xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 110e6f26)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 	struct address_space *mapping = META_MAPPING(sbi);
35 	struct page *page = NULL;
36 repeat:
37 	page = grab_cache_page(mapping, index);
38 	if (!page) {
39 		cond_resched();
40 		goto repeat;
41 	}
42 	f2fs_wait_on_page_writeback(page, META, true);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51 							bool is_meta)
52 {
53 	struct address_space *mapping = META_MAPPING(sbi);
54 	struct page *page;
55 	struct f2fs_io_info fio = {
56 		.sbi = sbi,
57 		.type = META,
58 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
59 		.old_blkaddr = index,
60 		.new_blkaddr = index,
61 		.encrypted_page = NULL,
62 	};
63 
64 	if (unlikely(!is_meta))
65 		fio.rw &= ~REQ_META;
66 repeat:
67 	page = grab_cache_page(mapping, index);
68 	if (!page) {
69 		cond_resched();
70 		goto repeat;
71 	}
72 	if (PageUptodate(page))
73 		goto out;
74 
75 	fio.page = page;
76 
77 	if (f2fs_submit_page_bio(&fio)) {
78 		f2fs_put_page(page, 1);
79 		goto repeat;
80 	}
81 
82 	lock_page(page);
83 	if (unlikely(page->mapping != mapping)) {
84 		f2fs_put_page(page, 1);
85 		goto repeat;
86 	}
87 
88 	/*
89 	 * if there is any IO error when accessing device, make our filesystem
90 	 * readonly and make sure do not write checkpoint with non-uptodate
91 	 * meta page.
92 	 */
93 	if (unlikely(!PageUptodate(page)))
94 		f2fs_stop_checkpoint(sbi);
95 out:
96 	return page;
97 }
98 
99 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
100 {
101 	return __get_meta_page(sbi, index, true);
102 }
103 
104 /* for POR only */
105 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107 	return __get_meta_page(sbi, index, false);
108 }
109 
110 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
111 {
112 	switch (type) {
113 	case META_NAT:
114 		break;
115 	case META_SIT:
116 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
117 			return false;
118 		break;
119 	case META_SSA:
120 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
121 			blkaddr < SM_I(sbi)->ssa_blkaddr))
122 			return false;
123 		break;
124 	case META_CP:
125 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
126 			blkaddr < __start_cp_addr(sbi)))
127 			return false;
128 		break;
129 	case META_POR:
130 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
131 			blkaddr < MAIN_BLKADDR(sbi)))
132 			return false;
133 		break;
134 	default:
135 		BUG();
136 	}
137 
138 	return true;
139 }
140 
141 /*
142  * Readahead CP/NAT/SIT/SSA pages
143  */
144 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
145 							int type, bool sync)
146 {
147 	struct page *page;
148 	block_t blkno = start;
149 	struct f2fs_io_info fio = {
150 		.sbi = sbi,
151 		.type = META,
152 		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153 		.encrypted_page = NULL,
154 	};
155 	struct blk_plug plug;
156 
157 	if (unlikely(type == META_POR))
158 		fio.rw &= ~REQ_META;
159 
160 	blk_start_plug(&plug);
161 	for (; nrpages-- > 0; blkno++) {
162 
163 		if (!is_valid_blkaddr(sbi, blkno, type))
164 			goto out;
165 
166 		switch (type) {
167 		case META_NAT:
168 			if (unlikely(blkno >=
169 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
170 				blkno = 0;
171 			/* get nat block addr */
172 			fio.new_blkaddr = current_nat_addr(sbi,
173 					blkno * NAT_ENTRY_PER_BLOCK);
174 			break;
175 		case META_SIT:
176 			/* get sit block addr */
177 			fio.new_blkaddr = current_sit_addr(sbi,
178 					blkno * SIT_ENTRY_PER_BLOCK);
179 			break;
180 		case META_SSA:
181 		case META_CP:
182 		case META_POR:
183 			fio.new_blkaddr = blkno;
184 			break;
185 		default:
186 			BUG();
187 		}
188 
189 		page = grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr);
190 		if (!page)
191 			continue;
192 		if (PageUptodate(page)) {
193 			f2fs_put_page(page, 1);
194 			continue;
195 		}
196 
197 		fio.page = page;
198 		fio.old_blkaddr = fio.new_blkaddr;
199 		f2fs_submit_page_mbio(&fio);
200 		f2fs_put_page(page, 0);
201 	}
202 out:
203 	f2fs_submit_merged_bio(sbi, META, READ);
204 	blk_finish_plug(&plug);
205 	return blkno - start;
206 }
207 
