xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 23c2b932)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
67 		.old_blkaddr = index,
68 		.new_blkaddr = index,
69 		.encrypted_page = NULL,
70 	};
71 
72 	if (unlikely(!is_meta))
73 		fio.rw &= ~REQ_META;
74 repeat:
75 	page = f2fs_grab_cache_page(mapping, index, false);
76 	if (!page) {
77 		cond_resched();
78 		goto repeat;
79 	}
80 	if (PageUptodate(page))
81 		goto out;
82 
83 	fio.page = page;
84 
85 	if (f2fs_submit_page_bio(&fio)) {
86 		f2fs_put_page(page, 1);
87 		goto repeat;
88 	}
89 
90 	lock_page(page);
91 	if (unlikely(page->mapping != mapping)) {
92 		f2fs_put_page(page, 1);
93 		goto repeat;
94 	}
95 
96 	/*
97 	 * if there is any IO error when accessing device, make our filesystem
98 	 * readonly and make sure do not write checkpoint with non-uptodate
99 	 * meta page.
100 	 */
101 	if (unlikely(!PageUptodate(page)))
102 		f2fs_stop_checkpoint(sbi, false);
103 out:
104 	return page;
105 }
106 
107 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109 	return __get_meta_page(sbi, index, true);
110 }
111 
112 /* for POR only */
113 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115 	return __get_meta_page(sbi, index, false);
116 }
117 
118 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
119 {
120 	switch (type) {
121 	case META_NAT:
122 		break;
123 	case META_SIT:
124 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
125 			return false;
126 		break;
127 	case META_SSA:
128 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
129 			blkaddr < SM_I(sbi)->ssa_blkaddr))
130 			return false;
131 		break;
132 	case META_CP:
133 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
134 			blkaddr < __start_cp_addr(sbi)))
135 			return false;
136 		break;
137 	case META_POR:
138 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
139 			blkaddr < MAIN_BLKADDR(sbi)))
140 			return false;
141 		break;
142 	default:
143 		BUG();
144 	}
145 
146 	return true;
147 }
148 
149 /*
150  * Readahead CP/NAT/SIT/SSA pages
151  */
152 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
153 							int type, bool sync)
154 {
155 	struct page *page;
156 	block_t blkno = start;
157 	struct f2fs_io_info fio = {
158 		.sbi = sbi,
159 		.type = META,
160 		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
161 		.encrypted_page = NULL,
162 	};
163 	struct blk_plug plug;
164 
165 	if (unlikely(type == META_POR))
166 		fio.rw &= ~REQ_META;
167 
168 	blk_start_plug(&plug);
169 	for (; nrpages-- > 0; blkno++) {
170 
171 		if (!is_valid_blkaddr(sbi, blkno, type))
172 			goto out;
173 
174 		switch (type) {
175 		case META_NAT:
176 			if (unlikely(blkno >=
177 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
178 				blkno = 0;
179 			/* get nat block addr */
180 			fio.new_blkaddr = current_nat_addr(sbi,
181 					blkno * NAT_ENTRY_PER_BLOCK);
182 			break;
183 		case META_SIT:
184 			/* get sit block addr */
185 			fio.new_blkaddr = current_sit_addr(sbi,
186 					blkno * SIT_ENTRY_PER_BLOCK);
187 			break;
188 		case META_SSA:
189 		case META_CP:
190 		case META_POR:
191 			fio.new_blkaddr = blkno;
192 			break;
193 		default:
194 			BUG();
195 		}
196 
197 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
198 						fio.new_blkaddr, false);
199 		if (!page)
200 			continue;
201 		if (PageUptodate(page)) {
202 			f2fs_put_page(page, 1);
203 			continue;
204 		}
205 
206 		fio.page = page;
207 		fio.old_blkaddr = fio.new_blkaddr;
208 		f2fs_submit_page_mbio(&fio);
209 		f2fs_put_page(page, 0);
210 	}
211 out:
212 	f2fs_submit_merged_bio(sbi, META, READ);
213 	blk_finish_plug(&plug);
214 	return blkno - start;
215 }
216 
217 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
218 {
219 	struct page *page;
220 	bool readahead = false;
221 
222 	page = find_get_page(META_MAPPING(sbi), index);
223 	if (!page || !PageUptodate(page))
224 		readahead = true;
225 	f2fs_put_page(page, 0);
226 
227 	if (readahead)
228 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
229 }
230 
