1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .rw = READ_SYNC | REQ_META | REQ_PRIO, 68 .old_blkaddr = index, 69 .new_blkaddr = index, 70 .encrypted_page = NULL, 71 }; 72 73 if (unlikely(!is_meta)) 74 fio.rw &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 if (f2fs_submit_page_bio(&fio)) { 87 f2fs_put_page(page, 1); 88 goto repeat; 89 } 90 91 lock_page(page); 92 if (unlikely(page->mapping != mapping)) { 93 f2fs_put_page(page, 1); 94 goto repeat; 95 } 96 97 /* 98 * if there is any IO error when accessing device, make our filesystem 99 * readonly and make sure do not write checkpoint with non-uptodate 100 * meta page. 101 */ 102 if (unlikely(!PageUptodate(page))) 103 f2fs_stop_checkpoint(sbi, false); 104 out: 105 return page; 106 } 107 108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 109 { 110 return __get_meta_page(sbi, index, true); 111 } 112 113 /* for POR only */ 114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 115 { 116 return __get_meta_page(sbi, index, false); 117 } 118 119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 120 { 121 switch (type) { 122 case META_NAT: 123 break; 124 case META_SIT: 125 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 126 return false; 127 break; 128 case META_SSA: 129 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 130 blkaddr < SM_I(sbi)->ssa_blkaddr)) 131 return false; 132 break; 133 case META_CP: 134 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 135 blkaddr < __start_cp_addr(sbi))) 136 return false; 137 break; 138 case META_POR: 139 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 140 blkaddr < MAIN_BLKADDR(sbi))) 141 return false; 142 break; 143 default: 144 BUG(); 145 } 146 147 return true; 148 } 149 150 /* 151 * Readahead CP/NAT/SIT/SSA pages 152 */ 153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 154 int type, bool sync) 155 { 156 struct page *page; 157 block_t blkno = start; 158 struct f2fs_io_info fio = { 159 .sbi = sbi, 160 .type = META, 161 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA, 162 .encrypted_page = NULL, 163 }; 164 struct blk_plug plug; 165 166 if (unlikely(type == META_POR)) 167 fio.rw &= ~REQ_META; 168 169 blk_start_plug(&plug); 170 for (; nrpages-- > 0; blkno++) { 171 172 if (!is_valid_blkaddr(sbi, blkno, type)) 173 goto out; 174 175 switch (type) { 176 case META_NAT: 177 if (unlikely(blkno >= 178 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 179 blkno = 0; 180 /* get nat block addr */ 181 fio.new_blkaddr = current_nat_addr(sbi, 182 blkno * NAT_ENTRY_PER_BLOCK); 183 break; 184 case META_SIT: 185 /* get sit block addr */ 186 fio.new_blkaddr = current_sit_addr(sbi, 187 blkno * SIT_ENTRY_PER_BLOCK); 188 break; 189 case META_SSA: 190 case META_CP: 191 case META_POR: 192 fio.new_blkaddr = blkno; 193 break; 194 default: 195 BUG(); 196 } 197 198 page = f2fs_grab_cache_page(META_MAPPING(sbi), 199 fio.new_blkaddr, false); 200 if (!page) 201 continue; 202 if (PageUptodate(page)) { 203 f2fs_put_page(page, 1); 204 continue; 205 } 206 207 fio.page = page; 208 fio.old_blkaddr = fio.new_blkaddr; 209 f2fs_submit_page_mbio(&fio); 210 f2fs_put_page(page, 0); 211 } 212 out: 213 f2fs_submit_merged_bio(sbi, META, READ); 214 blk_finish_plug(&plug); 215 return blkno - start; 216 } 217 218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 219 { 220 struct page *page; 221 bool readahead = false; 222 223 page = find_get_page(META_MAPPING(sbi), index); 224 if (!page || !PageUptodate(page)) 225 readahead = true; 226 f2fs_put_page(page, 0); 227 228 if (readahead) 229 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true); 230 } 231 232 static int f2fs_write_meta_page(struct page *page, 233 struct writeback_control *wbc) 234 { 235 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 236 237 trace_f2fs_writepage(page, META); 238 239 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 240 goto redirty_out; 241 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 242 goto redirty_out; 243 if (unlikely(f2fs_cp_error(sbi))) 244 goto redirty_out; 245 246 