208 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
209 {
210 	struct page *page;
211 	bool readahead = false;
212 
213 	page = find_get_page(META_MAPPING(sbi), index);
214 	if (!page || (page && !PageUptodate(page)))
215 		readahead = true;
216 	f2fs_put_page(page, 0);
217 
218 	if (readahead)
219 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
220 }
221 
222 static int f2fs_write_meta_page(struct page *page,
223 				struct writeback_control *wbc)
224 {
225 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
226 
227 	trace_f2fs_writepage(page, META);
228 
229 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
230 		goto redirty_out;
231 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
232 		goto redirty_out;
233 	if (unlikely(f2fs_cp_error(sbi)))
234 		goto redirty_out;
235 
236 	write_meta_page(sbi, page);
237 	dec_page_count(sbi, F2FS_DIRTY_META);
238 
239 	if (wbc->for_reclaim)
240 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
241 
242 	unlock_page(page);
243 
244 	if (unlikely(f2fs_cp_error(sbi)))
245 		f2fs_submit_merged_bio(sbi, META, WRITE);
246 
247 	return 0;
248 
249 redirty_out:
250 	redirty_page_for_writepage(wbc, page);
251 	return AOP_WRITEPAGE_ACTIVATE;
252 }
253 
254 static int f2fs_write_meta_pages(struct address_space *mapping,
255 				struct writeback_control *wbc)
256 {
257 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
258 	long diff, written;
259 
260 	/* collect a number of dirty meta pages and write together */
261 	if (wbc->for_kupdate ||
262 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
263 		goto skip_write;
264 
265 	trace_f2fs_writepages(mapping->host, wbc, META);
266 
267 	/* if mounting is failed, skip writing node pages */
268 	mutex_lock(&sbi->cp_mutex);
269 	diff = nr_pages_to_write(sbi, META, wbc);
270 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
271 	mutex_unlock(&sbi->cp_mutex);
272 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
273 	return 0;
274 
275 skip_write:
276 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
277 	trace_f2fs_writepages(mapping->host, wbc, META);
278 	return 0;
279 }
280 
281 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
282 						long nr_to_write)
283 {
284 	struct address_space *mapping = META_MAPPING(sbi);
285 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
286 	struct pagevec pvec;
287 	long nwritten = 0;
288 	struct writeback_control wbc = {
289 		.for_reclaim = 0,
290 	};
291 	struct blk_plug plug;
292 
293 	pagevec_init(&pvec, 0);
294 
295 	blk_start_plug(&plug);
296 
297 	while (index <= end) {
298 		int i, nr_pages;
299 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
300 				PAGECACHE_TAG_DIRTY,
301 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
302 		if (unlikely(nr_pages == 0))
303 			break;
304 
305 		for (i = 0; i < nr_pages; i++) {
306 			struct page *page = pvec.pages[i];
307 
308 			if (prev == ULONG_MAX)
309 				prev = page->index - 1;
310 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
311 				pagevec_release(&pvec);
312 				goto stop;
313 			}
314 
315 			lock_page(page);
316 
317 			if (unlikely(page->mapping != mapping)) {
318 continue_unlock:
319 				unlock_page(page);
320 				continue;
321 			}
322 			if (!PageDirty(page)) {
323 				/* someone wrote it for us */
324 				goto continue_unlock;
325 			}
326 
327 			f2fs_wait_on_page_writeback(page, META, true);
328 
329 			BUG_ON(PageWriteback(page));
330 			if (!clear_page_dirty_for_io(page))
331 				goto continue_unlock;
332 
333 			if (mapping->a_ops->writepage(page, &wbc)) {
334 				unlock_page(page);
335 				break;
336 			}
337 			nwritten++;
338 			prev = page->index;
339 			if (unlikely(nwritten >= nr_to_write))
340 				break;
341 		}
342 		pagevec_release(&pvec);
343 		cond_resched();
344 	}
345 stop:
346 	if (nwritten)
347 		f2fs_submit_merged_bio(sbi, type, WRITE);
348 
349 	blk_finish_plug(&plug);
350 
351 	return nwritten;
352 }
353 
354 static int f2fs_set_meta_page_dirty(struct page *page)
355 {
356 	trace_f2fs_set_page_dirty(page, META);
357 
358 	SetPageUptodate(page);
359 	if (!PageDirty(page)) {
360 		__set_page_dirty_nobuffers(page);