231 static int f2fs_write_meta_page(struct page *page,
232 				struct writeback_control *wbc)
233 {
234 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
235 
236 	trace_f2fs_writepage(page, META);
237 
238 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
239 		goto redirty_out;
240 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
241 		goto redirty_out;
242 	if (unlikely(f2fs_cp_error(sbi)))
243 		goto redirty_out;
244 
245 	write_meta_page(sbi, page);
246 	dec_page_count(sbi, F2FS_DIRTY_META);
247 
248 	if (wbc->for_reclaim)
249 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
250 
251 	unlock_page(page);
252 
253 	if (unlikely(f2fs_cp_error(sbi)))
254 		f2fs_submit_merged_bio(sbi, META, WRITE);
255 
256 	return 0;
257 
258 redirty_out:
259 	redirty_page_for_writepage(wbc, page);
260 	return AOP_WRITEPAGE_ACTIVATE;
261 }
262 
263 static int f2fs_write_meta_pages(struct address_space *mapping,
264 				struct writeback_control *wbc)
265 {
266 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
267 	long diff, written;
268 
269 	/* collect a number of dirty meta pages and write together */
270 	if (wbc->for_kupdate ||
271 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
272 		goto skip_write;
273 
274 	trace_f2fs_writepages(mapping->host, wbc, META);
275 
276 	/* if mounting is failed, skip writing node pages */
277 	mutex_lock(&sbi->cp_mutex);
278 	diff = nr_pages_to_write(sbi, META, wbc);
279 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
280 	mutex_unlock(&sbi->cp_mutex);
281 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
282 	return 0;
283 
284 skip_write:
285 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
286 	trace_f2fs_writepages(mapping->host, wbc, META);
287 	return 0;
288 }
289 
290 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
291 						long nr_to_write)
292 {
293 	struct address_space *mapping = META_MAPPING(sbi);
294 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
295 	struct pagevec pvec;
296 	long nwritten = 0;
297 	struct writeback_control wbc = {
298 		.for_reclaim = 0,
299 	};
300 	struct blk_plug plug;
301 
302 	pagevec_init(&pvec, 0);
303 
304 	blk_start_plug(&plug);
305 
306 	while (index <= end) {
307 		int i, nr_pages;
308 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
309 				PAGECACHE_TAG_DIRTY,
310 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
311 		if (unlikely(nr_pages == 0))
312 			break;
313 
314 		for (i = 0; i < nr_pages; i++) {
315 			struct page *page = pvec.pages[i];
316 
317 			if (prev == ULONG_MAX)
318 				prev = page->index - 1;
319 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
320 				pagevec_release(&pvec);
321 				goto stop;
322 			}
323 
324 			lock_page(page);
325 
326 			if (unlikely(page->mapping != mapping)) {
327 continue_unlock:
328 				unlock_page(page);
329 				continue;
330 			}
331 			if (!PageDirty(page)) {
332 				/* someone wrote it for us */
333 				goto continue_unlock;
334 			}
335 
336 			f2fs_wait_on_page_writeback(page, META, true);
337 
338 			BUG_ON(PageWriteback(page));
339 			if (!clear_page_dirty_for_io(page))
340 				goto continue_unlock;
341 
342 			if (mapping->a_ops->writepage(page, &wbc)) {
343 				unlock_page(page);
344 				break;
345 			}
346 			nwritten++;
347 			prev = page->index;
348 			if (unlikely(nwritten >= nr_to_write))
349 				break;
350 		}
351 		pagevec_release(&pvec);
352 		cond_resched();
353 	}
354 stop:
355 	if (nwritten)
356 		f2fs_submit_merged_bio(sbi, type, WRITE);
357 
358 	blk_finish_plug(&plug);
359 
360 	return nwritten;
361 }
362 
363 static int f2fs_set_meta_page_dirty(struct page *page)
364 {
365 	trace_f2fs_set_page_dirty(page, META);
366 
367 	SetPageUptodate(page);
368 	if (!PageDirty(page)) {
369 		__set_page_dirty_nobuffers(page);
370 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
371 		SetPagePrivate(page);
372 		f2fs_trace_pid(page);
373 		return 1;
374 	}
375 	return 0;
376 }
377 
378 const struct address_space_operations f2fs_meta_aops = {
379 	.writepage	= f2fs_write_meta_page,
