xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 237c0790)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	if (!PageUptodate(page))
52 		SetPageUptodate(page);
53 	return page;
54 }
55 
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 							bool is_meta)
61 {
62 	struct address_space *mapping = META_MAPPING(sbi);
63 	struct page *page;
64 	struct f2fs_io_info fio = {
65 		.sbi = sbi,
66 		.type = META,
67 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
68 		.old_blkaddr = index,
69 		.new_blkaddr = index,
70 		.encrypted_page = NULL,
71 	};
72 
73 	if (unlikely(!is_meta))
74 		fio.rw &= ~REQ_META;
75 repeat:
76 	page = f2fs_grab_cache_page(mapping, index, false);
77 	if (!page) {
78 		cond_resched();
79 		goto repeat;
80 	}
81 	if (PageUptodate(page))
82 		goto out;
83 
84 	fio.page = page;
85 
86 	if (f2fs_submit_page_bio(&fio)) {
87 		f2fs_put_page(page, 1);
88 		goto repeat;
89 	}
90 
91 	lock_page(page);
92 	if (unlikely(page->mapping != mapping)) {
93 		f2fs_put_page(page, 1);
94 		goto repeat;
95 	}
96 
97 	/*
98 	 * if there is any IO error when accessing device, make our filesystem
99 	 * readonly and make sure do not write checkpoint with non-uptodate
100 	 * meta page.
101 	 */
102 	if (unlikely(!PageUptodate(page)))
103 		f2fs_stop_checkpoint(sbi, false);
104 out:
105 	return page;
106 }
107 
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110 	return __get_meta_page(sbi, index, true);
111 }
112 
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 	return __get_meta_page(sbi, index, false);
117 }
118 
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
120 {
121 	switch (type) {
122 	case META_NAT:
123 		break;
124 	case META_SIT:
125 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126 			return false;
127 		break;
128 	case META_SSA:
129 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130 			blkaddr < SM_I(sbi)->ssa_blkaddr))
131 			return false;
132 		break;
133 	case META_CP:
134 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135 			blkaddr < __start_cp_addr(sbi)))
136 			return false;
137 		break;
138 	case META_POR:
139 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140 			blkaddr < MAIN_BLKADDR(sbi)))
141 			return false;
142 		break;
143 	default:
144 		BUG();
145 	}
146 
147 	return true;
148 }
149 
150 /*
151  * Readahead CP/NAT/SIT/SSA pages
152  */
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154 							int type, bool sync)
155 {
156 	struct page *page;
157 	block_t blkno = start;
158 	struct f2fs_io_info fio = {
159 		.sbi = sbi,
160 		.type = META,
161 		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
162 		.encrypted_page = NULL,
163 	};
164 	struct blk_plug plug;
165 
166 	if (unlikely(type == META_POR))
167 		fio.rw &= ~REQ_META;
168 
169 	blk_start_plug(&plug);
170 	for (; nrpages-- > 0; blkno++) {
171 
172 		if (!is_valid_blkaddr(sbi, blkno, type))
173 			goto out;
174 
175 		switch (type) {
176 		case META_NAT:
177 			if (unlikely(blkno >=
178 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
179 				blkno = 0;
180 			/* get nat block addr */
181 			fio.new_blkaddr = current_nat_addr(sbi,
182 					blkno * NAT_ENTRY_PER_BLOCK);
183 			break;
184 		case META_SIT:
185 			/* get sit block addr */
186 			fio.new_blkaddr = current_sit_addr(sbi,
187 					blkno * SIT_ENTRY_PER_BLOCK);
188 			break;
189 		case META_SSA:
190 		case META_CP:
191 		case META_POR:
192 			fio.new_blkaddr = blkno;
193 			break;
194 		default:
195 			BUG();
196 		}
197 
198 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
199 						fio.new_blkaddr, false);
200 		if (!page)
201 			continue;
202 		if (PageUptodate(page)) {
203 			f2fs_put_page(page, 1);
204 			continue;
205 		}
206 
207 		fio.page = page;
208 		fio.old_blkaddr = fio.new_blkaddr;
209 		f2fs_submit_page_mbio(&fio);
210 		f2fs_put_page(page, 0);
211 	}
212 out:
213 	f2fs_submit_merged_bio(sbi, META, READ);
214 	blk_finish_plug(&plug);
215 	return blkno - start;
216 }
217 
218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
219 {
220 	struct page *page;
221 	bool readahead = false;
222 
223 	page = find_get_page(META_MAPPING(sbi), index);
224 	if (!page || !PageUptodate(page))
