1 /* 2 * fs/f2fs/checkpoint.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/bio.h> 13 #include <linux/mpage.h> 14 #include <linux/writeback.h> 15 #include <linux/blkdev.h> 16 #include <linux/f2fs_fs.h> 17 #include <linux/pagevec.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "node.h" 22 #include "segment.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *ino_entry_slab; 27 struct kmem_cache *inode_entry_slab; 28 29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) 30 { 31 set_ckpt_flags(sbi, CP_ERROR_FLAG); 32 if (!end_io) 33 f2fs_flush_merged_writes(sbi); 34 } 35 36 /* 37 * We guarantee no failure on the returned page. 38 */ 39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 40 { 41 struct address_space *mapping = META_MAPPING(sbi); 42 struct page *page = NULL; 43 repeat: 44 page = f2fs_grab_cache_page(mapping, index, false); 45 if (!page) { 46 cond_resched(); 47 goto repeat; 48 } 49 f2fs_wait_on_page_writeback(page, META, true); 50 if (!PageUptodate(page)) 51 SetPageUptodate(page); 52 return page; 53 } 54 55 /* 56 * We guarantee no failure on the returned page. 57 */ 58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, 59 bool is_meta) 60 { 61 struct address_space *mapping = META_MAPPING(sbi); 62 struct page *page; 63 struct f2fs_io_info fio = { 64 .sbi = sbi, 65 .type = META, 66 .op = REQ_OP_READ, 67 .op_flags = REQ_META | REQ_PRIO, 68 .old_blkaddr = index, 69 .new_blkaddr = index, 70 .encrypted_page = NULL, 71 }; 72 73 if (unlikely(!is_meta)) 74 fio.op_flags &= ~REQ_META; 75 repeat: 76 page = f2fs_grab_cache_page(mapping, index, false); 77 if (!page) { 78 cond_resched(); 79 goto repeat; 80 } 81 if (PageUptodate(page)) 82 goto out; 83 84 fio.page = page; 85 86 if (f2fs_submit_page_bio(&fio)) { 87 f2fs_put_page(page, 1); 88 goto repeat; 89 } 90 91 lock_page(page); 92 if (unlikely(page->mapping != mapping)) { 93 f2fs_put_page(page, 1); 94 goto repeat; 95 } 96 97 /* 98 * if there is any IO error when accessing device, make our filesystem 99 * readonly and make sure do not write checkpoint with non-uptodate 100 * meta page. 101 */ 102 if (unlikely(!PageUptodate(page))) 103 f2fs_stop_checkpoint(sbi, false); 104 out: 105 return page; 106 } 107 108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) 109 { 110 return __get_meta_page(sbi, index, true); 111 } 112 113 /* for POR only */ 114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) 115 { 116 return __get_meta_page(sbi, index, false); 117 } 118 119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) 120 { 121 switch (type) { 122 case META_NAT: 123 break; 124 case META_SIT: 125 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) 126 return false; 127 break; 128 case META_SSA: 129 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || 130 blkaddr < SM_I(sbi)->ssa_blkaddr)) 131 return false; 132 break; 133 case META_CP: 134 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || 135 blkaddr < __start_cp_addr(sbi))) 136 return false; 137 break; 138 case META_POR: 139 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || 140 blkaddr < MAIN_BLKADDR(sbi))) 141 return false; 142 break; 143 default: 144 BUG(); 145 } 146 147 return true; 148 } 149 150 /* 151 * Readahead CP/NAT/SIT/SSA pages 152 */ 153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 154 int type, bool sync) 155 { 156 struct page *page; 157 block_t blkno = start; 158 struct f2fs_io_info fio = { 159 .sbi = sbi, 160 .type = META, 161 .op = REQ_OP_READ, 162 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, 163 .encrypted_page = NULL, 164 .in_list = false, 165 }; 166 struct blk_plug plug; 167 168 if (unlikely(type == META_POR)) 169 fio.op_flags &= ~REQ_META; 170 171 blk_start_plug(&plug); 172 for (; nrpages-- > 0; blkno++) { 173 174 if (!is_valid_blkaddr(sbi, blkno, type)) 175 goto out; 176 177 switch (type) { 178 case META_NAT: 179 if (unlikely(blkno >= 180 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) 181 blkno = 0; 182 /* get nat block addr */ 183 fio.new_blkaddr = current_nat_addr(sbi, 184 blkno * NAT_ENTRY_PER_BLOCK); 185 break; 186 case META_SIT: 187 /* get sit block addr */ 188 fio.new_blkaddr = current_sit_addr(sbi, 189 blkno * SIT_ENTRY_PER_BLOCK); 190 break; 191 case META_SSA: 192 case META_CP: 193 case META_POR: 194 fio.new_blkaddr = blkno; 195 break; 196 default: 197 BUG(); 198 } 199 200 page = f2fs_grab_cache_page(META_MAPPING(sbi), 201 fio.new_blkaddr, false); 202 if (!page) 203 continue; 204 if (PageUptodate(page)) { 205 f2fs_put_page(page, 1); 206 continue; 207 } 208 209 fio.page = page; 210 f2fs_submit_page_bio(&fio); 211 f2fs_put_page(page, 0); 212 } 213 out: 214 blk_finish_plug(&plug); 215 return blkno - start; 216 } 217 218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) 219 { 220 struct page *page; 221 bool readahead = false; 222 223 page = find_get_page(META_MAPPING(sbi), index); 224 if (!page || !PageUptodate(page)) 225 readahead = true; 226 f2fs_put_page(page, 0); 227 228 if (readahead) 229 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); 