380 	.writepages	= f2fs_write_meta_pages,
381 	.set_page_dirty	= f2fs_set_meta_page_dirty,
382 	.invalidatepage = f2fs_invalidate_page,
383 	.releasepage	= f2fs_release_page,
384 };
385 
386 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
387 {
388 	struct inode_management *im = &sbi->im[type];
389 	struct ino_entry *e, *tmp;
390 
391 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
392 retry:
393 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
394 
395 	spin_lock(&im->ino_lock);
396 	e = radix_tree_lookup(&im->ino_root, ino);
397 	if (!e) {
398 		e = tmp;
399 		if (radix_tree_insert(&im->ino_root, ino, e)) {
400 			spin_unlock(&im->ino_lock);
401 			radix_tree_preload_end();
402 			goto retry;
403 		}
404 		memset(e, 0, sizeof(struct ino_entry));
405 		e->ino = ino;
406 
407 		list_add_tail(&e->list, &im->ino_list);
408 		if (type != ORPHAN_INO)
409 			im->ino_num++;
410 	}
411 	spin_unlock(&im->ino_lock);
412 	radix_tree_preload_end();
413 
414 	if (e != tmp)
415 		kmem_cache_free(ino_entry_slab, tmp);
416 }
417 
418 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
419 {
420 	struct inode_management *im = &sbi->im[type];
421 	struct ino_entry *e;
422 
423 	spin_lock(&im->ino_lock);
424 	e = radix_tree_lookup(&im->ino_root, ino);
425 	if (e) {
426 		list_del(&e->list);
427 		radix_tree_delete(&im->ino_root, ino);
428 		im->ino_num--;
429 		spin_unlock(&im->ino_lock);
430 		kmem_cache_free(ino_entry_slab, e);
431 		return;
432 	}
433 	spin_unlock(&im->ino_lock);
434 }
435 
436 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
437 {
438 	/* add new dirty ino entry into list */
439 	__add_ino_entry(sbi, ino, type);
440 }
441 
442 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
443 {
444 	/* remove dirty ino entry from list */
445 	__remove_ino_entry(sbi, ino, type);
446 }
447 
448 /* mode should be APPEND_INO or UPDATE_INO */
449 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
450 {
451 	struct inode_management *im = &sbi->im[mode];
452 	struct ino_entry *e;
453 
454 	spin_lock(&im->ino_lock);
455 	e = radix_tree_lookup(&im->ino_root, ino);
456 	spin_unlock(&im->ino_lock);
457 	return e ? true : false;
458 }
459 
460 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
461 {
462 	struct ino_entry *e, *tmp;
463 	int i;
464 
465 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
466 		struct inode_management *im = &sbi->im[i];
467 
468 		spin_lock(&im->ino_lock);
469 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
470 			list_del(&e->list);
471 			radix_tree_delete(&im->ino_root, e->ino);
472 			kmem_cache_free(ino_entry_slab, e);
473 			im->ino_num--;
474 		}
475 		spin_unlock(&im->ino_lock);
476 	}
477 }
478 
479 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
480 {
481 	struct inode_management *im = &sbi->im[ORPHAN_INO];
482 	int err = 0;
483 
484 	spin_lock(&im->ino_lock);
485 
486 #ifdef CONFIG_F2FS_FAULT_INJECTION
487 	if (time_to_inject(FAULT_ORPHAN)) {
488 		spin_unlock(&im->ino_lock);
489 		return -ENOSPC;
490 	}
491 #endif
492 	if (unlikely(im->ino_num >= sbi->max_orphans))
493 		err = -ENOSPC;
494 	else
495 		im->ino_num++;
496 	spin_unlock(&im->ino_lock);
497 
498 	return err;
499 }
500 
501 void release_orphan_inode(struct f2fs_sb_info *sbi)
502 {
503 	struct inode_management *im = &sbi->im[ORPHAN_INO];
504 
505 	spin_lock(&im->ino_lock);
506 	f2fs_bug_on(sbi, im->ino_num == 0);
507 	im->ino_num--;
508 	spin_unlock(&im->ino_lock);
509 }
510 
511 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
512 {
513 	/* add new orphan ino entry into list */
514 	__add_ino_entry(sbi, ino, ORPHAN_INO);
515 }
516 
517 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
518 {
519 	/* remove orphan entry from orphan list */
520 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
521 }
522 
523 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
524 {
525 	struct inode *inode;
526 
527 	inode = f2fs_iget(sbi->sb, ino);
528 	if (IS_ERR(inode)) {
529 		/*
530 		 * there should be a bug that we can't find the entry
531 		 * to orphan inode.
