xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 04d328de)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
32 	sbi->sb->s_flags |= MS_RDONLY;
33 	if (!end_io)
34 		f2fs_flush_merged_bios(sbi);
35 }
36 
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 	struct address_space *mapping = META_MAPPING(sbi);
43 	struct page *page = NULL;
44 repeat:
45 	page = f2fs_grab_cache_page(mapping, index, false);
46 	if (!page) {
47 		cond_resched();
48 		goto repeat;
49 	}
50 	f2fs_wait_on_page_writeback(page, META, true);
51 	SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.op = REQ_OP_READ,
67 		.op_flags = READ_SYNC | REQ_META | REQ_PRIO,
68 		.old_blkaddr = index,
69 		.new_blkaddr = index,
70 		.encrypted_page = NULL,
71 	};
72 
73 	if (unlikely(!is_meta))
74 		fio.op_flags &= ~REQ_META;
75 repeat:
76 	page = f2fs_grab_cache_page(mapping, index, false);
77 	if (!page) {
78 		cond_resched();
79 		goto repeat;
80 	}
81 	if (PageUptodate(page))
82 		goto out;
83 
84 	fio.page = page;
85 
86 	if (f2fs_submit_page_bio(&fio)) {
87 		f2fs_put_page(page, 1);
88 		goto repeat;
89 	}
90 
91 	lock_page(page);
92 	if (unlikely(page->mapping != mapping)) {
93 		f2fs_put_page(page, 1);
94 		goto repeat;
95 	}
96 
97 	/*
98 	 * if there is any IO error when accessing device, make our filesystem
99 	 * readonly and make sure do not write checkpoint with non-uptodate
100 	 * meta page.
101 	 */
102 	if (unlikely(!PageUptodate(page)))
103 		f2fs_stop_checkpoint(sbi, false);
104 out:
105 	return page;
106 }
107 
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110 	return __get_meta_page(sbi, index, true);
111 }
112 
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 	return __get_meta_page(sbi, index, false);
117 }
118 
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
120 {
121 	switch (type) {
122 	case META_NAT:
123 		break;
124 	case META_SIT:
125 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126 			return false;
127 		break;
128 	case META_SSA:
129 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130 			blkaddr < SM_I(sbi)->ssa_blkaddr))
131 			return false;
132 		break;
133 	case META_CP:
134 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135 			blkaddr < __start_cp_addr(sbi)))
136 			return false;
137 		break;
138 	case META_POR:
139 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140 			blkaddr < MAIN_BLKADDR(sbi)))
141 			return false;
142 		break;
143 	default:
144 		BUG();
145 	}
146 
147 	return true;
148 }
149 
150 /*
151  * Readahead CP/NAT/SIT/SSA pages
152  */
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154 							int type, bool sync)
155 {
156 	struct page *page;
157 	block_t blkno = start;
158 	struct f2fs_io_info fio = {
159 		.sbi = sbi,
160 		.type = META,
161 		.op = REQ_OP_READ,
162 		.op_flags = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
163 		.encrypted_page = NULL,
164 	};
165 	struct blk_plug plug;
166 
167 	if (unlikely(type == META_POR))
168 		fio.op_flags &= ~REQ_META;
169 
170 	blk_start_plug(&plug);
171 	for (; nrpages-- > 0; blkno++) {
172 
173 		if (!is_valid_blkaddr(sbi, blkno, type))
174 			goto out;
175 
176 		switch (type) {
177 		case META_NAT:
178 			if (unlikely(blkno >=
179 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
180 				blkno = 0;
181 			/* get nat block addr */
182 			fio.new_blkaddr = current_nat_addr(sbi,
183 					blkno * NAT_ENTRY_PER_BLOCK);
184 			break;
185 		case META_SIT:
186 			/* get sit block addr */
187 			fio.new_blkaddr = current_sit_addr(sbi,
188 					blkno * SIT_ENTRY_PER_BLOCK);
189 			break;
190 		case META_SSA:
191 		case META_CP:
192 		case META_POR:
193 			fio.new_blkaddr = blkno;
194 			break;
195 		default:
196 			BUG();
197 		}
198 
199 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
200 						fio.new_blkaddr, false);
201 		if (!page)
202 			continue;
203 		if (PageUptodate(page)) {
204 			f2fs_put_page(page, 1);
205 			continue;
206 		}
207 
208 		fio.page = page;
209 		fio.old_blkaddr = fio.new_blkaddr;
210 		f2fs_submit_page_mbio(&fio);
211 		f2fs_put_page(page, 0);
212 	}
213 out:
214 	f2fs_submit_merged_bio(sbi, META, READ);
215 	blk_finish_plug(&plug);
216 	return blkno - start;