230 } 231 232 static int __f2fs_write_meta_page(struct page *page, 233 struct writeback_control *wbc, 234 enum iostat_type io_type) 235 { 236 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 237 238 trace_f2fs_writepage(page, META); 239 240 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 241 goto redirty_out; 242 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) 243 goto redirty_out; 244 if (unlikely(f2fs_cp_error(sbi))) 245 goto redirty_out; 246 247 write_meta_page(sbi, page, io_type); 248 dec_page_count(sbi, F2FS_DIRTY_META); 249 250 if (wbc->for_reclaim) 251 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 252 0, page->index, META); 253 254 unlock_page(page); 255 256 if (unlikely(f2fs_cp_error(sbi))) 257 f2fs_submit_merged_write(sbi, META); 258 259 return 0; 260 261 redirty_out: 262 redirty_page_for_writepage(wbc, page); 263 return AOP_WRITEPAGE_ACTIVATE; 264 } 265 266 static int f2fs_write_meta_page(struct page *page, 267 struct writeback_control *wbc) 268 { 269 return __f2fs_write_meta_page(page, wbc, FS_META_IO); 270 } 271 272 static int f2fs_write_meta_pages(struct address_space *mapping, 273 struct writeback_control *wbc) 274 { 275 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 276 long diff, written; 277 278 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 279 goto skip_write; 280 281 /* collect a number of dirty meta pages and write together */ 282 if (wbc->for_kupdate || 283 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) 284 goto skip_write; 285 286 /* if locked failed, cp will flush dirty pages instead */ 287 if (!mutex_trylock(&sbi->cp_mutex)) 288 goto skip_write; 289 290 trace_f2fs_writepages(mapping->host, wbc, META); 291 diff = nr_pages_to_write(sbi, META, wbc); 292 written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO); 293 mutex_unlock(&sbi->cp_mutex); 294 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); 295 return 0; 296 297 skip_write: 298 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); 299 trace_f2fs_writepages(mapping->host, wbc, META); 300 return 0; 301 } 302 303 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 304 long nr_to_write, enum iostat_type io_type) 305 { 306 struct address_space *mapping = META_MAPPING(sbi); 307 pgoff_t index = 0, prev = ULONG_MAX; 308 struct pagevec pvec; 309 long nwritten = 0; 310 int nr_pages; 311 struct writeback_control wbc = { 312 .for_reclaim = 0, 313 }; 314 struct blk_plug plug; 315 316 pagevec_init(&pvec); 317 318 blk_start_plug(&plug); 319 320 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 321 PAGECACHE_TAG_DIRTY))) { 322 int i; 323 324 for (i = 0; i < nr_pages; i++) { 325 struct page *page = pvec.pages[i]; 326 327 if (prev == ULONG_MAX) 328 prev = page->index - 1; 329 if (nr_to_write != LONG_MAX && page->index != prev + 1) { 330 pagevec_release(&pvec); 331 goto stop; 332 } 333 334 lock_page(page); 335 336 if (unlikely(page->mapping != mapping)) { 337 continue_unlock: 338 unlock_page(page); 339 continue; 340 } 341 if (!PageDirty(page)) { 342 /* someone wrote it for us */ 343 goto continue_unlock; 344 } 345 346 f2fs_wait_on_page_writeback(page, META, true); 347 348 BUG_ON(PageWriteback(page)); 349 if (!clear_page_dirty_for_io(page)) 350 goto continue_unlock; 351 352 if (__f2fs_write_meta_page(page, &wbc, io_type)) { 353 unlock_page(page); 354 break; 355 } 356 nwritten++; 357 prev = page->index; 358 if (unlikely(nwritten >= nr_to_write)) 359 break; 360 } 361 pagevec_release(&pvec); 362 cond_resched(); 363 } 364 stop: 365 if (nwritten) 366 f2fs_submit_merged_write(sbi, type); 367 368 blk_finish_plug(&plug); 369 370 return nwritten; 371 } 372 373 static int f2fs_set_meta_page_dirty(struct page *page) 374 { 375 trace_f2fs_set_page_dirty(page, META); 376 377 if (!PageUptodate(page)) 378 SetPageUptodate(page); 379 if (!PageDirty(page)) { 380 f2fs_set_page_dirty_nobuffers(page); 381 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); 382 SetPagePrivate(page); 383 f2fs_trace_pid(page); 384 return 1; 385 } 386 return 0; 387 } 388 389 const struct address_space_operations f2fs_meta_aops = { 390 .writepage = f2fs_write_meta_page, 391 .writepages = f2fs_write_meta_pages, 392 .set_page_dirty = f2fs_set_meta_page_dirty, 393 .invalidatepage = f2fs_invalidate_page, 394 .releasepage = f2fs_release_page, 395 #ifdef CONFIG_MIGRATION 396 .migratepage = f2fs_migrate_page, 397 #endif 398 }; 399 400 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, 401 unsigned int devidx, int type) 402 { 403 struct inode_management *im = &sbi->im[type]; 404 struct ino_entry *e, *tmp; 405 406 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); 407 408 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 409 410 spin_lock(&im->ino_lock); 411 e = radix_tree_lookup(&im->ino_root, ino); 412 if (!e) { 413 e = tmp; 414 if (unlikely(radix_tree_insert(&im->ino_root, ino, e))) 415 f2fs_bug_on(sbi, 1); 416 417 memset(e, 0, sizeof(struct ino_entry)); 418 e->ino = ino; 419 420 