1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include <trace/events/f2fs.h> 24 25 static struct kmem_cache *orphan_entry_slab; 26 static struct kmem_cache *inode_entry_slab; 27 28 /* 29 * We guarantee no failure on the returned page. 30 */ 31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 32 { 33 struct address_space *mapping = sbi->meta_inode->i_mapping; 34 struct page *page = NULL; 35 repeat: 36 page = grab_cache_page(mapping, index); 37 if (!page) { 38 cond_resched(); 39 goto repeat; 40 } 41 42 /* We wait writeback only inside grab_meta_page() */ 43 wait_on_page_writeback(page); 44 SetPageUptodate(page); 45 return page; 46 } 47 48 /* 49 * We guarantee no failure on the returned page. 50 */ 51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 52 { 53 struct address_space *mapping = sbi->meta_inode->i_mapping; 54 struct page *page; 55 repeat: 56 page = grab_cache_page(mapping, index); 57 if (!page) { 58 cond_resched(); 59 goto repeat; 60 } 61 if (PageUptodate(page)) 62 goto out; 63 64 if (f2fs_readpage(sbi, page, index, READ_SYNC)) 65 goto repeat; 66 67 lock_page(page); 68 if (page->mapping != mapping) { 69 f2fs_put_page(page, 1); 70 goto repeat; 71 } 72 out: 73 mark_page_accessed(page); 74 return page; 75 } 76 77 static int f2fs_write_meta_page(struct page *page, 78 struct writeback_control *wbc) 79 { 80 struct inode *inode = page->mapping->host; 81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 82 83 /* Should not write any meta pages, if any IO error was occurred */ 84 if (wbc->for_reclaim || sbi->por_doing || 85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) { 86 dec_page_count(sbi, F2FS_DIRTY_META); 87 wbc->pages_skipped++; 88 set_page_dirty(page); 89 return AOP_WRITEPAGE_ACTIVATE; 90 } 91 92 wait_on_page_writeback(page); 93 94 write_meta_page(sbi, page); 95 dec_page_count(sbi, F2FS_DIRTY_META); 96 unlock_page(page); 97 return 0; 98 } 99 100 static int f2fs_write_meta_pages(struct address_space *mapping, 101 struct writeback_control *wbc) 102 { 103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 104 struct block_device *bdev = sbi->sb->s_bdev; 105 long written; 106 107 if (wbc->for_kupdate) 108 return 0; 109 110 if (get_pages(sbi, F2FS_DIRTY_META) == 0) 111 return 0; 112 113 /* if mounting is failed, skip writing node pages */ 114 mutex_lock(&sbi->cp_mutex); 115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); 116 mutex_unlock(&sbi->cp_mutex); 117 wbc->nr_to_write -= written; 118 return 0; 119 } 120 121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 122 long nr_to_write) 123 { 124 struct address_space *mapping = sbi->meta_inode->i_mapping; 125 pgoff_t index = 0, end = LONG_MAX; 126 struct pagevec pvec; 127 long nwritten = 0; 128 struct writeback_control wbc = { 129 .for_reclaim = 0, 130 }; 131 132 pagevec_init(&pvec, 0); 133 134 while (index <= end) { 135 int i, nr_pages; 136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 137 PAGECACHE_TAG_DIRTY, 138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 139 if (nr_pages == 0) 140 break; 141 142 for (i = 0; i < nr_pages; i++) { 143 struct page *page = pvec.pages[i]; 144 lock_page(page); 145 f2fs_bug_on(page->mapping != mapping); 146 f2fs_bug_on(!PageDirty(page)); 147 clear_page_dirty_for_io(page); 148 if (f2fs_write_meta_page(page, &wbc)) { 149 unlock_page(page); 150 break; 151 } 152 if (nwritten++ >= nr_to_write) 153 break; 154 } 155 pagevec_release(&pvec); 156 cond_resched(); 157 } 158 159 if (nwritten) 160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); 161 162 return nwritten; 163 } 164 165 static int f2fs_set_meta_page_dirty(struct page *page) 166 { 167 struct address_space *mapping = page->mapping; 168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 169 170 trace_f2fs_set_page_dirty(page, META); 171 172 SetPageUptodate(page); 173 if (!PageDirty(page)) { 174 __set_page_dirty_nobuffers(page); 175 