write_meta_page(sbi, page); 247 dec_page_count(sbi, F2FS_DIRTY_META); 248 249 if (wbc->for_reclaim) 250 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE); 251 252 unlock_page(page); 253 254 if (unlikely(f2fs_cp_error(sbi))) 255 f2fs_submit_merged_bio(sbi, META, WRITE); 256 257 return 0; 258 259 redirty_out: 260 redirty_page_for_writepage(wbc, page); 261 return AOP_WRITEPAGE_ACTIVATE; 262 } 263 264 static int f2fs_write_meta_pages(struct address_space *mapping, 265 struct writeback_control *wbc) 266 { 267 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 268 long diff, written; 269 270 /* collect a number of dirty meta pages and write together */ 271 if (wbc->for_kupdate || 272 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 273 goto skip_write; 274 275 trace_f2fs_writepages(mapping->host, wbc, META); 276 277 /* if mounting is failed, skip writing node pages */ 278 mutex_lock(&sbi->cp_mutex); 279 diff = nr_pages_to_write(sbi, META, wbc); 280 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 281 mutex_unlock(&sbi->cp_mutex); 282 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 283 return 0; 284 285 skip_write: 286 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 287 trace_f2fs_writepages(mapping->host, wbc, META); 288 return 0; 289 } 290 291 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 292 long nr_to_write) 293 { 294 struct address_space *mapping = META_MAPPING(sbi); 295 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 296 struct pagevec pvec; 297 long nwritten = 0; 298 struct writeback_control wbc = { 299 .for_reclaim = 0, 300 }; 301 struct blk_plug plug; 302 303 pagevec_init(&pvec, 0); 304 305 blk_start_plug(&plug); 306 307 while (index <= end) { 308 int i, nr_pages; 309 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 310 PAGECACHE_TAG_DIRTY, 311 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 312 if (unlikely(nr_pages == 0)) 313 break; 314 315 for (i = 0; i < nr_pages; i++) { 316 struct page *page = pvec.pages[i]; 317 318 if (prev == ULONG_MAX) 319 prev = page->index - 1; 320 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 321 pagevec_release(&pvec); 322 goto stop; 323 } 324 325 lock_page(page); 326 327 if (unlikely(page->mapping != mapping)) { 328 continue_unlock: 329 unlock_page(page); 330 continue; 331 } 332 if (!PageDirty(page)) { 333 /* someone wrote it for us */ 334 goto continue_unlock; 335 } 336 337 f2fs_wait_on_page_writeback(page, META, true); 338 339 BUG_ON(PageWriteback(page)); 340 if (!clear_page_dirty_for_io(page)) 341 goto continue_unlock; 342 343 if (mapping->a_ops->writepage(page, &wbc)) { 344 unlock_page(page); 345 break; 346 } 347 nwritten++; 348 prev = page->index; 349 if (unlikely(nwritten >= nr_to_write)) 350 break; 351 } 352 pagevec_release(&pvec); 353 cond_resched(); 354 } 355 stop: 356 if (nwritten) 357 f2fs_submit_merged_bio(sbi, type, WRITE); 358 359 blk_finish_plug(&plug); 360 361 return nwritten; 362 } 363 364 static int f2fs_set_meta_page_dirty(struct page *page) 365 { 366 trace_f2fs_set_page_dirty(page, META); 367 368 if (!PageUptodate(page)) 369 SetPageUptodate(page); 370 if (!PageDirty(page)) { 371 f2fs_set_page_dirty_nobuffers(page); 372 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 373 SetPagePrivate(page); 374 f2fs_trace_pid(page); 375 return 1; 376 } 377 return 0; 378 } 379 380 const struct address_space_operations f2fs_meta_aops = { 381 .writepage = f2fs_write_meta_page, 382 .writepages = f2fs_write_meta_pages, 383 .set_page_dirty = f2fs_set_meta_page_dirty, 384 .invalidatepage = f2fs_invalidate_page, 385 .releasepage = f2fs_release_page, 386 }; 387 388 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 389 { 390 struct inode_management *im = &sbi->im[type]; 391 struct ino_entry *e, *tmp; 392 393 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 394 retry: 395 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 396 397 spin_lock(&im->ino_lock); 398 e = radix_tree_lookup(&im->ino_root, ino); 399 if (!e) { 400 e = tmp; 401 if (radix_tree_insert(&im->ino_root, ino, e)) { 