list_add_tail(&e->list, &im->ino_list); 421 if (type != ORPHAN_INO) 422 im->ino_num++; 423 } 424 425 if (type == FLUSH_INO) 426 f2fs_set_bit(devidx, (char *)&e->dirty_device); 427 428 spin_unlock(&im->ino_lock); 429 radix_tree_preload_end(); 430 431 if (e != tmp) 432 kmem_cache_free(ino_entry_slab, tmp); 433 } 434 435 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 436 { 437 struct inode_management *im = &sbi->im[type]; 438 struct ino_entry *e; 439 440 spin_lock(&im->ino_lock); 441 e = radix_tree_lookup(&im->ino_root, ino); 442 if (e) { 443 list_del(&e->list); 444 radix_tree_delete(&im->ino_root, ino); 445 im->ino_num--; 446 spin_unlock(&im->ino_lock); 447 kmem_cache_free(ino_entry_slab, e); 448 return; 449 } 450 spin_unlock(&im->ino_lock); 451 } 452 453 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 454 { 455 /* add new dirty ino entry into list */ 456 __add_ino_entry(sbi, ino, 0, type); 457 } 458 459 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) 460 { 461 /* remove dirty ino entry from list */ 462 __remove_ino_entry(sbi, ino, type); 463 } 464 465 /* mode should be APPEND_INO or UPDATE_INO */ 466 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) 467 { 468 struct inode_management *im = &sbi->im[mode]; 469 struct ino_entry *e; 470 471 spin_lock(&im->ino_lock); 472 e = radix_tree_lookup(&im->ino_root, ino); 473 spin_unlock(&im->ino_lock); 474 return e ? true : false; 475 } 476 477 void release_ino_entry(struct f2fs_sb_info *sbi, bool all) 478 { 479 struct ino_entry *e, *tmp; 480 int i; 481 482 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) { 483 struct inode_management *im = &sbi->im[i]; 484 485 spin_lock(&im->ino_lock); 486 list_for_each_entry_safe(e, tmp, &im->ino_list, list) { 487 list_del(&e->list); 488 radix_tree_delete(&im->ino_root, e->ino); 489 kmem_cache_free(ino_entry_slab, e); 490 im->ino_num--; 491 } 492 spin_unlock(&im->ino_lock); 493 } 494 } 495 496 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 497 unsigned int devidx, int type) 498 { 499 __add_ino_entry(sbi, ino, devidx, type); 500 } 501 502 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 503 unsigned int devidx, int type) 504 { 505 struct inode_management *im = &sbi->im[type]; 506 struct ino_entry *e; 507 bool is_dirty = false; 508 509 spin_lock(&im->ino_lock); 510 e = radix_tree_lookup(&im->ino_root, ino); 511 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device)) 512 is_dirty = true; 513 spin_unlock(&im->ino_lock); 514 return is_dirty; 515 } 516 517 int acquire_orphan_inode(struct f2fs_sb_info *sbi) 518 { 519 struct inode_management *im = &sbi->im[ORPHAN_INO]; 520 int err = 0; 521 522 spin_lock(&im->ino_lock); 523 524 #ifdef CONFIG_F2FS_FAULT_INJECTION 525 if (time_to_inject(sbi, FAULT_ORPHAN)) { 526 spin_unlock(&im->ino_lock); 527 f2fs_show_injection_info(FAULT_ORPHAN); 528 return -ENOSPC; 529 } 530 #endif 531 if (unlikely(im->ino_num >= sbi->max_orphans)) 532 err = -ENOSPC; 533 else 534 im->ino_num++; 535 spin_unlock(&im->ino_lock); 536 537 return err; 538 } 539 540 void release_orphan_inode(struct f2fs_sb_info *sbi) 541 { 542 struct inode_management *im = &sbi->im[ORPHAN_INO]; 543 544 spin_lock(&im->ino_lock); 545 f2fs_bug_on(sbi, im->ino_num == 0); 546 im->ino_num--; 547 spin_unlock(&im->ino_lock); 548 } 549 550 void add_orphan_inode(struct inode *inode) 551 { 552 /* add new orphan ino entry into list */ 553 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO); 554 update_inode_page(inode); 555 } 556 557 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 558 { 559 /* remove orphan entry from orphan list */ 560 __remove_ino_entry(sbi, ino, ORPHAN_INO); 561 } 562 563 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) 564 { 565 struct inode *inode; 566 struct node_info ni; 567 int err = acquire_orphan_inode(sbi); 568 569 if (err) { 570 set_sbi_flag(sbi, SBI_NEED_FSCK); 571 f2fs_msg(sbi->sb, KERN_WARNING, 572 "%s: orphan failed (ino=%x), run fsck to fix.", 573 __func__, ino); 574 return err; 575 } 576 577 __add_ino_entry(sbi, ino, 0, ORPHAN_INO); 578 579 inode = f2fs_iget_retry(sbi->sb, ino); 580 if (IS_ERR(inode)) { 581 /* 582 * there should be a bug that we can't find the entry 583 * to orphan inode. 584 */ 585 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); 586 return PTR_ERR(inode); 587 } 588 589 clear_nlink(inode); 590 591 /* truncate all the data during iput */ 592 iput(inode); 593 594 get_node_info(sbi, ino, &ni); 595 596 /* ENOMEM was fully retried in f2fs_evict_inode. */ 597 if (ni.blk_addr != NULL_ADDR) { 598 set_sbi_flag(sbi, SBI_NEED_FSCK); 599 f2fs_msg(sbi->sb, KERN_WARNING, 600 "%s: orphan failed (ino=%x) by kernel, retry mount.", 601 __func__, ino); 602 return -EIO; 603 } 604 __remove_ino_entry(sbi, ino, ORPHAN_INO); 605 return 0; 606 } 607 608 int recover_orphan_inodes(struct f2fs_sb_info *sbi) 609 { 610 block_t start_blk, orphan_blocks, i, j; 611 unsigned int s_flags = sbi->sb->s_flags; 612 int err = 0; 613 #ifdef CONFIG_QUOTA 614 int quota_enabled; 615 #endif 616 