xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 10aa97c3)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 	struct address_space *mapping = META_MAPPING(sbi);
35 	struct page *page = NULL;
36 repeat:
37 	page = f2fs_grab_cache_page(mapping, index, false);
38 	if (!page) {
39 		cond_resched();
40 		goto repeat;
41 	}
42 	f2fs_wait_on_page_writeback(page, META, true);
43 	SetPageUptodate(page);
44 	return page;
45 }
46 
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51 							bool is_meta)
52 {
53 	struct address_space *mapping = META_MAPPING(sbi);
54 	struct page *page;
55 	struct f2fs_io_info fio = {
56 		.sbi = sbi,
57 		.type = META,
58 		.rw = READ_SYNC | REQ_META | REQ_PRIO,
59 		.old_blkaddr = index,
60 		.new_blkaddr = index,
61 		.encrypted_page = NULL,
62 	};
63 
64 	if (unlikely(!is_meta))
65 		fio.rw &= ~REQ_META;
66 repeat:
67 	page = f2fs_grab_cache_page(mapping, index, false);
68 	if (!page) {
69 		cond_resched();
70 		goto repeat;
71 	}
72 	if (PageUptodate(page))
73 		goto out;
74 
75 	fio.page = page;
76 
77 	if (f2fs_submit_page_bio(&fio)) {
78 		f2fs_put_page(page, 1);
79 		goto repeat;
80 	}
81 
82 	lock_page(page);
83 	if (unlikely(page->mapping != mapping)) {
84 		f2fs_put_page(page, 1);
85 		goto repeat;
86 	}
87 
88 	/*
89 	 * if there is any IO error when accessing device, make our filesystem
90 	 * readonly and make sure do not write checkpoint with non-uptodate
91 	 * meta page.
92 	 */
93 	if (unlikely(!PageUptodate(page)))
94 		f2fs_stop_checkpoint(sbi);
95 out:
96 	return page;
97 }
98 
99 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
100 {
101 	return __get_meta_page(sbi, index, true);
102 }
103 
104 /* for POR only */
105 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107 	return __get_meta_page(sbi, index, false);
108 }
109 
110 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
111 {
112 	switch (type) {
113 	case META_NAT:
114 		break;
115 	case META_SIT:
116 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
117 			return false;
118 		break;
119 	case META_SSA:
120 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
121 			blkaddr < SM_I(sbi)->ssa_blkaddr))
122 			return false;
123 		break;
124 	case META_CP:
125 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
126 			blkaddr < __start_cp_addr(sbi)))
127 			return false;
128 		break;
129 	case META_POR:
130 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
131 			blkaddr < MAIN_BLKADDR(sbi)))
132 			return false;
133 		break;
134 	default:
135 		BUG();
136 	}
137 
138 	return true;
139 }
140 
141 /*
142  * Readahead CP/NAT/SIT/SSA pages
143  */
144 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
145 							int type, bool sync)
146 {
147 	struct page *page;
148 	block_t blkno = start;
149 	struct f2fs_io_info fio = {
150 		.sbi = sbi,
151 		.type = META,
152 		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153 		.encrypted_page = NULL,
154 	};
155 	struct blk_plug plug;
156 
157 	if (unlikely(type == META_POR))
158 		fio.rw &= ~REQ_META;
159 
160 	blk_start_plug(&plug);
161 	for (; nrpages-- > 0; blkno++) {
162 
163 		if (!is_valid_blkaddr(sbi, blkno, type))
164 			goto out;
165 
166 		switch (type) {
167 		case META_NAT:
168 			if (unlikely(blkno >=
169 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
170 				blkno = 0;
171 			/* get nat block addr */
172 			fio.new_blkaddr = current_nat_addr(sbi,
173 					blkno * NAT_ENTRY_PER_BLOCK);
174 			break;
175 		case META_SIT:
176 			/* get sit block addr */
177 			fio.new_blkaddr = current_sit_addr(sbi,
178 					blkno * SIT_ENTRY_PER_BLOCK);
179 			break;
180 		case META_SSA:
181 		case META_CP:
182 		case META_POR:
183 			fio.new_blkaddr = blkno;
184 			break;
185 		default:
186 			BUG();
187 		}
188 
189 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
190 						fio.new_blkaddr, false);
191 		if (!page)
192 			continue;
193 		if (PageUptodate(page)) {
194 			f2fs_put_page(page, 1);
195 			continue;
196 		}
197 
198 		fio.page = page;
199 		fio.old_blkaddr = fio.new_blkaddr;
200 		f2fs_submit_page_mbio(&fio);
201 		f2fs_put_page(page, 0);
202 	}
203 out:
204 	f2fs_submit_merged_bio(sbi, META, READ);
205 	blk_finish_plug(&plug);
