xref: /openbmc/linux/fs/f2fs/checkpoint.c (revision 04a7279f)
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	if (!end_io)
33 		f2fs_flush_merged_writes(sbi);
34 }
35 
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41 	struct address_space *mapping = META_MAPPING(sbi);
42 	struct page *page = NULL;
43 repeat:
44 	page = f2fs_grab_cache_page(mapping, index, false);
45 	if (!page) {
46 		cond_resched();
47 		goto repeat;
48 	}
49 	f2fs_wait_on_page_writeback(page, META, true);
50 	if (!PageUptodate(page))
51 		SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.op = REQ_OP_READ,
67 		.op_flags = REQ_META | REQ_PRIO,
68 		.old_blkaddr = index,
69 		.new_blkaddr = index,
70 		.encrypted_page = NULL,
71 	};
72 
73 	if (unlikely(!is_meta))
74 		fio.op_flags &= ~REQ_META;
75 repeat:
76 	page = f2fs_grab_cache_page(mapping, index, false);
77 	if (!page) {
78 		cond_resched();
79 		goto repeat;
80 	}
81 	if (PageUptodate(page))
82 		goto out;
83 
84 	fio.page = page;
85 
86 	if (f2fs_submit_page_bio(&fio)) {
87 		f2fs_put_page(page, 1);
88 		goto repeat;
89 	}
90 
91 	lock_page(page);
92 	if (unlikely(page->mapping != mapping)) {
93 		f2fs_put_page(page, 1);
94 		goto repeat;
95 	}
96 
97 	/*
98 	 * if there is any IO error when accessing device, make our filesystem
99 	 * readonly and make sure do not write checkpoint with non-uptodate
100 	 * meta page.
101 	 */
102 	if (unlikely(!PageUptodate(page)))
103 		f2fs_stop_checkpoint(sbi, false);
104 out:
105 	return page;
106 }
107 
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110 	return __get_meta_page(sbi, index, true);
111 }
112 
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 	return __get_meta_page(sbi, index, false);
117 }
118 
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
120 {
121 	switch (type) {
122 	case META_NAT:
123 		break;
124 	case META_SIT:
125 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126 			return false;
127 		break;
128 	case META_SSA:
129 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130 			blkaddr < SM_I(sbi)->ssa_blkaddr))
131 			return false;
132 		break;
133 	case META_CP:
134 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135 			blkaddr < __start_cp_addr(sbi)))
136 			return false;
137 		break;
138 	case META_POR:
139 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140 			blkaddr < MAIN_BLKADDR(sbi)))
141 			return false;
142 		break;
143 	default:
144 		BUG();
145 	}
146 
147 	return true;
148 }
149 
150 /*
151  * Readahead CP/NAT/SIT/SSA pages
152  */
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154 							int type, bool sync)
155 {
156 	struct page *page;
157 	block_t blkno = start;
158 	struct f2fs_io_info fio = {
159 		.sbi = sbi,
160 		.type = META,
161 		.op = REQ_OP_READ,
162 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
163 		.encrypted_page = NULL,
164 		.in_list = false,
165 	};
166 	struct blk_plug plug;
167 
168 	if (unlikely(type == META_POR))
169 		fio.op_flags &= ~REQ_META;
170 
171 	blk_start_plug(&plug);
172 	for (; nrpages-- > 0; blkno++) {
173 
174 		if (!is_valid_blkaddr(sbi, blkno, type))
175 			goto out;
176 
177 		switch (type) {
178 		case META_NAT:
179 			if (unlikely(blkno >=
180 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181 				blkno = 0;
182 			/* get nat block addr */
183 			fio.new_blkaddr = current_nat_addr(sbi,
184 					blkno * NAT_ENTRY_PER_BLOCK);
185 			break;
186 		case META_SIT:
187 			/* get sit block addr */
188 			fio.new_blkaddr = current_sit_addr(sbi,
189 					blkno * SIT_ENTRY_PER_BLOCK);
190 			break;
191 		case META_SSA:
192 		case META_CP:
193 		case META_POR:
194 			fio.new_blkaddr = blkno;
195 			break;
196 		default:
197 			BUG();
198 		}
199 
200 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
201 						fio.new_blkaddr, false);
202 		if (!page)
203 			continue;
204 		if (PageUptodate(page)) {
205 			f2fs_put_page(page, 1);
206 			continue;
207 		}
208 
209 		fio.page = page;
210 		f2fs_submit_page_bio(&fio);
211 		f2fs_put_page(page, 0);
212 	}
213 out:
214 	blk_finish_plug(&plug);
215 	return blkno - start;
216 }
217 
218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
219 {
220 	struct page *page;
221 	bool readahead = false;
222 
223 	page = find_get_page(META_MAPPING(sbi), index);
224 	if (!page || !PageUptodate(page))
225 		readahead = true;
226 	f2fs_put_page(page, 0);
227 
228 	if (readahead)
229 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
230 }
231 
232 static int __f2fs_write_meta_page(struct page *page,
233 				struct writeback_control *wbc,
234 				enum iostat_type io_type)
235 {
236 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237 
238 	trace_f2fs_writepage(page, META);