617 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 618 return 0; 619 620 if (s_flags & SB_RDONLY) { 621 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs"); 622 sbi->sb->s_flags &= ~SB_RDONLY; 623 } 624 625 #ifdef CONFIG_QUOTA 626 /* Needed for iput() to work correctly and not trash data */ 627 sbi->sb->s_flags |= SB_ACTIVE; 628 629 /* Turn on quotas so that they are updated correctly */ 630 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY); 631 #endif 632 633 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); 634 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); 635 636 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); 637 638 for (i = 0; i < orphan_blocks; i++) { 639 struct page *page = get_meta_page(sbi, start_blk + i); 640 struct f2fs_orphan_block *orphan_blk; 641 642 orphan_blk = (struct f2fs_orphan_block *)page_address(page); 643 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { 644 nid_t ino = le32_to_cpu(orphan_blk->ino[j]); 645 err = recover_orphan_inode(sbi, ino); 646 if (err) { 647 f2fs_put_page(page, 1); 648 goto out; 649 } 650 } 651 f2fs_put_page(page, 1); 652 } 653 /* clear Orphan Flag */ 654 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); 655 out: 656 #ifdef CONFIG_QUOTA 657 /* Turn quotas off */ 658 if (quota_enabled) 659 f2fs_quota_off_umount(sbi->sb); 660 #endif 661 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 662 663 return err; 664 } 665 666 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) 667 { 668 struct list_head *head; 669 struct f2fs_orphan_block *orphan_blk = NULL; 670 unsigned int nentries = 0; 671 unsigned short index = 1; 672 unsigned short orphan_blocks; 673 struct page *page = NULL; 674 struct ino_entry *orphan = NULL; 675 struct inode_management *im = &sbi->im[ORPHAN_INO]; 676 677 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); 678 679 /* 680 * we don't need to do spin_lock(&im->ino_lock) here, since all the 681 * orphan inode operations are covered under f2fs_lock_op(). 682 * And, spin_lock should be avoided due to page operations below. 683 */ 684 head = &im->ino_list; 685 686 /* loop for each orphan inode entry and write them in Jornal block */ 687 list_for_each_entry(orphan, head, list) { 688 if (!page) { 689 page = grab_meta_page(sbi, start_blk++); 690 orphan_blk = 691 (struct f2fs_orphan_block *)page_address(page); 692 memset(orphan_blk, 0, sizeof(*orphan_blk)); 693 } 694 695 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); 696 697 if (nentries == F2FS_ORPHANS_PER_BLOCK) { 698 /* 699 * an orphan block is full of 1020 entries, 700 * then we need to flush current orphan blocks 701 * and bring another one in memory 702 */ 703 orphan_blk->blk_addr = cpu_to_le16(index); 704 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 705 orphan_blk->entry_count = cpu_to_le32(nentries); 706 set_page_dirty(page); 707 f2fs_put_page(page, 1); 708 index++; 709 nentries = 0; 710 page = NULL; 711 } 712 } 713 714 if (page) { 715 orphan_blk->blk_addr = cpu_to_le16(index); 716 orphan_blk->blk_count = cpu_to_le16(orphan_blocks); 717 orphan_blk->entry_count = cpu_to_le32(nentries); 718 set_page_dirty(page); 719 f2fs_put_page(page, 1); 720 } 721 } 722 723 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, 724 struct f2fs_checkpoint **cp_block, struct page **cp_page, 725 unsigned long long *version) 726 { 727 unsigned long blk_size = sbi->blocksize; 728 size_t crc_offset = 0; 729 __u32 crc = 0; 730 731 *cp_page = get_meta_page(sbi, cp_addr); 732 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); 733 734 crc_offset = le32_to_cpu((*cp_block)->checksum_offset); 735 if (crc_offset > (blk_size - sizeof(__le32))) { 736 f2fs_msg(sbi->sb, KERN_WARNING, 737 "invalid crc_offset: %zu", crc_offset); 738 return -EINVAL; 739 } 740 741 crc = cur_cp_crc(*cp_block); 742 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { 743 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); 744 return -EINVAL; 745 } 746 747 *version = cur_cp_version(*cp_block); 748 return 0; 749 } 750 751 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, 752 block_t cp_addr, unsigned long long *version) 753 { 754 struct page *cp_page_1 = NULL, *cp_page_2 = NULL; 755 struct f2fs_checkpoint *cp_block = NULL; 756 unsigned long long cur_version = 0, pre_version = 0; 757 int err; 758 759 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 760 &cp_page_1, version); 761 if (err) 762 goto invalid_cp1; 763 pre_version = *version; 764 765 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; 766 err = get_checkpoint_version(sbi, cp_addr, &cp_block, 767 &cp_page_2, version); 768 if (err) 769 goto invalid_cp2; 770 cur_version = *version; 771 772 if (cur_version == pre_version) { 773 *version = cur_version; 774 f2fs_put_page(cp_page_2, 1); 775 return cp_page_1; 776 } 777 invalid_cp2: 778 f2fs_put_page(cp_page_2, 1); 779 invalid_cp1: 780 f2fs_put_page(cp_page_1, 1); 781 return NULL; 782 } 783 784 int get_valid_checkpoint(struct f2fs_sb_info *sbi) 785 { 786 