206 	return blkno - start;
207 }
208 
209 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
210 {
211 	struct page *page;
212 	bool readahead = false;
213 
214 	page = find_get_page(META_MAPPING(sbi), index);
215 	if (!page || !PageUptodate(page))
216 		readahead = true;
217 	f2fs_put_page(page, 0);
218 
219 	if (readahead)
220 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
221 }
222 
223 static int f2fs_write_meta_page(struct page *page,
224 				struct writeback_control *wbc)
225 {
226 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
227 
228 	trace_f2fs_writepage(page, META);
229 
230 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
231 		goto redirty_out;
232 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
233 		goto redirty_out;
234 	if (unlikely(f2fs_cp_error(sbi)))
235 		goto redirty_out;
236 
237 	write_meta_page(sbi, page);
238 	dec_page_count(sbi, F2FS_DIRTY_META);
239 
240 	if (wbc->for_reclaim)
241 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
242 
243 	unlock_page(page);
244 
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		f2fs_submit_merged_bio(sbi, META, WRITE);
247 
248 	return 0;
249 
250 redirty_out:
251 	redirty_page_for_writepage(wbc, page);
252 	return AOP_WRITEPAGE_ACTIVATE;
253 }
254 
255 static int f2fs_write_meta_pages(struct address_space *mapping,
256 				struct writeback_control *wbc)
257 {
258 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
259 	long diff, written;
260 
261 	/* collect a number of dirty meta pages and write together */
262 	if (wbc->for_kupdate ||
263 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
264 		goto skip_write;
265 
266 	trace_f2fs_writepages(mapping->host, wbc, META);
267 
268 	/* if mounting is failed, skip writing node pages */
269 	mutex_lock(&sbi->cp_mutex);
270 	diff = nr_pages_to_write(sbi, META, wbc);
271 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
272 	mutex_unlock(&sbi->cp_mutex);
273 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
274 	return 0;
275 
276 skip_write:
277 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
278 	trace_f2fs_writepages(mapping->host, wbc, META);
279 	return 0;
280 }
281 
282 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
283 						long nr_to_write)
284 {
285 	struct address_space *mapping = META_MAPPING(sbi);
286 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
287 	struct pagevec pvec;
288 	long nwritten = 0;
289 	struct writeback_control wbc = {
290 		.for_reclaim = 0,
291 	};
292 	struct blk_plug plug;
293 
294 	pagevec_init(&pvec, 0);
295 
296 	blk_start_plug(&plug);
297 
298 	while (index <= end) {
299 		int i, nr_pages;
300 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
301 				PAGECACHE_TAG_DIRTY,
302 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
303 		if (unlikely(nr_pages == 0))
304 			break;
305 
306 		for (i = 0; i < nr_pages; i++) {
307 			struct page *page = pvec.pages[i];
308 
309 			if (prev == ULONG_MAX)
310 				prev = page->index - 1;
311 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
312 				pagevec_release(&pvec);
313 				goto stop;
314 			}
315 
316 			lock_page(page);
317 
318 			if (unlikely(page->mapping != mapping)) {
319 continue_unlock:
320 				unlock_page(page);
321 				continue;
322 			}
323 			if (!PageDirty(page)) {
324 				/* someone wrote it for us */
325 				goto continue_unlock;
326 			}
327 
328 			f2fs_wait_on_page_writeback(page, META, true);
329 
330 			BUG_ON(PageWriteback(page));
331 			if (!clear_page_dirty_for_io(page))
332 				goto continue_unlock;
333 
334 			if (mapping->a_ops->writepage(page, &wbc)) {
335 				unlock_page(page);
336 				break;
337 			}
338 			nwritten++;
339 			prev = page->index;
340 			if (unlikely(nwritten >= nr_to_write))
341 				break;
342 		}
343 		pagevec_release(&pvec);
344 		cond_resched();
345 	}
346 stop:
347 	if (nwritten)
348 		f2fs_submit_merged_bio(sbi, type, WRITE);
349 
350 	blk_finish_plug(&plug);
351 
352 	return nwritten;
353 }
354 
355 static int f2fs_set_meta_page_dirty(struct page *page)
356 {
357 	trace_f2fs_set_page_dirty(page, META);
358 
359 	SetPageUptodate(page);
360 	if (!PageDirty(page)) {
361 		__set_page_dirty_nobuffers(page);