217 }
218 
219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
220 {
221 	struct page *page;
222 	bool readahead = false;
223 
224 	page = find_get_page(META_MAPPING(sbi), index);
225 	if (!page || !PageUptodate(page))
226 		readahead = true;
227 	f2fs_put_page(page, 0);
228 
229 	if (readahead)
230 		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
231 }
232 
233 static int f2fs_write_meta_page(struct page *page,
234 				struct writeback_control *wbc)
235 {
236 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237 
238 	trace_f2fs_writepage(page, META);
239 
240 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241 		goto redirty_out;
242 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243 		goto redirty_out;
244 	if (unlikely(f2fs_cp_error(sbi)))
245 		goto redirty_out;
246 
247 	write_meta_page(sbi, page);
248 	dec_page_count(sbi, F2FS_DIRTY_META);
249 
250 	if (wbc->for_reclaim)
251 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
252 
253 	unlock_page(page);
254 
255 	if (unlikely(f2fs_cp_error(sbi)))
256 		f2fs_submit_merged_bio(sbi, META, WRITE);
257 
258 	return 0;
259 
260 redirty_out:
261 	redirty_page_for_writepage(wbc, page);
262 	return AOP_WRITEPAGE_ACTIVATE;
263 }
264 
265 static int f2fs_write_meta_pages(struct address_space *mapping,
266 				struct writeback_control *wbc)
267 {
268 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
269 	long diff, written;
270 
271 	/* collect a number of dirty meta pages and write together */
272 	if (wbc->for_kupdate ||
273 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
274 		goto skip_write;
275 
276 	trace_f2fs_writepages(mapping->host, wbc, META);
277 
278 	/* if mounting is failed, skip writing node pages */
279 	mutex_lock(&sbi->cp_mutex);
280 	diff = nr_pages_to_write(sbi, META, wbc);
281 	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
282 	mutex_unlock(&sbi->cp_mutex);
283 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
284 	return 0;
285 
286 skip_write:
287 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
288 	trace_f2fs_writepages(mapping->host, wbc, META);
289 	return 0;
290 }
291 
292 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
293 						long nr_to_write)
294 {
295 	struct address_space *mapping = META_MAPPING(sbi);
296 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
297 	struct pagevec pvec;
298 	long nwritten = 0;
299 	struct writeback_control wbc = {
300 		.for_reclaim = 0,
301 	};
302 	struct blk_plug plug;
303 
304 	pagevec_init(&pvec, 0);
305 
306 	blk_start_plug(&plug);
307 
308 	while (index <= end) {
309 		int i, nr_pages;
310 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
311 				PAGECACHE_TAG_DIRTY,
312 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
313 		if (unlikely(nr_pages == 0))
314 			break;
315 
316 		for (i = 0; i < nr_pages; i++) {
317 			struct page *page = pvec.pages[i];
318 
319 			if (prev == ULONG_MAX)
320 				prev = page->index - 1;
321 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
322 				pagevec_release(&pvec);
323 				goto stop;
324 			}
325 
326 			lock_page(page);
327 
328 			if (unlikely(page->mapping != mapping)) {
329 continue_unlock:
330 				unlock_page(page);
331 				continue;
332 			}
333 			if (!PageDirty(page)) {
334 				/* someone wrote it for us */
335 				goto continue_unlock;
336 			}
337 
338 			f2fs_wait_on_page_writeback(page, META, true);
339 
340 			BUG_ON(PageWriteback(page));
341 			if (!clear_page_dirty_for_io(page))
342 				goto continue_unlock;
343 
344 			if (mapping->a_ops->writepage(page, &wbc)) {
345 				unlock_page(page);
346 				break;
347 			}
348 			nwritten++;
349 			prev = page->index;
350 			if (unlikely(nwritten >= nr_to_write))
351 				break;
352 		}
353 		pagevec_release(&pvec);
354 		cond_resched();
355 	}
356 stop:
357 	if (nwritten)
358 		f2fs_submit_merged_bio(sbi, type, WRITE);
359 
360 	blk_finish_plug(&plug);
361 
362 	return nwritten;
363 }
364 
365 static int f2fs_set_meta_page_dirty(struct page *page)
366 {
367 	trace_f2fs_set_page_dirty(page, META);
368 
369 	SetPageUptodate(page);
370 	if (!PageDirty(page)) {
371 		__set_page_dirty_nobuffers(page);
372 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