532 		 */
533 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
534 		return PTR_ERR(inode);
535 	}
536 
537 	clear_nlink(inode);
538 
539 	/* truncate all the data during iput */
540 	iput(inode);
541 	return 0;
542 }
543 
544 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
545 {
546 	block_t start_blk, orphan_blocks, i, j;
547 	int err;
548 
549 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
550 		return 0;
551 
552 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
553 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
554 
555 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
556 
557 	for (i = 0; i < orphan_blocks; i++) {
558 		struct page *page = get_meta_page(sbi, start_blk + i);
559 		struct f2fs_orphan_block *orphan_blk;
560 
561 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
562 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
563 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
564 			err = recover_orphan_inode(sbi, ino);
565 			if (err) {
566 				f2fs_put_page(page, 1);
567 				return err;
568 			}
569 		}
570 		f2fs_put_page(page, 1);
571 	}
572 	/* clear Orphan Flag */
573 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
574 	return 0;
575 }
576 
577 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
578 {
579 	struct list_head *head;
580 	struct f2fs_orphan_block *orphan_blk = NULL;
581 	unsigned int nentries = 0;
582 	unsigned short index = 1;
583 	unsigned short orphan_blocks;
584 	struct page *page = NULL;
585 	struct ino_entry *orphan = NULL;
586 	struct inode_management *im = &sbi->im[ORPHAN_INO];
587 
588 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
589 
590 	/*
591 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
592 	 * orphan inode operations are covered under f2fs_lock_op().
593 	 * And, spin_lock should be avoided due to page operations below.
594 	 */
595 	head = &im->ino_list;
596 
597 	/* loop for each orphan inode entry and write them in Jornal block */
598 	list_for_each_entry(orphan, head, list) {
599 		if (!page) {
600 			page = grab_meta_page(sbi, start_blk++);
601 			orphan_blk =
602 				(struct f2fs_orphan_block *)page_address(page);
603 			memset(orphan_blk, 0, sizeof(*orphan_blk));
604 		}
605 
606 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
607 
608 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
609 			/*
610 			 * an orphan block is full of 1020 entries,
611 			 * then we need to flush current orphan blocks
612 			 * and bring another one in memory
613 			 */
614 			orphan_blk->blk_addr = cpu_to_le16(index);
615 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
616 			orphan_blk->entry_count = cpu_to_le32(nentries);
617 			set_page_dirty(page);
618 			f2fs_put_page(page, 1);
619 			index++;
620 			nentries = 0;
621 			page = NULL;
622 		}
623 	}
624 
625 	if (page) {
626 		orphan_blk->blk_addr = cpu_to_le16(index);
627 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
628 		orphan_blk->entry_count = cpu_to_le32(nentries);
629 		set_page_dirty(page);
630 		f2fs_put_page(page, 1);
631 	}
632 }
633 
634 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
635 				block_t cp_addr, unsigned long long *version)
636 {
637 	struct page *cp_page_1, *cp_page_2 = NULL;
638 	unsigned long blk_size = sbi->blocksize;
639 	struct f2fs_checkpoint *cp_block;
640 	unsigned long long cur_version = 0, pre_version = 0;
641 	size_t crc_offset;
642 	__u32 crc = 0;
643 
644 	/* Read the 1st cp block in this CP pack */
645 	cp_page_1 = get_meta_page(sbi, cp_addr);
646 
647 	/* get the version number */
648 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
649 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
650 	if (crc_offset >= blk_size)
651 		goto invalid_cp1;
652 
653 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
654 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
655 		goto invalid_cp1;
656 
657 	pre_version = cur_cp_version(cp_block);
658 
659 	/* Read the 2nd cp block in this CP pack */
660 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
661 	cp_page_2 = get_meta_page(sbi, cp_addr);
662 
663 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
664 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
665 	if (crc_offset >= blk_size)
666 		goto invalid_cp2;
667 
668 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
669 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
670 		goto invalid_cp2;
671 
672 	cur_version = cur_cp_version(cp_block);
673 
674 	if (cur_version == pre_version) {
675 		*version = cur_version;