362 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
363 		SetPagePrivate(page);
364 		f2fs_trace_pid(page);
365 		return 1;
366 	}
367 	return 0;
368 }
369 
370 const struct address_space_operations f2fs_meta_aops = {
371 	.writepage	= f2fs_write_meta_page,
372 	.writepages	= f2fs_write_meta_pages,
373 	.set_page_dirty	= f2fs_set_meta_page_dirty,
374 	.invalidatepage = f2fs_invalidate_page,
375 	.releasepage	= f2fs_release_page,
376 };
377 
378 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
379 {
380 	struct inode_management *im = &sbi->im[type];
381 	struct ino_entry *e, *tmp;
382 
383 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
384 retry:
385 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
386 
387 	spin_lock(&im->ino_lock);
388 	e = radix_tree_lookup(&im->ino_root, ino);
389 	if (!e) {
390 		e = tmp;
391 		if (radix_tree_insert(&im->ino_root, ino, e)) {
392 			spin_unlock(&im->ino_lock);
393 			radix_tree_preload_end();
394 			goto retry;
395 		}
396 		memset(e, 0, sizeof(struct ino_entry));
397 		e->ino = ino;
398 
399 		list_add_tail(&e->list, &im->ino_list);
400 		if (type != ORPHAN_INO)
401 			im->ino_num++;
402 	}
403 	spin_unlock(&im->ino_lock);
404 	radix_tree_preload_end();
405 
406 	if (e != tmp)
407 		kmem_cache_free(ino_entry_slab, tmp);
408 }
409 
410 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
411 {
412 	struct inode_management *im = &sbi->im[type];
413 	struct ino_entry *e;
414 
415 	spin_lock(&im->ino_lock);
416 	e = radix_tree_lookup(&im->ino_root, ino);
417 	if (e) {
418 		list_del(&e->list);
419 		radix_tree_delete(&im->ino_root, ino);
420 		im->ino_num--;
421 		spin_unlock(&im->ino_lock);
422 		kmem_cache_free(ino_entry_slab, e);
423 		return;
424 	}
425 	spin_unlock(&im->ino_lock);
426 }
427 
428 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
429 {
430 	/* add new dirty ino entry into list */
431 	__add_ino_entry(sbi, ino, type);
432 }
433 
434 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
435 {
436 	/* remove dirty ino entry from list */
437 	__remove_ino_entry(sbi, ino, type);
438 }
439 
440 /* mode should be APPEND_INO or UPDATE_INO */
441 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
442 {
443 	struct inode_management *im = &sbi->im[mode];
444 	struct ino_entry *e;
445 
446 	spin_lock(&im->ino_lock);
447 	e = radix_tree_lookup(&im->ino_root, ino);
448 	spin_unlock(&im->ino_lock);
449 	return e ? true : false;
450 }
451 
452 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
453 {
454 	struct ino_entry *e, *tmp;
455 	int i;
456 
457 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
458 		struct inode_management *im = &sbi->im[i];
459 
460 		spin_lock(&im->ino_lock);
461 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
462 			list_del(&e->list);
463 			radix_tree_delete(&im->ino_root, e->ino);
464 			kmem_cache_free(ino_entry_slab, e);
465 			im->ino_num--;
466 		}
467 		spin_unlock(&im->ino_lock);
468 	}
469 }
470 
471 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
472 {
473 	struct inode_management *im = &sbi->im[ORPHAN_INO];
474 	int err = 0;
475 
476 	spin_lock(&im->ino_lock);
477 
478 #ifdef CONFIG_F2FS_FAULT_INJECTION
479 	if (time_to_inject(FAULT_ORPHAN)) {
480 		spin_unlock(&im->ino_lock);
481 		return -ENOSPC;
482 	}
483 #endif
484 	if (unlikely(im->ino_num >= sbi->max_orphans))
485 		err = -ENOSPC;
486 	else
487 		im->ino_num++;
488 	spin_unlock(&im->ino_lock);
489 
490 	return err;
491 }
492 
493 void release_orphan_inode(struct f2fs_sb_info *sbi)
494 {
495 	struct inode_management *im = &sbi->im[ORPHAN_INO];
496 
497 	spin_lock(&im->ino_lock);
498 	f2fs_bug_on(sbi, im->ino_num == 0);
499 	im->ino_num--;
500 	spin_unlock(&im->ino_lock);
501 }
502 
503 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
504 {
505 	/* add new orphan ino entry into list */
506 	__add_ino_entry(sbi, ino, ORPHAN_INO);
507 }
508 
509 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
510 {
511 	/* remove orphan entry from orphan list */
512 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
513 }
514 
515 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
516 {
517 	struct inode *inode;
518 
519 	inode = f2fs_iget(sbi->sb, ino);