402 spin_unlock(&im->ino_lock); 403 radix_tree_preload_end(); 404 goto retry; 405 } 406 memset(e, 0, sizeof(struct ino_entry)); 407 e->ino = ino; 408 409 list_add_tail(&e->list, &im->ino_list); 410 if (type != ORPHAN_INO) 411 im->ino_num++; 412 } 413 spin_unlock(&im->ino_lock); 414 radix_tree_preload_end(); 415 416 if (e != tmp) 417 kmem_cache_free(ino_entry_slab, tmp); 418 } 419 420 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 421 { 422 struct inode_management *im = &sbi->im[type]; 423 struct ino_entry *e; 424 425 spin_lock(&im->ino_lock); 426 e = radix_tree_lookup(&im->ino_root, ino); 427 if (e) { 428 list_del(&e->list); 429 radix_tree_delete(&im->ino_root, ino); 430 im->ino_num--; 431 spin_unlock(&im->ino_lock); 432 kmem_cache_free(ino_entry_slab, e); 433 return; 434 } 435 spin_unlock(&im->ino_lock); 436 } 437 438 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 439 { 440 /* add new dirty ino entry into list */ 441 __add_ino_entry(sbi, ino, type); 442 } 443 444 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 445 { 446 /* remove dirty ino entry from list */ 447 __remove_ino_entry(sbi, ino, type); 448 } 449 450 /* mode should be APPEND_INO or UPDATE_INO */ 451 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 452 { 453 struct inode_management *im = &sbi->im[mode]; 454 struct ino_entry *e; 455 456 spin_lock(&im->ino_lock); 457 e = radix_tree_lookup(&im->ino_root, ino); 458 spin_unlock(&im->ino_lock); 459 return e ? true : false; 460 } 461 462 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 463 { 464 struct ino_entry *e, *tmp; 465 int i; 466 467 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 468 struct inode_management *im = &sbi->im[i]; 469 470 spin_lock(&im->ino_lock); 471 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 472 list_del(&e->list); 473 radix_tree_delete(&im->ino_root, e->ino); 474 kmem_cache_free(ino_entry_slab, e); 475 im->ino_num--; 476 } 477 spin_unlock(&im->ino_lock); 478 } 479 } 480 481 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 482 { 483 struct inode_management *im = &sbi->im[ORPHAN_INO]; 484 int err = 0; 485 486 spin_lock(&im->ino_lock); 487 488 #ifdef CONFIG_F2FS_FAULT_INJECTION 489 if (time_to_inject(FAULT_ORPHAN)) { 490 spin_unlock(&im->ino_lock); 491 return -ENOSPC; 492 } 493 #endif 494 if (unlikely(im->ino_num >= sbi->max_orphans)) 495 err = -ENOSPC; 496 else 497 im->ino_num++; 498 spin_unlock(&im->ino_lock); 499 500 return err; 501 } 502 503 void release_orphan_inode(struct f2fs_sb_info *sbi) 504 { 505 struct inode_management *im = &sbi->im[ORPHAN_INO]; 506 507 spin_lock(&im->ino_lock); 508 f2fs_bug_on(sbi, im->ino_num == 0); 509 im->ino_num--; 510 spin_unlock(&im->ino_lock); 511 } 512 513 void add_orphan_inode(struct inode *inode) 514 { 515 /* add new orphan ino entry into list */ 516 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 517 update_inode_page(inode); 518 } 519 520 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 521 { 522 /* remove orphan entry from orphan list */ 523 __remove_ino_entry(sbi, ino, ORPHAN_INO); 524 } 525 526 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 527 { 528 struct inode *inode; 529 530 inode = f2fs_iget(sbi->sb, ino); 531 if (IS_ERR(inode)) { 532 /* 533 * there should be a bug that we can't find the entry 534 * to orphan inode. 535 */ 536 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 537 return PTR_ERR(inode); 538 } 539 540 clear_nlink(inode); 541 542 /* truncate all the data during iput */ 543 iput(inode); 544 return 0; 545 } 546 547 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 548 { 549 block_t start_blk, orphan_blocks, i, j; 550 int err; 551 552 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 553 return 0; 554 555 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 556 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 557 558 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 559 560 for (i = 0; i < orphan_blocks; i++) { 561 struct page *page = get_meta_page(sbi, start_blk + i); 562 struct f2fs_orphan_block *orphan_blk; 563 564 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 565 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 566 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 567 err = recover_orphan_inode(sbi, ino); 568 if (err) { 569 f2fs_put_page(page, 1); 570 return err; 571 } 572 } 573 f2fs_put_page(page, 1); 574 } 575 /* clear Orphan Flag */ 576 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 577 return 0; 578 } 579 580 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 581 { 582 struct list_head *head; 583 struct f2fs_orphan_block *orphan_blk = NULL; 584 unsigned int nentries = 0; 585 unsigned short index = 1; 586 unsigned short orphan_blocks; 587 struct page *page = NULL; 588 struct ino_entry *orphan = NULL; 589 struct inode_management *im = &sbi->im[ORPHAN_INO]; 590 591 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 592 593 /* 594 * we don't need to do spin_lock(&im->ino_lock) here, since all the 595 * orphan inode operations are covered under f2fs_lock_op(). 596 * And, spin_lock should be avoided due to page operations below. 597 */ 598 head = &im->ino_list; 599 600 /* loop for each orphan inode entry and write them in Jornal block */ 601 list_for_each_entry(orphan, head, list) { 602 if (!page) { 603 page = grab_meta_page(sbi, start_blk++); 604 orphan_blk = 605 (struct f2fs_orphan_block *)page_address(page); 606 memset(orphan_blk, 0, sizeof(*orphan_blk)); 607 } 608 609 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 610 611 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 612 /* 613 * an orphan block is full of 1020 entries, 614 * then we need to flush current orphan blocks 615 * and bring another one in memory 616 */ 617 orphan_blk->blk_addr = cpu_to_le16(index); 618 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 619 orphan_blk->entry_count = cpu_to_le32(nentries); 620 set_page_dirty(page); 621 f2fs_put_page(page, 1); 622 index++; 623 nentries = 0; 624 page = NULL; 625 } 626 } 627 628 if (page) { 629 orphan_blk->blk_addr = cpu_to_le16(index); 630 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 631 orphan_blk->entry_count = cpu_to_le32(nentries); 632 set_page_dirty(page); 633 f2fs_put_page(page, 1); 634 } 635 } 636 637 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 638 block_t cp_addr, unsigned long long *version) 639 { 640 struct page *cp_page_1, *cp_page_2 = NULL; 641 unsigned long blk_size = sbi->blocksize; 642 struct f2fs_checkpoint *cp_block; 643 unsigned long long cur_version = 0, pre_version = 0; 644 size_t crc_offset; 645 __u32 crc = 0; 646 647 /* Read the 1st cp block in this CP pack */ 648 cp_page_1 = get_meta_page(sbi, cp_addr); 649 650 /* get the version number */ 651 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 652 crc_offset = le32_to_cpu(cp_block->checksum_offset); 653 if (crc_offset >= blk_size) 654 goto invalid_cp1; 655 656 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 657 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 658 goto invalid_cp1; 659 660 pre_version = cur_cp_version(cp_block); 661 662 /* Read the 2nd cp block in this CP pack */ 663 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 664 cp_page_2 = get_meta_page(sbi, cp_addr); 665 666 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 667 crc_offset = le32_to_cpu(cp_block->checksum_offset); 668 if (crc_offset >= blk_size) 669 goto invalid_cp2; 670 671 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset))); 672 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset)) 673 goto invalid_cp2; 674 675 cur_version = cur_cp_version(cp_block); 676 677 if (cur_version == pre_version) { 678 *version = cur_version; 679 f2fs_put_page(cp_page_2, 1); 680 return cp_page_1; 681 } 682 invalid_cp2: 683 f2fs_put_page(cp_page_2, 1); 684 invalid_cp1: 685 f2fs_put_page(cp_page_1, 1); 686 return NULL; 687 } 688 689 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 690 { 691 struct f2fs_checkpoint *cp_block; 692 struct f2fs_super_block *fsb = sbi->raw_super; 693 struct page *cp1, *cp2, *cur_page; 694 unsigned long