676 		f2fs_put_page(cp_page_2, 1);
677 		return cp_page_1;
678 	}
679 invalid_cp2:
680 	f2fs_put_page(cp_page_2, 1);
681 invalid_cp1:
682 	f2fs_put_page(cp_page_1, 1);
683 	return NULL;
684 }
685 
686 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
687 {
688 	struct f2fs_checkpoint *cp_block;
689 	struct f2fs_super_block *fsb = sbi->raw_super;
690 	struct page *cp1, *cp2, *cur_page;
691 	unsigned long blk_size = sbi->blocksize;
692 	unsigned long long cp1_version = 0, cp2_version = 0;
693 	unsigned long long cp_start_blk_no;
694 	unsigned int cp_blks = 1 + __cp_payload(sbi);
695 	block_t cp_blk_no;
696 	int i;
697 
698 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
699 	if (!sbi->ckpt)
700 		return -ENOMEM;
701 	/*
702 	 * Finding out valid cp block involves read both
703 	 * sets( cp pack1 and cp pack 2)
704 	 */
705 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
706 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
707 
708 	/* The second checkpoint pack should start at the next segment */
709 	cp_start_blk_no += ((unsigned long long)1) <<
710 				le32_to_cpu(fsb->log_blocks_per_seg);
711 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
712 
713 	if (cp1 && cp2) {
714 		if (ver_after(cp2_version, cp1_version))
715 			cur_page = cp2;
716 		else
717 			cur_page = cp1;
718 	} else if (cp1) {
719 		cur_page = cp1;
720 	} else if (cp2) {
721 		cur_page = cp2;
722 	} else {
723 		goto fail_no_cp;
724 	}
725 
726 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
727 	memcpy(sbi->ckpt, cp_block, blk_size);
728 
729 	/* Sanity checking of checkpoint */
730 	if (sanity_check_ckpt(sbi))
731 		goto fail_no_cp;
732 
733 	if (cp_blks <= 1)
734 		goto done;
735 
736 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
737 	if (cur_page == cp2)
738 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
739 
740 	for (i = 1; i < cp_blks; i++) {
741 		void *sit_bitmap_ptr;
742 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
743 
744 		cur_page = get_meta_page(sbi, cp_blk_no + i);
745 		sit_bitmap_ptr = page_address(cur_page);
746 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
747 		f2fs_put_page(cur_page, 1);
748 	}
749 done:
750 	f2fs_put_page(cp1, 1);
751 	f2fs_put_page(cp2, 1);
752 	return 0;
753 
754 fail_no_cp:
755 	kfree(sbi->ckpt);
756 	return -EINVAL;
757 }
758 
759 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
760 {
761 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
762 	struct f2fs_inode_info *fi = F2FS_I(inode);
763 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
764 
765 	if (is_inode_flag_set(fi, flag))
766 		return;
767 
768 	set_inode_flag(fi, flag);
769 	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
770 	stat_inc_dirty_inode(sbi, type);
771 }
772 
773 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
774 {
775 	struct f2fs_inode_info *fi = F2FS_I(inode);
776 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
777 
778 	if (get_dirty_pages(inode) ||
779 			!is_inode_flag_set(F2FS_I(inode), flag))
780 		return;
781 
782 	list_del_init(&fi->dirty_list);
783 	clear_inode_flag(fi, flag);
784 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
785 }
786 
787 void update_dirty_page(struct inode *inode, struct page *page)
788 {
789 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
790 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
791 
792 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
793 			!S_ISLNK(inode->i_mode))
794 		return;
795 
796 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) {
797 		spin_lock(&sbi->inode_lock[type]);
798 		__add_dirty_inode(inode, type);
799 		spin_unlock(&sbi->inode_lock[type]);
800 	}
801 
802 	inode_inc_dirty_pages(inode);
803 	SetPagePrivate(page);
804 	f2fs_trace_pid(page);
805 }
806 
807 void remove_dirty_inode(struct inode *inode)
808 {
809 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
810 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
811 
812 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
813 			!S_ISLNK(inode->i_mode))
814 		return;
815 
816 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
817 		return;
818 
819 	spin_lock(&sbi->inode_lock[type]);
820 	__remove_dirty_inode(inode, type);
821 	spin_unlock(&sbi->inode_lock[type]);
822 }
823 
824 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
825 {
826 	struct list_head *head;
827 	struct inode *inode;
828 	struct f2fs_inode_info *fi;
829 	bool is_dir = (type == DIR_INODE);
830 
831 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
832 				get_pages(sbi, is_dir ?