239 
240 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241 		goto redirty_out;
242 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243 		goto redirty_out;
244 	if (unlikely(f2fs_cp_error(sbi)))
245 		goto redirty_out;
246 
247 	write_meta_page(sbi, page, io_type);
248 	dec_page_count(sbi, F2FS_DIRTY_META);
249 
250 	if (wbc->for_reclaim)
251 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
252 						0, page->index, META);
253 
254 	unlock_page(page);
255 
256 	if (unlikely(f2fs_cp_error(sbi)))
257 		f2fs_submit_merged_write(sbi, META);
258 
259 	return 0;
260 
261 redirty_out:
262 	redirty_page_for_writepage(wbc, page);
263 	return AOP_WRITEPAGE_ACTIVATE;
264 }
265 
266 static int f2fs_write_meta_page(struct page *page,
267 				struct writeback_control *wbc)
268 {
269 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
270 }
271 
272 static int f2fs_write_meta_pages(struct address_space *mapping,
273 				struct writeback_control *wbc)
274 {
275 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
276 	long diff, written;
277 
278 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
279 		goto skip_write;
280 
281 	/* collect a number of dirty meta pages and write together */
282 	if (wbc->for_kupdate ||
283 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
284 		goto skip_write;
285 
286 	/* if locked failed, cp will flush dirty pages instead */
287 	if (!mutex_trylock(&sbi->cp_mutex))
288 		goto skip_write;
289 
290 	trace_f2fs_writepages(mapping->host, wbc, META);
291 	diff = nr_pages_to_write(sbi, META, wbc);
292 	written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
293 	mutex_unlock(&sbi->cp_mutex);
294 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
295 	return 0;
296 
297 skip_write:
298 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
299 	trace_f2fs_writepages(mapping->host, wbc, META);
300 	return 0;
301 }
302 
303 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
304 				long nr_to_write, enum iostat_type io_type)
305 {
306 	struct address_space *mapping = META_MAPPING(sbi);
307 	pgoff_t index = 0, prev = ULONG_MAX;
308 	struct pagevec pvec;
309 	long nwritten = 0;
310 	int nr_pages;
311 	struct writeback_control wbc = {
312 		.for_reclaim = 0,
313 	};
314 	struct blk_plug plug;
315 
316 	pagevec_init(&pvec);
317 
318 	blk_start_plug(&plug);
319 
320 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
321 				PAGECACHE_TAG_DIRTY))) {
322 		int i;
323 
324 		for (i = 0; i < nr_pages; i++) {
325 			struct page *page = pvec.pages[i];
326 
327 			if (prev == ULONG_MAX)
328 				prev = page->index - 1;
329 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
330 				pagevec_release(&pvec);
331 				goto stop;
332 			}
333 
334 			lock_page(page);
335 
336 			if (unlikely(page->mapping != mapping)) {
337 continue_unlock:
338 				unlock_page(page);
339 				continue;
340 			}
341 			if (!PageDirty(page)) {
342 				/* someone wrote it for us */
343 				goto continue_unlock;
344 			}
345 
346 			f2fs_wait_on_page_writeback(page, META, true);
347 
348 			BUG_ON(PageWriteback(page));
349 			if (!clear_page_dirty_for_io(page))
350 				goto continue_unlock;
351 
352 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
353 				unlock_page(page);
354 				break;
355 			}
356 			nwritten++;
357 			prev = page->index;
358 			if (unlikely(nwritten >= nr_to_write))
359 				break;
360 		}
361 		pagevec_release(&pvec);
362 		cond_resched();
363 	}
364 stop:
365 	if (nwritten)
366 		f2fs_submit_merged_write(sbi, type);
367 
368 	blk_finish_plug(&plug);
369 
370 	return nwritten;
371 }
372 
373 static int f2fs_set_meta_page_dirty(struct page *page)
374 {
375 	trace_f2fs_set_page_dirty(page, META);
376 
377 	if (!PageUptodate(page))
378 		SetPageUptodate(page);
379 	if (!PageDirty(page)) {
380 		f2fs_set_page_dirty_nobuffers(page);
381 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
382 		SetPagePrivate(page);
383 		f2fs_trace_pid(page);
384 		return 1;
385 	}
386 	return 0;
387 }
388 
389 const struct address_space_operations f2fs_meta_aops = {
390 	.writepage	= f2fs_write_meta_page,
391 	.writepages	= f2fs_write_meta_pages,
392 	.set_page_dirty	= f2fs_set_meta_page_dirty,
393 	.invalidatepage = f2fs_invalidate_page,
394 	.releasepage	= f2fs_release_page,
395 #ifdef CONFIG_MIGRATION
396 	.migratepage    = f2fs_migrate_page,
397 #endif
398 };
399 
400 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
401 						unsigned int devidx, int type)
402 {
403 	struct inode_management *im = &sbi->im[type];
404 	struct ino_entry *e, *tmp;
405 
406 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
407 
408 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