blk_size = sbi->blocksize; 695 unsigned long long cp1_version = 0, cp2_version = 0; 696 unsigned long long cp_start_blk_no; 697 unsigned int cp_blks = 1 + __cp_payload(sbi); 698 block_t cp_blk_no; 699 int i; 700 701 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 702 if (!sbi->ckpt) 703 return -ENOMEM; 704 /* 705 * Finding out valid cp block involves read both 706 * sets( cp pack1 and cp pack 2) 707 */ 708 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 709 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 710 711 /* The second checkpoint pack should start at the next segment */ 712 cp_start_blk_no += ((unsigned long long)1) << 713 le32_to_cpu(fsb->log_blocks_per_seg); 714 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 715 716 if (cp1 && cp2) { 717 if (ver_after(cp2_version, cp1_version)) 718 cur_page = cp2; 719 else 720 cur_page = cp1; 721 } else if (cp1) { 722 cur_page = cp1; 723 } else if (cp2) { 724 cur_page = cp2; 725 } else { 726 goto fail_no_cp; 727 } 728 729 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 730 memcpy(sbi->ckpt, cp_block, blk_size); 731 732 /* Sanity checking of checkpoint */ 733 if (sanity_check_ckpt(sbi)) 734 goto fail_no_cp; 735 736 if (cp_blks <= 1) 737 goto done; 738 739 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 740 if (cur_page == cp2) 741 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 742 743 for (i = 1; i < cp_blks; i++) { 744 void *sit_bitmap_ptr; 745 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 746 747 cur_page = get_meta_page(sbi, cp_blk_no + i); 748 sit_bitmap_ptr = page_address(cur_page); 749 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 750 f2fs_put_page(cur_page, 1); 751 } 752 done: 753 f2fs_put_page(cp1, 1); 754 f2fs_put_page(cp2, 1); 755 return 0; 756 757 fail_no_cp: 758 kfree(sbi->ckpt); 759 return -EINVAL; 760 } 761 762 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 763 { 764 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 765 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 766 767 if (is_inode_flag_set(inode, flag)) 768 return; 769 770 set_inode_flag(inode, flag); 771 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 772 stat_inc_dirty_inode(sbi, type); 773 } 774 775 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 776 { 777 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 778 779 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 780 return; 781 782 list_del_init(&F2FS_I(inode)->dirty_list); 783 clear_inode_flag(inode, flag); 784 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 785 } 786 787 void update_dirty_page(struct inode *inode, struct page *page) 788 { 789 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 790 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 791 792 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 793 !S_ISLNK(inode->i_mode)) 794 return; 795 796 spin_lock(&sbi->inode_lock[type]); 797 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 798 __add_dirty_inode(inode, type); 799 inode_inc_dirty_pages(inode); 800 spin_unlock(&sbi->inode_lock[type]); 801 802 SetPagePrivate(page); 803 f2fs_trace_pid(page); 804 } 805 806 void remove_dirty_inode(struct inode *inode) 807 { 808 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 809 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 810 811 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 812 !S_ISLNK(inode->i_mode)) 813 return; 814 815 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 816 return; 817 818 spin_lock(&sbi->inode_lock[type]); 819 __remove_dirty_inode(inode, type); 820 spin_unlock(&sbi->inode_lock[type]); 821 } 822 823 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 824 { 825 struct list_head *head; 826 struct inode *inode; 827 struct f2fs_inode_info *fi; 828 bool is_dir = (type == DIR_INODE); 829 830 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 831 get_pages(sbi, is_dir ? 