373 		SetPagePrivate(page);
374 		f2fs_trace_pid(page);
375 		return 1;
376 	}
377 	return 0;
378 }
379 
380 const struct address_space_operations f2fs_meta_aops = {
381 	.writepage	= f2fs_write_meta_page,
382 	.writepages	= f2fs_write_meta_pages,
383 	.set_page_dirty	= f2fs_set_meta_page_dirty,
384 	.invalidatepage = f2fs_invalidate_page,
385 	.releasepage	= f2fs_release_page,
386 };
387 
388 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
389 {
390 	struct inode_management *im = &sbi->im[type];
391 	struct ino_entry *e, *tmp;
392 
393 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
394 retry:
395 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
396 
397 	spin_lock(&im->ino_lock);
398 	e = radix_tree_lookup(&im->ino_root, ino);
399 	if (!e) {
400 		e = tmp;
401 		if (radix_tree_insert(&im->ino_root, ino, e)) {
402 			spin_unlock(&im->ino_lock);
403 			radix_tree_preload_end();
404 			goto retry;
405 		}
406 		memset(e, 0, sizeof(struct ino_entry));
407 		e->ino = ino;
408 
409 		list_add_tail(&e->list, &im->ino_list);
410 		if (type != ORPHAN_INO)
411 			im->ino_num++;
412 	}
413 	spin_unlock(&im->ino_lock);
414 	radix_tree_preload_end();
415 
416 	if (e != tmp)
417 		kmem_cache_free(ino_entry_slab, tmp);
418 }
419 
420 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
421 {
422 	struct inode_management *im = &sbi->im[type];
423 	struct ino_entry *e;
424 
425 	spin_lock(&im->ino_lock);
426 	e = radix_tree_lookup(&im->ino_root, ino);
427 	if (e) {
428 		list_del(&e->list);
429 		radix_tree_delete(&im->ino_root, ino);
430 		im->ino_num--;
431 		spin_unlock(&im->ino_lock);
432 		kmem_cache_free(ino_entry_slab, e);
433 		return;
434 	}
435 	spin_unlock(&im->ino_lock);
436 }
437 
438 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
439 {
440 	/* add new dirty ino entry into list */
441 	__add_ino_entry(sbi, ino, type);
442 }
443 
444 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
445 {
446 	/* remove dirty ino entry from list */
447 	__remove_ino_entry(sbi, ino, type);
448 }
449 
450 /* mode should be APPEND_INO or UPDATE_INO */
451 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
452 {
453 	struct inode_management *im = &sbi->im[mode];
454 	struct ino_entry *e;
455 
456 	spin_lock(&im->ino_lock);
457 	e = radix_tree_lookup(&im->ino_root, ino);
458 	spin_unlock(&im->ino_lock);
459 	return e ? true : false;
460 }
461 
462 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
463 {
464 	struct ino_entry *e, *tmp;
465 	int i;
466 
467 	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
468 		struct inode_management *im = &sbi->im[i];
469 
470 		spin_lock(&im->ino_lock);
471 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
472 			list_del(&e->list);
473 			radix_tree_delete(&im->ino_root, e->ino);
474 			kmem_cache_free(ino_entry_slab, e);
475 			im->ino_num--;
476 		}
477 		spin_unlock(&im->ino_lock);
478 	}
479 }
480 
481 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
482 {
483 	struct inode_management *im = &sbi->im[ORPHAN_INO];
484 	int err = 0;
485 
486 	spin_lock(&im->ino_lock);
487 
488 #ifdef CONFIG_F2FS_FAULT_INJECTION
489 	if (time_to_inject(FAULT_ORPHAN)) {
490 		spin_unlock(&im->ino_lock);
491 		return -ENOSPC;
492 	}
493 #endif
494 	if (unlikely(im->ino_num >= sbi->max_orphans))
495 		err = -ENOSPC;
496 	else
497 		im->ino_num++;
498 	spin_unlock(&im->ino_lock);
499 
500 	return err;
501 }
502 
503 void release_orphan_inode(struct f2fs_sb_info *sbi)
504 {
505 	struct inode_management *im = &sbi->im[ORPHAN_INO];
506 
507 	spin_lock(&im->ino_lock);
508 	f2fs_bug_on(sbi, im->ino_num == 0);
509 	im->ino_num--;
510 	spin_unlock(&im->ino_lock);
511 }
512 
513 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
514 {
515 	/* add new orphan ino entry into list */
516 	__add_ino_entry(sbi, ino, ORPHAN_INO);
517 }
518 
519 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
520 {
521 	/* remove orphan entry from orphan list */
522 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
523 }
524 
525 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
526 {
527 	struct inode *inode;
528 
529 	inode = f2fs_iget(sbi->sb, ino);
530 	if (IS_ERR(inode)) {