409 
410 	spin_lock(&im->ino_lock);
411 	e = radix_tree_lookup(&im->ino_root, ino);
412 	if (!e) {
413 		e = tmp;
414 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
415 			f2fs_bug_on(sbi, 1);
416 
417 		memset(e, 0, sizeof(struct ino_entry));
418 		e->ino = ino;
419 
420 		list_add_tail(&e->list, &im->ino_list);
421 		if (type != ORPHAN_INO)
422 			im->ino_num++;
423 	}
424 
425 	if (type == FLUSH_INO)
426 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
427 
428 	spin_unlock(&im->ino_lock);
429 	radix_tree_preload_end();
430 
431 	if (e != tmp)
432 		kmem_cache_free(ino_entry_slab, tmp);
433 }
434 
435 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
436 {
437 	struct inode_management *im = &sbi->im[type];
438 	struct ino_entry *e;
439 
440 	spin_lock(&im->ino_lock);
441 	e = radix_tree_lookup(&im->ino_root, ino);
442 	if (e) {
443 		list_del(&e->list);
444 		radix_tree_delete(&im->ino_root, ino);
445 		im->ino_num--;
446 		spin_unlock(&im->ino_lock);
447 		kmem_cache_free(ino_entry_slab, e);
448 		return;
449 	}
450 	spin_unlock(&im->ino_lock);
451 }
452 
453 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
454 {
455 	/* add new dirty ino entry into list */
456 	__add_ino_entry(sbi, ino, 0, type);
457 }
458 
459 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
460 {
461 	/* remove dirty ino entry from list */
462 	__remove_ino_entry(sbi, ino, type);
463 }
464 
465 /* mode should be APPEND_INO or UPDATE_INO */
466 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
467 {
468 	struct inode_management *im = &sbi->im[mode];
469 	struct ino_entry *e;
470 
471 	spin_lock(&im->ino_lock);
472 	e = radix_tree_lookup(&im->ino_root, ino);
473 	spin_unlock(&im->ino_lock);
474 	return e ? true : false;
475 }
476 
477 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
478 {
479 	struct ino_entry *e, *tmp;
480 	int i;
481 
482 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
483 		struct inode_management *im = &sbi->im[i];
484 
485 		spin_lock(&im->ino_lock);
486 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
487 			list_del(&e->list);
488 			radix_tree_delete(&im->ino_root, e->ino);
489 			kmem_cache_free(ino_entry_slab, e);
490 			im->ino_num--;
491 		}
492 		spin_unlock(&im->ino_lock);
493 	}
494 }
495 
496 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
497 					unsigned int devidx, int type)
498 {
499 	__add_ino_entry(sbi, ino, devidx, type);
500 }
501 
502 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
503 					unsigned int devidx, int type)
504 {
505 	struct inode_management *im = &sbi->im[type];
506 	struct ino_entry *e;
507 	bool is_dirty = false;
508 
509 	spin_lock(&im->ino_lock);
510 	e = radix_tree_lookup(&im->ino_root, ino);
511 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
512 		is_dirty = true;
513 	spin_unlock(&im->ino_lock);
514 	return is_dirty;
515 }
516 
517 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
518 {
519 	struct inode_management *im = &sbi->im[ORPHAN_INO];
520 	int err = 0;
521 
522 	spin_lock(&im->ino_lock);
523 
524 #ifdef CONFIG_F2FS_FAULT_INJECTION
525 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
526 		spin_unlock(&im->ino_lock);
527 		f2fs_show_injection_info(FAULT_ORPHAN);
528 		return -ENOSPC;
529 	}
530 #endif
531 	if (unlikely(im->ino_num >= sbi->max_orphans))
532 		err = -ENOSPC;
533 	else
534 		im->ino_num++;
535 	spin_unlock(&im->ino_lock);
536 
537 	return err;
538 }
539 
540 void release_orphan_inode(struct f2fs_sb_info *sbi)
541 {
542 	struct inode_management *im = &sbi->im[ORPHAN_INO];
543 
544 	spin_lock(&im->ino_lock);
545 	f2fs_bug_on(sbi, im->ino_num == 0);
546 	im->ino_num--;
547 	spin_unlock(&im->ino_lock);
548 }
549 
550 void add_orphan_inode(struct inode *inode)
551 {
552 	/* add new orphan ino entry into list */
553 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
554 	update_inode_page(inode);
555 }
556 
557 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
558 {
559 	/* remove orphan entry from orphan list */
560 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
561 }
562 
563 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
564 {
565 	struct inode *inode;
566 	struct node_info ni;
567 	int err = acquire_orphan_inode(sbi);
568 
569 	if (err) {
570 		set_sbi_flag(sbi, SBI_NEED_FSCK);
571 		f2fs_msg(sbi->sb, KERN_WARNING,
572 				"%s: orphan failed (ino=%x), run fsck to fix.",
573 				__func__, ino);
574 		return err;
575 	}
576 
577 	__add_ino_entry(sbi, ino, 0, ORPHAN_INO);
578 
579 	inode = f2fs_iget_retry(sbi->sb, ino);
580 	if (IS_ERR(inode)) {
581 		/*
582 		 * there should be a bug that we can't find the entry
583 		 * to orphan inode.