225 		readahead = true;
226 	f2fs_put_page(page, 0);
227 
228 	if (readahead)
229 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
230 }
231 
232 static int f2fs_write_meta_page(struct page *page,
233 				struct writeback_control *wbc)
234 {
235 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
236 
237 	trace_f2fs_writepage(page, META);
238 
239 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
240 		goto redirty_out;
241 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
242 		goto redirty_out;
243 	if (unlikely(f2fs_cp_error(sbi)))
244 		goto redirty_out;
245 
246 	write_meta_page(sbi, page);
247 	dec_page_count(sbi, F2FS_DIRTY_META);
248 
249 	if (wbc->for_reclaim)
250 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
251 
252 	unlock_page(page);
253 
254 	if (unlikely(f2fs_cp_error(sbi)))
255 		f2fs_submit_merged_bio(sbi, META, WRITE);
256 
257 	return 0;
258 
259 redirty_out:
260 	redirty_page_for_writepage(wbc, page);
261 	return AOP_WRITEPAGE_ACTIVATE;
262 }
263 
264 static int f2fs_write_meta_pages(struct address_space *mapping,
265 				struct writeback_control *wbc)
266 {
267 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
268 	long diff, written;
269 
270 	/* collect a number of dirty meta pages and write together */
271 	if (wbc->for_kupdate ||
272 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
273 		goto skip_write;
274 
275 	trace_f2fs_writepages(mapping->host, wbc, META);
276 
277 	/* if mounting is failed, skip writing node pages */
278 	mutex_lock(&sbi->cp_mutex);
279 	diff = nr_pages_to_write(sbi, META, wbc);
280 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
281 	mutex_unlock(&sbi->cp_mutex);
282 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
283 	return 0;
284 
285 skip_write:
286 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
287 	trace_f2fs_writepages(mapping->host, wbc, META);
288 	return 0;
289 }
290 
291 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
292 						long nr_to_write)
293 {
294 	struct address_space *mapping = META_MAPPING(sbi);
295 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
296 	struct pagevec pvec;
297 	long nwritten = 0;
298 	struct writeback_control wbc = {
299 		.for_reclaim = 0,
300 	};
301 	struct blk_plug plug;
302 
303 	pagevec_init(&pvec, 0);
304 
305 	blk_start_plug(&plug);
306 
307 	while (index <= end) {
308 		int i, nr_pages;
309 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
310 				PAGECACHE_TAG_DIRTY,
311 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
312 		if (unlikely(nr_pages == 0))
313 			break;
314 
315 		for (i = 0; i < nr_pages; i++) {
316 			struct page *page = pvec.pages[i];
317 
318 			if (prev == ULONG_MAX)
319 				prev = page->index - 1;
320 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
321 				pagevec_release(&pvec);
322 				goto stop;
323 			}
324 
325 			lock_page(page);
326 
327 			if (unlikely(page->mapping != mapping)) {
328 continue_unlock:
329 				unlock_page(page);
330 				continue;
331 			}
332 			if (!PageDirty(page)) {
333 				/* someone wrote it for us */
334 				goto continue_unlock;
335 			}
336 
337 			f2fs_wait_on_page_writeback(page, META, true);
338 
339 			BUG_ON(PageWriteback(page));
340 			if (!clear_page_dirty_for_io(page))
341 				goto continue_unlock;
342 
343 			if (mapping->a_ops->writepage(page, &wbc)) {
344 				unlock_page(page);
345 				break;
346 			}
347 			nwritten++;
348 			prev = page->index;
349 			if (unlikely(nwritten >= nr_to_write))
350 				break;
351 		}
352 		pagevec_release(&pvec);
353 		cond_resched();
354 	}
355 stop:
356 	if (nwritten)
357 		f2fs_submit_merged_bio(sbi, type, WRITE);
358 
359 	blk_finish_plug(&plug);
360 
361 	return nwritten;
362 }
363 
364 static int f2fs_set_meta_page_dirty(struct page *page)
365 {
366 	trace_f2fs_set_page_dirty(page, META);
367 
368 	if (!PageUptodate(page))
369 		SetPageUptodate(page);
370 	if (!PageDirty(page)) {
371 		f2fs_set_page_dirty_nobuffers(page);
372 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
373 		SetPagePrivate(page);
374 		f2fs_trace_pid(page);
375 		return 1;
376 	}
377 	return 0;
378 }
379 