833 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
834 retry:
835 	if (unlikely(f2fs_cp_error(sbi)))
836 		return -EIO;
837 
838 	spin_lock(&sbi->inode_lock[type]);
839 
840 	head = &sbi->inode_list[type];
841 	if (list_empty(head)) {
842 		spin_unlock(&sbi->inode_lock[type]);
843 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
844 				get_pages(sbi, is_dir ?
845 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
846 		return 0;
847 	}
848 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
849 	inode = igrab(&fi->vfs_inode);
850 	spin_unlock(&sbi->inode_lock[type]);
851 	if (inode) {
852 		filemap_fdatawrite(inode->i_mapping);
853 		iput(inode);
854 	} else {
855 		/*
856 		 * We should submit bio, since it exists several
857 		 * wribacking dentry pages in the freeing inode.
858 		 */
859 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
860 		cond_resched();
861 	}
862 	goto retry;
863 }
864 
865 /*
866  * Freeze all the FS-operations for checkpoint.
867  */
868 static int block_operations(struct f2fs_sb_info *sbi)
869 {
870 	struct writeback_control wbc = {
871 		.sync_mode = WB_SYNC_ALL,
872 		.nr_to_write = LONG_MAX,
873 		.for_reclaim = 0,
874 	};
875 	struct blk_plug plug;
876 	int err = 0;
877 
878 	blk_start_plug(&plug);
879 
880 retry_flush_dents:
881 	f2fs_lock_all(sbi);
882 	/* write all the dirty dentry pages */
883 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
884 		f2fs_unlock_all(sbi);
885 		err = sync_dirty_inodes(sbi, DIR_INODE);
886 		if (err)
887 			goto out;
888 		goto retry_flush_dents;
889 	}
890 
891 	/*
892 	 * POR: we should ensure that there are no dirty node pages
893 	 * until finishing nat/sit flush.
894 	 */
895 retry_flush_nodes:
896 	down_write(&sbi->node_write);
897 
898 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
899 		up_write(&sbi->node_write);
900 		err = sync_node_pages(sbi, &wbc);
901 		if (err) {
902 			f2fs_unlock_all(sbi);
903 			goto out;
904 		}
905 		goto retry_flush_nodes;
906 	}
907 out:
908 	blk_finish_plug(&plug);
909 	return err;
910 }
911 
912 static void unblock_operations(struct f2fs_sb_info *sbi)
913 {
914 	up_write(&sbi->node_write);
915 	f2fs_unlock_all(sbi);
916 }
917 
918 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
919 {
920 	DEFINE_WAIT(wait);
921 
922 	for (;;) {
923 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
924 
925 		if (!atomic_read(&sbi->nr_wb_bios))
926 			break;
927 
928 		io_schedule_timeout(5*HZ);
929 	}
930 	finish_wait(&sbi->cp_wait, &wait);
931 }
932 
933 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
934 {
935 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
936 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
937 	struct f2fs_nm_info *nm_i = NM_I(sbi);
938 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
939 	nid_t last_nid = nm_i->next_scan_nid;
940 	block_t start_blk;
941 	unsigned int data_sum_blocks, orphan_blocks;
942 	__u32 crc32 = 0;
943 	int i;
944 	int cp_payload_blks = __cp_payload(sbi);
945 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
946 	bool invalidate = false;
947 	struct super_block *sb = sbi->sb;
948 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
949 	u64 kbytes_written;
950 
951 	/*
952 	 * This avoids to conduct wrong roll-forward operations and uses
953 	 * metapages, so should be called prior to sync_meta_pages below.