struct f2fs_checkpoint *cp_block; 787 struct f2fs_super_block *fsb = sbi->raw_super; 788 struct page *cp1, *cp2, *cur_page; 789 unsigned long blk_size = sbi->blocksize; 790 unsigned long long cp1_version = 0, cp2_version = 0; 791 unsigned long long cp_start_blk_no; 792 unsigned int cp_blks = 1 + __cp_payload(sbi); 793 block_t cp_blk_no; 794 int i; 795 796 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); 797 if (!sbi->ckpt) 798 return -ENOMEM; 799 /* 800 * Finding out valid cp block involves read both 801 * sets( cp pack1 and cp pack 2) 802 */ 803 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); 804 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); 805 806 /* The second checkpoint pack should start at the next segment */ 807 cp_start_blk_no += ((unsigned long long)1) << 808 le32_to_cpu(fsb->log_blocks_per_seg); 809 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); 810 811 if (cp1 && cp2) { 812 if (ver_after(cp2_version, cp1_version)) 813 cur_page = cp2; 814 else 815 cur_page = cp1; 816 } else if (cp1) { 817 cur_page = cp1; 818 } else if (cp2) { 819 cur_page = cp2; 820 } else { 821 goto fail_no_cp; 822 } 823 824 cp_block = (struct f2fs_checkpoint *)page_address(cur_page); 825 memcpy(sbi->ckpt, cp_block, blk_size); 826 827 /* Sanity checking of checkpoint */ 828 if (sanity_check_ckpt(sbi)) 829 goto free_fail_no_cp; 830 831 if (cur_page == cp1) 832 sbi->cur_cp_pack = 1; 833 else 834 sbi->cur_cp_pack = 2; 835 836 if (cp_blks <= 1) 837 goto done; 838 839 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); 840 if (cur_page == cp2) 841 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); 842 843 for (i = 1; i < cp_blks; i++) { 844 void *sit_bitmap_ptr; 845 unsigned char *ckpt = (unsigned char *)sbi->ckpt; 846 847 cur_page = get_meta_page(sbi, cp_blk_no + i); 848 sit_bitmap_ptr = page_address(cur_page); 849 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); 850 f2fs_put_page(cur_page, 1); 851 } 852 done: 853 f2fs_put_page(cp1, 1); 854 f2fs_put_page(cp2, 1); 855 return 0; 856 857 free_fail_no_cp: 858 f2fs_put_page(cp1, 1); 859 f2fs_put_page(cp2, 1); 860 fail_no_cp: 861 kfree(sbi->ckpt); 862 return -EINVAL; 863 } 864 865 static void __add_dirty_inode(struct inode *inode, enum inode_type type) 866 { 867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 868 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 869 870 if (is_inode_flag_set(inode, flag)) 871 return; 872 873 set_inode_flag(inode, flag); 874 if (!f2fs_is_volatile_file(inode)) 875 list_add_tail(&F2FS_I(inode)->dirty_list, 876 &sbi->inode_list[type]); 877 stat_inc_dirty_inode(sbi, type); 878 } 879 880 static void __remove_dirty_inode(struct inode *inode, enum inode_type type) 881 { 882 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; 883 884 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) 885 return; 886 887 list_del_init(&F2FS_I(inode)->dirty_list); 888 clear_inode_flag(inode, flag); 889 stat_dec_dirty_inode(F2FS_I_SB(inode), type); 890 } 891 892 void update_dirty_page(struct inode *inode, struct page *page) 893 { 894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 895 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 896 897 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 898 !S_ISLNK(inode->i_mode)) 899 return; 900 901 spin_lock(&sbi->inode_lock[type]); 902 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) 903 __add_dirty_inode(inode, type); 904 inode_inc_dirty_pages(inode); 905 spin_unlock(&sbi->inode_lock[type]); 906 907 SetPagePrivate(page); 908 f2fs_trace_pid(page); 909 } 910 911 void remove_dirty_inode(struct inode *inode) 912 { 913 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 914 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; 915 916 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 917 !S_ISLNK(inode->i_mode)) 918 return; 919 920 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) 921 return; 922 923 spin_lock(&sbi->inode_lock[type]); 924 __remove_dirty_inode(inode, type); 925 spin_unlock(&sbi->inode_lock[type]); 926 } 927 928 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) 929 { 930 struct list_head *head; 931 struct inode *inode; 932 struct f2fs_inode_info *fi; 933 bool is_dir = (type == DIR_INODE); 934 unsigned long ino = 0; 935 936 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, 937 get_pages(sbi, is_dir ? 938 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 939 retry: 940 if (unlikely(f2fs_cp_error(sbi))) 941 return -EIO; 942 943 spin_lock(&sbi->inode_lock[type]); 944 945 head = &sbi->inode_list[type]; 946 if (list_empty(head)) { 947 spin_unlock(&sbi->inode_lock[type]); 948 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, 949 get_pages(sbi, is_dir ? 