832 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 833 retry: 834 if (unlikely(f2fs_cp_error(sbi))) 835 return -EIO; 836 837 spin_lock(&sbi->inode_lock[type]); 838 839 head = &sbi->inode_list[type]; 840 if (list_empty(head)) { 841 spin_unlock(&sbi->inode_lock[type]); 842 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 843 get_pages(sbi, is_dir ? 844 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 845 return 0; 846 } 847 fi = list_entry(head->next, struct f2fs_inode_info, dirty_list); 848 inode = igrab(&fi->vfs_inode); 849 spin_unlock(&sbi->inode_lock[type]); 850 if (inode) { 851 filemap_fdatawrite(inode->i_mapping); 852 iput(inode); 853 } else { 854 /* 855 * We should submit bio, since it exists several 856 * wribacking dentry pages in the freeing inode. 857 */ 858 f2fs_submit_merged_bio(sbi, DATA, WRITE); 859 cond_resched(); 860 } 861 goto retry; 862 } 863 864 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 865 { 866 struct list_head *head = &sbi->inode_list[DIRTY_META]; 867 struct inode *inode; 868 struct f2fs_inode_info *fi; 869 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 870 871 while (total--) { 872 if (unlikely(f2fs_cp_error(sbi))) 873 return -EIO; 874 875 spin_lock(&sbi->inode_lock[DIRTY_META]); 876 if (list_empty(head)) { 877 spin_unlock(&sbi->inode_lock[DIRTY_META]); 878 return 0; 879 } 880 fi = list_entry(head->next, struct f2fs_inode_info, 881 gdirty_list); 882 inode = igrab(&fi->vfs_inode); 883 spin_unlock(&sbi->inode_lock[DIRTY_META]); 884 if (inode) { 885 update_inode_page(inode); 886 iput(inode); 887 } 888 }; 889 return 0; 890 } 891 892 /* 893 * Freeze all the FS-operations for checkpoint. 894 */ 895 static int block_operations(struct f2fs_sb_info *sbi) 896 { 897 struct writeback_control wbc = { 898 .sync_mode = WB_SYNC_ALL, 899 .nr_to_write = LONG_MAX, 900 .for_reclaim = 0, 901 }; 902 int err = 0; 903 904 retry_flush_dents: 905 f2fs_lock_all(sbi); 906 /* write all the dirty dentry pages */ 907 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 908 f2fs_unlock_all(sbi); 909 err = sync_dirty_inodes(sbi, DIR_INODE); 910 if (err) 911 goto out; 912 goto retry_flush_dents; 913 } 914 915 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 916 f2fs_unlock_all(sbi); 917 err = f2fs_sync_inode_meta(sbi); 918 if (err) 919 goto out; 920 goto retry_flush_dents; 921 } 922 923 /* 924 * POR: we should ensure that there are no dirty node pages 925 * until finishing nat/sit flush. 926 */ 927 retry_flush_nodes: 928 down_write(&sbi->node_write); 929 930 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 931 up_write(&sbi->node_write); 932 err = sync_node_pages(sbi, &wbc); 933 if (err) { 934 f2fs_unlock_all(sbi); 935 goto out; 936 } 937 goto retry_flush_nodes; 938 } 939 out: 940 return err; 941 } 942 943 static void unblock_operations(struct f2fs_sb_info *sbi) 944 { 945 up_write(&sbi->node_write); 946 947 build_free_nids(sbi); 948 f2fs_unlock_all(sbi); 949 } 950 951 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 952 { 953 DEFINE_WAIT(wait); 954 955 for (;;) { 956 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 957 958 if (!atomic_read(&sbi->nr_wb_bios)) 959 break; 960 961 io_schedule_timeout(5*HZ); 962 } 963 finish_wait(&sbi->cp_wait, &wait); 964 } 965 966 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 967 { 968 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 969 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 970 struct f2fs_nm_info *nm_i = NM_I(sbi); 971 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 972 nid_t last_nid = nm_i->next_scan_nid; 973 block_t start_blk; 974 unsigned int data_sum_blocks, orphan_blocks; 975 __u32 crc32 = 0; 976 int i; 977 int cp_payload_blks = __cp_payload(sbi); 978 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg); 979 bool invalidate = false; 980 struct super_block *sb = sbi->sb; 981 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 982 u64 kbytes_written; 983 984 /* 985 * This avoids to conduct wrong roll-forward operations and uses 986 * metapages, so should be called prior to sync_meta_pages below. 