1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 sbi->sb->s_flags |= MS_RDONLY; 33 if (!end_io) 34 f2fs_flush_merged_bios(sbi); 35 } 36 37 /* 38 * We guarantee no failure on the returned page. 39 */ 40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 41 { 42 struct address_space *mapping = META_MAPPING(sbi); 43 struct page *page = NULL; 44 repeat: 45 page = f2fs_grab_cache_page(mapping, index, false); 46 if (!page) { 47 cond_resched(); 48 goto repeat; 49 } 50 f2fs_wait_on_page_writeback(page, META, true); 51 if (!PageUptodate(page)) 52 SetPageUptodate(page); 53 return page; 54 } 55 56 /* 57 * We guarantee no failure on the returned page. 58 */ 59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 60 bool is_meta) 61 { 62 struct address_space *mapping = META_MAPPING(sbi); 63 struct page *page; 64 struct f2fs_io_info fio = { 65 .sbi = sbi, 66 .type = META, 67 .op = REQ_OP_READ, 68 .op_flags = REQ_META | REQ_PRIO, 69 .old_blkaddr = index, 70 .new_blkaddr = index, 71 .encrypted_page = NULL, 72 }; 73 74 if (unlikely(!is_meta)) 75 fio.op_flags &= ~REQ_META; 76 repeat: 77 page = f2fs_grab_cache_page(mapping, index, false); 78 if (!page) { 79 cond_resched(); 80 goto repeat; 81 } 82 if (PageUptodate(page)) 83 goto out; 84 85 fio.page = page; 86 87 if (f2fs_submit_page_bio(&fio)) { 88 f2fs_put_page(page, 1); 89 goto repeat; 90 } 91 92 lock_page(page); 93 if (unlikely(page->mapping != mapping)) { 94 f2fs_put_page(page, 1); 95 goto repeat; 96 } 97 98 /* 99 * if there is any IO error when accessing device, make our filesystem 100 * readonly and make sure do not write checkpoint with non-uptodate 101 * meta page. 102 */ 103 if (unlikely(!PageUptodate(page))) 104 f2fs_stop_checkpoint(sbi, false); 105 out: 106 return page; 107 } 108 109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 110 { 111 return __get_meta_page(sbi, index, true); 112 } 113 114 /* for POR only */ 115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 116 { 117 return __get_meta_page(sbi, index, false); 118 } 119 120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 121 { 122 switch (type) { 123 case META_NAT: 124 break; 125 case META_SIT: 126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 127 return false; 128 break; 129 case META_SSA: 130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 131 blkaddr < SM_I(sbi)->ssa_blkaddr)) 132 return false; 133 break; 134 case META_CP: 135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 136 blkaddr < __start_cp_addr(sbi))) 137 return false; 138 break; 139 case META_POR: 140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 141 blkaddr < MAIN_BLKADDR(sbi))) 142 return false; 143 break; 144 default: 145 BUG(); 146 } 147 148 return true; 149 } 150 151 /* 152 * Readahead CP/NAT/SIT/SSA pages 153 */ 154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 155 int type, bool sync) 156 { 157 struct page *page; 158 block_t blkno = start; 159 struct f2fs_io_info fio = { 160 .sbi = sbi, 161 .type = META, 162 .op = REQ_OP_READ, 163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 164 .encrypted_page = NULL, 165 }; 166 struct blk_plug plug; 167 168 if (unlikely(type == META_POR)) 169 fio.op_flags &= ~REQ_META; 170 171 blk_start_plug(&plug); 172 for (; nrpages-- > 0; blkno++) { 173 174 if (!is_valid_blkaddr(sbi, blkno, type)) 175 goto out; 176 177 switch (type) { 178 case META_NAT: 179 if (unlikely(blkno >= 180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 181 blkno = 0; 182 /* get nat block addr */ 183 fio.new_blkaddr = current_nat_addr(sbi, 184 blkno * NAT_ENTRY_PER_BLOCK); 185 break; 186 case META_SIT: 187 /* get sit block addr */ 188 fio.new_blkaddr = current_sit_addr(sbi, 189 blkno * SIT_ENTRY_PER_BLOCK); 190 break; 191 case META_SSA: 192 case META_CP: 193 case META_POR: 194 fio.new_blkaddr = blkno; 195 break; 196 default: 197 BUG(); 198 } 199 200 page = f2fs_grab_cache_page(META_MAPPING(sbi), 201 fio.new_blkaddr, false); 202 if (!page) 203 continue; 204 if (PageUptodate(page)) { 205 f2fs_put_page(page, 1); 206 continue; 207 } 208 209 fio.page = page; 210 fio.old_blkaddr = fio.new_blkaddr; 211 f2fs_submit_page_mbio(&fio); 212 f2fs_put_page(page, 0); 213 } 214 out: 215 f2fs_submit_merged_bio(sbi, META, READ); 216 blk_finish_plug(&plug); 217 return blkno - start; 218 } 219 220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 221 { 222 struct page *page; 223 bool readahead = false; 224 225 page = find_get_page(META_MAPPING(sbi), index); 226 if (!page || !PageUptodate(page)) 227 readahead = true; 228 f2fs_put_page(page, 0); 229 230 if (readahead) 231 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 232 } 233 234 static int f2fs_write_meta_page(struct page *page, 235 struct writeback_control *wbc) 236 { 237 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 238 239 trace_f2fs_writepage(page, META); 240 241 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 242 goto redirty_out; 243 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 244 goto redirty_out; 245 if (unlikely(f2fs_cp_error(sbi))) 246 goto redirty_out; 247 248 write_meta_page(sbi, page); 249 dec_page_count(sbi, F2FS_DIRTY_META); 250 251 if (wbc->for_reclaim) 252 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 253 0, page->index, META, WRITE); 254 255 unlock_page(page); 256 257 if (unlikely(f2fs_cp_error(sbi))) 258 f2fs_submit_merged_bio(sbi, META, WRITE); 259 260 return 0; 261 262 redirty_out: 263 redirty_page_for_writepage(wbc, page); 264 return AOP_WRITEPAGE_ACTIVATE; 265 } 266 267 static int f2fs_write_meta_pages(struct address_space *mapping, 268 struct writeback_control *wbc) 269 { 270 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 271 long diff, written; 272 273 /* collect a number of dirty meta pages and write together */ 274 if (wbc->for_kupdate || 275 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 276 goto skip_write; 277 278 trace_f2fs_writepages(mapping->host, wbc, META); 279 280 /* if mounting is failed, skip writing node pages */ 281 mutex_lock(&sbi->cp_mutex); 282 diff = nr_pages_to_write(sbi, META, wbc); 283 written = sync_meta_pages(sbi, META, wbc->nr_to_write); 284 mutex_unlock(&sbi->cp_mutex); 285 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 286 return 0; 287 288 skip_write: 289 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 290 trace_f2fs_writepages(mapping->host, wbc, META); 291 return 0; 292 } 293 294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 295 long nr_to_write) 296 { 297 struct address_space *mapping = META_MAPPING(sbi); 298 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; 299 struct pagevec pvec; 300 long nwritten = 0; 301 struct writeback_control wbc = { 302 .for_reclaim = 0, 303 }; 304 struct blk_plug plug; 305 306 pagevec_init(&pvec, 0); 307 308 blk_start_plug(&plug); 309 310 while (index <= end) { 311 int i, nr_pages; 312 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 313 PAGECACHE_TAG_DIRTY, 314 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 315 if (unlikely(nr_pages == 0)) 316 break; 317 318 for (i = 0; i < nr_pages; i++) { 319 struct page *page = pvec.pages[i]; 320 321 if (prev == ULONG_MAX) 322 prev = page->index - 1; 323 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 324 pagevec_release(&pvec); 325 goto stop; 326 } 327 328 lock_page(page); 329 330 if (unlikely(page->mapping != mapping)) { 331 continue_unlock: 332 unlock_page(page); 333 continue; 334 } 335 if (!PageDirty(page)) { 336 /* someone wrote it for us */ 337 goto continue_unlock; 338 } 339 340 f2fs_wait_on_page_writeback(page, META, true); 341 342 BUG_ON(PageWriteback(page)); 343 if (!clear_page_dirty_for_io(page)) 344 goto continue_unlock; 345 346 if (mapping->a_ops->writepage(page, &wbc)) { 347 unlock_page(page); 348 break; 349 } 350 nwritten++; 351 prev = page->index; 352 if (unlikely(nwritten >= nr_to_write)) 353 break; 354 } 355 pagevec_release(&pvec); 356 cond_resched(); 357 } 358 stop: 359 if (nwritten) 360 f2fs_submit_merged_bio(sbi, type, WRITE); 361 362 blk_finish_plug(&plug); 363 364 return nwritten; 365 } 366 367 static int f2fs_set_meta_page_dirty(struct page *page) 368 { 369 trace_f2fs_set_page_dirty(page, META); 370 371 if (!PageUptodate(page)) 372 SetPageUptodate(page); 373 if (!PageDirty(page)) { 374 f2fs_set_page_dirty_nobuffers(page); 375 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 376 SetPagePrivate(page); 377 f2fs_trace_pid(page); 378 return 1; 379 } 380 return 0; 381 } 382 383 const struct address_space_operations f2fs_meta_aops = { 384 .writepage = f2fs_write_meta_page, 385 .writepages = f2fs_write_meta_pages, 386 .set_page_dirty = f2fs_set_meta_page_dirty, 387 .invalidatepage = f2fs_invalidate_page, 388 .releasepage = f2fs_release_page, 389 #ifdef CONFIG_MIGRATION 390 .migratepage = f2fs_migrate_page, 391 #endif 392 }; 393 394 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 395 { 396 struct inode_management *im = &sbi->im[type]; 397 struct ino_entry *e, *tmp; 398 399 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 400 retry: 401 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 402 403 spin_lock(&im->ino_lock); 404 e = radix_tree_lookup(&im->ino_root, ino); 405 if (!e) { 406 e = tmp; 407 if (radix_tree_insert(&im->ino_root, ino, e)) { 408 spin_unlock(&im->ino_lock); 409 radix_tree_preload_end(); 410 goto retry; 411 } 412 memset(e, 0, sizeof(struct ino_entry)); 413 e->ino = ino; 414 415 list_add_tail(&e->list, &im->ino_list); 416 if (type != ORPHAN_INO) 417 im->ino_num++; 418 } 419 spin_unlock(&im->ino_lock); 420 radix_tree_preload_end(); 421 422 if (e != tmp) 423 kmem_cache_free(ino_entry_slab, tmp); 424 } 425 426 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 427 { 428 struct inode_management *im = &sbi->im[type]; 429 struct ino_entry *e; 430 431 spin_lock(&im->ino_lock); 432 e = radix_tree_lookup(&im->ino_root, ino); 433 if (e) { 434 list_del(&e->list); 435 radix_tree_delete(&im->ino_root, ino); 436 im->ino_num--; 437 spin_unlock(&im->ino_lock); 438 kmem_cache_free(ino_entry_slab, e); 439 return; 440 } 441 spin_unlock(&im->ino_lock); 442 } 443 444 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 445 { 446 /* add new dirty ino entry into list */ 447 __add_ino_entry(sbi, ino, type); 448 } 449 450 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 451 { 452 /* remove dirty ino entry from list */ 453 __remove_ino_entry(sbi, ino, type); 454 } 455 456 /* mode should be APPEND_INO or UPDATE_INO */ 457 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 458 { 459 struct inode_management *im = &sbi->im[mode]; 460 struct ino_entry *e; 461 462 spin_lock(&im->ino_lock); 463 e = radix_tree_lookup(&im->ino_root, ino); 464 spin_unlock(&im->ino_lock); 465 return e ? true : false; 466 } 467 468 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 469 { 470 struct ino_entry *e, *tmp; 471 int i; 472 473 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { 474 struct inode_management *im = &sbi->im[i]; 475 476 spin_lock(&im->ino_lock); 477 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 478 list_del(&e->list); 479 radix_tree_delete(&im->ino_root, e->ino); 480 kmem_cache_free(ino_entry_slab, e); 481 im->ino_num--; 482 } 483 spin_unlock(&im->ino_lock); 484 } 485 } 486 487 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 488 { 489 struct inode_management *im = &sbi->im[ORPHAN_INO]; 490 int err = 0; 491 492 spin_lock(&im->ino_lock); 493 494 #ifdef CONFIG_F2FS_FAULT_INJECTION 495 if (time_to_inject(sbi, FAULT_ORPHAN)) { 496 spin_unlock(&im->ino_lock); 497 f2fs_show_injection_info(FAULT_ORPHAN); 498 return -ENOSPC; 499 } 500 #endif 501 if (unlikely(im->ino_num >= sbi->max_orphans)) 502 err = -ENOSPC; 503 else 504 im->ino_num++; 505 spin_unlock(&im->ino_lock); 506 507 return err; 508 } 509 510 void release_orphan_inode(struct f2fs_sb_info *sbi) 511 { 512 struct inode_management *im = &sbi->im[ORPHAN_INO]; 513 514 spin_lock(&im->ino_lock); 515 f2fs_bug_on(sbi, im->ino_num == 0); 516 im->ino_num--; 517 spin_unlock(&im->ino_lock); 518 } 519 520 void add_orphan_inode(struct inode *inode) 521 { 522 /* add new orphan ino entry into list */ 523 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); 524 update_inode_page(inode); 525 } 526 527 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 528 { 529 /* remove orphan entry from orphan list */ 530 __remove_ino_entry(sbi, ino, ORPHAN_INO); 531 } 532 533 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 534 { 535 struct inode *inode; 536 struct node_info ni; 537 int err = acquire_orphan_inode(sbi); 538 539 if (err) { 540 set_sbi_flag(sbi, SBI_NEED_FSCK); 541 f2fs_msg(sbi->sb, KERN_WARNING, 542 "%s: orphan failed (ino=%x), run fsck to fix.", 543 __func__, ino); 544 return err; 545 } 546 547 __add_ino_entry(sbi, ino, ORPHAN_INO); 548 549 inode = f2fs_iget_retry(sbi->sb, ino); 550 if (IS_ERR(inode)) { 551 /* 552 * there should be a bug that we can't find the entry 553 * to orphan inode. 554 */ 555 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 556 return PTR_ERR(inode); 557 } 558 559 clear_nlink(inode); 560 561 /* truncate all the data during iput */ 562 iput(inode); 563 564 get_node_info(sbi, ino, &ni); 565 566 /* ENOMEM was fully retried in f2fs_evict_inode. */ 567 if (ni.blk_addr != NULL_ADDR) { 568 set_sbi_flag(sbi, SBI_NEED_FSCK); 569 f2fs_msg(sbi->sb, KERN_WARNING, 570 "%s: orphan failed (ino=%x), run fsck to fix.", 571 __func__, ino); 572 return -EIO; 573 } 574 __remove_ino_entry(sbi, ino, ORPHAN_INO); 575 return 0; 576 } 577 578 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 579 { 580 block_t start_blk, orphan_blocks, i, j; 581 int err; 582 583 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 584 return 0; 585 