380 const struct address_space_operations f2fs_meta_aops = {
381 	.writepage	= f2fs_write_meta_page,
382 	.writepages	= f2fs_write_meta_pages,
383 	.set_page_dirty	= f2fs_set_meta_page_dirty,
384 	.invalidatepage = f2fs_invalidate_page,
385 	.releasepage	= f2fs_release_page,
386 };
387 
388 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
389 {
390 	struct inode_management *im = &sbi->im[type];
391 	struct ino_entry *e, *tmp;
392 
393 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
394 retry:
395 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
396 
397 	spin_lock(&im->ino_lock);
398 	e = radix_tree_lookup(&im->ino_root, ino);
399 	if (!e) {
400 		e = tmp;
401 		if (radix_tree_insert(&im->ino_root, ino, e)) {
402 			spin_unlock(&im->ino_lock);
403 			radix_tree_preload_end();
404 			goto retry;
405 		}
406 		memset(e, 0, sizeof(struct ino_entry));
407 		e->ino = ino;
408 
409 		list_add_tail(&e->list, &im->ino_list);
410 		if (type != ORPHAN_INO)
411 			im->ino_num++;
412 	}
413 	spin_unlock(&im->ino_lock);
414 	radix_tree_preload_end();
415 
416 	if (e != tmp)
417 		kmem_cache_free(ino_entry_slab, tmp);
418 }
419 
420 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
421 {
422 	struct inode_management *im = &sbi->im[type];
423 	struct ino_entry *e;
424 
425 	spin_lock(&im->ino_lock);
426 	e = radix_tree_lookup(&im->ino_root, ino);
427 	if (e) {
428 		list_del(&e->list);
429 		radix_tree_delete(&im->ino_root, ino);
430 		im->ino_num--;
431 		spin_unlock(&im->ino_lock);
432 		kmem_cache_free(ino_entry_slab, e);
433 		return;
434 	}
435 	spin_unlock(&im->ino_lock);
436 }
437 
438 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
439 {
440 	/* add new dirty ino entry into list */
441 	__add_ino_entry(sbi, ino, type);
442 }
443 
444 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
445 {
446 	/* remove dirty ino entry from list */
447 	__remove_ino_entry(sbi, ino, type);
448 }
449 
450 /* mode should be APPEND_INO or UPDATE_INO */
451 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
452 {
453 	struct inode_management *im = &sbi->im[mode];
454 	struct ino_entry *e;
455 
456 	spin_lock(&im->ino_lock);
457 	e = radix_tree_lookup(&im->ino_root, ino);
458 	spin_unlock(&im->ino_lock);
459 	return e ? true : false;
460 }
461 
462 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
463 {
464 	struct ino_entry *e, *tmp;
465 	int i;
466 
467 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
468 		struct inode_management *im = &sbi->im[i];
469 
470 		spin_lock(&im->ino_lock);
471 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
472 			list_del(&e->list);
473 			radix_tree_delete(&im->ino_root, e->ino);
474 			kmem_cache_free(ino_entry_slab, e);
475 			im->ino_num--;
476 		}
477 		spin_unlock(&im->ino_lock);
478 	}
479 }
480 
481 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
482 {
483 	struct inode_management *im = &sbi->im[ORPHAN_INO];
484 	int err = 0;
485 
486 	spin_lock(&im->ino_lock);
487 
488 #ifdef CONFIG_F2FS_FAULT_INJECTION
489 	if (time_to_inject(FAULT_ORPHAN)) {
490 		spin_unlock(&im->ino_lock);
491 		return -ENOSPC;
492 	}
493 #endif
494 	if (unlikely(im->ino_num >= sbi->max_orphans))
495 		err = -ENOSPC;
496 	else
497 		im->ino_num++;
498 	spin_unlock(&im->ino_lock);
499 
500 	return err;
501 }
502 
503 void release_orphan_inode(struct f2fs_sb_info *sbi)
504 {
505 	struct inode_management *im = &sbi->im[ORPHAN_INO];
506 
507 	spin_lock(&im->ino_lock);
508 	f2fs_bug_on(sbi, im->ino_num == 0);
509 	im->ino_num--;
510 	spin_unlock(&im->ino_lock);
511 }
512 
513 void add_orphan_inode(struct inode *inode)
514 {
515 	/* add new orphan ino entry into list */
516 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
517 	update_inode_page(inode);
518 }
519 
520 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
521 {
522 	/* remove orphan entry from orphan list */
523 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
524 }
525 
526 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
527 {
528 	struct inode *inode;
529 
530 	inode = f2fs_iget(sbi->sb, ino);
531 	if (IS_ERR(inode)) {
532 		/*
533 		 * there should be a bug that we can't find the entry
534 		 * to orphan inode.