361 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
362 		SetPagePrivate(page);
363 		f2fs_trace_pid(page);
364 		return 1;
365 	}
366 	return 0;
367 }
368 
369 const struct address_space_operations f2fs_meta_aops = {
370 	.writepage	= f2fs_write_meta_page,
371 	.writepages	= f2fs_write_meta_pages,
372 	.set_page_dirty	= f2fs_set_meta_page_dirty,
373 	.invalidatepage = f2fs_invalidate_page,
374 	.releasepage	= f2fs_release_page,
375 };
376 
377 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
378 {
379 	struct inode_management *im = &sbi->im[type];
380 	struct ino_entry *e, *tmp;
381 
382 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
383 retry:
384 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
385 
386 	spin_lock(&im->ino_lock);
387 	e = radix_tree_lookup(&im->ino_root, ino);
388 	if (!e) {
389 		e = tmp;
390 		if (radix_tree_insert(&im->ino_root, ino, e)) {
391 			spin_unlock(&im->ino_lock);
392 			radix_tree_preload_end();
393 			goto retry;
394 		}
395 		memset(e, 0, sizeof(struct ino_entry));
396 		e->ino = ino;
397 
398 		list_add_tail(&e->list, &im->ino_list);
399 		if (type != ORPHAN_INO)
400 			im->ino_num++;
401 	}
402 	spin_unlock(&im->ino_lock);
403 	radix_tree_preload_end();
404 
405 	if (e != tmp)
406 		kmem_cache_free(ino_entry_slab, tmp);
407 }
408 
409 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
410 {
411 	struct inode_management *im = &sbi->im[type];
412 	struct ino_entry *e;
413 
414 	spin_lock(&im->ino_lock);
415 	e = radix_tree_lookup(&im->ino_root, ino);
416 	if (e) {
417 		list_del(&e->list);
418 		radix_tree_delete(&im->ino_root, ino);
419 		im->ino_num--;
420 		spin_unlock(&im->ino_lock);
421 		kmem_cache_free(ino_entry_slab, e);
422 		return;
423 	}
424 	spin_unlock(&im->ino_lock);
425 }
426 
427 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 {
429 	/* add new dirty ino entry into list */
430 	__add_ino_entry(sbi, ino, type);
431 }
432 
433 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
434 {
435 	/* remove dirty ino entry from list */
436 	__remove_ino_entry(sbi, ino, type);
437 }
438 
439 /* mode should be APPEND_INO or UPDATE_INO */
440 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
441 {
442 	struct inode_management *im = &sbi->im[mode];
443 	struct ino_entry *e;
444 
445 	spin_lock(&im->ino_lock);
446 	e = radix_tree_lookup(&im->ino_root, ino);
447 	spin_unlock(&im->ino_lock);
448 	return e ? true : false;
449 }
450 
451 void release_ino_entry(struct f2fs_sb_info *sbi)
452 {
453 	struct ino_entry *e, *tmp;
454 	int i;
455 
456 	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
457 		struct inode_management *im = &sbi->im[i];
458 
459 		spin_lock(&im->ino_lock);
460 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
461 			list_del(&e->list);
462 			radix_tree_delete(&im->ino_root, e->ino);
463 			kmem_cache_free(ino_entry_slab, e);
464 			im->ino_num--;
465 		}
466 		spin_unlock(&im->ino_lock);
467 	}
468 }
469 
470 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
471 {
472 	struct inode_management *im = &sbi->im[ORPHAN_INO];
473 	int err = 0;
474 
475 	spin_lock(&im->ino_lock);
476 	if (unlikely(im->ino_num >= sbi->max_orphans))
477 		err = -ENOSPC;
478 	else
479 		im->ino_num++;
480 	spin_unlock(&im->ino_lock);
481 
482 	return err;
483 }
484 
485 void release_orphan_inode(struct f2fs_sb_info *sbi)
486 {
487 	struct inode_management *im = &sbi->im[ORPHAN_INO];
488 
489 	spin_lock(&im->ino_lock);
490 	f2fs_bug_on(sbi, im->ino_num == 0);
491 	im->ino_num--;
492 	spin_unlock(&im->ino_lock);
493 }
494 
495 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
496 {
497 	/* add new orphan ino entry into list */
498 	__add_ino_entry(sbi, ino, ORPHAN_INO);
499 }
500 
501 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
502 {
503 	/* remove orphan entry from orphan list */
504 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
505 }
506 
507 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
508 {
509 	struct inode *inode;
510 
511 	inode = f2fs_iget(sbi->sb, ino);
512 	if (IS_ERR(inode)) {
513 		/*
514 		 * there should be a bug that we can't find the entry
515 		 * to orphan inode.