586 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 587 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 588 589 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 590 591 for (i = 0; i < orphan_blocks; i++) { 592 struct page *page = get_meta_page(sbi, start_blk + i); 593 struct f2fs_orphan_block *orphan_blk; 594 595 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 596 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 597 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 598 err = recover_orphan_inode(sbi, ino); 599 if (err) { 600 f2fs_put_page(page, 1); 601 return err; 602 } 603 } 604 f2fs_put_page(page, 1); 605 } 606 /* clear Orphan Flag */ 607 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 608 return 0; 609 } 610 611 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 612 { 613 struct list_head *head; 614 struct f2fs_orphan_block *orphan_blk = NULL; 615 unsigned int nentries = 0; 616 unsigned short index = 1; 617 unsigned short orphan_blocks; 618 struct page *page = NULL; 619 struct ino_entry *orphan = NULL; 620 struct inode_management *im = &sbi->im[ORPHAN_INO]; 621 622 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 623 624 /* 625 * we don't need to do spin_lock(&im->ino_lock) here, since all the 626 * orphan inode operations are covered under f2fs_lock_op(). 627 * And, spin_lock should be avoided due to page operations below. 628 */ 629 head = &im->ino_list; 630 631 /* loop for each orphan inode entry and write them in Jornal block */ 632 list_for_each_entry(orphan, head, list) { 633 if (!page) { 634 page = grab_meta_page(sbi, start_blk++); 635 orphan_blk = 636 (struct f2fs_orphan_block *)page_address(page); 637 memset(orphan_blk, 0, sizeof(*orphan_blk)); 638 } 639 640 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 641 642 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 643 /* 644 * an orphan block is full of 1020 entries, 645 * then we need to flush current orphan blocks 646 * and bring another one in memory 647 */ 648 orphan_blk->blk_addr = cpu_to_le16(index); 649 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 650 orphan_blk->entry_count = cpu_to_le32(nentries); 651 set_page_dirty(page); 652 f2fs_put_page(page, 1); 653 index++; 654 nentries = 0; 655 page = NULL; 656 } 657 } 658 659 if (page) { 660 orphan_blk->blk_addr = cpu_to_le16(index); 661 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 662 orphan_blk->entry_count = cpu_to_le32(nentries); 663 set_page_dirty(page); 664 f2fs_put_page(page, 1); 665 } 666 } 667 668 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 669 struct f2fs_checkpoint **cp_block, struct page **cp_page, 670 unsigned long long *version) 671 { 672 unsigned long blk_size = sbi->blocksize; 673 size_t crc_offset = 0; 674 __u32 crc = 0; 675 676 *cp_page = get_meta_page(sbi, cp_addr); 677 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 678 679 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 680 if (crc_offset >= blk_size) { 681 f2fs_msg(sbi->sb, KERN_WARNING, 682 "invalid crc_offset: %zu", crc_offset); 683 return -EINVAL; 684 } 685 686 crc = cur_cp_crc(*cp_block); 687 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 688 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 689 return -EINVAL; 690 } 691 692 *version = cur_cp_version(*cp_block); 693 return 0; 694 } 695 696 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 697 block_t cp_addr, unsigned long long *version) 698 { 699 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 700 struct f2fs_checkpoint *cp_block = NULL; 701 unsigned long long cur_version = 0, pre_version = 0; 702 int err; 703 704 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 705 &cp_page_1, version); 706 if (err) 707 goto invalid_cp1; 708 pre_version = *version; 709 710 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 711 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 712 &cp_page_2, version); 713 if (err) 714 goto invalid_cp2; 715 cur_version = *version; 716 717 if (cur_version == pre_version) { 718 *version = cur_version; 719 f2fs_put_page(cp_page_2, 1); 720 return cp_page_1; 721 } 722 invalid_cp2: 723 f2fs_put_page(cp_page_2, 1); 724 invalid_cp1: 725 f2fs_put_page(cp_page_1, 1); 726 return NULL; 727 } 728 729 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 730 { 731 struct f2fs_checkpoint *cp_block; 732 struct f2fs_super_block *fsb = sbi->raw_super; 733 struct page *cp1, *cp2, *cur_page; 734 unsigned long blk_size = sbi->blocksize; 735 unsigned long long cp1_version = 0, cp2_version = 0; 736 unsigned long