531 		/*
532 		 * there should be a bug that we can't find the entry
533 		 * to orphan inode.
534 		 */
535 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
536 		return PTR_ERR(inode);
537 	}
538 
539 	clear_nlink(inode);
540 
541 	/* truncate all the data during iput */
542 	iput(inode);
543 	return 0;
544 }
545 
546 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
547 {
548 	block_t start_blk, orphan_blocks, i, j;
549 	int err;
550 
551 	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
552 		return 0;
553 
554 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
555 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
556 
557 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
558 
559 	for (i = 0; i < orphan_blocks; i++) {
560 		struct page *page = get_meta_page(sbi, start_blk + i);
561 		struct f2fs_orphan_block *orphan_blk;
562 
563 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
564 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
565 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
566 			err = recover_orphan_inode(sbi, ino);
567 			if (err) {
568 				f2fs_put_page(page, 1);
569 				return err;
570 			}
571 		}
572 		f2fs_put_page(page, 1);
573 	}
574 	/* clear Orphan Flag */
575 	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
576 	return 0;
577 }
578 
579 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
580 {
581 	struct list_head *head;
582 	struct f2fs_orphan_block *orphan_blk = NULL;
583 	unsigned int nentries = 0;
584 	unsigned short index = 1;
585 	unsigned short orphan_blocks;
586 	struct page *page = NULL;
587 	struct ino_entry *orphan = NULL;
588 	struct inode_management *im = &sbi->im[ORPHAN_INO];
589 
590 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
591 
592 	/*
593 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
594 	 * orphan inode operations are covered under f2fs_lock_op().
595 	 * And, spin_lock should be avoided due to page operations below.
596 	 */
597 	head = &im->ino_list;
598 
599 	/* loop for each orphan inode entry and write them in Jornal block */
600 	list_for_each_entry(orphan, head, list) {
601 		if (!page) {
602 			page = grab_meta_page(sbi, start_blk++);
603 			orphan_blk =
604 				(struct f2fs_orphan_block *)page_address(page);
605 			memset(orphan_blk, 0, sizeof(*orphan_blk));
606 		}
607 
608 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
609 
610 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
611 			/*
612 			 * an orphan block is full of 1020 entries,
613 			 * then we need to flush current orphan blocks
614 			 * and bring another one in memory
615 			 */
616 			orphan_blk->blk_addr = cpu_to_le16(index);
617 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
618 			orphan_blk->entry_count = cpu_to_le32(nentries);
619 			set_page_dirty(page);
620 			f2fs_put_page(page, 1);
621 			index++;
622 			nentries = 0;
623 			page = NULL;
624 		}
625 	}
626 
627 	if (page) {
628 		orphan_blk->blk_addr = cpu_to_le16(index);
629 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
630 		orphan_blk->entry_count = cpu_to_le32(nentries);
631 		set_page_dirty(page);
632 		f2fs_put_page(page, 1);
633 	}
634 }
635 
636 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
637 				block_t cp_addr, unsigned long long *version)
638 {
639 	struct page *cp_page_1, *cp_page_2 = NULL;
640 	unsigned long blk_size = sbi->blocksize;
641 	struct f2fs_checkpoint *cp_block;
642 	unsigned long long cur_version = 0, pre_version = 0;
643 	size_t crc_offset;
644 	__u32 crc = 0;
645 
646 	/* Read the 1st cp block in this CP pack */
647 	cp_page_1 = get_meta_page(sbi, cp_addr);
648 
649 	/* get the version number */
650 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
651 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
652 	if (crc_offset >= blk_size)
653 		goto invalid_cp1;
654 
655 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
656 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
657 		goto invalid_cp1;
658 
659 	pre_version = cur_cp_version(cp_block);
660 
661 	/* Read the 2nd cp block in this CP pack */
662 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
663 	cp_page_2 = get_meta_page(sbi, cp_addr);