516 		 */
517 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
518 		return PTR_ERR(inode);
519 	}
520 
521 	clear_nlink(inode);
522 
523 	/* truncate all the data during iput */
524 	iput(inode);
525 	return 0;
526 }
527 
528 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
529 {
530 	block_t start_blk, orphan_blocks, i, j;
531 	int err;
532 
533 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
534 		return 0;
535 
536 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
537 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
538 
539 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
540 
541 	for (i = 0; i < orphan_blocks; i++) {
542 		struct page *page = get_meta_page(sbi, start_blk + i);
543 		struct f2fs_orphan_block *orphan_blk;
544 
545 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
546 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
547 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
548 			err = recover_orphan_inode(sbi, ino);
549 			if (err) {
550 				f2fs_put_page(page, 1);
551 				return err;
552 			}
553 		}
554 		f2fs_put_page(page, 1);
555 	}
556 	/* clear Orphan Flag */
557 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
558 	return 0;
559 }
560 
561 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
562 {
563 	struct list_head *head;
564 	struct f2fs_orphan_block *orphan_blk = NULL;
565 	unsigned int nentries = 0;
566 	unsigned short index = 1;
567 	unsigned short orphan_blocks;
568 	struct page *page = NULL;
569 	struct ino_entry *orphan = NULL;
570 	struct inode_management *im = &sbi->im[ORPHAN_INO];
571 
572 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
573 
574 	/*
575 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
576 	 * orphan inode operations are covered under f2fs_lock_op().
577 	 * And, spin_lock should be avoided due to page operations below.
578 	 */
579 	head = &im->ino_list;
580 
581 	/* loop for each orphan inode entry and write them in Jornal block */
582 	list_for_each_entry(orphan, head, list) {
583 		if (!page) {
584 			page = grab_meta_page(sbi, start_blk++);
585 			orphan_blk =
586 				(struct f2fs_orphan_block *)page_address(page);
587 			memset(orphan_blk, 0, sizeof(*orphan_blk));
588 		}
589 
590 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
591 
592 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
593 			/*
594 			 * an orphan block is full of 1020 entries,
595 			 * then we need to flush current orphan blocks
596 			 * and bring another one in memory
597 			 */
598 			orphan_blk->blk_addr = cpu_to_le16(index);
599 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
600 			orphan_blk->entry_count = cpu_to_le32(nentries);
601 			set_page_dirty(page);
602 			f2fs_put_page(page, 1);
603 			index++;
604 			nentries = 0;
605 			page = NULL;
606 		}
607 	}
608 
609 	if (page) {
610 		orphan_blk->blk_addr = cpu_to_le16(index);
611 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
612 		orphan_blk->entry_count = cpu_to_le32(nentries);
613 		set_page_dirty(page);
614 		f2fs_put_page(page, 1);
615 	}
616 }
617 
618 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
619 				block_t cp_addr, unsigned long long *version)
620 {
621 	struct page *cp_page_1, *cp_page_2 = NULL;
622 	unsigned long blk_size = sbi->blocksize;
623 	struct f2fs_checkpoint *cp_block;
624 	unsigned long long cur_version = 0, pre_version = 0;
625 	size_t crc_offset;
626 	__u32 crc = 0;
627 
628 	/* Read the 1st cp block in this CP pack */
629 	cp_page_1 = get_meta_page(sbi, cp_addr);
630 
631 	/* get the version number */
632 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
633 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
634 	if (crc_offset >= blk_size)
635 		goto invalid_cp1;
636 
637 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
638 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
639 		goto invalid_cp1;
640 
641 	pre_version = cur_cp_version(cp_block);
642 
643 	/* Read the 2nd cp block in this CP pack */
644 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
645 	cp_page_2 = get_meta_page(sbi, cp_addr);
646 
647 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
648 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
649 	if (crc_offset >= blk_size)
650 		goto invalid_cp2;