inc_page_count(sbi, F2FS_DIRTY_META); 176 return 1; 177 } 178 return 0; 179 } 180 181 const struct address_space_operations f2fs_meta_aops = { 182 .writepage = f2fs_write_meta_page, 183 .writepages = f2fs_write_meta_pages, 184 .set_page_dirty = f2fs_set_meta_page_dirty, 185 }; 186 187 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 188 { 189 unsigned int max_orphans; 190 int err = 0; 191 192 /* 193 * considering 512 blocks in a segment 5 blocks are needed for cp 194 * and log segment summaries. Remaining blocks are used to keep 195 * orphan entries with the limitation one reserved segment 196 * for cp pack we can have max 1020*507 orphan entries 197 */ 198 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; 199 mutex_lock(&sbi->orphan_inode_mutex); 200 if (sbi->n_orphans >= max_orphans) 201 err = -ENOSPC; 202 else 203 sbi->n_orphans++; 204 mutex_unlock(&sbi->orphan_inode_mutex); 205 return err; 206 } 207 208 void release_orphan_inode(struct f2fs_sb_info *sbi) 209 { 210 mutex_lock(&sbi->orphan_inode_mutex); 211 f2fs_bug_on(sbi->n_orphans == 0); 212 sbi->n_orphans--; 213 mutex_unlock(&sbi->orphan_inode_mutex); 214 } 215 216 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 217 { 218 struct list_head *head, *this; 219 struct orphan_inode_entry *new = NULL, *orphan = NULL; 220 221 mutex_lock(&sbi->orphan_inode_mutex); 222 head = &sbi->orphan_inode_list; 223 list_for_each(this, head) { 224 orphan = list_entry(this, struct orphan_inode_entry, list); 225 if (orphan->ino == ino) 226 goto out; 227 if (orphan->ino > ino) 228 break; 229 orphan = NULL; 230 } 231 232 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); 233 new->ino = ino; 234 235 /* add new_oentry into list which is sorted by inode number */ 236 if (orphan) 237 list_add(&new->list, this->prev); 238 else 239 list_add_tail(&new->list, head); 240 out: 241 mutex_unlock(&sbi->orphan_inode_mutex); 242 } 243 244 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 245 { 246 struct list_head *head; 247 struct orphan_inode_entry *orphan; 248 249 mutex_lock(&sbi->orphan_inode_mutex); 250 head = &sbi->orphan_inode_list; 251 list_for_each_entry(orphan, head, list) { 252 if (orphan->ino == ino) { 253 list_del(&orphan->list); 254 kmem_cache_free(orphan_entry_slab, orphan); 255 f2fs_bug_on(sbi->n_orphans == 0); 256 sbi->n_orphans--; 257 break; 258 } 259 } 260 mutex_unlock(&sbi->orphan_inode_mutex); 261 } 262 263 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 264 { 265 struct inode *inode = f2fs_iget(sbi->sb, ino); 266 f2fs_bug_on(IS_ERR(inode)); 267 clear_nlink(inode); 268 269 /* truncate all the data during iput */ 270 iput(inode); 271 } 272 273 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 274 { 275 block_t start_blk, orphan_blkaddr, i, j; 276 277 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) 278 return 0; 279 280 sbi->por_doing = true; 281 start_blk = __start_cp_addr(sbi) + 1; 282 orphan_blkaddr = __start_sum_addr(sbi) - 1; 283 284 for (i = 0; i < orphan_blkaddr; i++) { 285 struct page *page = get_meta_page(sbi, start_blk + i); 286 struct f2fs_orphan_block *orphan_blk; 287 288 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 289 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 290 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 291 recover_orphan_inode(sbi, ino); 292 } 293 f2fs_put_page(page, 1); 294 } 295 /* clear Orphan Flag */ 296 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); 297 sbi->por_doing = false; 298 return 0; 299 } 300 301 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 302 { 303 struct list_head *head, *this, *next; 304 struct f2fs_orphan_block *orphan_blk = NULL; 305 struct page *page = NULL; 306 unsigned int nentries = 0; 307 unsigned short index = 1; 308 unsigned short orphan_blocks; 309 310 orphan_blocks = (unsigned short)((sbi->n_orphans + 311 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); 