664 
665 	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
666 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
667 	if (crc_offset >= blk_size)
668 		goto invalid_cp2;
669 
670 	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
671 	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
672 		goto invalid_cp2;
673 
674 	cur_version = cur_cp_version(cp_block);
675 
676 	if (cur_version == pre_version) {
677 		*version = cur_version;
678 		f2fs_put_page(cp_page_2, 1);
679 		return cp_page_1;
680 	}
681 invalid_cp2:
682 	f2fs_put_page(cp_page_2, 1);
683 invalid_cp1:
684 	f2fs_put_page(cp_page_1, 1);
685 	return NULL;
686 }
687 
688 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
689 {
690 	struct f2fs_checkpoint *cp_block;
691 	struct f2fs_super_block *fsb = sbi->raw_super;
692 	struct page *cp1, *cp2, *cur_page;
693 	unsigned long blk_size = sbi->blocksize;
694 	unsigned long long cp1_version = 0, cp2_version = 0;
695 	unsigned long long cp_start_blk_no;
696 	unsigned int cp_blks = 1 + __cp_payload(sbi);
697 	block_t cp_blk_no;
698 	int i;
699 
700 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
701 	if (!sbi->ckpt)
702 		return -ENOMEM;
703 	/*
704 	 * Finding out valid cp block involves read both
705 	 * sets( cp pack1 and cp pack 2)
706 	 */
707 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
708 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
709 
710 	/* The second checkpoint pack should start at the next segment */
711 	cp_start_blk_no += ((unsigned long long)1) <<
712 				le32_to_cpu(fsb->log_blocks_per_seg);
713 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
714 
715 	if (cp1 && cp2) {
716 		if (ver_after(cp2_version, cp1_version))
717 			cur_page = cp2;
718 		else
719 			cur_page = cp1;
720 	} else if (cp1) {
721 		cur_page = cp1;
722 	} else if (cp2) {
723 		cur_page = cp2;
724 	} else {
725 		goto fail_no_cp;
726 	}
727 
728 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
729 	memcpy(sbi->ckpt, cp_block, blk_size);
730 
731 	/* Sanity checking of checkpoint */
732 	if (sanity_check_ckpt(sbi))
733 		goto fail_no_cp;
734 
735 	if (cp_blks <= 1)
736 		goto done;
737 
738 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
739 	if (cur_page == cp2)
740 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
741 
742 	for (i = 1; i < cp_blks; i++) {
743 		void *sit_bitmap_ptr;
744 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
745 
746 		cur_page = get_meta_page(sbi, cp_blk_no + i);
747 		sit_bitmap_ptr = page_address(cur_page);
748 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
749 		f2fs_put_page(cur_page, 1);
750 	}
751 done:
752 	f2fs_put_page(cp1, 1);
753 	f2fs_put_page(cp2, 1);
754 	return 0;
755 
756 fail_no_cp:
757 	kfree(sbi->ckpt);
758 	return -EINVAL;
759 }
760 
761 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
762 {
763 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
764 	struct f2fs_inode_info *fi = F2FS_I(inode);
765 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
766 
767 	if (is_inode_flag_set(fi, flag))
768 		return;
769 
770 	set_inode_flag(fi, flag);
771 	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
772 	stat_inc_dirty_inode(sbi, type);
773 }
774 
775 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
776 {
777 	struct f2fs_inode_info *fi = F2FS_I(inode);
778 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
779 
780 	if (get_dirty_pages(inode) ||
781 			!is_inode_flag_set(F2FS_I(inode), flag))
782 		return;
783 
784 	list_del_init(&fi->dirty_list);
785 	clear_inode_flag(fi, flag);
786 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
787 }
788 
789 void update_dirty_page(struct inode *inode, struct page *page)
790 {
791 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
792 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
793 
794 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
795 			!S_ISLNK(inode->i_mode))
796 		return;
797 
798 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) {
799 		spin_lock(&sbi->inode_lock[type]);
800 		__add_dirty_inode(inode, type);
801 		spin_unlock(&sbi->inode_lock[type]);
802 	}
803 
804 	inode_inc_dirty_pages(inode);
805 	SetPagePrivate(page);