520 	if (IS_ERR(inode)) {
521 		/*
522 		 * there should be a bug that we can't find the entry
523 		 * to orphan inode.
524 		 */
525 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
526 		return PTR_ERR(inode);
527 	}
528 
529 	clear_nlink(inode);
530 
531 	/* truncate all the data during iput */
532 	iput(inode);
533 	return 0;
534 }
535 
536 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
537 {
538 	block_t start_blk, orphan_blocks, i, j;
539 	int err;
540 
541 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
542 		return 0;
543 
544 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
545 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
546 
547 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
548 
549 	for (i = 0; i < orphan_blocks; i++) {
550 		struct page *page = get_meta_page(sbi, start_blk + i);
551 		struct f2fs_orphan_block *orphan_blk;
552 
553 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
554 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
555 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
556 			err = recover_orphan_inode(sbi, ino);
557 			if (err) {
558 				f2fs_put_page(page, 1);
559 				return err;
560 			}
561 		}
562 		f2fs_put_page(page, 1);
563 	}
564 	/* clear Orphan Flag */
565 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
566 	return 0;
567 }
568 
569 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
570 {
571 	struct list_head *head;
572 	struct f2fs_orphan_block *orphan_blk = NULL;
573 	unsigned int nentries = 0;
574 	unsigned short index = 1;
575 	unsigned short orphan_blocks;
576 	struct page *page = NULL;
577 	struct ino_entry *orphan = NULL;
578 	struct inode_management *im = &sbi->im[ORPHAN_INO];
579 
580 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
581 
582 	/*
583 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
584 	 * orphan inode operations are covered under f2fs_lock_op().
585 	 * And, spin_lock should be avoided due to page operations below.
586 	 */
587 	head = &im->ino_list;
588 
589 	/* loop for each orphan inode entry and write them in Jornal block */
590 	list_for_each_entry(orphan, head, list) {
591 		if (!page) {
592 			page = grab_meta_page(sbi, start_blk++);
593 			orphan_blk =
594 				(struct f2fs_orphan_block *)page_address(page);
595 			memset(orphan_blk, 0, sizeof(*orphan_blk));
596 		}
597 
598 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
599 
600 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
601 			/*
602 			 * an orphan block is full of 1020 entries,
603 			 * then we need to flush current orphan blocks
604 			 * and bring another one in memory
605 			 */
606 			orphan_blk->blk_addr = cpu_to_le16(index);
607 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
608 			orphan_blk->entry_count = cpu_to_le32(nentries);
609 			set_page_dirty(page);
610 			f2fs_put_page(page, 1);
611 			index++;
612 			nentries = 0;
613 			page = NULL;
614 		}
615 	}
616 
617 	if (page) {
618 		orphan_blk->blk_addr = cpu_to_le16(index);
619 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
620 		orphan_blk->entry_count = cpu_to_le32(nentries);
621 		set_page_dirty(page);
622 		f2fs_put_page(page, 1);
623 	}
624 }
625 
626 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
627 				block_t cp_addr, unsigned long long *version)
628 {
629 	struct page *cp_page_1, *cp_page_2 = NULL;
630 	unsigned long blk_size = sbi->blocksize;
631 	struct f2fs_checkpoint *cp_block;
632 	unsigned long long cur_version = 0, pre_version = 0;
633 	size_t crc_offset;
634 	__u32 crc = 0;
635 
636 	/* Read the 1st cp block in this CP pack */
637 	cp_page_1 = get_meta_page(sbi, cp_addr);
638 
639 	/* get the version number */
640 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
641 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
642 	if (crc_offset >= blk_size)
643 		goto invalid_cp1;
644 
645 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
646 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
647 		goto invalid_cp1;
648 
649 	pre_version = cur_cp_version(cp_block);
650 
651 	/* Read the 2nd cp block in this CP pack */
652 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
653 	cp_page_2 = get_meta_page(sbi, cp_addr);