long cp_start_blk_no; 737 unsigned int cp_blks = 1 + __cp_payload(sbi); 738 block_t cp_blk_no; 739 int i; 740 741 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 742 if (!sbi->ckpt) 743 return -ENOMEM; 744 /* 745 * Finding out valid cp block involves read both 746 * sets( cp pack1 and cp pack 2) 747 */ 748 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 749 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 750 751 /* The second checkpoint pack should start at the next segment */ 752 cp_start_blk_no += ((unsigned long long)1) << 753 le32_to_cpu(fsb->log_blocks_per_seg); 754 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 755 756 if (cp1 && cp2) { 757 if (ver_after(cp2_version, cp1_version)) 758 cur_page = cp2; 759 else 760 cur_page = cp1; 761 } else if (cp1) { 762 cur_page = cp1; 763 } else if (cp2) { 764 cur_page = cp2; 765 } else { 766 goto fail_no_cp; 767 } 768 769 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 770 memcpy(sbi->ckpt, cp_block, blk_size); 771 772 /* Sanity checking of checkpoint */ 773 if (sanity_check_ckpt(sbi)) 774 goto free_fail_no_cp; 775 776 if (cur_page == cp1) 777 sbi->cur_cp_pack = 1; 778 else 779 sbi->cur_cp_pack = 2; 780 781 if (cp_blks <= 1) 782 goto done; 783 784 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 785 if (cur_page == cp2) 786 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 787 788 for (i = 1; i < cp_blks; i++) { 789 void *sit_bitmap_ptr; 790 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 791 792 cur_page = get_meta_page(sbi, cp_blk_no + i); 793 sit_bitmap_ptr = page_address(cur_page); 794 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 795 f2fs_put_page(cur_page, 1); 796 } 797 done: 798 f2fs_put_page(cp1, 1); 799 f2fs_put_page(cp2, 1); 800 return 0; 801 802 free_fail_no_cp: 803 f2fs_put_page(cp1, 1); 804 f2fs_put_page(cp2, 1); 805 fail_no_cp: 806 kfree(sbi->ckpt); 807 return -EINVAL; 808 } 809 810 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 811 { 812 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 813 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 814 815 if (is_inode_flag_set(inode, flag)) 816 return; 817 818 set_inode_flag(inode, flag); 819 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); 820 stat_inc_dirty_inode(sbi, type); 821 } 822 823 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 824 { 825 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 826 827 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 828 return; 829 830 list_del_init(&F2FS_I(inode)->dirty_list); 831 clear_inode_flag(inode, flag); 832 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 833 } 834 835 void update_dirty_page(struct inode *inode, struct page *page) 836 { 837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 838 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 839 840 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 841 !S_ISLNK(inode->i_mode)) 842 return; 843 844 spin_lock(&sbi->inode_lock[type]); 845 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 846 __add_dirty_inode(inode, type); 847 inode_inc_dirty_pages(inode); 848 spin_unlock(&sbi->inode_lock[type]); 849 850 SetPagePrivate(page); 851 f2fs_trace_pid(page); 852 } 853 854 void remove_dirty_inode(struct inode *inode) 855 { 856 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 857 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 858 859 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 860 !S_ISLNK(inode->i_mode)) 861 return; 862 863 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 864 return; 865 866 spin_lock(&sbi->inode_lock[type]); 867 __remove_dirty_inode(inode, type); 868 spin_unlock(&sbi->inode_lock[type]); 869 } 870 871 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 872 { 873 struct list_head *head; 874 struct inode *inode; 875 struct f2fs_inode_info *fi; 876 bool is_dir = (type == DIR_INODE); 877 878 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 879 get_pages(sbi, is_dir ? 880 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 881 retry: 882 if (unlikely(f2fs_cp_error(sbi))) 883 return -EIO; 884 885 spin_lock(&sbi->inode_lock[type]); 886 887 head = &sbi->inode_list[type]; 888 if (list_empty(head)) { 889 spin_unlock(&sbi->inode_lock[type]); 890 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 891 get_pages(sbi, is_dir ? 892 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 893 return 0; 894 } 895 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 896 inode = igrab(&fi->vfs_inode); 897 spin_unlock(&sbi->inode_lock[type]); 898 if (inode) { 899 filemap_fdatawrite(inode->i_mapping); 900 iput(inode); 901 } else { 902 /* 903 * We should submit bio, since it exists several 904 * wribacking dentry pages in the freeing inode. 