535 		 */
536 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
537 		return PTR_ERR(inode);
538 	}
539 
540 	clear_nlink(inode);
541 
542 	/* truncate all the data during iput */
543 	iput(inode);
544 	return 0;
545 }
546 
547 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
548 {
549 	block_t start_blk, orphan_blocks, i, j;
550 	int err;
551 
552 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
553 		return 0;
554 
555 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
556 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
557 
558 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
559 
560 	for (i = 0; i < orphan_blocks; i++) {
561 		struct page *page = get_meta_page(sbi, start_blk + i);
562 		struct f2fs_orphan_block *orphan_blk;
563 
564 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
565 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
566 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
567 			err = recover_orphan_inode(sbi, ino);
568 			if (err) {
569 				f2fs_put_page(page, 1);
570 				return err;
571 			}
572 		}
573 		f2fs_put_page(page, 1);
574 	}
575 	/* clear Orphan Flag */
576 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
577 	return 0;
578 }
579 
580 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
581 {
582 	struct list_head *head;
583 	struct f2fs_orphan_block *orphan_blk = NULL;
584 	unsigned int nentries = 0;
585 	unsigned short index = 1;
586 	unsigned short orphan_blocks;
587 	struct page *page = NULL;
588 	struct ino_entry *orphan = NULL;
589 	struct inode_management *im = &sbi->im[ORPHAN_INO];
590 
591 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
592 
593 	/*
594 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
595 	 * orphan inode operations are covered under f2fs_lock_op().
596 	 * And, spin_lock should be avoided due to page operations below.
597 	 */
598 	head = &im->ino_list;
599 
600 	/* loop for each orphan inode entry and write them in Jornal block */
601 	list_for_each_entry(orphan, head, list) {
602 		if (!page) {
603 			page = grab_meta_page(sbi, start_blk++);
604 			orphan_blk =
605 				(struct f2fs_orphan_block *)page_address(page);
606 			memset(orphan_blk, 0, sizeof(*orphan_blk));
607 		}
608 
609 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
610 
611 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
612 			/*
613 			 * an orphan block is full of 1020 entries,
614 			 * then we need to flush current orphan blocks
615 			 * and bring another one in memory
616 			 */
617 			orphan_blk->blk_addr = cpu_to_le16(index);
618 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
619 			orphan_blk->entry_count = cpu_to_le32(nentries);
620 			set_page_dirty(page);
621 			f2fs_put_page(page, 1);
622 			index++;
623 			nentries = 0;
624 			page = NULL;
625 		}
626 	}
627 
628 	if (page) {
629 		orphan_blk->blk_addr = cpu_to_le16(index);
630 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
631 		orphan_blk->entry_count = cpu_to_le32(nentries);
632 		set_page_dirty(page);
633 		f2fs_put_page(page, 1);
634 	}
635 }
636 
637 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
638 				block_t cp_addr, unsigned long long *version)
639 {
640 	struct page *cp_page_1, *cp_page_2 = NULL;
641 	unsigned long blk_size = sbi->blocksize;
642 	struct f2fs_checkpoint *cp_block;
643 	unsigned long long cur_version = 0, pre_version = 0;
644 	size_t crc_offset;
645 	__u32 crc = 0;
646 
647 	/* Read the 1st cp block in this CP pack */
648 	cp_page_1 = get_meta_page(sbi, cp_addr);
649 
650 	/* get the version number */
651 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
652 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
653 	if (crc_offset >= blk_size)
654 		goto invalid_cp1;
655 
656 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
657 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
658 		goto invalid_cp1;
659 
660 	pre_version = cur_cp_version(cp_block);
661 
662 	/* Read the 2nd cp block in this CP pack */
663 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
664 	cp_page_2 = get_meta_page(sbi, cp_addr);
665 
666 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
667 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
668 	if (crc_offset >= blk_size)
669 		goto invalid_cp2;
670 
671 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
672 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
673 		goto invalid_cp2;
674 
675 	cur_version = cur_cp_version(cp_block);