654 
655 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
656 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
657 	if (crc_offset >= blk_size)
658 		goto invalid_cp2;
659 
660 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
661 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
662 		goto invalid_cp2;
663 
664 	cur_version = cur_cp_version(cp_block);
665 
666 	if (cur_version == pre_version) {
667 		*version = cur_version;
668 		f2fs_put_page(cp_page_2, 1);
669 		return cp_page_1;
670 	}
671 invalid_cp2:
672 	f2fs_put_page(cp_page_2, 1);
673 invalid_cp1:
674 	f2fs_put_page(cp_page_1, 1);
675 	return NULL;
676 }
677 
678 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
679 {
680 	struct f2fs_checkpoint *cp_block;
681 	struct f2fs_super_block *fsb = sbi->raw_super;
682 	struct page *cp1, *cp2, *cur_page;
683 	unsigned long blk_size = sbi->blocksize;
684 	unsigned long long cp1_version = 0, cp2_version = 0;
685 	unsigned long long cp_start_blk_no;
686 	unsigned int cp_blks = 1 + __cp_payload(sbi);
687 	block_t cp_blk_no;
688 	int i;
689 
690 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
691 	if (!sbi->ckpt)
692 		return -ENOMEM;
693 	/*
694 	 * Finding out valid cp block involves read both
695 	 * sets( cp pack1 and cp pack 2)
696 	 */
697 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
698 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
699 
700 	/* The second checkpoint pack should start at the next segment */
701 	cp_start_blk_no += ((unsigned long long)1) <<
702 				le32_to_cpu(fsb->log_blocks_per_seg);
703 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
704 
705 	if (cp1 && cp2) {
706 		if (ver_after(cp2_version, cp1_version))
707 			cur_page = cp2;
708 		else
709 			cur_page = cp1;
710 	} else if (cp1) {
711 		cur_page = cp1;
712 	} else if (cp2) {
713 		cur_page = cp2;
714 	} else {
715 		goto fail_no_cp;
716 	}
717 
718 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
719 	memcpy(sbi->ckpt, cp_block, blk_size);
720 
721 	/* Sanity checking of checkpoint */
722 	if (sanity_check_ckpt(sbi))
723 		goto fail_no_cp;
724 
725 	if (cp_blks <= 1)
726 		goto done;
727 
728 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
729 	if (cur_page == cp2)
730 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
731 
732 	for (i = 1; i < cp_blks; i++) {
733 		void *sit_bitmap_ptr;
734 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
735 
736 		cur_page = get_meta_page(sbi, cp_blk_no + i);
737 		sit_bitmap_ptr = page_address(cur_page);
738 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
739 		f2fs_put_page(cur_page, 1);
740 	}
741 done:
742 	f2fs_put_page(cp1, 1);
743 	f2fs_put_page(cp2, 1);
744 	return 0;
745 
746 fail_no_cp:
747 	kfree(sbi->ckpt);
748 	return -EINVAL;
749 }
750 
751 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
752 {
753 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
754 	struct f2fs_inode_info *fi = F2FS_I(inode);
755 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
756 
757 	if (is_inode_flag_set(fi, flag))
758 		return;
759 
760 	set_inode_flag(fi, flag);
761 	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
762 	stat_inc_dirty_inode(sbi, type);
763 }
764 
765 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
766 {
767 	struct f2fs_inode_info *fi = F2FS_I(inode);
768 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
769 
770 	if (get_dirty_pages(inode) ||
771 			!is_inode_flag_set(F2FS_I(inode), flag))
772 		return;
773 
774 	list_del_init(&fi->dirty_list);
775 	clear_inode_flag(fi, flag);
776 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
777 }
778 
779 void update_dirty_page(struct inode *inode, struct page *page)
780 {
781 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
782 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
783 
784 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
785 			!S_ISLNK(inode->i_mode))
786 		return;
787 
788 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) {
789 		spin_lock(&sbi->inode_lock[type]);
790 		__add_dirty_inode(inode, type);
791 		spin_unlock(&sbi->inode_lock[type]);
792 	}
793 
794 	inode_inc_dirty_pages(inode);
795 	SetPagePrivate(page);