950 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); 951 return 0; 952 } 953 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); 954 inode = igrab(&fi->vfs_inode); 955 spin_unlock(&sbi->inode_lock[type]); 956 if (inode) { 957 unsigned long cur_ino = inode->i_ino; 958 959 if (is_dir) 960 F2FS_I(inode)->cp_task = current; 961 962 filemap_fdatawrite(inode->i_mapping); 963 964 if (is_dir) 965 F2FS_I(inode)->cp_task = NULL; 966 967 iput(inode); 968 /* We need to give cpu to another writers. */ 969 if (ino == cur_ino) { 970 congestion_wait(BLK_RW_ASYNC, HZ/50); 971 cond_resched(); 972 } else { 973 ino = cur_ino; 974 } 975 } else { 976 /* 977 * We should submit bio, since it exists several 978 * wribacking dentry pages in the freeing inode. 979 */ 980 f2fs_submit_merged_write(sbi, DATA); 981 cond_resched(); 982 } 983 goto retry; 984 } 985 986 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) 987 { 988 struct list_head *head = &sbi->inode_list[DIRTY_META]; 989 struct inode *inode; 990 struct f2fs_inode_info *fi; 991 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); 992 993 while (total--) { 994 if (unlikely(f2fs_cp_error(sbi))) 995 return -EIO; 996 997 spin_lock(&sbi->inode_lock[DIRTY_META]); 998 if (list_empty(head)) { 999 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1000 return 0; 1001 } 1002 fi = list_first_entry(head, struct f2fs_inode_info, 1003 gdirty_list); 1004 inode = igrab(&fi->vfs_inode); 1005 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1006 if (inode) { 1007 sync_inode_metadata(inode, 0); 1008 1009 /* it's on eviction */ 1010 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) 1011 update_inode_page(inode); 1012 iput(inode); 1013 } 1014 } 1015 return 0; 1016 } 1017 1018 static void __prepare_cp_block(struct f2fs_sb_info *sbi) 1019 { 1020 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1021 struct f2fs_nm_info *nm_i = NM_I(sbi); 1022 nid_t last_nid = nm_i->next_scan_nid; 1023 1024 next_free_nid(sbi, &last_nid); 1025 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); 1026 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); 1027 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); 1028 ckpt->next_free_nid = cpu_to_le32(last_nid); 1029 } 1030 1031 /* 1032 * Freeze all the FS-operations for checkpoint. 1033 */ 1034 static int block_operations(struct f2fs_sb_info *sbi) 1035 { 1036 struct writeback_control wbc = { 1037 .sync_mode = WB_SYNC_ALL, 1038 .nr_to_write = LONG_MAX, 1039 .for_reclaim = 0, 1040 }; 1041 struct blk_plug plug; 1042 int err = 0; 1043 1044 blk_start_plug(&plug); 1045 1046 retry_flush_dents: 1047 f2fs_lock_all(sbi); 1048 /* write all the dirty dentry pages */ 1049 if (get_pages(sbi, F2FS_DIRTY_DENTS)) { 1050 f2fs_unlock_all(sbi); 1051 err = sync_dirty_inodes(sbi, DIR_INODE); 1052 if (err) 1053 goto out; 1054 cond_resched(); 1055 goto retry_flush_dents; 1056 } 1057 1058 /* 1059 * POR: we should ensure that there are no dirty node pages 1060 * until finishing nat/sit flush. inode->i_blocks can be updated. 1061 */ 1062 down_write(&sbi->node_change); 1063 1064 if (get_pages(sbi, F2FS_DIRTY_IMETA)) { 1065 up_write(&sbi->node_change); 1066 f2fs_unlock_all(sbi); 1067 err = f2fs_sync_inode_meta(sbi); 1068 if (err) 1069 goto out; 1070 cond_resched(); 1071 goto retry_flush_dents; 1072 } 1073 1074 retry_flush_nodes: 1075 down_write(&sbi->node_write); 1076 1077 if (get_pages(sbi, F2FS_DIRTY_NODES)) { 1078 up_write(&sbi->node_write); 1079 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO); 1080 if (err) { 1081 up_write(&sbi->node_change); 1082 f2fs_unlock_all(sbi); 1083 goto out; 1084 } 1085 cond_resched(); 1086 goto retry_flush_nodes; 1087 } 1088 1089 /* 1090 * sbi->node_change is used only for AIO write_begin path which produces 1091 * dirty node blocks and some checkpoint values by block allocation. 1092 */ 1093 __prepare_cp_block(sbi); 1094 up_write(&sbi->node_change); 1095 out: 1096 blk_finish_plug(&plug); 1097 return err; 1098 } 1099 1100 static void unblock_operations(struct f2fs_sb_info *sbi) 1101 { 1102 up_write(&sbi->node_write); 1103 f2fs_unlock_all(sbi); 1104 } 1105 1106 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) 1107 { 1108 DEFINE_WAIT(wait); 1109 1110 for (;;) { 1111 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); 1112 1113 if (!get_pages(sbi, F2FS_WB_CP_DATA)) 1114 break; 1115 1116 io_schedule_timeout(5*HZ); 1117 } 1118 finish_wait(&sbi->cp_wait, &wait); 1119 } 1120 1121 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1122 { 1123 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; 1124 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1125 unsigned long flags; 1126 1127 spin_lock_irqsave(&sbi->cp_lock, flags); 1128 1129 if ((cpc->reason & CP_UMOUNT) && 1130 le32_to_cpu(ckpt->cp_pack_total_block_count) > 1131 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks) 1132 disable_nat_bits(sbi, false); 1133 1134 if (cpc->reason & CP_TRIMMED) 1135 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG); 1136 1137 if (cpc->reason & CP_UMOUNT) 1138 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1139 else 1140 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); 1141 1142 if (cpc->reason & CP_FASTBOOT) 1143 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1144 else 1145 