806 	f2fs_trace_pid(page);
807 }
808 
809 void remove_dirty_inode(struct inode *inode)
810 {
811 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
812 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
813 
814 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
815 			!S_ISLNK(inode->i_mode))
816 		return;
817 
818 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
819 		return;
820 
821 	spin_lock(&sbi->inode_lock[type]);
822 	__remove_dirty_inode(inode, type);
823 	spin_unlock(&sbi->inode_lock[type]);
824 }
825 
826 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
827 {
828 	struct list_head *head;
829 	struct inode *inode;
830 	struct f2fs_inode_info *fi;
831 	bool is_dir = (type == DIR_INODE);
832 
833 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
834 				get_pages(sbi, is_dir ?
835 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
836 retry:
837 	if (unlikely(f2fs_cp_error(sbi)))
838 		return -EIO;
839 
840 	spin_lock(&sbi->inode_lock[type]);
841 
842 	head = &sbi->inode_list[type];
843 	if (list_empty(head)) {
844 		spin_unlock(&sbi->inode_lock[type]);
845 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
846 				get_pages(sbi, is_dir ?
847 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
848 		return 0;
849 	}
850 	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
851 	inode = igrab(&fi->vfs_inode);
852 	spin_unlock(&sbi->inode_lock[type]);
853 	if (inode) {
854 		filemap_fdatawrite(inode->i_mapping);
855 		iput(inode);
856 	} else {
857 		/*
858 		 * We should submit bio, since it exists several
859 		 * wribacking dentry pages in the freeing inode.
860 		 */
861 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
862 		cond_resched();
863 	}
864 	goto retry;
865 }
866 
867 /*
868  * Freeze all the FS-operations for checkpoint.
869  */
870 static int block_operations(struct f2fs_sb_info *sbi)
871 {
872 	struct writeback_control wbc = {
873 		.sync_mode = WB_SYNC_ALL,
874 		.nr_to_write = LONG_MAX,
875 		.for_reclaim = 0,
876 	};
877 	struct blk_plug plug;
878 	int err = 0;
879 
880 	blk_start_plug(&plug);
881 
882 retry_flush_dents:
883 	f2fs_lock_all(sbi);
884 	/* write all the dirty dentry pages */
885 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
886 		f2fs_unlock_all(sbi);
887 		err = sync_dirty_inodes(sbi, DIR_INODE);
888 		if (err)
889 			goto out;
890 		goto retry_flush_dents;
891 	}
892 
893 	/*
894 	 * POR: we should ensure that there are no dirty node pages
895 	 * until finishing nat/sit flush.
896 	 */
897 retry_flush_nodes:
898 	down_write(&sbi->node_write);
899 
900 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
901 		up_write(&sbi->node_write);
902 		err = sync_node_pages(sbi, &wbc);
903 		if (err) {
904 			f2fs_unlock_all(sbi);
905 			goto out;
906 		}
907 		goto retry_flush_nodes;
908 	}
909 out:
910 	blk_finish_plug(&plug);
911 	return err;
912 }
913 
914 static void unblock_operations(struct f2fs_sb_info *sbi)
915 {
916 	up_write(&sbi->node_write);
917 	f2fs_unlock_all(sbi);
918 }
919 
920 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
921 {
922 	DEFINE_WAIT(wait);
923 
924 	for (;;) {
925 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
926 
927 		if (!atomic_read(&sbi->nr_wb_bios))
928 			break;
929 
930 		io_schedule_timeout(5*HZ);
931 	}
932 	finish_wait(&sbi->cp_wait, &wait);
933 }
934 
935 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
936 {
937 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
938 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
939 	struct f2fs_nm_info *nm_i = NM_I(sbi);
940 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
941 	nid_t last_nid = nm_i->next_scan_nid;
942 	block_t start_blk;
943 	unsigned int data_sum_blocks, orphan_blocks;
944 	__u32 crc32 = 0;
945 	int i;
946 	int cp_payload_blks = __cp_payload(sbi);
947 	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
948 	bool invalidate = false;
949 	struct super_block *sb = sbi->sb;
950 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
951 	u64 kbytes_written;
952 
953 	/*
954 	 * This avoids to conduct wrong roll-forward operations and uses
955 	 * metapages, so should be called prior to sync_meta_pages below.