796 	f2fs_trace_pid(page);
797 }
798 
799 void remove_dirty_inode(struct inode *inode)
800 {
801 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
802 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
803 
804 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
805 			!S_ISLNK(inode->i_mode))
806 		return;
807 
808 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
809 		return;
810 
811 	spin_lock(&sbi->inode_lock[type]);
812 	__remove_dirty_inode(inode, type);
813 	spin_unlock(&sbi->inode_lock[type]);
814 }
815 
816 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
817 {
818 	struct list_head *head;
819 	struct inode *inode;
820 	struct f2fs_inode_info *fi;
821 	bool is_dir = (type == DIR_INODE);
822 
823 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
824 				get_pages(sbi, is_dir ?
825 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
826 retry:
827 	if (unlikely(f2fs_cp_error(sbi)))
828 		return -EIO;
829 
830 	spin_lock(&sbi->inode_lock[type]);
831 
832 	head = &sbi->inode_list[type];
833 	if (list_empty(head)) {
834 		spin_unlock(&sbi->inode_lock[type]);
835 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
836 				get_pages(sbi, is_dir ?
837 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
838 		return 0;
839 	}
840 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
841 	inode = igrab(&fi->vfs_inode);
842 	spin_unlock(&sbi->inode_lock[type]);
843 	if (inode) {
844 		filemap_fdatawrite(inode->i_mapping);
845 		iput(inode);
846 	} else {
847 		/*
848 		 * We should submit bio, since it exists several
849 		 * wribacking dentry pages in the freeing inode.
850 		 */
851 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
852 		cond_resched();
853 	}
854 	goto retry;
855 }
856 
857 /*
858  * Freeze all the FS-operations for checkpoint.
859  */
860 static int block_operations(struct f2fs_sb_info *sbi)
861 {
862 	struct writeback_control wbc = {
863 		.sync_mode = WB_SYNC_ALL,
864 		.nr_to_write = LONG_MAX,
865 		.for_reclaim = 0,
866 	};
867 	struct blk_plug plug;
868 	int err = 0;
869 
870 	blk_start_plug(&plug);
871 
872 retry_flush_dents:
873 	f2fs_lock_all(sbi);
874 	/* write all the dirty dentry pages */
875 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
876 		f2fs_unlock_all(sbi);
877 		err = sync_dirty_inodes(sbi, DIR_INODE);
878 		if (err)
879 			goto out;
880 		goto retry_flush_dents;
881 	}
882 
883 	/*
884 	 * POR: we should ensure that there are no dirty node pages
885 	 * until finishing nat/sit flush.
886 	 */
887 retry_flush_nodes:
888 	down_write(&sbi->node_write);
889 
890 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
891 		up_write(&sbi->node_write);
892 		err = sync_node_pages(sbi, &wbc);
893 		if (err) {
894 			f2fs_unlock_all(sbi);
895 			goto out;
896 		}
897 		goto retry_flush_nodes;
898 	}
899 out:
900 	blk_finish_plug(&plug);
901 	return err;
902 }
903 
904 static void unblock_operations(struct f2fs_sb_info *sbi)
905 {
906 	up_write(&sbi->node_write);
907 	f2fs_unlock_all(sbi);
908 }
909 
910 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
911 {
912 	DEFINE_WAIT(wait);
913 
914 	for (;;) {
915 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
916 
917 		if (!get_pages(sbi, F2FS_WRITEBACK))
918 			break;
919 
920 		io_schedule_timeout(5*HZ);
921 	}
922 	finish_wait(&sbi->cp_wait, &wait);
923 }
924 
925 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
926 {
927 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
928 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
929 	struct f2fs_nm_info *nm_i = NM_I(sbi);
930 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
931 	nid_t last_nid = nm_i->next_scan_nid;
932 	block_t start_blk;
933 	unsigned int data_sum_blocks, orphan_blocks;
934 	__u32 crc32 = 0;
935 	int i;
936 	int cp_payload_blks = __cp_payload(sbi);
937 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
938 	bool invalidate = false;
939 	struct super_block *sb = sbi->sb;
940 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
941 	u64 kbytes_written;
942 
943 	/*
944 	 * This avoids to conduct wrong roll-forward operations and uses
945 	 * metapages, so should be called prior to sync_meta_pages below.