651 
652 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
653 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
654 		goto invalid_cp2;
655 
656 	cur_version = cur_cp_version(cp_block);
657 
658 	if (cur_version == pre_version) {
659 		*version = cur_version;
660 		f2fs_put_page(cp_page_2, 1);
661 		return cp_page_1;
662 	}
663 invalid_cp2:
664 	f2fs_put_page(cp_page_2, 1);
665 invalid_cp1:
666 	f2fs_put_page(cp_page_1, 1);
667 	return NULL;
668 }
669 
670 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
671 {
672 	struct f2fs_checkpoint *cp_block;
673 	struct f2fs_super_block *fsb = sbi->raw_super;
674 	struct page *cp1, *cp2, *cur_page;
675 	unsigned long blk_size = sbi->blocksize;
676 	unsigned long long cp1_version = 0, cp2_version = 0;
677 	unsigned long long cp_start_blk_no;
678 	unsigned int cp_blks = 1 + __cp_payload(sbi);
679 	block_t cp_blk_no;
680 	int i;
681 
682 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
683 	if (!sbi->ckpt)
684 		return -ENOMEM;
685 	/*
686 	 * Finding out valid cp block involves read both
687 	 * sets( cp pack1 and cp pack 2)
688 	 */
689 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
690 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
691 
692 	/* The second checkpoint pack should start at the next segment */
693 	cp_start_blk_no += ((unsigned long long)1) <<
694 				le32_to_cpu(fsb->log_blocks_per_seg);
695 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
696 
697 	if (cp1 && cp2) {
698 		if (ver_after(cp2_version, cp1_version))
699 			cur_page = cp2;
700 		else
701 			cur_page = cp1;
702 	} else if (cp1) {
703 		cur_page = cp1;
704 	} else if (cp2) {
705 		cur_page = cp2;
706 	} else {
707 		goto fail_no_cp;
708 	}
709 
710 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
711 	memcpy(sbi->ckpt, cp_block, blk_size);
712 
713 	/* Sanity checking of checkpoint */
714 	if (sanity_check_ckpt(sbi))
715 		goto fail_no_cp;
716 
717 	if (cp_blks <= 1)
718 		goto done;
719 
720 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
721 	if (cur_page == cp2)
722 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
723 
724 	for (i = 1; i < cp_blks; i++) {
725 		void *sit_bitmap_ptr;
726 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
727 
728 		cur_page = get_meta_page(sbi, cp_blk_no + i);
729 		sit_bitmap_ptr = page_address(cur_page);
730 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
731 		f2fs_put_page(cur_page, 1);
732 	}
733 done:
734 	f2fs_put_page(cp1, 1);
735 	f2fs_put_page(cp2, 1);
736 	return 0;
737 
738 fail_no_cp:
739 	kfree(sbi->ckpt);
740 	return -EINVAL;
741 }
742 
743 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
744 {
745 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746 	struct f2fs_inode_info *fi = F2FS_I(inode);
747 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
748 
749 	if (is_inode_flag_set(fi, flag))
750 		return;
751 
752 	set_inode_flag(fi, flag);
753 	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
754 	stat_inc_dirty_inode(sbi, type);
755 }
756 
757 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
758 {
759 	struct f2fs_inode_info *fi = F2FS_I(inode);
760 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
761 
762 	if (get_dirty_pages(inode) ||
763 			!is_inode_flag_set(F2FS_I(inode), flag))
764 		return;
765 
766 	list_del_init(&fi->dirty_list);
767 	clear_inode_flag(fi, flag);
768 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
769 }
770 
771 void update_dirty_page(struct inode *inode, struct page *page)
772 {
773 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
774 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
775 
776 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
777 			!S_ISLNK(inode->i_mode))
778 		return;
779 
780 	spin_lock(&sbi->inode_lock[type]);
781 	__add_dirty_inode(inode, type);
782 	inode_inc_dirty_pages(inode);
783 	spin_unlock(&sbi->inode_lock[type]);
784 
785 	SetPagePrivate(page);
786 	f2fs_trace_pid(page);
787 }
788 
789 void add_dirty_dir_inode(struct inode *inode)
790 {
791 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
792 
793 	spin_lock(&sbi->inode_lock[DIR_INODE]);
794 	__add_dirty_inode(inode, DIR_INODE);
795 	spin_unlock(&sbi->inode_lock[DIR_INODE]);
796 }
797 
798 void remove_dirty_inode(struct inode *inode)