584 		 */
585 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
586 		return PTR_ERR(inode);
587 	}
588 
589 	clear_nlink(inode);
590 
591 	/* truncate all the data during iput */
592 	iput(inode);
593 
594 	get_node_info(sbi, ino, &ni);
595 
596 	/* ENOMEM was fully retried in f2fs_evict_inode. */
597 	if (ni.blk_addr != NULL_ADDR) {
598 		set_sbi_flag(sbi, SBI_NEED_FSCK);
599 		f2fs_msg(sbi->sb, KERN_WARNING,
600 			"%s: orphan failed (ino=%x) by kernel, retry mount.",
601 				__func__, ino);
602 		return -EIO;
603 	}
604 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
605 	return 0;
606 }
607 
608 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
609 {
610 	block_t start_blk, orphan_blocks, i, j;
611 	unsigned int s_flags = sbi->sb->s_flags;
612 	int err = 0;
613 #ifdef CONFIG_QUOTA
614 	int quota_enabled;
615 #endif
616 
617 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
618 		return 0;
619 
620 	if (s_flags & SB_RDONLY) {
621 		f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
622 		sbi->sb->s_flags &= ~SB_RDONLY;
623 	}
624 
625 #ifdef CONFIG_QUOTA
626 	/* Needed for iput() to work correctly and not trash data */
627 	sbi->sb->s_flags |= SB_ACTIVE;
628 
629 	/* Turn on quotas so that they are updated correctly */
630 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
631 #endif
632 
633 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
634 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
635 
636 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
637 
638 	for (i = 0; i < orphan_blocks; i++) {
639 		struct page *page = get_meta_page(sbi, start_blk + i);
640 		struct f2fs_orphan_block *orphan_blk;
641 
642 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
643 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
644 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
645 			err = recover_orphan_inode(sbi, ino);
646 			if (err) {
647 				f2fs_put_page(page, 1);
648 				goto out;
649 			}
650 		}
651 		f2fs_put_page(page, 1);
652 	}
653 	/* clear Orphan Flag */
654 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
655 out:
656 #ifdef CONFIG_QUOTA
657 	/* Turn quotas off */
658 	if (quota_enabled)
659 		f2fs_quota_off_umount(sbi->sb);
660 #endif
661 	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
662 
663 	return err;
664 }
665 
666 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
667 {
668 	struct list_head *head;
669 	struct f2fs_orphan_block *orphan_blk = NULL;
670 	unsigned int nentries = 0;
671 	unsigned short index = 1;
672 	unsigned short orphan_blocks;
673 	struct page *page = NULL;
674 	struct ino_entry *orphan = NULL;
675 	struct inode_management *im = &sbi->im[ORPHAN_INO];
676 
677 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
678 
679 	/*
680 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
681 	 * orphan inode operations are covered under f2fs_lock_op().
682 	 * And, spin_lock should be avoided due to page operations below.
683 	 */
684 	head = &im->ino_list;
685 
686 	/* loop for each orphan inode entry and write them in Jornal block */
687 	list_for_each_entry(orphan, head, list) {
688 		if (!page) {
689 			page = grab_meta_page(sbi, start_blk++);
690 			orphan_blk =
691 				(struct f2fs_orphan_block *)page_address(page);
692 			memset(orphan_blk, 0, sizeof(*orphan_blk));
693 		}
694 
695 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
696 
697 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
698 			/*
699 			 * an orphan block is full of 1020 entries,
700 			 * then we need to flush current orphan blocks
701 			 * and bring another one in memory
702 			 */
703 			orphan_blk->blk_addr = cpu_to_le16(index);
704 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
705 			orphan_blk->entry_count = cpu_to_le32(nentries);
706 			set_page_dirty(page);
707 			f2fs_put_page(page, 1);
708 			index++;
709 			nentries = 0;
710 			page = NULL;
711 		}
712 	}
713 
714 	if (page) {
715 		orphan_blk->blk_addr = cpu_to_le16(index);
716 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
717 		orphan_blk->entry_count = cpu_to_le32(nentries);
718 		set_page_dirty(page);
719 		f2fs_put_page(page, 1);
720 	}
721 }
722 
723 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
724 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
725 		unsigned long long *version)
726 {
727 	unsigned long blk_size = sbi->blocksize;
728 	size_t crc_offset = 0;
729 	__u32 crc = 0;
730 
731 	*cp_page = get_meta_page(sbi, cp_addr);
732 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
733 
734 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
735 	if (crc_offset > (blk_size - sizeof(__le32))) {
736 		f2fs_msg(sbi->sb, KERN_WARNING,
737 			"invalid crc_offset: %zu", crc_offset);
738 		return -EINVAL;
739 	}
740 
741 	crc = cur_cp_crc(*cp_block);
742 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
743 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
744 		return -EINVAL;
745 	}
746 
747 	*version = cur_cp_version(*cp_block);
748 	return 0;
749 }
750 
751 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
752 				block_t cp_addr, unsigned long long *version)
753 {
754 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