946 	 */
947 	if (discard_next_dnode(sbi, discard_blk))
948 		invalidate = true;
949 
950 	/* Flush all the NAT/SIT pages */
951 	while (get_pages(sbi, F2FS_DIRTY_META)) {
952 		sync_meta_pages(sbi, META, LONG_MAX);
953 		if (unlikely(f2fs_cp_error(sbi)))
954 			return -EIO;
955 	}
956 
957 	next_free_nid(sbi, &last_nid);
958 
959 	/*
960 	 * modify checkpoint
961 	 * version number is already updated
962 	 */
963 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
964 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
965 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
966 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
967 		ckpt->cur_node_segno[i] =
968 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
969 		ckpt->cur_node_blkoff[i] =
970 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
971 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
972 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
973 	}
974 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
975 		ckpt->cur_data_segno[i] =
976 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
977 		ckpt->cur_data_blkoff[i] =
978 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
979 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
980 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
981 	}
982 
983 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
984 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
985 	ckpt->next_free_nid = cpu_to_le32(last_nid);
986 
987 	/* 2 cp  + n data seg summary + orphan inode blocks */
988 	data_sum_blocks = npages_for_summary_flush(sbi, false);
989 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
990 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
991 	else
992 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
993 
994 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
995 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
996 			orphan_blocks);
997 
998 	if (__remain_node_summaries(cpc->reason))
999 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1000 				cp_payload_blks + data_sum_blocks +
1001 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1002 	else
1003 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1004 				cp_payload_blks + data_sum_blocks +
1005 				orphan_blocks);
1006 
1007 	if (cpc->reason == CP_UMOUNT)
1008 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1009 	else
1010 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1011 
1012 	if (cpc->reason == CP_FASTBOOT)
1013 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1014 	else
1015 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1016 
1017 	if (orphan_num)
1018 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1019 	else
1020 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1021 
1022 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1023 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1024 
1025 	/* update SIT/NAT bitmap */
1026 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1027 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1028 
1029 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1030 	*((__le32 *)((unsigned char *)ckpt +
1031 				le32_to_cpu(ckpt->checksum_offset)))
1032 				= cpu_to_le32(crc32);
1033 
1034 	start_blk = __start_cp_addr(sbi);
1035 
1036 	/* need to wait for end_io results */
1037 	wait_on_all_pages_writeback(sbi);
1038 	if (unlikely(f2fs_cp_error(sbi)))
1039 		return -EIO;
1040 
1041 	/* write out checkpoint buffer at block 0 */
1042 	update_meta_page(sbi, ckpt, start_blk++);
1043 
1044 	for (i = 1; i < 1 + cp_payload_blks; i++)
1045 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1046 							start_blk++);
1047 
1048 	if (orphan_num) {
1049 		write_orphan_inodes(sbi, start_blk);
1050 		start_blk += orphan_blocks;
1051 	}
1052 
1053 	write_data_summaries(sbi, start_blk);
1054 	start_blk += data_sum_blocks;
1055 
1056 	/* Record write statistics in the hot node summary */
1057 	kbytes_written = sbi->kbytes_written;
1058 	if (sb->s_bdev->bd_part)
1059 		kbytes_written += BD_PART_WRITTEN(sbi);
1060 
1061 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1062 
1063 	if (__remain_node_summaries(cpc->reason)) {
1064 		write_node_summaries(sbi, start_blk);
1065 		start_blk += NR_CURSEG_NODE_TYPE;
1066 	}
1067 
1068 	/* writeout checkpoint block */
1069 	update_meta_page(sbi, ckpt, start_blk);
1070 
1071 	/* wait for previous submitted node/meta pages writeback */
1072 	wait_on_all_pages_writeback(sbi);
1073 
1074 	if (unlikely(f2fs_cp_error(sbi)))
1075 		return -EIO;
1076 
1077 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1078 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1079 
1080 	/* update user_block_counts */
1081 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1082 	sbi->alloc_valid_block_count = 0;
1083 
1084 	/* Here, we only have one bio having CP pack */
1085 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1086 
1087 	/* wait for previous submitted meta pages writeback */
1088 	wait_on_all_pages_writeback(sbi);
1089 
1090 	/*
1091 	 * invalidate meta page which is used temporarily for zeroing out
1092 	 * block at the end of warm node chain.