676 
677 	if (cur_version == pre_version) {
678 		*version = cur_version;
679 		f2fs_put_page(cp_page_2, 1);
680 		return cp_page_1;
681 	}
682 invalid_cp2:
683 	f2fs_put_page(cp_page_2, 1);
684 invalid_cp1:
685 	f2fs_put_page(cp_page_1, 1);
686 	return NULL;
687 }
688 
689 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
690 {
691 	struct f2fs_checkpoint *cp_block;
692 	struct f2fs_super_block *fsb = sbi->raw_super;
693 	struct page *cp1, *cp2, *cur_page;
694 	unsigned long blk_size = sbi->blocksize;
695 	unsigned long long cp1_version = 0, cp2_version = 0;
696 	unsigned long long cp_start_blk_no;
697 	unsigned int cp_blks = 1 + __cp_payload(sbi);
698 	block_t cp_blk_no;
699 	int i;
700 
701 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
702 	if (!sbi->ckpt)
703 		return -ENOMEM;
704 	/*
705 	 * Finding out valid cp block involves read both
706 	 * sets( cp pack1 and cp pack 2)
707 	 */
708 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
709 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
710 
711 	/* The second checkpoint pack should start at the next segment */
712 	cp_start_blk_no += ((unsigned long long)1) <<
713 				le32_to_cpu(fsb->log_blocks_per_seg);
714 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
715 
716 	if (cp1 && cp2) {
717 		if (ver_after(cp2_version, cp1_version))
718 			cur_page = cp2;
719 		else
720 			cur_page = cp1;
721 	} else if (cp1) {
722 		cur_page = cp1;
723 	} else if (cp2) {
724 		cur_page = cp2;
725 	} else {
726 		goto fail_no_cp;
727 	}
728 
729 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
730 	memcpy(sbi->ckpt, cp_block, blk_size);
731 
732 	/* Sanity checking of checkpoint */
733 	if (sanity_check_ckpt(sbi))
734 		goto fail_no_cp;
735 
736 	if (cp_blks <= 1)
737 		goto done;
738 
739 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
740 	if (cur_page == cp2)
741 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
742 
743 	for (i = 1; i < cp_blks; i++) {
744 		void *sit_bitmap_ptr;
745 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
746 
747 		cur_page = get_meta_page(sbi, cp_blk_no + i);
748 		sit_bitmap_ptr = page_address(cur_page);
749 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
750 		f2fs_put_page(cur_page, 1);
751 	}
752 done:
753 	f2fs_put_page(cp1, 1);
754 	f2fs_put_page(cp2, 1);
755 	return 0;
756 
757 fail_no_cp:
758 	kfree(sbi->ckpt);
759 	return -EINVAL;
760 }
761 
762 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
763 {
764 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
765 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
766 
767 	if (is_inode_flag_set(inode, flag))
768 		return;
769 
770 	set_inode_flag(inode, flag);
771 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
772 	stat_inc_dirty_inode(sbi, type);
773 }
774 
775 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
776 {
777 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
778 
779 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
780 		return;
781 
782 	list_del_init(&F2FS_I(inode)->dirty_list);
783 	clear_inode_flag(inode, flag);
784 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
785 }
786 
787 void update_dirty_page(struct inode *inode, struct page *page)
788 {
789 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
790 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
791 
792 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
793 			!S_ISLNK(inode->i_mode))
794 		return;
795 
796 	spin_lock(&sbi->inode_lock[type]);
797 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
798 		__add_dirty_inode(inode, type);
799 	inode_inc_dirty_pages(inode);
800 	spin_unlock(&sbi->inode_lock[type]);
801 
802 	SetPagePrivate(page);
803 	f2fs_trace_pid(page);
804 }
805 
806 void remove_dirty_inode(struct inode *inode)
807 {
808 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
810 
811 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
812 			!S_ISLNK(inode->i_mode))
813 		return;
814 
815 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
816 		return;
817 
818 	spin_lock(&sbi->inode_lock[type]);
819 	__remove_dirty_inode(inode, type);
820 	spin_unlock(&sbi->inode_lock[type]);
821 }
822 
823 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
824 {
825 	struct list_head *head;
826 	struct inode *inode;
827 	struct f2fs_inode_info *fi;
828 	bool is_dir = (type == DIR_INODE);
829 
830 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
831 				get_pages(sbi, is_dir ?