312 313 mutex_lock(&sbi->orphan_inode_mutex); 314 head = &sbi->orphan_inode_list; 315 316 /* loop for each orphan inode entry and write them in Jornal block */ 317 list_for_each_safe(this, next, head) { 318 struct orphan_inode_entry *orphan; 319 320 orphan = list_entry(this, struct orphan_inode_entry, list); 321 322 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 323 /* 324 * an orphan block is full of 1020 entries, 325 * then we need to flush current orphan blocks 326 * and bring another one in memory 327 */ 328 orphan_blk->blk_addr = cpu_to_le16(index); 329 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 330 orphan_blk->entry_count = cpu_to_le32(nentries); 331 set_page_dirty(page); 332 f2fs_put_page(page, 1); 333 index++; 334 start_blk++; 335 nentries = 0; 336 page = NULL; 337 } 338 if (page) 339 goto page_exist; 340 341 page = grab_meta_page(sbi, start_blk); 342 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 343 memset(orphan_blk, 0, sizeof(*orphan_blk)); 344 page_exist: 345 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 346 } 347 if (!page) 348 goto end; 349 350 orphan_blk->blk_addr = cpu_to_le16(index); 351 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 352 orphan_blk->entry_count = cpu_to_le32(nentries); 353 set_page_dirty(page); 354 f2fs_put_page(page, 1); 355 end: 356 mutex_unlock(&sbi->orphan_inode_mutex); 357 } 358 359 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 360 block_t cp_addr, unsigned long long *version) 361 { 362 struct page *cp_page_1, *cp_page_2 = NULL; 363 unsigned long blk_size = sbi->blocksize; 364 struct f2fs_checkpoint *cp_block; 365 unsigned long long cur_version = 0, pre_version = 0; 366 size_t crc_offset; 367 __u32 crc = 0; 368 369 /* Read the 1st cp block in this CP pack */ 370 cp_page_1 = get_meta_page(sbi, cp_addr); 371 372 /* get the version number */ 373 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); 374 crc_offset = le32_to_cpu(cp_block->checksum_offset); 375 if (crc_offset >= blk_size) 376 goto invalid_cp1; 377 378 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 379 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 380 goto invalid_cp1; 381 382 pre_version = cur_cp_version(cp_block); 383 384 /* Read the 2nd cp block in this CP pack */ 385 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 386 cp_page_2 = get_meta_page(sbi, cp_addr); 387 388 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); 389 crc_offset = le32_to_cpu(cp_block->checksum_offset); 390 if (crc_offset >= blk_size) 391 goto invalid_cp2; 392 393 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset))); 394 if (!f2fs_crc_valid(crc, cp_block, crc_offset)) 395 goto invalid_cp2; 396 397 cur_version = cur_cp_version(cp_block); 398 399 if (cur_version == pre_version) { 400 *version = cur_version; 401 f2fs_put_page(cp_page_2, 1); 402 return cp_page_1; 403 } 404 invalid_cp2: 405 f2fs_put_page(cp_page_2, 1); 406 invalid_cp1: 407 f2fs_put_page(cp_page_1, 1); 408 return NULL; 409 } 410 411 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 412 { 413 struct f2fs_checkpoint *cp_block; 414 struct f2fs_super_block *fsb = sbi->raw_super; 415 struct page *cp1, *cp2, *cur_page; 416 unsigned long blk_size = sbi->blocksize; 417 unsigned long long cp1_version = 0, cp2_version = 0; 418 unsigned long long cp_start_blk_no; 419 420 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); 421 if (!sbi->ckpt) 422 return -ENOMEM; 423 /* 424 * Finding out valid cp block involves read both 425 * sets( cp pack1 and cp pack 2) 426 */ 427 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 428 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 429 430 /* The second checkpoint pack should start at the next segment */ 431 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 432 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 433 434 if (cp1 && cp2) { 435 if (ver_after(cp2_version, cp1_version)) 436 cur_page = cp2; 437 else 438 cur_page = cp1; 439 } else if (cp1) { 440 cur_page = cp1; 441 } else if (cp2) { 442 cur_page = cp2; 443 } else { 444 goto fail_no_cp; 445 } 446 447 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 448 memcpy(sbi->ckpt, cp_block, blk_size); 449 450 f2fs_put_page(cp1, 1); 451 f2fs_put_page(cp2, 1); 452 return 0; 453 454 fail_no_cp: 455 kfree(sbi->ckpt); 456 return -EINVAL; 457 } 458 459 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new) 460 { 461 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 462 struct list_head *head = &sbi->dir_inode_list; 463 struct list_head *this; 464 465 list_for_each(this, head) { 466 struct dir_inode_entry *entry; 467 entry = list_entry(this, struct dir_inode_entry, list); 468 if (entry->inode == inode) 469 return -EEXIST; 470 } 471 list_add_tail(&new->list, head); 472 stat_inc_dirty_dir(sbi); 473 return 0; 474 } 475 476 void set_dirty_dir_page(struct inode *inode, struct page *page) 477 { 478 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 479 struct dir_inode_entry *new; 480 481 if (!S_ISDIR(inode->i_mode)) 482 return; 483 484 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 485 new->inode = inode; 486 INIT_LIST_HEAD(&new->list); 487 488 spin_lock(&sbi->dir_inode_lock); 489 if (__add_dirty_inode(inode, new)) 490 kmem_cache_free(inode_entry_slab, new); 491 492 inc_page_count(sbi, F2FS_DIRTY_DENTS); 493 inode_inc_dirty_dents(inode); 494 SetPagePrivate(page); 495 spin_unlock(&sbi->dir_inode_lock); 496 } 497 498 void add_dirty_dir_inode(struct inode *inode) 499 { 500 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 501 struct dir_inode_entry *new = 502 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS); 503 504 new->inode = inode; 505 INIT_LIST_HEAD(&new->list); 506 507 spin_lock(&sbi->dir_inode_lock); 508 if (__add_dirty_inode(inode, new)) 509 kmem_cache_free(inode_entry_slab, new); 510 spin_unlock(&sbi->dir_inode_lock); 511 } 512 513 void remove_dirty_dir_inode(struct inode *inode) 514 { 515 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 516 struct list_head *head = &sbi->dir_inode_list; 517 struct list_head *this; 518 519 if (!S_ISDIR(inode->i_mode)) 520 return; 521 522 spin_lock(&sbi->dir_inode_lock); 523 if (atomic_read(&F2FS_I(inode)->dirty_dents)) { 524 spin_unlock(&sbi->dir_inode_lock); 525 return; 526 } 527 528 list_for_each(this, head) { 529 struct dir_inode_entry *entry; 530 entry = list_entry(this, struct dir_inode_entry, list); 531 if (entry->inode == inode) { 532 list_del(&entry->list); 533 kmem_cache_free(inode_entry_slab, entry); 534 stat_dec_dirty_dir(sbi); 535 break; 536 } 537 } 538 spin_unlock(&sbi->dir_inode_lock); 539 540 /* Only from the recovery routine */ 541 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { 542 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); 543 iput(inode); 544 } 545 } 546 547 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) 548 { 549 struct list_head *head = &sbi->dir_inode_list; 550 struct list_head *this; 551 struct inode *inode = NULL; 552 553 spin_lock(&sbi->dir_inode_lock); 554 list_for_each(this, head) { 555 struct dir_inode_entry *entry; 556 entry = list_entry(this, struct dir_inode_entry, list); 557 if (entry->inode->i_ino == ino) { 558 inode = entry->inode; 559 break; 560 } 561 } 562 spin_unlock(&sbi->dir_inode_lock); 563 return inode; 564 } 565 566 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) 567 { 568 struct list_head *head = &sbi->dir_inode_list; 569 struct dir_inode_entry *entry; 570 struct inode *inode; 571 retry: 572 spin_lock(&sbi->dir_inode_lock); 573 if (list_empty(head)) { 574 spin_unlock(&sbi->dir_inode_lock); 575 return; 576 } 577 entry = list_entry(head->next, struct dir_inode_entry, list); 578 inode = igrab(entry->inode); 579 spin_unlock(&sbi->dir_inode_lock); 580 if (inode) { 581 filemap_flush(inode->i_mapping); 582 iput(inode); 583 } else { 584 /* 585 * We should submit bio, since it exists several 586 * wribacking dentry pages in the freeing inode. 