799 {
800 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
801 	struct f2fs_inode_info *fi = F2FS_I(inode);
802 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
803 
804 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
805 			!S_ISLNK(inode->i_mode))
806 		return;
807 
808 	spin_lock(&sbi->inode_lock[type]);
809 	__remove_dirty_inode(inode, type);
810 	spin_unlock(&sbi->inode_lock[type]);
811 
812 	/* Only from the recovery routine */
813 	if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
814 		clear_inode_flag(fi, FI_DELAY_IPUT);
815 		iput(inode);
816 	}
817 }
818 
819 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
820 {
821 	struct list_head *head;
822 	struct inode *inode;
823 	struct f2fs_inode_info *fi;
824 	bool is_dir = (type == DIR_INODE);
825 
826 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
827 				get_pages(sbi, is_dir ?
828 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
829 retry:
830 	if (unlikely(f2fs_cp_error(sbi)))
831 		return -EIO;
832 
833 	spin_lock(&sbi->inode_lock[type]);
834 
835 	head = &sbi->inode_list[type];
836 	if (list_empty(head)) {
837 		spin_unlock(&sbi->inode_lock[type]);
838 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
839 				get_pages(sbi, is_dir ?
840 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
841 		return 0;
842 	}
843 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
844 	inode = igrab(&fi->vfs_inode);
845 	spin_unlock(&sbi->inode_lock[type]);
846 	if (inode) {
847 		filemap_fdatawrite(inode->i_mapping);
848 		iput(inode);
849 	} else {
850 		/*
851 		 * We should submit bio, since it exists several
852 		 * wribacking dentry pages in the freeing inode.
853 		 */
854 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
855 		cond_resched();
856 	}
857 	goto retry;
858 }
859 
860 /*
861  * Freeze all the FS-operations for checkpoint.
862  */
863 static int block_operations(struct f2fs_sb_info *sbi)
864 {
865 	struct writeback_control wbc = {
866 		.sync_mode = WB_SYNC_ALL,
867 		.nr_to_write = LONG_MAX,
868 		.for_reclaim = 0,
869 	};
870 	struct blk_plug plug;
871 	int err = 0;
872 
873 	blk_start_plug(&plug);
874 
875 retry_flush_dents:
876 	f2fs_lock_all(sbi);
877 	/* write all the dirty dentry pages */
878 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
879 		f2fs_unlock_all(sbi);
880 		err = sync_dirty_inodes(sbi, DIR_INODE);
881 		if (err)
882 			goto out;
883 		goto retry_flush_dents;
884 	}
885 
886 	/*
887 	 * POR: we should ensure that there are no dirty node pages
888 	 * until finishing nat/sit flush.
889 	 */
890 retry_flush_nodes:
891 	down_write(&sbi->node_write);
892 
893 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
894 		up_write(&sbi->node_write);
895 		err = sync_node_pages(sbi, 0, &wbc);
896 		if (err) {
897 			f2fs_unlock_all(sbi);
898 			goto out;
899 		}
900 		goto retry_flush_nodes;
901 	}
902 out:
903 	blk_finish_plug(&plug);
904 	return err;
905 }
906 
907 static void unblock_operations(struct f2fs_sb_info *sbi)
908 {
909 	up_write(&sbi->node_write);
910 	f2fs_unlock_all(sbi);
911 }
912 
913 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
914 {
915 	DEFINE_WAIT(wait);
916 
917 	for (;;) {
918 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
919 
920 		if (!get_pages(sbi, F2FS_WRITEBACK))
921 			break;
922 
923 		io_schedule_timeout(5*HZ);
924 	}
925 	finish_wait(&sbi->cp_wait, &wait);
926 }
927 
928 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
929 {
930 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
931 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
932 	struct f2fs_nm_info *nm_i = NM_I(sbi);
933 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
934 	nid_t last_nid = nm_i->next_scan_nid;
935 	block_t start_blk;
936 	unsigned int data_sum_blocks, orphan_blocks;
937 	__u32 crc32 = 0;
938 	int i;
939 	int cp_payload_blks = __cp_payload(sbi);
940 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
941 	bool invalidate = false;
942 	struct super_block *sb = sbi->sb;
943 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
944 	u64 kbytes_written;
945 
946 	/*
947 	 * This avoids to conduct wrong roll-forward operations and uses
948 	 * metapages, so should be called prior to sync_meta_pages below.
