 struct f2fs_checkpoint *cp_block; 557 struct f2fs_super_block *fsb = sbi->raw_super; 558 struct page *cp1, *cp2, *cur_page; 559 unsigned long blk_size = sbi->blocksize; 560 unsigned long long cp1_version = 0, cp2_version = 0; 561 unsigned long long cp_start_blk_no; 562 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 563 block_t cp_blk_no; 564 int i; 565 566 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 567 if (!sbi->ckpt) 568 return -ENOMEM; 569 /* 570 * Finding out valid cp block involves read both 571 * sets( cp pack1 and cp pack 2) 572 */ 573 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 574 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 575 576 /* The second checkpoint pack should start at the next segment */ 577 cp_start_blk_no += ((unsigned long long)1) << 578 le32_to_cpu(fsb->log_blocks_per_seg); 579 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 580 581 if (cp1 && cp2) { 582 if (ver_after(cp2_version, cp1_version)) 583 cur_page = cp2; 584 else 585 cur_page = cp1; 586 } else if (cp1) { 587 cur_page = cp1; 588 } else if (cp2) { 589 cur_page = cp2; 590 } else { 591 goto fail_no_cp; 592 } 593 594 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 595 memcpy(sbi->ckpt, cp_block, blk_size); 596 597 if (cp_blks <= 1) 598 goto done; 599 600 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 601 if (cur_page == cp2) 602 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 603 604 for (i = 1; i < cp_blks; i++) { 605 void *sit_bitmap_ptr; 606 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 607 608 cur_page = get_meta_page(sbi, cp_blk_no + i); 609 sit_bitmap_ptr = page_address(cur_page); 610 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 611 f2fs_put_page(cur_page, 1); 612 } 613 done: 614 f2fs_put_page(cp1, 1); 615 f2fs_put_page(cp2, 1); 616 return 0; 617 618 fail_no_cp: 619 kfree(sbi->ckpt); 620 return -EINVAL; 621 } 622 623 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 624 { 625 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 626 627 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) 628 return -EEXIST; 629 630 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 631 F2FS_I(inode)->dirty_dir = new; 632 list_add_tail(&new->list, &sbi->dir_inode_list); 633 stat_inc_dirty_dir(sbi); 634 return 0; 635 } 636 637 void set_dirty_dir_page(struct inode *inode, struct page *page) 638 { 639 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 640 struct dir_inode_entry *new; 641 int ret = 0; 642 643 if (!S_ISDIR(inode->i_mode)) 644 return; 645 646 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 647 new->inode = inode; 648 INIT_LIST_HEAD(&new->list); 649 650 spin_lock(&sbi->dir_inode_lock); 651 ret = __add_dirty_inode(inode, new); 652 inode_inc_dirty_dents(inode); 653 SetPagePrivate(page); 654 spin_unlock(&sbi->dir_inode_lock); 655 656 if (ret) 657 kmem_cache_free(inode_entry_slab, new); 658 } 659 660 void add_dirty_dir_inode(struct inode *inode) 661 { 662 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 663 struct dir_inode_entry *new = 664 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 665 int ret = 0; 666 667 new->inode = inode; 668 INIT_LIST_HEAD(&new->list); 669 670 spin_lock(&sbi->dir_inode_lock); 671 ret = __add_dirty_inode(inode, new); 672 spin_unlock(&sbi->dir_inode_lock); 673 674 if (ret) 675 kmem_cache_free(inode_entry_slab, new); 676 } 677 678 void remove_dirty_dir_inode(struct inode *inode) 679 { 680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 681 struct dir_inode_entry *entry; 682 683 if (!S_ISDIR(inode->i_mode)) 684 return; 685 686 spin_lock(&sbi->dir_inode_lock); 687 if (get_dirty_dents(inode) || 688 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) { 689 spin_unlock(&sbi->dir_inode_lock); 690 return; 691 } 692 693 entry = F2FS_I(inode)->dirty_dir; 694 list_del(&entry->list); 695 F2FS_I(inode)->dirty_dir = NULL; 696 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR); 697 stat_dec_dirty_dir(sbi); 698 spin_unlock(&sbi->dir_inode_lock); 699 kmem_cache_free(inode_entry_slab, entry); 700 701 /* Only from the recovery routine */ 702 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 703 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 704 iput(inode); 705 } 706 } 707 708 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 709 { 710 struct list_head *head; 711 struct dir_inode_entry *entry; 712 struct inode *inode; 713 retry: 714 spin_lock(&sbi->dir_inode_lock); 715 716 head = &sbi->dir_inode_list; 717 if (list_empty(head)) { 718 spin_unlock(&sbi->dir_inode_lock); 719 return; 720 } 721 entry = list_entry(head->next, struct dir_inode_entry, list); 722 inode = igrab(entry->inode); 723 spin_unlock(&sbi->dir_inode_lock); 724 if (inode) { 725 filemap_fdatawrite(inode->i_mapping); 726 iput(inode); 727 } else { 728 /* 729 * We should submit bio, since it exists several 730 * wribacking dentry pages in the freeing inode. 