832 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
833 retry:
834 	if (unlikely(f2fs_cp_error(sbi)))
835 		return -EIO;
836 
837 	spin_lock(&sbi->inode_lock[type]);
838 
839 	head = &sbi->inode_list[type];
840 	if (list_empty(head)) {
841 		spin_unlock(&sbi->inode_lock[type]);
842 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
843 				get_pages(sbi, is_dir ?
844 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
845 		return 0;
846 	}
847 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
848 	inode = igrab(&fi->vfs_inode);
849 	spin_unlock(&sbi->inode_lock[type]);
850 	if (inode) {
851 		filemap_fdatawrite(inode->i_mapping);
852 		iput(inode);
853 	} else {
854 		/*
855 		 * We should submit bio, since it exists several
856 		 * wribacking dentry pages in the freeing inode.
857 		 */
858 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
859 		cond_resched();
860 	}
861 	goto retry;
862 }
863 
864 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
865 {
866 	struct list_head *head = &sbi->inode_list[DIRTY_META];
867 	struct inode *inode;
868 	struct f2fs_inode_info *fi;
869 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
870 
871 	while (total--) {
872 		if (unlikely(f2fs_cp_error(sbi)))
873 			return -EIO;
874 
875 		spin_lock(&sbi->inode_lock[DIRTY_META]);
876 		if (list_empty(head)) {
877 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
878 			return 0;
879 		}
880 		fi = list_entry(head->next, struct f2fs_inode_info,
881 							gdirty_list);
882 		inode = igrab(&fi->vfs_inode);
883 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
884 		if (inode) {
885 			update_inode_page(inode);
886 			iput(inode);
887 		}
888 	};
889 	return 0;
890 }
891 
892 /*
893  * Freeze all the FS-operations for checkpoint.
894  */
895 static int block_operations(struct f2fs_sb_info *sbi)
896 {
897 	struct writeback_control wbc = {
898 		.sync_mode = WB_SYNC_ALL,
899 		.nr_to_write = LONG_MAX,
900 		.for_reclaim = 0,
901 	};
902 	int err = 0;
903 
904 retry_flush_dents:
905 	f2fs_lock_all(sbi);
906 	/* write all the dirty dentry pages */
907 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
908 		f2fs_unlock_all(sbi);
909 		err = sync_dirty_inodes(sbi, DIR_INODE);
910 		if (err)
911 			goto out;
912 		goto retry_flush_dents;
913 	}
914 
915 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
916 		f2fs_unlock_all(sbi);
917 		err = f2fs_sync_inode_meta(sbi);
918 		if (err)
919 			goto out;
920 		goto retry_flush_dents;
921 	}
922 
923 	/*
924 	 * POR: we should ensure that there are no dirty node pages
925 	 * until finishing nat/sit flush.