905 */ 906 f2fs_submit_merged_bio(sbi, DATA, WRITE); 907 cond_resched(); 908 } 909 goto retry; 910 } 911 912 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 913 { 914 struct list_head *head = &sbi->inode_list[DIRTY_META]; 915 struct inode *inode; 916 struct f2fs_inode_info *fi; 917 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 918 919 while (total--) { 920 if (unlikely(f2fs_cp_error(sbi))) 921 return -EIO; 922 923 spin_lock(&sbi->inode_lock[DIRTY_META]); 924 if (list_empty(head)) { 925 spin_unlock(&sbi->inode_lock[DIRTY_META]); 926 return 0; 927 } 928 fi = list_first_entry(head, struct f2fs_inode_info, 929 gdirty_list); 930 inode = igrab(&fi->vfs_inode); 931 spin_unlock(&sbi->inode_lock[DIRTY_META]); 932 if (inode) { 933 sync_inode_metadata(inode, 0); 934 935 /* it's on eviction */ 936 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 937 update_inode_page(inode); 938 iput(inode); 939 } 940 }; 941 return 0; 942 } 943 944 /* 945 * Freeze all the FS-operations for checkpoint. 946 */ 947 static int block_operations(struct f2fs_sb_info *sbi) 948 { 949 struct writeback_control wbc = { 950 .sync_mode = WB_SYNC_ALL, 951 .nr_to_write = LONG_MAX, 952 .for_reclaim = 0, 953 }; 954 struct blk_plug plug; 955 int err = 0; 956 957 blk_start_plug(&plug); 958 959 retry_flush_dents: 960 f2fs_lock_all(sbi); 961 /* write all the dirty dentry pages */ 962 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 963 f2fs_unlock_all(sbi); 964 err = sync_dirty_inodes(sbi, DIR_INODE); 965 if (err) 966 goto out; 967 goto retry_flush_dents; 968 } 969 970 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 971 f2fs_unlock_all(sbi); 972 err = f2fs_sync_inode_meta(sbi); 973 if (err) 974 goto out; 975 goto retry_flush_dents; 976 } 977 978 /* 979 * POR: we should ensure that there are no dirty node pages 980 * until finishing nat/sit flush. 981 */ 982 retry_flush_nodes: 983 down_write(&sbi->node_write); 984 985 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 986 up_write(&sbi->node_write); 987 err = sync_node_pages(sbi, &wbc); 988 if (err) { 989 f2fs_unlock_all(sbi); 990 goto out; 991 } 992 goto retry_flush_nodes; 993 } 994 out: 995 blk_finish_plug(&plug); 996 return err; 997 } 998 999 static void unblock_operations(struct f2fs_sb_info *sbi) 1000 { 1001 up_write(&sbi->node_write); 1002 f2fs_unlock_all(sbi); 1003 } 1004 1005 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1006 { 1007 DEFINE_WAIT(wait); 1008 1009 for (;;) { 1010 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1011 1012 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1013 break; 1014 1015 io_schedule_timeout(5*HZ); 1016 } 1017 finish_wait(&sbi->cp_wait, &wait); 1018 } 1019 1020 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1021 { 1022 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1023 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1024 1025 spin_lock(&sbi->cp_lock); 1026 1027 if (cpc->reason == CP_UMOUNT && ckpt->cp_pack_total_block_count > 1028 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1029 disable_nat_bits(sbi, false); 1030 1031 if (cpc->reason == CP_UMOUNT) 1032 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1033 else 1034 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1035 1036 if (cpc->reason == CP_FASTBOOT) 1037 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1038 else 1039 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1040 1041 if (orphan_num) 1042 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1043 else 1044 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1045 1046 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1047 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1048 1049 /* set this flag to activate crc|cp_ver for recovery */ 1050 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1051 1052 spin_unlock(&sbi->cp_lock); 1053 } 1054 1055 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1056 { 1057 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1058 struct f2fs_nm_info *nm_i = NM_I(sbi); 1059 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1060 nid_t last_nid = nm_i->next_scan_nid; 1061 block_t start_blk; 1062 unsigned int data_sum_blocks, orphan_blocks; 1063 __u32 crc32 = 0; 1064 int i; 1065 int cp_payload_blks = __cp_payload(sbi); 1066 struct super_block *sb = sbi->sb; 1067 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1068 