755 	struct f2fs_checkpoint *cp_block = NULL;
756 	unsigned long long cur_version = 0, pre_version = 0;
757 	int err;
758 
759 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
760 					&cp_page_1, version);
761 	if (err)
762 		goto invalid_cp1;
763 	pre_version = *version;
764 
765 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
766 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
767 					&cp_page_2, version);
768 	if (err)
769 		goto invalid_cp2;
770 	cur_version = *version;
771 
772 	if (cur_version == pre_version) {
773 		*version = cur_version;
774 		f2fs_put_page(cp_page_2, 1);
775 		return cp_page_1;
776 	}
777 invalid_cp2:
778 	f2fs_put_page(cp_page_2, 1);
779 invalid_cp1:
780 	f2fs_put_page(cp_page_1, 1);
781 	return NULL;
782 }
783 
784 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
785 {
786 	struct f2fs_checkpoint *cp_block;
787 	struct f2fs_super_block *fsb = sbi->raw_super;
788 	struct page *cp1, *cp2, *cur_page;
789 	unsigned long blk_size = sbi->blocksize;
790 	unsigned long long cp1_version = 0, cp2_version = 0;
791 	unsigned long long cp_start_blk_no;
792 	unsigned int cp_blks = 1 + __cp_payload(sbi);
793 	block_t cp_blk_no;
794 	int i;
795 
796 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
797 	if (!sbi->ckpt)
798 		return -ENOMEM;
799 	/*
800 	 * Finding out valid cp block involves read both
801 	 * sets( cp pack1 and cp pack 2)
802 	 */
803 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
804 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
805 
806 	/* The second checkpoint pack should start at the next segment */
807 	cp_start_blk_no += ((unsigned long long)1) <<
808 				le32_to_cpu(fsb->log_blocks_per_seg);
809 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
810 
811 	if (cp1 && cp2) {
812 		if (ver_after(cp2_version, cp1_version))
813 			cur_page = cp2;
814 		else
815 			cur_page = cp1;
816 	} else if (cp1) {
817 		cur_page = cp1;
818 	} else if (cp2) {
819 		cur_page = cp2;
820 	} else {
821 		goto fail_no_cp;
822 	}
823 
824 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
825 	memcpy(sbi->ckpt, cp_block, blk_size);
826 
827 	/* Sanity checking of checkpoint */
828 	if (sanity_check_ckpt(sbi))
829 		goto free_fail_no_cp;
830 
831 	if (cur_page == cp1)
832 		sbi->cur_cp_pack = 1;
833 	else
834 		sbi->cur_cp_pack = 2;
835 
836 	if (cp_blks <= 1)
837 		goto done;
838 
839 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
840 	if (cur_page == cp2)
841 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
842 
843 	for (i = 1; i < cp_blks; i++) {
844 		void *sit_bitmap_ptr;
845 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
846 
847 		cur_page = get_meta_page(sbi, cp_blk_no + i);
848 		sit_bitmap_ptr = page_address(cur_page);
849 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
850 		f2fs_put_page(cur_page, 1);
851 	}
852 done:
853 	f2fs_put_page(cp1, 1);
854 	f2fs_put_page(cp2, 1);
855 	return 0;
856 
857 free_fail_no_cp:
858 	f2fs_put_page(cp1, 1);
859 	f2fs_put_page(cp2, 1);
860 fail_no_cp:
861 	kfree(sbi->ckpt);
862 	return -EINVAL;
863 }
864 
865 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
866 {
867 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
869 
870 	if (is_inode_flag_set(inode, flag))
871 		return;
872 
873 	set_inode_flag(inode, flag);
874 	if (!f2fs_is_volatile_file(inode))
875 		list_add_tail(&F2FS_I(inode)->dirty_list,
876 						&sbi->inode_list[type]);
877 	stat_inc_dirty_inode(sbi, type);
878 }
879 
880 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
881 {
882 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
883 
884 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
885 		return;
886 
887 	list_del_init(&F2FS_I(inode)->dirty_list);
888 	clear_inode_flag(inode, flag);
889 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
890 }
891 
892 void update_dirty_page(struct inode *inode, struct page *page)
893 {
894 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
895 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
896 
897 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
898 			!S_ISLNK(inode->i_mode))
899 		return;
900 
901 	spin_lock(&sbi->inode_lock[type]);
902 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
903 		__add_dirty_inode(inode, type);
904 	inode_inc_dirty_pages(inode);
905 	spin_unlock(&sbi->inode_lock[type]);
906 
907 	SetPagePrivate(page);
908 	f2fs_trace_pid(page);
909 }
910 
911 void remove_dirty_inode(struct inode *inode)
912 {
913 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
914 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
915 
916 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
917 			!S_ISLNK(inode->i_mode))
918 		return;
919 
920 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
921 		return;
922 
923 	spin_lock(&sbi->inode_lock[type]);
924 	__remove_dirty_inode(inode, type);
925 	spin_unlock(&sbi->inode_lock[type]);
926 }
927 
928 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
929 {
930 	struct list_head *head;
931 	struct inode *inode;
932 	struct f2fs_inode_info *fi;
933 	bool is_dir = (type == DIR_INODE);
934 	unsigned long ino = 0;
935 
936 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
937 				get_pages(sbi, is_dir ?