1093 	 */
1094 	if (invalidate)
1095 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1096 								discard_blk);
1097 
1098 	release_ino_entry(sbi, false);
1099 
1100 	if (unlikely(f2fs_cp_error(sbi)))
1101 		return -EIO;
1102 
1103 	clear_prefree_segments(sbi, cpc);
1104 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1105 
1106 	return 0;
1107 }
1108 
1109 /*
1110  * We guarantee that this checkpoint procedure will not fail.
1111  */
1112 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1113 {
1114 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1115 	unsigned long long ckpt_ver;
1116 	int err = 0;
1117 
1118 	mutex_lock(&sbi->cp_mutex);
1119 
1120 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1121 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1122 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1123 		goto out;
1124 	if (unlikely(f2fs_cp_error(sbi))) {
1125 		err = -EIO;
1126 		goto out;
1127 	}
1128 	if (f2fs_readonly(sbi->sb)) {
1129 		err = -EROFS;
1130 		goto out;
1131 	}
1132 
1133 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1134 
1135 	err = block_operations(sbi);
1136 	if (err)
1137 		goto out;
1138 
1139 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1140 
1141 	f2fs_flush_merged_bios(sbi);
1142 
1143 	/*
1144 	 * update checkpoint pack index
1145 	 * Increase the version number so that
1146 	 * SIT entries and seg summaries are written at correct place
1147 	 */
1148 	ckpt_ver = cur_cp_version(ckpt);
1149 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1150 
1151 	/* write cached NAT/SIT entries to NAT/SIT area */
1152 	flush_nat_entries(sbi);
1153 	flush_sit_entries(sbi, cpc);
1154 
1155 	/* unlock all the fs_lock[] in do_checkpoint() */
1156 	err = do_checkpoint(sbi, cpc);
1157 
1158 	unblock_operations(sbi);
1159 	stat_inc_cp_count(sbi->stat_info);
1160 
1161 	if (cpc->reason == CP_RECOVERY)
1162 		f2fs_msg(sbi->sb, KERN_NOTICE,
1163 			"checkpoint: version = %llx", ckpt_ver);
1164 
1165 	/* do checkpoint periodically */
1166 	f2fs_update_time(sbi, CP_TIME);
1167 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1168 out:
1169 	mutex_unlock(&sbi->cp_mutex);
1170 	return err;
1171 }
1172 
1173 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1174 {
1175 	int i;
1176 
1177 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1178 		struct inode_management *im = &sbi->im[i];
1179 
1180 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1181 		spin_lock_init(&im->ino_lock);
1182 		INIT_LIST_HEAD(&im->ino_list);
1183 		im->ino_num = 0;
1184 	}
1185 
1186 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1187 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1188 				F2FS_ORPHANS_PER_BLOCK;
1189 }
1190 
1191 int __init create_checkpoint_caches(void)
1192 {
1193 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1194 			sizeof(struct ino_entry));
1195 	if (!ino_entry_slab)
1196 		return -ENOMEM;
1197 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1198 			sizeof(struct inode_entry));
1199 	if (!inode_entry_slab) {
1200 		kmem_cache_destroy(ino_entry_slab);
1201 		return -ENOMEM;
1202 	}
1203 	return 0;
1204 }
1205 
1206 void destroy_checkpoint_caches(void)
1207 {
1208 	kmem_cache_destroy(ino_entry_slab);
1209 	kmem_cache_destroy(inode_entry_slab);
1210 }
1211