926 	 */
927 retry_flush_nodes:
928 	down_write(&sbi->node_write);
929 
930 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
931 		up_write(&sbi->node_write);
932 		err = sync_node_pages(sbi, &wbc);
933 		if (err) {
934 			f2fs_unlock_all(sbi);
935 			goto out;
936 		}
937 		goto retry_flush_nodes;
938 	}
939 out:
940 	return err;
941 }
942 
943 static void unblock_operations(struct f2fs_sb_info *sbi)
944 {
945 	up_write(&sbi->node_write);
946 
947 	build_free_nids(sbi);
948 	f2fs_unlock_all(sbi);
949 }
950 
951 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
952 {
953 	DEFINE_WAIT(wait);
954 
955 	for (;;) {
956 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
957 
958 		if (!atomic_read(&sbi->nr_wb_bios))
959 			break;
960 
961 		io_schedule_timeout(5*HZ);
962 	}
963 	finish_wait(&sbi->cp_wait, &wait);
964 }
965 
966 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
967 {
968 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
969 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
970 	struct f2fs_nm_info *nm_i = NM_I(sbi);
971 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
972 	nid_t last_nid = nm_i->next_scan_nid;
973 	block_t start_blk;
974 	unsigned int data_sum_blocks, orphan_blocks;
975 	__u32 crc32 = 0;
976 	int i;
977 	int cp_payload_blks = __cp_payload(sbi);
978 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
979 	bool invalidate = false;
980 	struct super_block *sb = sbi->sb;
981 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
982 	u64 kbytes_written;
983 
984 	/*
985 	 * This avoids to conduct wrong roll-forward operations and uses
986 	 * metapages, so should be called prior to sync_meta_pages below.
987 	 */
988 	if (!test_opt(sbi, LFS) && discard_next_dnode(sbi, discard_blk))
989 		invalidate = true;
990 
991 	/* Flush all the NAT/SIT pages */
992 	while (get_pages(sbi, F2FS_DIRTY_META)) {
993 		sync_meta_pages(sbi, META, LONG_MAX);
994 		if (unlikely(f2fs_cp_error(sbi)))
995 			return -EIO;
996 	}
997 
998 	next_free_nid(sbi, &last_nid);
999 
1000 	/*
1001 	 * modify checkpoint
1002 	 * version number is already updated
1003 	 */
1004 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1005 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1006 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1007 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1008 		ckpt->cur_node_segno[i] =
1009 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1010 		ckpt->cur_node_blkoff[i] =
1011 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1012 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1013 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1014 	}
1015 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1016 		ckpt->cur_data_segno[i] =
1017 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1018 		ckpt->cur_data_blkoff[i] =
1019 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1020 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1021 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1022 	}
1023 
1024 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1025 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1026 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1027 
1028 	/* 2 cp  + n data seg summary + orphan inode blocks */
1029 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1030 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1031 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1032 	else
1033 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1034 
1035 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1036 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1037 			orphan_blocks);
1038 
1039 	if (__remain_node_summaries(cpc->reason))
1040 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1041 				cp_payload_blks + data_sum_blocks +
1042 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1043 	else
1044 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1045 				cp_payload_blks + data_sum_blocks +
1046 				orphan_blocks);
1047 
1048 	if (cpc->reason == CP_UMOUNT)
1049 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1050 	else
1051 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1052 
1053 	if (cpc->reason == CP_FASTBOOT)
1054 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1055 	else
1056 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1057 
1058 	if (orphan_num)
1059 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1060 	else
1061 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1062 
1063 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1064 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1065 
1066 	/* update SIT/NAT bitmap */
1067 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1068 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1069 
1070 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1071 	*((__le32 *)((unsigned char *)ckpt +
1072 				le32_to_cpu(ckpt->checksum_offset)))
1073 				= cpu_to_le32(crc32);
1074 
1075 	start_blk = __start_cp_addr(sbi);
1076 
1077 	/* need to wait for end_io results */
1078 	wait_on_all_pages_writeback(sbi);
1079 	if (unlikely(f2fs_cp_error(sbi)))
1080 		return -EIO;
1081 
1082 	/* write out checkpoint buffer at block 0 */
1083 	update_meta_page(sbi, ckpt, start_blk++);
1084 
1085 	for (i = 1; i < 1 + cp_payload_blks; i++)
1086 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1087 							start_blk++);
1088 
1089 	if (orphan_num) {
1090 		write_orphan_inodes(sbi, start_blk);
1091 		start_blk += orphan_blocks;
1092 	}
1093 
1094 	write_data_summaries(sbi, start_blk);
1095 	start_blk += data_sum_blocks;
1096 
1097 	/* Record write statistics in the hot node summary */
1098 	kbytes_written = sbi->kbytes_written;
1099 	if (sb->s_bdev->bd_part)
1100 		kbytes_written += BD_PART_WRITTEN(sbi);
1101 
1102 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1103 
1104 	if (__remain_node_summaries(cpc->reason)) {
1105 		write_node_summaries(sbi, start_blk);
1106 		start_blk += NR_CURSEG_NODE_TYPE;
1107 	}
1108 
1109 	/* writeout checkpoint block */
1110 	update_meta_page(sbi, ckpt, start_blk);
1111 
1112 	/* wait for previous submitted node/meta pages writeback */
1113 	wait_on_all_pages_writeback(sbi);
1114 
1115 	if (unlikely(f2fs_cp_error(sbi)))
1116 		return -EIO;
1117 
1118 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1119 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1120 
1121 	/* update user_block_counts */
1122 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1123 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1124 
1125 	/* Here, we only have one bio having CP pack */
1126 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1127 
1128 	/* wait for previous submitted meta pages writeback */
1129 	wait_on_all_pages_writeback(sbi);
1130 
1131 	/*
1132 	 * invalidate meta page which is used temporarily for zeroing out
1133 	 * block at the end of warm node chain.