938 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
939 retry:
940 	if (unlikely(f2fs_cp_error(sbi)))
941 		return -EIO;
942 
943 	spin_lock(&sbi->inode_lock[type]);
944 
945 	head = &sbi->inode_list[type];
946 	if (list_empty(head)) {
947 		spin_unlock(&sbi->inode_lock[type]);
948 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
949 				get_pages(sbi, is_dir ?
950 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
951 		return 0;
952 	}
953 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
954 	inode = igrab(&fi->vfs_inode);
955 	spin_unlock(&sbi->inode_lock[type]);
956 	if (inode) {
957 		unsigned long cur_ino = inode->i_ino;
958 
959 		if (is_dir)
960 			F2FS_I(inode)->cp_task = current;
961 
962 		filemap_fdatawrite(inode->i_mapping);
963 
964 		if (is_dir)
965 			F2FS_I(inode)->cp_task = NULL;
966 
967 		iput(inode);
968 		/* We need to give cpu to another writers. */
969 		if (ino == cur_ino) {
970 			congestion_wait(BLK_RW_ASYNC, HZ/50);
971 			cond_resched();
972 		} else {
973 			ino = cur_ino;
974 		}
975 	} else {
976 		/*
977 		 * We should submit bio, since it exists several
978 		 * wribacking dentry pages in the freeing inode.
979 		 */
980 		f2fs_submit_merged_write(sbi, DATA);
981 		cond_resched();
982 	}
983 	goto retry;
984 }
985 
986 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
987 {
988 	struct list_head *head = &sbi->inode_list[DIRTY_META];
989 	struct inode *inode;
990 	struct f2fs_inode_info *fi;
991 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
992 
993 	while (total--) {
994 		if (unlikely(f2fs_cp_error(sbi)))
995 			return -EIO;
996 
997 		spin_lock(&sbi->inode_lock[DIRTY_META]);
998 		if (list_empty(head)) {
999 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1000 			return 0;
1001 		}
1002 		fi = list_first_entry(head, struct f2fs_inode_info,
1003 							gdirty_list);
1004 		inode = igrab(&fi->vfs_inode);
1005 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1006 		if (inode) {
1007 			sync_inode_metadata(inode, 0);
1008 
1009 			/* it's on eviction */
1010 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1011 				update_inode_page(inode);
1012 			iput(inode);
1013 		}
1014 	}
1015 	return 0;
1016 }
1017 
1018 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1019 {
1020 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1021 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1022 	nid_t last_nid = nm_i->next_scan_nid;
1023 
1024 	next_free_nid(sbi, &last_nid);
1025 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1026 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1027 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1028 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1029 }
1030 
1031 /*
1032  * Freeze all the FS-operations for checkpoint.
1033  */
1034 static int block_operations(struct f2fs_sb_info *sbi)
1035 {
1036 	struct writeback_control wbc = {
1037 		.sync_mode = WB_SYNC_ALL,
1038 		.nr_to_write = LONG_MAX,
1039 		.for_reclaim = 0,
1040 	};
1041 	struct blk_plug plug;
1042 	int err = 0;
1043 
1044 	blk_start_plug(&plug);
1045 
1046 retry_flush_dents:
1047 	f2fs_lock_all(sbi);
1048 	/* write all the dirty dentry pages */
1049 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1050 		f2fs_unlock_all(sbi);
1051 		err = sync_dirty_inodes(sbi, DIR_INODE);
1052 		if (err)
1053 			goto out;
1054 		cond_resched();
1055 		goto retry_flush_dents;
1056 	}
1057 
1058 	/*
1059 	 * POR: we should ensure that there are no dirty node pages
1060 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1061 	 */
1062 	down_write(&sbi->node_change);
1063 
1064 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1065 		up_write(&sbi->node_change);
1066 		f2fs_unlock_all(sbi);
1067 		err = f2fs_sync_inode_meta(sbi);
1068 		if (err)
1069 			goto out;
1070 		cond_resched();
1071 		goto retry_flush_dents;
1072 	}
1073 
1074 retry_flush_nodes:
1075 	down_write(&sbi->node_write);
1076 
1077 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1078 		up_write(&sbi->node_write);
1079 		err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1080 		if (err) {
1081 			up_write(&sbi->node_change);
1082 			f2fs_unlock_all(sbi);
1083 			goto out;
1084 		}
1085 		cond_resched();
1086 		goto retry_flush_nodes;
1087 	}
1088 
1089 	/*
1090 	 * sbi->node_change is used only for AIO write_begin path which produces
1091 	 * dirty node blocks and some checkpoint values by block allocation.