956 	 */
957 	if (discard_next_dnode(sbi, discard_blk))
958 		invalidate = true;
959 
960 	/* Flush all the NAT/SIT pages */
961 	while (get_pages(sbi, F2FS_DIRTY_META)) {
962 		sync_meta_pages(sbi, META, LONG_MAX);
963 		if (unlikely(f2fs_cp_error(sbi)))
964 			return -EIO;
965 	}
966 
967 	next_free_nid(sbi, &last_nid);
968 
969 	/*
970 	 * modify checkpoint
971 	 * version number is already updated
972 	 */
973 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
974 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
975 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
976 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
977 		ckpt->cur_node_segno[i] =
978 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
979 		ckpt->cur_node_blkoff[i] =
980 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
981 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
982 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
983 	}
984 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
985 		ckpt->cur_data_segno[i] =
986 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
987 		ckpt->cur_data_blkoff[i] =
988 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
989 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
990 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
991 	}
992 
993 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
994 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
995 	ckpt->next_free_nid = cpu_to_le32(last_nid);
996 
997 	/* 2 cp  + n data seg summary + orphan inode blocks */
998 	data_sum_blocks = npages_for_summary_flush(sbi, false);
999 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1000 		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1001 	else
1002 		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1003 
1004 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1005 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1006 			orphan_blocks);
1007 
1008 	if (__remain_node_summaries(cpc->reason))
1009 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1010 				cp_payload_blks + data_sum_blocks +
1011 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1012 	else
1013 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1014 				cp_payload_blks + data_sum_blocks +
1015 				orphan_blocks);
1016 
1017 	if (cpc->reason == CP_UMOUNT)
1018 		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1019 	else
1020 		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1021 
1022 	if (cpc->reason == CP_FASTBOOT)
1023 		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1024 	else
1025 		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1026 
1027 	if (orphan_num)
1028 		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1029 	else
1030 		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1031 
1032 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1033 		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1034 
1035 	/* update SIT/NAT bitmap */
1036 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1037 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1038 
1039 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1040 	*((__le32 *)((unsigned char *)ckpt +
1041 				le32_to_cpu(ckpt->checksum_offset)))
1042 				= cpu_to_le32(crc32);
1043 
1044 	start_blk = __start_cp_addr(sbi);
1045 
1046 	/* need to wait for end_io results */
1047 	wait_on_all_pages_writeback(sbi);
1048 	if (unlikely(f2fs_cp_error(sbi)))
1049 		return -EIO;
1050 
1051 	/* write out checkpoint buffer at block 0 */
1052 	update_meta_page(sbi, ckpt, start_blk++);
1053 
1054 	for (i = 1; i < 1 + cp_payload_blks; i++)
1055 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1056 							start_blk++);
1057 
1058 	if (orphan_num) {
1059 		write_orphan_inodes(sbi, start_blk);
1060 		start_blk += orphan_blocks;
1061 	}
1062 
1063 	write_data_summaries(sbi, start_blk);
1064 	start_blk += data_sum_blocks;
1065 
1066 	/* Record write statistics in the hot node summary */
1067 	kbytes_written = sbi->kbytes_written;
1068 	if (sb->s_bdev->bd_part)
1069 		kbytes_written += BD_PART_WRITTEN(sbi);
1070 
1071 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1072 
1073 	if (__remain_node_summaries(cpc->reason)) {
1074 		write_node_summaries(sbi, start_blk);
1075 		start_blk += NR_CURSEG_NODE_TYPE;
1076 	}
1077 
1078 	/* writeout checkpoint block */
1079 	update_meta_page(sbi, ckpt, start_blk);
1080 
1081 	/* wait for previous submitted node/meta pages writeback */
1082 	wait_on_all_pages_writeback(sbi);
1083 
1084 	if (unlikely(f2fs_cp_error(sbi)))
1085 		return -EIO;
1086 
1087 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1088 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1089 
1090 	/* update user_block_counts */
1091 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1092 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1093 
1094 	/* Here, we only have one bio having CP pack */
1095 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1096 
1097 	/* wait for previous submitted meta pages writeback */
1098 	wait_on_all_pages_writeback(sbi);
1099 
1100 	/*
1101 	 * invalidate meta page which is used temporarily for zeroing out
1102 	 * block at the end of warm node chain.