949 	 */
950 	if (discard_next_dnode(sbi, discard_blk))
951 		invalidate = true;
952 
953 	/* Flush all the NAT/SIT pages */
954 	while (get_pages(sbi, F2FS_DIRTY_META)) {
955 		sync_meta_pages(sbi, META, LONG_MAX);
956 		if (unlikely(f2fs_cp_error(sbi)))
957 			return -EIO;
958 	}
959 
960 	next_free_nid(sbi, &last_nid);
961 
962 	/*
963 	 * modify checkpoint
964 	 * version number is already updated
965 	 */
966 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
967 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
968 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
969 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
970 		ckpt->cur_node_segno[i] =
971 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
972 		ckpt->cur_node_blkoff[i] =
973 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
974 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
975 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
976 	}
977 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
978 		ckpt->cur_data_segno[i] =
979 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
980 		ckpt->cur_data_blkoff[i] =
981 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
982 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
983 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
984 	}
985 
986 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
987 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
988 	ckpt->next_free_nid = cpu_to_le32(last_nid);
989 
990 	/* 2 cp  + n data seg summary + orphan inode blocks */
991 	data_sum_blocks = npages_for_summary_flush(sbi, false);
992 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
993 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
994 	else
995 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
996 
997 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
998 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
999 			orphan_blocks);
1000 
1001 	if (__remain_node_summaries(cpc->reason))
1002 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1003 				cp_payload_blks + data_sum_blocks +
1004 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1005 	else
1006 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1007 				cp_payload_blks + data_sum_blocks +
1008 				orphan_blocks);
1009 
1010 	if (cpc->reason == CP_UMOUNT)
1011 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1012 	else
1013 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1014 
1015 	if (cpc->reason == CP_FASTBOOT)
1016 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1017 	else
1018 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1019 
1020 	if (orphan_num)
1021 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1022 	else
1023 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1024 
1025 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1026 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1027 
1028 	/* update SIT/NAT bitmap */
1029 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1030 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1031 
1032 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1033 	*((__le32 *)((unsigned char *)ckpt +
1034 				le32_to_cpu(ckpt->checksum_offset)))
1035 				= cpu_to_le32(crc32);
1036 
1037 	start_blk = __start_cp_addr(sbi);
1038 
1039 	/* need to wait for end_io results */
1040 	wait_on_all_pages_writeback(sbi);
1041 	if (unlikely(f2fs_cp_error(sbi)))
1042 		return -EIO;
1043 
1044 	/* write out checkpoint buffer at block 0 */
1045 	update_meta_page(sbi, ckpt, start_blk++);
1046 
1047 	for (i = 1; i < 1 + cp_payload_blks; i++)
1048 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1049 							start_blk++);
1050 
1051 	if (orphan_num) {
1052 		write_orphan_inodes(sbi, start_blk);
1053 		start_blk += orphan_blocks;
1054 	}
1055 
1056 	write_data_summaries(sbi, start_blk);
1057 	start_blk += data_sum_blocks;
1058 
1059 	/* Record write statistics in the hot node summary */
1060 	kbytes_written = sbi->kbytes_written;
1061 	if (sb->s_bdev->bd_part)
1062 		kbytes_written += BD_PART_WRITTEN(sbi);
1063 
1064 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1065 
1066 	if (__remain_node_summaries(cpc->reason)) {
1067 		write_node_summaries(sbi, start_blk);
1068 		start_blk += NR_CURSEG_NODE_TYPE;
1069 	}
1070 
1071 	/* writeout checkpoint block */
1072 	update_meta_page(sbi, ckpt, start_blk);
1073 
1074 	/* wait for previous submitted node/meta pages writeback */
1075 	wait_on_all_pages_writeback(sbi);
1076 
1077 	if (unlikely(f2fs_cp_error(sbi)))
1078 		return -EIO;
1079 
1080 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1081 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1082 
1083 	/* update user_block_counts */
1084 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1085 	sbi->alloc_valid_block_count = 0;
1086 
1087 	/* Here, we only have one bio having CP pack */
1088 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1089 
1090 	/* wait for previous submitted meta pages writeback */
1091 	wait_on_all_pages_writeback(sbi);
1092 
1093 	/*
1094 	 * invalidate meta page which is used temporarily for zeroing out
1095 	 * block at the end of warm node chain.