1092 	 */
1093 	__prepare_cp_block(sbi);
1094 	up_write(&sbi->node_change);
1095 out:
1096 	blk_finish_plug(&plug);
1097 	return err;
1098 }
1099 
1100 static void unblock_operations(struct f2fs_sb_info *sbi)
1101 {
1102 	up_write(&sbi->node_write);
1103 	f2fs_unlock_all(sbi);
1104 }
1105 
1106 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1107 {
1108 	DEFINE_WAIT(wait);
1109 
1110 	for (;;) {
1111 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1112 
1113 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1114 			break;
1115 
1116 		io_schedule_timeout(5*HZ);
1117 	}
1118 	finish_wait(&sbi->cp_wait, &wait);
1119 }
1120 
1121 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1122 {
1123 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1124 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1125 	unsigned long flags;
1126 
1127 	spin_lock_irqsave(&sbi->cp_lock, flags);
1128 
1129 	if ((cpc->reason & CP_UMOUNT) &&
1130 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1131 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1132 		disable_nat_bits(sbi, false);
1133 
1134 	if (cpc->reason & CP_TRIMMED)
1135 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1136 
1137 	if (cpc->reason & CP_UMOUNT)
1138 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1139 	else
1140 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1141 
1142 	if (cpc->reason & CP_FASTBOOT)
1143 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1144 	else
1145 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1146 
1147 	if (orphan_num)
1148 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1149 	else
1150 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1151 
1152 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1153 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1154 
1155 	/* set this flag to activate crc|cp_ver for recovery */
1156 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1157 
1158 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1159 }
1160 
1161 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1162 {
1163 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1164 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1165 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1166 	block_t start_blk;
1167 	unsigned int data_sum_blocks, orphan_blocks;
1168 	__u32 crc32 = 0;
1169 	int i;
1170 	int cp_payload_blks = __cp_payload(sbi);
1171 	struct super_block *sb = sbi->sb;
1172 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1173 	u64 kbytes_written;
1174 	int err;
1175 
1176 	/* Flush all the NAT/SIT pages */
1177 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1178 		sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1179 		if (unlikely(f2fs_cp_error(sbi)))
1180 			return -EIO;
1181 	}
1182 
1183 	/*
1184 	 * modify checkpoint
1185 	 * version number is already updated
1186 	 */
1187 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1188 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1189 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1190 		ckpt->cur_node_segno[i] =
1191 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1192 		ckpt->cur_node_blkoff[i] =
1193 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1194 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1195 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1196 	}
1197 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1198 		ckpt->cur_data_segno[i] =
1199 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1200 		ckpt->cur_data_blkoff[i] =
1201 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1202 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1203 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1204 	}
1205 
1206 	/* 2 cp  + n data seg summary + orphan inode blocks */
1207 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1208 	spin_lock_irqsave(&sbi->cp_lock, flags);
1209 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1210 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1211 	else
1212 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1213 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1214 
1215 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1216 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1217 			orphan_blocks);
1218 
1219 	if (__remain_node_summaries(cpc->reason))
1220 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1221 				cp_payload_blks + data_sum_blocks +
1222 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1223 	else
1224 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1225 				cp_payload_blks + data_sum_blocks +
1226 				orphan_blocks);
1227 
1228 	/* update ckpt flag for checkpoint */
1229 	update_ckpt_flags(sbi, cpc);
1230 
1231 	/* update SIT/NAT bitmap */
1232 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1233 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1234 
1235 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1236 	*((__le32 *)((unsigned char *)ckpt +
1237 				le32_to_cpu(ckpt->checksum_offset)))
1238 				= cpu_to_le32(crc32);
1239 
1240 	start_blk = __start_cp_next_addr(sbi);
1241 
1242 	/* write nat bits */
1243 	if (enabled_nat_bits(sbi, cpc)) {
1244 		__u64 cp_ver = cur_cp_version(ckpt);
1245 		block_t blk;
1246 
1247 		cp_ver |= ((__u64)crc32 << 32);
1248 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1249 
1250 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1251 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1252 			update_meta_page(sbi, nm_i->nat_bits +
1253 					(i << F2FS_BLKSIZE_BITS), blk + i);
1254 
1255 		/* Flush all the NAT BITS pages */
1256 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1257 			sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1258 			if (unlikely(f2fs_cp_error(sbi)))
1259 				return -EIO;
1260 		}
1261 	}
1262 
1263 	/* need to wait for end_io results */
1264 	wait_on_all_pages_writeback(sbi);
1265 	if (unlikely(f2fs_cp_error(sbi)))
1266 		return -EIO;
1267 
1268 	/* flush all device cache */
1269 	err = f2fs_flush_device_cache(sbi);
1270 	if (err)
1271 		return err;
1272 
1273 	/* write out checkpoint buffer at block 0 */
1274 	update_meta_page(sbi, ckpt, start_blk++);
1275 
1276 	for (i = 1; i < 1 + cp_payload_blks; i++)
1277 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1278 							start_blk++);
1279 
1280 	if (orphan_num) {
1281 		write_orphan_inodes(sbi, start_blk);
1282 		start_blk += orphan_blocks;
1283 	}
1284 
1285 	write_data_summaries(sbi, start_blk);
1286 	start_blk += data_sum_blocks;
1287 
1288 	/* Record write statistics in the hot node summary */
1289 	kbytes_written = sbi->kbytes_written;
1290 	if (sb->s_bdev->bd_part)
1291 		kbytes_written += BD_PART_WRITTEN(sbi);
1292 
1293 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1294 
1295 	if (__remain_node_summaries(cpc->reason)) {
1296 		write_node_summaries(sbi, start_blk);
1297 		start_blk += NR_CURSEG_NODE_TYPE;
1298 	}
1299 
1300 	/* writeout checkpoint block */
1301 	update_meta_page(sbi, ckpt, start_blk);
1302 
1303 	/* wait for previous submitted node/meta pages writeback */
1304 	wait_on_all_pages_writeback(sbi);
1305 
1306 	if (unlikely(f2fs_cp_error(sbi)))
1307 		return -EIO;
1308 
1309 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1310 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1311 
1312 	/* update user_block_counts */
1313 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1314 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1315 
1316 	/* Here, we only have one bio having CP pack */
1317 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1318 
1319 	/* wait for previous submitted meta pages writeback */
1320 	wait_on_all_pages_writeback(sbi);
1321 
1322 	release_ino_entry(sbi, false);
1323 
1324 	if (unlikely(f2fs_cp_error(sbi)))
1325 		return -EIO;
1326 
1327 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1328 	clear_sbi_flag(sbi, SBI_NEED_CP);
1329 	__set_cp_next_pack(sbi);
1330 
1331 	/*
1332 	 * redirty superblock if metadata like node page or inode cache is
1333 	 * updated during writing checkpoint.