1103 	 */
1104 	if (invalidate)
1105 		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1106 								discard_blk);
1107 
1108 	release_ino_entry(sbi, false);
1109 
1110 	if (unlikely(f2fs_cp_error(sbi)))
1111 		return -EIO;
1112 
1113 	clear_prefree_segments(sbi, cpc);
1114 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * We guarantee that this checkpoint procedure will not fail.
1121  */
1122 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1123 {
1124 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1125 	unsigned long long ckpt_ver;
1126 	int err = 0;
1127 
1128 	mutex_lock(&sbi->cp_mutex);
1129 
1130 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1131 		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1132 		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1133 		goto out;
1134 	if (unlikely(f2fs_cp_error(sbi))) {
1135 		err = -EIO;
1136 		goto out;
1137 	}
1138 	if (f2fs_readonly(sbi->sb)) {
1139 		err = -EROFS;
1140 		goto out;
1141 	}
1142 
1143 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1144 
1145 	err = block_operations(sbi);
1146 	if (err)
1147 		goto out;
1148 
1149 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1150 
1151 	f2fs_flush_merged_bios(sbi);
1152 
1153 	/*
1154 	 * update checkpoint pack index
1155 	 * Increase the version number so that
1156 	 * SIT entries and seg summaries are written at correct place
1157 	 */
1158 	ckpt_ver = cur_cp_version(ckpt);
1159 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1160 
1161 	/* write cached NAT/SIT entries to NAT/SIT area */
1162 	flush_nat_entries(sbi);
1163 	flush_sit_entries(sbi, cpc);
1164 
1165 	/* unlock all the fs_lock[] in do_checkpoint() */
1166 	err = do_checkpoint(sbi, cpc);
1167 
1168 	unblock_operations(sbi);
1169 	stat_inc_cp_count(sbi->stat_info);
1170 
1171 	if (cpc->reason == CP_RECOVERY)
1172 		f2fs_msg(sbi->sb, KERN_NOTICE,
1173 			"checkpoint: version = %llx", ckpt_ver);
1174 
1175 	/* do checkpoint periodically */
1176 	f2fs_update_time(sbi, CP_TIME);
1177 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1178 out:
1179 	mutex_unlock(&sbi->cp_mutex);
1180 	return err;
1181 }
1182 
1183 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1184 {
1185 	int i;
1186 
1187 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1188 		struct inode_management *im = &sbi->im[i];
1189 
1190 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1191 		spin_lock_init(&im->ino_lock);
1192 		INIT_LIST_HEAD(&im->ino_list);
1193 		im->ino_num = 0;
1194 	}
1195 
1196 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1197 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1198 				F2FS_ORPHANS_PER_BLOCK;
1199 }
1200 
1201 int __init create_checkpoint_caches(void)
1202 {
1203 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1204 			sizeof(struct ino_entry));
1205 	if (!ino_entry_slab)
1206 		return -ENOMEM;
1207 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1208 			sizeof(struct inode_entry));
1209 	if (!inode_entry_slab) {
1210 		kmem_cache_destroy(ino_entry_slab);
1211 		return -ENOMEM;
1212 	}
1213 	return 0;
1214 }
1215 
1216 void destroy_checkpoint_caches(void)
1217 {
1218 	kmem_cache_destroy(ino_entry_slab);
1219 	kmem_cache_destroy(inode_entry_slab);
1220 }
1221