u64 kbytes_written; 1069 1070 /* Flush all the NAT/SIT pages */ 1071 while (get_pages(sbi, F2FS_DIRTY_META)) { 1072 sync_meta_pages(sbi, META, LONG_MAX); 1073 if (unlikely(f2fs_cp_error(sbi))) 1074 return -EIO; 1075 } 1076 1077 next_free_nid(sbi, &last_nid); 1078 1079 /* 1080 * modify checkpoint 1081 * version number is already updated 1082 */ 1083 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1084 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1085 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1086 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1087 ckpt->cur_node_segno[i] = 1088 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1089 ckpt->cur_node_blkoff[i] = 1090 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1091 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1092 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1093 } 1094 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1095 ckpt->cur_data_segno[i] = 1096 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1097 ckpt->cur_data_blkoff[i] = 1098 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1099 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1100 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1101 } 1102 1103 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1104 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1105 ckpt->next_free_nid = cpu_to_le32(last_nid); 1106 1107 /* 2 cp + n data seg summary + orphan inode blocks */ 1108 data_sum_blocks = npages_for_summary_flush(sbi, false); 1109 spin_lock(&sbi->cp_lock); 1110 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1111 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1112 else 1113 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1114 spin_unlock(&sbi->cp_lock); 1115 1116 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1117 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1118 orphan_blocks); 1119 1120 if (__remain_node_summaries(cpc->reason)) 1121 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1122 cp_payload_blks + data_sum_blocks + 1123 orphan_blocks + NR_CURSEG_NODE_TYPE); 1124 else 1125 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1126 cp_payload_blks + data_sum_blocks + 1127 orphan_blocks); 1128 1129 /* update ckpt flag for checkpoint */ 1130 update_ckpt_flags(sbi, cpc); 1131 1132 /* update SIT/NAT bitmap */ 1133 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1134 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1135 1136 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1137 *((__le32 *)((unsigned char *)ckpt + 1138 le32_to_cpu(ckpt->checksum_offset))) 1139 = cpu_to_le32(crc32); 1140 1141 start_blk = __start_cp_next_addr(sbi); 1142 1143 /* write nat bits */ 1144 if (enabled_nat_bits(sbi, cpc)) { 1145 __u64 cp_ver = cur_cp_version(ckpt); 1146 unsigned int i; 1147 block_t blk; 1148 1149 cp_ver |= ((__u64)crc32 << 32); 1150 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1151 1152 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1153 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1154 update_meta_page(sbi, nm_i->nat_bits + 1155 (i << F2FS_BLKSIZE_BITS), blk + i); 1156 1157 /* Flush all the NAT BITS pages */ 1158 while (get_pages(sbi, F2FS_DIRTY_META)) { 1159 sync_meta_pages(sbi, META, LONG_MAX); 1160 if (unlikely(f2fs_cp_error(sbi))) 1161 return -EIO; 1162 } 1163 } 1164 1165 /* need to wait for end_io results */ 1166 wait_on_all_pages_writeback(sbi); 1167 if (unlikely(f2fs_cp_error(sbi))) 1168 return -EIO; 1169 1170 /* write out checkpoint buffer at block 0 */ 1171 update_meta_page(sbi, ckpt, start_blk++); 1172 1173 for (i = 1; i < 1 + cp_payload_blks; i++) 1174 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1175 start_blk++); 1176 1177 if (orphan_num) { 1178 write_orphan_inodes(sbi, start_blk); 1179 start_blk += orphan_blocks; 1180 } 1181 1182 write_data_summaries(sbi, start_blk); 1183 start_blk += data_sum_blocks; 1184 1185 /* Record write statistics in the hot node summary */ 1186 kbytes_written = sbi->kbytes_written; 1187 if (sb->s_bdev->bd_part) 1188 kbytes_written += BD_PART_WRITTEN(sbi); 1189 1190 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1191 1192 if (__remain_node_summaries(cpc->reason)) { 1193 write_node_summaries(sbi, start_blk); 1194 start_blk += NR_CURSEG_NODE_TYPE; 1195 } 1196 1197 /* writeout checkpoint block */ 1198 update_meta_page(sbi, ckpt, start_blk); 1199 1200 /* wait for previous submitted node/meta pages writeback */ 1201 wait_on_all_pages_writeback(sbi); 1202 1203 if (unlikely(f2fs_cp_error(sbi))) 1204 return -EIO; 1205 1206 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1207 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1208 1209 /* update user_block_counts */ 1210 sbi->last_valid_block_count = sbi->total_valid_block_count; 1211 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1212 1213 /* Here, we only have one bio having CP pack */ 1214 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 1215 1216 /* wait for previous submitted meta pages writeback */ 1217 wait_on_all_pages_writeback(sbi); 1218 1219 release_ino_entry(sbi, false); 1220 1221 if (unlikely(f2fs_cp_error(sbi))) 1222 return -EIO; 1223 1224 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1225 clear_sbi_flag(sbi, SBI_NEED_CP); 1226 __set_cp_next_pack(sbi); 1227 1228 /* 1229 * redirty superblock if metadata like node page or inode cache is 1230 * updated during writing checkpoint. 1231 */ 1232 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1233 get_pages(sbi, F2FS_DIRTY_IMETA)) 1234 set_sbi_flag(sbi, SBI_IS_DIRTY); 1235 1236 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1237 1238 return 0; 1239 } 1240 1241 /* 1242 * We guarantee that this checkpoint procedure will not fail. 1243 */ 1244 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1245 { 1246 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1247 unsigned long long ckpt_ver; 1248 int err = 0; 1249 1250 mutex_lock(&sbi->cp_mutex); 1251 1252 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1253 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || 1254 (cpc->reason == CP_DISCARD && !sbi->discard_blks))) 1255 goto out; 1256 if (unlikely(f2fs_cp_error(sbi))) { 1257 err = -EIO; 1258 goto out; 1259 } 1260 if (f2fs_readonly(sbi->sb)) { 1261 err = -EROFS; 1262 goto out; 1263 } 1264 1265 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1266 1267 err = block_operations(sbi); 1268 if (err) 1269 goto out; 1270 1271 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1272 1273 f2fs_flush_merged_bios(sbi); 1274 1275 /* this is the case of multiple fstrims without any changes */ 1276 if (cpc->reason == CP_DISCARD) { 1277 if (!exist_trim_candidates(sbi, cpc)) { 1278 unblock_operations(sbi); 1279 goto out; 1280 } 1281 1282 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1283 SIT_I(sbi)->dirty_sentries == 0 && 1284 prefree_segments(sbi) == 0) { 1285 flush_sit_entries(sbi, cpc); 1286 clear_prefree_segments(sbi, cpc); 1287 unblock_operations(sbi); 1288 goto out; 1289 } 1290 } 1291 1292 /* 1293 * update checkpoint pack index 1294 * Increase the version number so that 1295 * SIT entries and seg summaries are written at correct place 1296 */ 1297 ckpt_ver = cur_cp_version(ckpt); 1298 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1299 1300 /* write cached NAT/SIT entries to NAT/SIT area */ 1301 flush_nat_entries(sbi, cpc); 1302 flush_sit_entries(sbi, cpc); 1303 1304 /* unlock all the fs_lock[] in do_checkpoint() */ 1305 err = do_checkpoint(sbi, cpc); 1306 if (err) 1307 release_discard_addrs(sbi); 1308 else 1309 clear_prefree_segments(sbi, cpc); 1310 1311 unblock_operations(sbi); 1312 stat_inc_cp_count(sbi->stat_info); 1313 1314 if (cpc->reason == CP_RECOVERY) 1315 f2fs_msg(sbi->sb, KERN_NOTICE, 1316 "checkpoint: version = %llx", ckpt_ver); 1317 1318 /* do checkpoint periodically */ 1319 f2fs_update_time(sbi, CP_TIME); 1320 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1321 out: 1322 mutex_unlock(&sbi->cp_mutex); 1323 return err; 1324 } 1325 1326 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1327 { 1328 int i; 1329 1330 for (i = 0; i < MAX_INO_ENTRY; i++) { 1331 struct inode_management *im = &sbi->im[i]; 1332 1333 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1334 spin_lock_init(&im->ino_lock); 1335 INIT_LIST_HEAD(&im->ino_list); 1336 im->ino_num = 0; 1337 } 1338 1339 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1340 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1341 F2FS_ORPHANS_PER_BLOCK; 1342 } 1343 1344 int __init create_checkpoint_caches(void) 1345 { 1346 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1347 sizeof(struct ino_entry)); 1348 if (!ino_entry_slab) 1349 return -ENOMEM; 1350 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1351 sizeof(struct inode_entry)); 1352 if (!inode_entry_slab) { 1353 kmem_cache_destroy(ino_entry_slab); 1354 return -ENOMEM; 1355 } 1356 return 0; 1357 } 1358 1359 void destroy_checkpoint_caches(void) 1360 { 1361 kmem_cache_destroy(ino_entry_slab); 1362 kmem_cache_destroy(inode_entry_slab); 1363 } 1364