1334 	 */
1335 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1336 			get_pages(sbi, F2FS_DIRTY_IMETA))
1337 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1338 
1339 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1340 
1341 	return 0;
1342 }
1343 
1344 /*
1345  * We guarantee that this checkpoint procedure will not fail.
1346  */
1347 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1348 {
1349 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1350 	unsigned long long ckpt_ver;
1351 	int err = 0;
1352 
1353 	mutex_lock(&sbi->cp_mutex);
1354 
1355 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1356 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1357 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1358 		goto out;
1359 	if (unlikely(f2fs_cp_error(sbi))) {
1360 		err = -EIO;
1361 		goto out;
1362 	}
1363 	if (f2fs_readonly(sbi->sb)) {
1364 		err = -EROFS;
1365 		goto out;
1366 	}
1367 
1368 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1369 
1370 	err = block_operations(sbi);
1371 	if (err)
1372 		goto out;
1373 
1374 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1375 
1376 	f2fs_flush_merged_writes(sbi);
1377 
1378 	/* this is the case of multiple fstrims without any changes */
1379 	if (cpc->reason & CP_DISCARD) {
1380 		if (!exist_trim_candidates(sbi, cpc)) {
1381 			unblock_operations(sbi);
1382 			goto out;
1383 		}
1384 
1385 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1386 				SIT_I(sbi)->dirty_sentries == 0 &&
1387 				prefree_segments(sbi) == 0) {
1388 			flush_sit_entries(sbi, cpc);
1389 			clear_prefree_segments(sbi, cpc);
1390 			unblock_operations(sbi);
1391 			goto out;
1392 		}
1393 	}
1394 
1395 	/*
1396 	 * update checkpoint pack index
1397 	 * Increase the version number so that
1398 	 * SIT entries and seg summaries are written at correct place
1399 	 */
1400 	ckpt_ver = cur_cp_version(ckpt);
1401 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1402 
1403 	/* write cached NAT/SIT entries to NAT/SIT area */
1404 	flush_nat_entries(sbi, cpc);
1405 	flush_sit_entries(sbi, cpc);
1406 
1407 	/* unlock all the fs_lock[] in do_checkpoint() */
1408 	err = do_checkpoint(sbi, cpc);
1409 	if (err)
1410 		release_discard_addrs(sbi);
1411 	else
1412 		clear_prefree_segments(sbi, cpc);
1413 
1414 	unblock_operations(sbi);
1415 	stat_inc_cp_count(sbi->stat_info);
1416 
1417 	if (cpc->reason & CP_RECOVERY)
1418 		f2fs_msg(sbi->sb, KERN_NOTICE,
1419 			"checkpoint: version = %llx", ckpt_ver);
1420 
1421 	/* do checkpoint periodically */
1422 	f2fs_update_time(sbi, CP_TIME);
1423 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1424 out:
1425 	mutex_unlock(&sbi->cp_mutex);
1426 	return err;
1427 }
1428 
1429 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1430 {
1431 	int i;
1432 
1433 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1434 		struct inode_management *im = &sbi->im[i];
1435 
1436 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1437 		spin_lock_init(&im->ino_lock);
1438 		INIT_LIST_HEAD(&im->ino_list);
1439 		im->ino_num = 0;
1440 	}
1441 
1442 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1443 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1444 				F2FS_ORPHANS_PER_BLOCK;
1445 }
1446 
1447 int __init create_checkpoint_caches(void)
1448 {
1449 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1450 			sizeof(struct ino_entry));
1451 	if (!ino_entry_slab)
1452 		return -ENOMEM;
1453 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1454 			sizeof(struct inode_entry));
1455 	if (!inode_entry_slab) {
1456 		kmem_cache_destroy(ino_entry_slab);
1457 		return -ENOMEM;
1458 	}
1459 	return 0;
1460 }
1461 
1462 void destroy_checkpoint_caches(void)
1463 {
1464 	kmem_cache_destroy(ino_entry_slab);
1465 	kmem_cache_destroy(inode_entry_slab);
1466 }
1467