987 */ 988 if (!test_opt(sbi, LFS) && discard_next_dnode(sbi, discard_blk)) 989 invalidate = true; 990 991 /* Flush all the NAT/SIT pages */ 992 while (get_pages(sbi, F2FS_DIRTY_META)) { 993 sync_meta_pages(sbi, META, LONG_MAX); 994 if (unlikely(f2fs_cp_error(sbi))) 995 return -EIO; 996 } 997 998 next_free_nid(sbi, &last_nid); 999 1000 /* 1001 * modify checkpoint 1002 * version number is already updated 1003 */ 1004 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1005 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1006 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1007 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1008 ckpt->cur_node_segno[i] = 1009 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1010 ckpt->cur_node_blkoff[i] = 1011 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1012 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1013 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1014 } 1015 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1016 ckpt->cur_data_segno[i] = 1017 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1018 ckpt->cur_data_blkoff[i] = 1019 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1020 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1021 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1022 } 1023 1024 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1025 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1026 ckpt->next_free_nid = cpu_to_le32(last_nid); 1027 1028 /* 2 cp + n data seg summary + orphan inode blocks */ 1029 data_sum_blocks = npages_for_summary_flush(sbi, false); 1030 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1031 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1032 else 1033 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1034 1035 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1036 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1037 orphan_blocks); 1038 1039 if (__remain_node_summaries(cpc->reason)) 1040 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1041 cp_payload_blks + data_sum_blocks + 1042 orphan_blocks + NR_CURSEG_NODE_TYPE); 1043 else 1044 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1045 cp_payload_blks + data_sum_blocks + 1046 orphan_blocks); 1047 1048 if (cpc->reason == CP_UMOUNT) 1049 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1050 else 1051 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1052 1053 if (cpc->reason == CP_FASTBOOT) 1054 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1055 else 1056 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1057 1058 if (orphan_num) 1059 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1060 else 1061 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1062 1063 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1064 set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1065 1066 /* update SIT/NAT bitmap */ 1067 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1068 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1069 1070 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1071 *((__le32 *)((unsigned char *)ckpt + 1072 le32_to_cpu(ckpt->checksum_offset))) 1073 = cpu_to_le32(crc32); 1074 1075 start_blk = __start_cp_addr(sbi); 1076 1077 /* need to wait for end_io results */ 1078 wait_on_all_pages_writeback(sbi); 1079 if (unlikely(f2fs_cp_error(sbi))) 1080 return -EIO; 1081 1082 /* write out checkpoint buffer at block 0 */ 1083 update_meta_page(sbi, ckpt, start_blk++); 1084 1085 for (i = 1; i < 1 + cp_payload_blks; i++) 1086 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1087 start_blk++); 1088 1089 if (orphan_num) { 1090 write_orphan_inodes(sbi, start_blk); 1091 start_blk += orphan_blocks; 1092 } 1093 1094 write_data_summaries(sbi, start_blk); 1095 start_blk += data_sum_blocks; 1096 1097 /* Record write statistics in the hot node summary */ 1098 kbytes_written = sbi->kbytes_written; 1099 if (sb->s_bdev->bd_part) 1100 kbytes_written += BD_PART_WRITTEN(sbi); 1101 1102 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1103 1104 if (__remain_node_summaries(cpc->reason)) { 1105 write_node_summaries(sbi, start_blk); 1106 