731 */ 732 f2fs_submit_merged_bio(sbi, DATA, WRITE); 733 } 734 goto retry; 735 } 736 737 /* 738 * Freeze all the FS-operations for checkpoint. 739 */ 740 static void block_operations(struct f2fs_sb_info *sbi) 741 { 742 struct writeback_control wbc = { 743 .sync_mode = WB_SYNC_ALL, 744 .nr_to_write = LONG_MAX, 745 .for_reclaim = 0, 746 }; 747 struct blk_plug plug; 748 749 blk_start_plug(&plug); 750 751 retry_flush_dents: 752 f2fs_lock_all(sbi); 753 /* write all the dirty dentry pages */ 754 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 755 f2fs_unlock_all(sbi); 756 sync_dirty_dir_inodes(sbi); 757 goto retry_flush_dents; 758 } 759 760 /* 761 * POR: we should ensure that there is no dirty node pages 762 * until finishing nat/sit flush. 763 */ 764 retry_flush_nodes: 765 down_write(&sbi->node_write); 766 767 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 768 up_write(&sbi->node_write); 769 sync_node_pages(sbi, 0, &wbc); 770 goto retry_flush_nodes; 771 } 772 blk_finish_plug(&plug); 773 } 774 775 static void unblock_operations(struct f2fs_sb_info *sbi) 776 { 777 up_write(&sbi->node_write); 778 f2fs_unlock_all(sbi); 779 } 780 781 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 782 { 783 DEFINE_WAIT(wait); 784 785 for (;;) { 786 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 787 788 if (!get_pages(sbi, F2FS_WRITEBACK)) 789 break; 790 791 io_schedule(); 792 } 793 finish_wait(&sbi->cp_wait, &wait); 794 } 795 796 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 797 { 798 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 799 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 800 nid_t last_nid = 0; 801 block_t start_blk; 802 struct page *cp_page; 803 unsigned int data_sum_blocks, orphan_blocks; 804 __u32 crc32 = 0; 805 void *kaddr; 806 int i; 807 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 808 809 /* 810 * This avoids to conduct wrong roll-forward operations and uses 811 * metapages, so should be called prior to sync_meta_pages below. 812 */ 813 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg)); 814 815 /* Flush all the NAT/SIT pages */ 816 while (get_pages(sbi, F2FS_DIRTY_META)) 817 sync_meta_pages(sbi, META, LONG_MAX); 818 819 next_free_nid(sbi, &last_nid); 820 821 /* 822 * modify checkpoint 823 * version number is already updated 824 */ 825 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 826 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 827 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 828 for (i = 0; i < 3; i++) { 829 ckpt->cur_node_segno[i] = 830 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 831 ckpt->cur_node_blkoff[i] = 832 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 833 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 834 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 835 } 836 for (i = 0; i < 3; i++) { 837 ckpt->cur_data_segno[i] = 838 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 839 ckpt->cur_data_blkoff[i] = 840 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 841 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 842 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 843 } 844 845 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 846 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 847 ckpt->next_free_nid = cpu_to_le32(last_nid); 848 849 /* 2 cp + n data seg summary + orphan inode blocks */ 850 data_sum_blocks = npages_for_summary_flush(sbi); 851 if (data_sum_blocks < 3) 852 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 853 else 854 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 855 856 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 857 / F2FS_ORPHANS_PER_BLOCK; 858 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 859 orphan_blocks); 860 861 if (is_umount) { 862 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 863 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 864 cp_payload_blks + data_sum_blocks + 865 orphan_blocks + NR_CURSEG_NODE_TYPE); 866 } else { 867 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 868 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 869 cp_payload_blks + data_sum_blocks + 870 orphan_blocks); 871 } 872 873 if (sbi->n_orphans) 874 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 875 