1134 	 */
1135 	if (invalidate)
1136 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1137 								discard_blk);
1138 
1139 	release_ino_entry(sbi, false);
1140 
1141 	if (unlikely(f2fs_cp_error(sbi)))
1142 		return -EIO;
1143 
1144 	clear_prefree_segments(sbi, cpc);
1145 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1146 
1147 	return 0;
1148 }
1149 
1150 /*
1151  * We guarantee that this checkpoint procedure will not fail.
1152  */
1153 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1154 {
1155 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1156 	unsigned long long ckpt_ver;
1157 	int err = 0;
1158 
1159 	mutex_lock(&sbi->cp_mutex);
1160 
1161 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1162 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1163 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1164 		goto out;
1165 	if (unlikely(f2fs_cp_error(sbi))) {
1166 		err = -EIO;
1167 		goto out;
1168 	}
1169 	if (f2fs_readonly(sbi->sb)) {
1170 		err = -EROFS;
1171 		goto out;
1172 	}
1173 
1174 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1175 
1176 	err = block_operations(sbi);
1177 	if (err)
1178 		goto out;
1179 
1180 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1181 
1182 	f2fs_flush_merged_bios(sbi);
1183 
1184 	/*
1185 	 * update checkpoint pack index
1186 	 * Increase the version number so that
1187 	 * SIT entries and seg summaries are written at correct place
1188 	 */
1189 	ckpt_ver = cur_cp_version(ckpt);
1190 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1191 
1192 	/* write cached NAT/SIT entries to NAT/SIT area */
1193 	flush_nat_entries(sbi);
1194 	flush_sit_entries(sbi, cpc);
1195 
1196 	/* unlock all the fs_lock[] in do_checkpoint() */
1197 	err = do_checkpoint(sbi, cpc);
1198 
1199 	unblock_operations(sbi);
1200 	stat_inc_cp_count(sbi->stat_info);
1201 
1202 	if (cpc->reason == CP_RECOVERY)
1203 		f2fs_msg(sbi->sb, KERN_NOTICE,
1204 			"checkpoint: version = %llx", ckpt_ver);
1205 
1206 	/* do checkpoint periodically */
1207 	f2fs_update_time(sbi, CP_TIME);
1208 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1209 out:
1210 	mutex_unlock(&sbi->cp_mutex);
1211 	return err;
1212 }
1213 
1214 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1215 {
1216 	int i;
1217 
1218 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1219 		struct inode_management *im = &sbi->im[i];
1220 
1221 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1222 		spin_lock_init(&im->ino_lock);
1223 		INIT_LIST_HEAD(&im->ino_list);
1224 		im->ino_num = 0;
1225 	}
1226 
1227 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1228 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1229 				F2FS_ORPHANS_PER_BLOCK;
1230 }
1231 
1232 int __init create_checkpoint_caches(void)
1233 {
1234 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1235 			sizeof(struct ino_entry));
1236 	if (!ino_entry_slab)
1237 		return -ENOMEM;
1238 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1239 			sizeof(struct inode_entry));
1240 	if (!inode_entry_slab) {
1241 		kmem_cache_destroy(ino_entry_slab);
1242 		return -ENOMEM;
1243 	}
1244 	return 0;
1245 }
1246 
1247 void destroy_checkpoint_caches(void)
1248 {
1249 	kmem_cache_destroy(ino_entry_slab);
1250 	kmem_cache_destroy(inode_entry_slab);
1251 }
1252