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); 1146 1147 if (orphan_num) 1148 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1149 else 1150 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); 1151 1152 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1153 __set_ckpt_flags(ckpt, CP_FSCK_FLAG); 1154 1155 /* set this flag to activate crc|cp_ver for recovery */ 1156 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); 1157 1158 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1159 } 1160 1161 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1162 { 1163 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1164 struct f2fs_nm_info *nm_i = NM_I(sbi); 1165 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags; 1166 block_t start_blk; 1167 unsigned int data_sum_blocks, orphan_blocks; 1168 __u32 crc32 = 0; 1169 int i; 1170 int cp_payload_blks = __cp_payload(sbi); 1171 struct super_block *sb = sbi->sb; 1172 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1173 u64 kbytes_written; 1174 int err; 1175 1176 /* Flush all the NAT/SIT pages */ 1177 while (get_pages(sbi, F2FS_DIRTY_META)) { 1178 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1179 if (unlikely(f2fs_cp_error(sbi))) 1180 return -EIO; 1181 } 1182 1183 /* 1184 * modify checkpoint 1185 * version number is already updated 1186 */ 1187 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); 1188 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); 1189 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1190 ckpt->cur_node_segno[i] = 1191 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); 1192 ckpt->cur_node_blkoff[i] = 1193 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); 1194 ckpt->alloc_type[i + CURSEG_HOT_NODE] = 1195 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); 1196 } 1197 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1198 ckpt->cur_data_segno[i] = 1199 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); 1200 ckpt->cur_data_blkoff[i] = 1201 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); 1202 ckpt->alloc_type[i + CURSEG_HOT_DATA] = 1203 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); 1204 } 1205 1206 /* 2 cp + n data seg summary + orphan inode blocks */ 1207 data_sum_blocks = npages_for_summary_flush(sbi, false); 1208 spin_lock_irqsave(&sbi->cp_lock, flags); 1209 if (data_sum_blocks < NR_CURSEG_DATA_TYPE) 1210 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1211 else 1212 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); 1213 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1214 1215 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); 1216 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + 1217 orphan_blocks); 1218 1219 if (__remain_node_summaries(cpc->reason)) 1220 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ 1221 cp_payload_blks + data_sum_blocks + 1222 orphan_blocks + NR_CURSEG_NODE_TYPE); 1223 else 1224 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + 1225 cp_payload_blks + data_sum_blocks + 1226 orphan_blocks); 1227 1228 /* update ckpt flag for checkpoint */ 1229 update_ckpt_flags(sbi, cpc); 1230 1231 /* update SIT/NAT bitmap */ 1232 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); 1233 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); 1234 1235 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); 1236 *((__le32 *)((unsigned char *)ckpt + 1237 le32_to_cpu(ckpt->checksum_offset))) 1238 = cpu_to_le32(crc32); 1239 1240 start_blk = __start_cp_next_addr(sbi); 1241 1242 /* write nat bits */ 1243 if (enabled_nat_bits(sbi, cpc)) { 1244 __u64 cp_ver = cur_cp_version(ckpt); 1245 block_t blk; 1246 1247 cp_ver |= ((__u64)crc32 << 32); 1248 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver); 1249 1250 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks; 1251 for (i = 0; i < nm_i->nat_bits_blocks; i++) 1252 update_meta_page(sbi, nm_i->nat_bits + 1253 (i << F2FS_BLKSIZE_BITS), blk + i); 1254 1255 /* Flush all the NAT BITS pages */ 1256 while (get_pages(sbi, F2FS_DIRTY_META)) { 1257 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO); 1258 if (unlikely(f2fs_cp_error(sbi))) 1259 return -EIO; 1260 } 1261 } 1262 1263 /* need to wait for end_io results */ 1264 wait_on_all_pages_writeback(sbi); 1265 if (unlikely(f2fs_cp_error(sbi))) 1266 return -EIO; 1267 1268 /* flush all device cache */ 1269 err = f2fs_flush_device_cache(sbi); 1270 if (err) 1271 return err; 1272 1273 /* write out checkpoint buffer at block 0 */ 1274 update_meta_page(sbi, ckpt, start_blk++); 1275 1276 for (i = 1; i < 1 + cp_payload_blks; i++) 1277 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, 1278 start_blk++); 1279 1280 if (orphan_num) { 1281 write_orphan_inodes(sbi, start_blk); 1282 start_blk += orphan_blocks; 1283 } 1284 1285 write_data_summaries(sbi, start_blk); 1286 start_blk += data_sum_blocks; 1287 1288 /* Record write statistics in the hot node summary */ 1289 kbytes_written = sbi->kbytes_written; 1290 if (sb->s_bdev->bd_part) 1291 