start_blk += NR_CURSEG_NODE_TYPE; 1107 } 1108 1109 /* writeout checkpoint block */ 1110 update_meta_page(sbi, ckpt, start_blk); 1111 1112 /* wait for previous submitted node/meta pages writeback */ 1113 wait_on_all_pages_writeback(sbi); 1114 1115 if (unlikely(f2fs_cp_error(sbi))) 1116 return -EIO; 1117 1118 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1119 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1120 1121 /* update user_block_counts */ 1122 sbi->last_valid_block_count = sbi->total_valid_block_count; 1123 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1124 1125 /* Here, we only have one bio having CP pack */ 1126 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1127 1128 /* wait for previous submitted meta pages writeback */ 1129 wait_on_all_pages_writeback(sbi); 1130 1131 /* 1132 * invalidate meta page which is used temporarily for zeroing out 1133 * block at the end of warm node chain. 1134 */ 1135 if (invalidate) 1136 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk, 1137 discard_blk); 1138 1139 release_ino_entry(sbi, false); 1140 1141 if (unlikely(f2fs_cp_error(sbi))) 1142 return -EIO; 1143 1144 clear_prefree_segments(sbi, cpc); 1145 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * We guarantee that this checkpoint procedure will not fail. 1152 */ 1153 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1154 { 1155 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1156 unsigned long long ckpt_ver; 1157 int err = 0; 1158 1159 mutex_lock(&sbi->cp_mutex); 1160 1161 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1162 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1163 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1164 goto out; 1165 if (unlikely(f2fs_cp_error(sbi))) { 1166 err = -EIO; 1167 goto out; 1168 } 1169 if (f2fs_readonly(sbi->sb)) { 1170 err = -EROFS; 1171 goto out; 1172 } 1173 1174 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1175 1176 err = block_operations(sbi); 1177 if (err) 1178 goto out; 1179 1180 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1181 1182 f2fs_flush_merged_bios(sbi); 1183 1184 /* 1185 * update checkpoint pack index 1186 * Increase the version number so that 1187 * SIT entries and seg summaries are written at correct place 1188 */ 1189 ckpt_ver = cur_cp_version(ckpt); 1190 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1191 1192 /* write cached NAT/SIT entries to NAT/SIT area */ 1193 flush_nat_entries(sbi); 1194 flush_sit_entries(sbi, cpc); 1195 1196 /* unlock all the fs_lock[] in do_checkpoint() */ 1197 err = do_checkpoint(sbi, cpc); 1198 1199 unblock_operations(sbi); 1200 stat_inc_cp_count(sbi->stat_info); 1201 1202 if (cpc->reason == CP_RECOVERY) 1203 f2fs_msg(sbi->sb, KERN_NOTICE, 1204 "checkpoint: version = %llx", ckpt_ver); 1205 1206 /* do checkpoint periodically */ 1207 f2fs_update_time(sbi, CP_TIME); 1208 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1209 out: 1210 mutex_unlock(&sbi->cp_mutex); 1211 return err; 1212 } 1213 1214 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1215 { 1216 int i; 1217 1218 for (i = 0; i < MAX_INO_ENTRY; i++) { 1219 struct inode_management *im = &sbi->im[i]; 1220 1221 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1222 spin_lock_init(&im->ino_lock); 1223 INIT_LIST_HEAD(&im->ino_list); 1224 im->ino_num = 0; 1225 } 1226 1227 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1228 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1229 F2FS_ORPHANS_PER_BLOCK; 1230 } 1231 1232 int __init create_checkpoint_caches(void) 1233 { 1234 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1235 sizeof(struct ino_entry)); 1236 if (!ino_entry_slab) 1237 return -ENOMEM; 1238 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1239 sizeof(struct inode_entry)); 1240 if (!inode_entry_slab) { 1241 kmem_cache_destroy(ino_entry_slab); 1242 return -ENOMEM; 1243 } 1244 return 0; 1245 } 1246 1247 void destroy_checkpoint_caches(void) 1248 { 1249 kmem_cache_destroy(ino_entry_slab); 1250 kmem_cache_destroy(inode_entry_slab); 1251 } 1252