954 	 */
955 	if (discard_next_dnode(sbi, discard_blk))
956 		invalidate = true;
957 
958 	/* Flush all the NAT/SIT pages */
959 	while (get_pages(sbi, F2FS_DIRTY_META)) {
960 		sync_meta_pages(sbi, META, LONG_MAX);
961 		if (unlikely(f2fs_cp_error(sbi)))
962 			return -EIO;
963 	}
964 
965 	next_free_nid(sbi, &last_nid);
966 
967 	/*
968 	 * modify checkpoint
969 	 * version number is already updated
970 	 */
971 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
972 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
973 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
974 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
975 		ckpt->cur_node_segno[i] =
976 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
977 		ckpt->cur_node_blkoff[i] =
978 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
979 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
980 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
981 	}
982 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
983 		ckpt->cur_data_segno[i] =
984 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
985 		ckpt->cur_data_blkoff[i] =
986 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
987 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
988 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
989 	}
990 
991 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
992 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
993 	ckpt->next_free_nid = cpu_to_le32(last_nid);
994 
995 	/* 2 cp  + n data seg summary + orphan inode blocks */
996 	data_sum_blocks = npages_for_summary_flush(sbi, false);
997 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
998 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
999 	else
1000 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1001 
1002 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1003 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1004 			orphan_blocks);
1005 
1006 	if (__remain_node_summaries(cpc->reason))
1007 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1008 				cp_payload_blks + data_sum_blocks +
1009 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1010 	else
1011 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1012 				cp_payload_blks + data_sum_blocks +
1013 				orphan_blocks);
1014 
1015 	if (cpc->reason == CP_UMOUNT)
1016 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1017 	else
1018 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1019 
1020 	if (cpc->reason == CP_FASTBOOT)
1021 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1022 	else
1023 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1024 
1025 	if (orphan_num)
1026 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1027 	else
1028 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1029 
1030 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1031 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1032 
1033 	/* update SIT/NAT bitmap */
1034 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1035 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1036 
1037 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1038 	*((__le32 *)((unsigned char *)ckpt +
1039 				le32_to_cpu(ckpt->checksum_offset)))
1040 				= cpu_to_le32(crc32);
1041 
1042 	start_blk = __start_cp_addr(sbi);
1043 
1044 	/* need to wait for end_io results */
1045 	wait_on_all_pages_writeback(sbi);
1046 	if (unlikely(f2fs_cp_error(sbi)))
1047 		return -EIO;
1048 
1049 	/* write out checkpoint buffer at block 0 */
1050 	update_meta_page(sbi, ckpt, start_blk++);
1051 
1052 	for (i = 1; i < 1 + cp_payload_blks; i++)
1053 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1054 							start_blk++);
1055 
1056 	if (orphan_num) {
1057 		write_orphan_inodes(sbi, start_blk);
1058 		start_blk += orphan_blocks;
1059 	}
1060 
1061 	write_data_summaries(sbi, start_blk);
1062 	start_blk += data_sum_blocks;
1063 
1064 	/* Record write statistics in the hot node summary */
1065 	kbytes_written = sbi->kbytes_written;
1066 	if (sb->s_bdev->bd_part)
1067 		kbytes_written += BD_PART_WRITTEN(sbi);
1068 
1069 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1070 
1071 	if (__remain_node_summaries(cpc->reason)) {
1072 		write_node_summaries(sbi, start_blk);
1073 		start_blk += NR_CURSEG_NODE_TYPE;
1074 	}
1075 
1076 	/* writeout checkpoint block */
1077 	update_meta_page(sbi, ckpt, start_blk);
1078 
1079 	/* wait for previous submitted node/meta pages writeback */
1080 	wait_on_all_pages_writeback(sbi);
1081 
1082 	if (unlikely(f2fs_cp_error(sbi)))
1083 		return -EIO;
1084 
1085 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1086 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1087 
1088 	/* update user_block_counts */
1089 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1090 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1091 
1092 	/* Here, we only have one bio having CP pack */
1093 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1094 
1095 	/* wait for previous submitted meta pages writeback */
1096 	wait_on_all_pages_writeback(sbi);
1097 
1098 	/*
1099 	 * invalidate meta page which is used temporarily for zeroing out
1100 	 * block at the end of warm node chain.