587 */ 588 f2fs_submit_bio(sbi, DATA, true); 589 } 590 goto retry; 591 } 592 593 /* 594 * Freeze all the FS-operations for checkpoint. 595 */ 596 static void block_operations(struct f2fs_sb_info *sbi) 597 { 598 struct writeback_control wbc = { 599 .sync_mode = WB_SYNC_ALL, 600 .nr_to_write = LONG_MAX, 601 .for_reclaim = 0, 602 }; 603 struct blk_plug plug; 604 605 blk_start_plug(&plug); 606 607 retry_flush_dents: 608 f2fs_lock_all(sbi); 609 /* write all the dirty dentry pages */ 610 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 611 f2fs_unlock_all(sbi); 612 sync_dirty_dir_inodes(sbi); 613 goto retry_flush_dents; 614 } 615 616 /* 617 * POR: we should ensure that there is no dirty node pages 618 * until finishing nat/sit flush. 619 */ 620 retry_flush_nodes: 621 mutex_lock(&sbi->node_write); 622 623 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 624 mutex_unlock(&sbi->node_write); 625 sync_node_pages(sbi, 0, &wbc); 626 goto retry_flush_nodes; 627 } 628 blk_finish_plug(&plug); 629 } 630 631 static void unblock_operations(struct f2fs_sb_info *sbi) 632 { 633 mutex_unlock(&sbi->node_write); 634 f2fs_unlock_all(sbi); 635 } 636 637 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 638 { 639 DEFINE_WAIT(wait); 640 641 for (;;) { 642 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 643 644 if (!get_pages(sbi, F2FS_WRITEBACK)) 645 break; 646 647 io_schedule(); 648 } 649 finish_wait(&sbi->cp_wait, &wait); 650 } 651 652 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 653 { 654 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 655 nid_t last_nid = 0; 656 block_t start_blk; 657 struct page *cp_page; 658 unsigned int data_sum_blocks, orphan_blocks; 659 __u32 crc32 = 0; 660 void *kaddr; 661 int i; 662 663 /* Flush all the NAT/SIT pages */ 664 while (get_pages(sbi, F2FS_DIRTY_META)) 665 sync_meta_pages(sbi, META, LONG_MAX); 666 667 next_free_nid(sbi, &last_nid); 668 669 /* 670 * modify checkpoint 671 * version number is already updated 672 */ 673 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 674 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 675 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 676 for (i = 0; i < 3; i++) { 677 ckpt->cur_node_segno[i] = 678 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 679 ckpt->cur_node_blkoff[i] = 680 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 681 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 682 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 683 } 684 for (i = 0; i < 3; i++) { 685 ckpt->cur_data_segno[i] = 686 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 687 ckpt->cur_data_blkoff[i] = 688 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 689 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 690 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 691 } 692 693 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 694 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 695 ckpt->next_free_nid = cpu_to_le32(last_nid); 696 697 /* 2 cp + n data seg summary + orphan inode blocks */ 698 data_sum_blocks = npages_for_summary_flush(sbi); 699 if (data_sum_blocks < 3) 700 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 701 else 702 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 703 704 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) 705 / F2FS_ORPHANS_PER_BLOCK; 706 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); 707 708 if (is_umount) { 709 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 710 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 711 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); 712 } else { 713 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 714 ckpt->cp_pack_total_block_count = cpu_to_le32(2 + 715 data_sum_blocks + orphan_blocks); 716 } 717 718 if (sbi->n_orphans) 719 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 720 else 721 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 722 723 /* update SIT/NAT bitmap */ 724 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 725 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 726 727 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); 728 *((__le32 *)((unsigned char *)ckpt + 729 le32_to_cpu(ckpt->checksum_offset))) 730 = cpu_to_le32(crc32); 731 732 start_blk = __start_cp_addr(sbi); 733 734 /* write out checkpoint buffer at block 0 */ 735 cp_page = grab_meta_page(sbi, start_blk++); 736 kaddr = page_address(cp_page); 737 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 738 set_page_dirty(cp_page); 739 f2fs_put_page(cp_page, 1); 740 741 if (sbi->n_orphans) { 742 write_orphan_inodes(sbi, start_blk); 743 start_blk += orphan_blocks; 744 } 745 746 write_data_summaries(sbi, start_blk); 747 start_blk += data_sum_blocks; 748 if (is_umount) { 749 write_node_summaries(sbi, start_blk); 750 start_blk += NR_CURSEG_NODE_TYPE; 751 } 752 753 /* writeout checkpoint block */ 754 cp_page = grab_meta_page(sbi, start_blk); 755 kaddr = page_address(cp_page); 756 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); 757 set_page_dirty(cp_page); 758 f2fs_put_page(cp_page, 1); 759 760 /* wait for previous submitted node/meta pages writeback */ 761 wait_on_all_pages_writeback(sbi); 762 763 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); 764 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); 765 766 /* update user_block_counts */ 767 sbi->last_valid_block_count = sbi->total_valid_block_count; 768 sbi->alloc_valid_block_count = 0; 769 770 /* Here, we only have one bio having CP pack */ 771 sync_meta_pages(sbi, META_FLUSH, LONG_MAX); 772 773 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { 774 clear_prefree_segments(sbi); 775 F2FS_RESET_SB_DIRT(sbi); 776 } 777 } 778 779 /* 780 * We guarantee that this checkpoint procedure should not fail. 781 */ 782 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) 783 { 784 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 785 unsigned long long ckpt_ver; 786 787 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); 788 789 mutex_lock(&sbi->cp_mutex); 790 block_operations(sbi); 791 792 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); 793 794 f2fs_submit_bio(sbi, DATA, true); 795 f2fs_submit_bio(sbi, NODE, true); 796 f2fs_submit_bio(sbi, META, true); 797 798 /* 799 * update checkpoint pack index 800 * Increase the version number so that 801 * SIT entries and seg summaries are written at correct place 802 */ 803 ckpt_ver = cur_cp_version(ckpt); 804 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 805 806 /* write cached NAT/SIT entries to NAT/SIT area */ 807 flush_nat_entries(sbi); 808 flush_sit_entries(sbi); 809 810 /* unlock all the fs_lock[] in do_checkpoint() */ 811 do_checkpoint(sbi, is_umount); 812 813 unblock_operations(sbi); 814 mutex_unlock(&sbi->cp_mutex); 815 816 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); 817 } 818 819 void init_orphan_info(struct f2fs_sb_info *sbi) 820 { 821 mutex_init(&sbi->orphan_inode_mutex); 822 INIT_LIST_HEAD(&sbi->orphan_inode_list); 823 sbi->n_orphans = 0; 824 } 825 826 int __init create_checkpoint_caches(void) 827 { 828 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", 829 sizeof(struct orphan_inode_entry), NULL); 830 if (unlikely(!orphan_entry_slab)) 831 return -ENOMEM; 832 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", 833 sizeof(struct dir_inode_entry), NULL); 834 if (unlikely(!inode_entry_slab)) { 835 kmem_cache_destroy(orphan_entry_slab); 836 return -ENOMEM; 837 } 838 return 0; 839 } 840 841 void destroy_checkpoint_caches(void) 842 { 843 kmem_cache_destroy(orphan_entry_slab); 844 kmem_cache_destroy(inode_entry_slab); 845 } 846