else 876 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 877 878 /* update SIT/NAT bitmap */ 879 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 880 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 881 882 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 883 *((__le32 *)((unsigned char *)ckpt + 884 le32_to_cpu(ckpt->checksum_offset))) 885 = cpu_to_le32(crc32); 886 887 start_blk = __start_cp_addr(sbi); 888 889 /* write out checkpoint buffer at block 0 */ 890 cp_page = grab_meta_page(sbi, start_blk++); 891 kaddr = page_address(cp_page); 892 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 893 set_page_dirty(cp_page); 894 f2fs_put_page(cp_page, 1); 895 896 for (i = 1; i < 1 + cp_payload_blks; i++) { 897 cp_page = grab_meta_page(sbi, start_blk++); 898 kaddr = page_address(cp_page); 899 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, 900 (1 << sbi->log_blocksize)); 901 set_page_dirty(cp_page); 902 f2fs_put_page(cp_page, 1); 903 } 904 905 if (sbi->n_orphans) { 906 write_orphan_inodes(sbi, start_blk); 907 start_blk += orphan_blocks; 908 } 909 910 write_data_summaries(sbi, start_blk); 911 start_blk += data_sum_blocks; 912 if (is_umount) { 913 write_node_summaries(sbi, start_blk); 914 start_blk += NR_CURSEG_NODE_TYPE; 915 } 916 917 /* writeout checkpoint block */ 918 cp_page = grab_meta_page(sbi, start_blk); 919 kaddr = page_address(cp_page); 920 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 921 set_page_dirty(cp_page); 922 f2fs_put_page(cp_page, 1); 923 924 /* wait for previous submitted node/meta pages writeback */ 925 wait_on_all_pages_writeback(sbi); 926 927 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX); 928 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX); 929 930 /* update user_block_counts */ 931 sbi->last_valid_block_count = sbi->total_valid_block_count; 932 sbi->alloc_valid_block_count = 0; 933 934 /* Here, we only have one bio having CP pack */ 935 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 936 937 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { 938 clear_prefree_segments(sbi); 939 release_dirty_inode(sbi); 940 F2FS_RESET_SB_DIRT(sbi); 941 } 942 } 943 944 /* 945 * We guarantee that this checkpoint procedure should not fail. 946 */ 947 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 948 { 949 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 950 unsigned long long ckpt_ver; 951 952 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 953 954 mutex_lock(&sbi->cp_mutex); 955 block_operations(sbi); 956 957 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 958 959 f2fs_submit_merged_bio(sbi, DATA, WRITE); 960 f2fs_submit_merged_bio(sbi, NODE, WRITE); 961 f2fs_submit_merged_bio(sbi, META, WRITE); 962 963 /* 964 * update checkpoint pack index 965 * Increase the version number so that 966 * SIT entries and seg summaries are written at correct place 967 */ 968 ckpt_ver = cur_cp_version(ckpt); 969 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 970 971 /* write cached NAT/SIT entries to NAT/SIT area */ 972 flush_nat_entries(sbi); 973 flush_sit_entries(sbi); 974 975 /* unlock all the fs_lock[] in do_checkpoint() */ 976 do_checkpoint(sbi, is_umount); 977 978 unblock_operations(sbi); 979 mutex_unlock(&sbi->cp_mutex); 980 981 stat_inc_cp_count(sbi->stat_info); 982 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 983 } 984 985 void init_ino_entry_info(struct f2fs_sb_info *sbi) 986 { 987 int i; 988 989 for (i = 0; i < MAX_INO_ENTRY; i++) { 990 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC); 991 spin_lock_init(&sbi->ino_lock[i]); 992 INIT_LIST_HEAD(&sbi->ino_list[i]); 993 } 994 995 /* 996 * considering 512 blocks in a segment 8 blocks are needed for cp 997 * and log segment summaries. Remaining blocks are used to keep 998 * orphan entries with the limitation one reserved segment 999 * for cp pack we can have max 1020*504 orphan entries 1000 */ 1001 sbi->n_orphans = 0; 1002 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE) 1003 * F2FS_ORPHANS_PER_BLOCK; 1004 } 1005 1006 int __init create_checkpoint_caches(void) 1007 { 1008 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1009 sizeof(struct ino_entry)); 1010 if (!ino_entry_slab) 1011 return -ENOMEM; 1012 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 1013 sizeof(struct dir_inode_entry)); 1014 if (!inode_entry_slab) { 1015 kmem_cache_destroy(ino_entry_slab); 1016 return -ENOMEM; 1017 } 1018 return 0; 1019 } 1020 1021 void destroy_checkpoint_caches(void) 1022 { 1023 kmem_cache_destroy(ino_entry_slab); 1024 kmem_cache_destroy(inode_entry_slab); 1025 } 1026