1101 	 */
1102 	if (invalidate)
1103 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1104 								discard_blk);
1105 
1106 	release_ino_entry(sbi, false);
1107 
1108 	if (unlikely(f2fs_cp_error(sbi)))
1109 		return -EIO;
1110 
1111 	clear_prefree_segments(sbi, cpc);
1112 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1113 
1114 	return 0;
1115 }
1116 
1117 /*
1118  * We guarantee that this checkpoint procedure will not fail.
1119  */
1120 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1121 {
1122 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1123 	unsigned long long ckpt_ver;
1124 	int err = 0;
1125 
1126 	mutex_lock(&sbi->cp_mutex);
1127 
1128 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1129 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1130 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1131 		goto out;
1132 	if (unlikely(f2fs_cp_error(sbi))) {
1133 		err = -EIO;
1134 		goto out;
1135 	}
1136 	if (f2fs_readonly(sbi->sb)) {
1137 		err = -EROFS;
1138 		goto out;
1139 	}
1140 
1141 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1142 
1143 	err = block_operations(sbi);
1144 	if (err)
1145 		goto out;
1146 
1147 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1148 
1149 	f2fs_flush_merged_bios(sbi);
1150 
1151 	/*
1152 	 * update checkpoint pack index
1153 	 * Increase the version number so that
1154 	 * SIT entries and seg summaries are written at correct place
1155 	 */
1156 	ckpt_ver = cur_cp_version(ckpt);
1157 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1158 
1159 	/* write cached NAT/SIT entries to NAT/SIT area */
1160 	flush_nat_entries(sbi);
1161 	flush_sit_entries(sbi, cpc);
1162 
1163 	/* unlock all the fs_lock[] in do_checkpoint() */
1164 	err = do_checkpoint(sbi, cpc);
1165 
1166 	unblock_operations(sbi);
1167 	stat_inc_cp_count(sbi->stat_info);
1168 
1169 	if (cpc->reason == CP_RECOVERY)
1170 		f2fs_msg(sbi->sb, KERN_NOTICE,
1171 			"checkpoint: version = %llx", ckpt_ver);
1172 
1173 	/* do checkpoint periodically */
1174 	f2fs_update_time(sbi, CP_TIME);
1175 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1176 out:
1177 	mutex_unlock(&sbi->cp_mutex);
1178 	return err;
1179 }
1180 
1181 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1182 {
1183 	int i;
1184 
1185 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1186 		struct inode_management *im = &sbi->im[i];
1187 
1188 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1189 		spin_lock_init(&im->ino_lock);
1190 		INIT_LIST_HEAD(&im->ino_list);
1191 		im->ino_num = 0;
1192 	}
1193 
1194 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1195 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1196 				F2FS_ORPHANS_PER_BLOCK;
1197 }
1198 
1199 int __init create_checkpoint_caches(void)
1200 {
1201 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1202 			sizeof(struct ino_entry));
1203 	if (!ino_entry_slab)
1204 		return -ENOMEM;
1205 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1206 			sizeof(struct inode_entry));
1207 	if (!inode_entry_slab) {
1208 		kmem_cache_destroy(ino_entry_slab);
1209 		return -ENOMEM;
1210 	}
1211 	return 0;
1212 }
1213 
1214 void destroy_checkpoint_caches(void)
1215 {
1216 	kmem_cache_destroy(ino_entry_slab);
1217 	kmem_cache_destroy(inode_entry_slab);
1218 }
1219