kbytes_written += BD_PART_WRITTEN(sbi); 1292 1293 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); 1294 1295 if (__remain_node_summaries(cpc->reason)) { 1296 write_node_summaries(sbi, start_blk); 1297 start_blk += NR_CURSEG_NODE_TYPE; 1298 } 1299 1300 /* writeout checkpoint block */ 1301 update_meta_page(sbi, ckpt, start_blk); 1302 1303 /* wait for previous submitted node/meta pages writeback */ 1304 wait_on_all_pages_writeback(sbi); 1305 1306 if (unlikely(f2fs_cp_error(sbi))) 1307 return -EIO; 1308 1309 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); 1310 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); 1311 1312 /* update user_block_counts */ 1313 sbi->last_valid_block_count = sbi->total_valid_block_count; 1314 percpu_counter_set(&sbi->alloc_valid_block_count, 0); 1315 1316 /* Here, we only have one bio having CP pack */ 1317 sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO); 1318 1319 /* wait for previous submitted meta pages writeback */ 1320 wait_on_all_pages_writeback(sbi); 1321 1322 release_ino_entry(sbi, false); 1323 1324 if (unlikely(f2fs_cp_error(sbi))) 1325 return -EIO; 1326 1327 clear_sbi_flag(sbi, SBI_IS_DIRTY); 1328 clear_sbi_flag(sbi, SBI_NEED_CP); 1329 __set_cp_next_pack(sbi); 1330 1331 /* 1332 * redirty superblock if metadata like node page or inode cache is 1333 * updated during writing checkpoint. 1334 */ 1335 if (get_pages(sbi, F2FS_DIRTY_NODES) || 1336 get_pages(sbi, F2FS_DIRTY_IMETA)) 1337 set_sbi_flag(sbi, SBI_IS_DIRTY); 1338 1339 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); 1340 1341 return 0; 1342 } 1343 1344 /* 1345 * We guarantee that this checkpoint procedure will not fail. 1346 */ 1347 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1348 { 1349 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1350 unsigned long long ckpt_ver; 1351 int err = 0; 1352 1353 mutex_lock(&sbi->cp_mutex); 1354 1355 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && 1356 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) || 1357 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks))) 1358 goto out; 1359 if (unlikely(f2fs_cp_error(sbi))) { 1360 err = -EIO; 1361 goto out; 1362 } 1363 if (f2fs_readonly(sbi->sb)) { 1364 err = -EROFS; 1365 goto out; 1366 } 1367 1368 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); 1369 1370 err = block_operations(sbi); 1371 if (err) 1372 goto out; 1373 1374 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); 1375 1376 f2fs_flush_merged_writes(sbi); 1377 1378 /* this is the case of multiple fstrims without any changes */ 1379 if (cpc->reason & CP_DISCARD) { 1380 if (!exist_trim_candidates(sbi, cpc)) { 1381 unblock_operations(sbi); 1382 goto out; 1383 } 1384 1385 if (NM_I(sbi)->dirty_nat_cnt == 0 && 1386 SIT_I(sbi)->dirty_sentries == 0 && 1387 prefree_segments(sbi) == 0) { 1388 flush_sit_entries(sbi, cpc); 1389 clear_prefree_segments(sbi, cpc); 1390 unblock_operations(sbi); 1391 goto out; 1392 } 1393 } 1394 1395 /* 1396 * update checkpoint pack index 1397 * Increase the version number so that 1398 * SIT entries and seg summaries are written at correct place 1399 */ 1400 ckpt_ver = cur_cp_version(ckpt); 1401 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); 1402 1403 /* write cached NAT/SIT entries to NAT/SIT area */ 1404 flush_nat_entries(sbi, cpc); 1405 flush_sit_entries(sbi, cpc); 1406 1407 /* unlock all the fs_lock[] in do_checkpoint() */ 1408 err = do_checkpoint(sbi, cpc); 1409 if (err) 1410 release_discard_addrs(sbi); 1411 else 1412 clear_prefree_segments(sbi, cpc); 1413 1414 unblock_operations(sbi); 1415 stat_inc_cp_count(sbi->stat_info); 1416 1417 if (cpc->reason & CP_RECOVERY) 1418 f2fs_msg(sbi->sb, KERN_NOTICE, 1419 "checkpoint: version = %llx", ckpt_ver); 1420 1421 /* do checkpoint periodically */ 1422 f2fs_update_time(sbi, CP_TIME); 1423 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); 1424 out: 1425 mutex_unlock(&sbi->cp_mutex); 1426 return err; 1427 } 1428 1429 void init_ino_entry_info(struct f2fs_sb_info *sbi) 1430 { 1431 int i; 1432 1433 for (i = 0; i < MAX_INO_ENTRY; i++) { 1434 struct inode_management *im = &sbi->im[i]; 1435 1436 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); 1437 spin_lock_init(&im->ino_lock); 1438 INIT_LIST_HEAD(&im->ino_list); 1439 im->ino_num = 0; 1440 } 1441 1442 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - 1443 NR_CURSEG_TYPE - __cp_payload(sbi)) * 1444 F2FS_ORPHANS_PER_BLOCK; 1445 } 1446 1447 int __init create_checkpoint_caches(void) 1448 { 1449 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", 1450 sizeof(struct ino_entry)); 1451 if (!ino_entry_slab) 1452 return -ENOMEM; 1453 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", 1454 sizeof(struct inode_entry)); 1455 if (!inode_entry_slab) { 1456 kmem_cache_destroy(ino_entry_slab); 1457 return -ENOMEM; 1458 } 1459 return 0; 1460 } 1461 1462 void destroy_checkpoint_caches(void) 1463 { 1464 kmem_cache_destroy(ino_entry_slab); 1465 kmem_cache_destroy(inode_entry_slab); 1466 } 1467