1096 	 */
1097 	if (invalidate)
1098 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1099 								discard_blk);
1100 
1101 	release_ino_entry(sbi);
1102 
1103 	if (unlikely(f2fs_cp_error(sbi)))
1104 		return -EIO;
1105 
1106 	clear_prefree_segments(sbi, cpc);
1107 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * We guarantee that this checkpoint procedure will not fail.
1114  */
1115 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1116 {
1117 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1118 	unsigned long long ckpt_ver;
1119 	int err = 0;
1120 
1121 	mutex_lock(&sbi->cp_mutex);
1122 
1123 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1124 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1125 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1126 		goto out;
1127 	if (unlikely(f2fs_cp_error(sbi))) {
1128 		err = -EIO;
1129 		goto out;
1130 	}
1131 	if (f2fs_readonly(sbi->sb)) {
1132 		err = -EROFS;
1133 		goto out;
1134 	}
1135 
1136 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1137 
1138 	err = block_operations(sbi);
1139 	if (err)
1140 		goto out;
1141 
1142 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1143 
1144 	f2fs_flush_merged_bios(sbi);
1145 
1146 	/*
1147 	 * update checkpoint pack index
1148 	 * Increase the version number so that
1149 	 * SIT entries and seg summaries are written at correct place
1150 	 */
1151 	ckpt_ver = cur_cp_version(ckpt);
1152 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1153 
1154 	/* write cached NAT/SIT entries to NAT/SIT area */
1155 	flush_nat_entries(sbi);
1156 	flush_sit_entries(sbi, cpc);
1157 
1158 	/* unlock all the fs_lock[] in do_checkpoint() */
1159 	err = do_checkpoint(sbi, cpc);
1160 
1161 	unblock_operations(sbi);
1162 	stat_inc_cp_count(sbi->stat_info);
1163 
1164 	if (cpc->reason == CP_RECOVERY)
1165 		f2fs_msg(sbi->sb, KERN_NOTICE,
1166 			"checkpoint: version = %llx", ckpt_ver);
1167 
1168 	/* do checkpoint periodically */
1169 	f2fs_update_time(sbi, CP_TIME);
1170 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1171 out:
1172 	mutex_unlock(&sbi->cp_mutex);
1173 	return err;
1174 }
1175 
1176 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1177 {
1178 	int i;
1179 
1180 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1181 		struct inode_management *im = &sbi->im[i];
1182 
1183 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1184 		spin_lock_init(&im->ino_lock);
1185 		INIT_LIST_HEAD(&im->ino_list);
1186 		im->ino_num = 0;
1187 	}
1188 
1189 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1190 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1191 				F2FS_ORPHANS_PER_BLOCK;
1192 }
1193 
1194 int __init create_checkpoint_caches(void)
1195 {
1196 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1197 			sizeof(struct ino_entry));
1198 	if (!ino_entry_slab)
1199 		return -ENOMEM;
1200 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1201 			sizeof(struct inode_entry));
1202 	if (!inode_entry_slab) {
1203 		kmem_cache_destroy(ino_entry_slab);
1204 		return -ENOMEM;
1205 	}
1206 	return 0;
1207 }
1208 
1209 void destroy_checkpoint_caches(void)
1210 {
1211 	kmem_cache_destroy(ino_entry_slab);
1212 	kmem_cache_destroy(inode_entry_slab);
1213 }
1214