1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/smp_lock.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/proc_fs.h> 39 #include <linux/ctype.h> 40 #include <linux/log2.h> 41 #include <linux/crc16.h> 42 #include <asm/uaccess.h> 43 44 #include "ext4.h" 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "mballoc.h" 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ext4.h> 52 53 static int default_mb_history_length = 1000; 54 55 module_param_named(default_mb_history_length, default_mb_history_length, 56 int, 0644); 57 MODULE_PARM_DESC(default_mb_history_length, 58 "Default number of entries saved for mb_history"); 59 60 struct proc_dir_entry *ext4_proc_root; 61 static struct kset *ext4_kset; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static const char *ext4_decode_error(struct super_block *sb, int errno, 72 char nbuf[16]); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static void ext4_write_super(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 79 80 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 81 struct ext4_group_desc *bg) 82 { 83 return le32_to_cpu(bg->bg_block_bitmap_lo) | 84 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 85 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 86 } 87 88 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 89 struct ext4_group_desc *bg) 90 { 91 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 92 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 93 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 94 } 95 96 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 97 struct ext4_group_desc *bg) 98 { 99 return le32_to_cpu(bg->bg_inode_table_lo) | 100 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 101 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 102 } 103 104 __u32 ext4_free_blks_count(struct super_block *sb, 105 struct ext4_group_desc *bg) 106 { 107 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 108 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 109 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 110 } 111 112 __u32 ext4_free_inodes_count(struct super_block *sb, 113 struct ext4_group_desc *bg) 114 { 115 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 116 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 117 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 118 } 119 120 __u32 ext4_used_dirs_count(struct super_block *sb, 121 struct ext4_group_desc *bg) 122 { 123 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 124 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 125 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 126 } 127 128 __u32 ext4_itable_unused_count(struct super_block *sb, 129 struct ext4_group_desc *bg) 130 { 131 return le16_to_cpu(bg->bg_itable_unused_lo) | 132 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 133 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 134 } 135 136 void ext4_block_bitmap_set(struct super_block *sb, 137 struct ext4_group_desc *bg, ext4_fsblk_t blk) 138 { 139 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 140 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 141 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 142 } 143 144 void ext4_inode_bitmap_set(struct super_block *sb, 145 struct ext4_group_desc *bg, ext4_fsblk_t blk) 146 { 147 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 148 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 149 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 150 } 151 152 void ext4_inode_table_set(struct super_block *sb, 153 struct ext4_group_desc *bg, ext4_fsblk_t blk) 154 { 155 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 156 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 157 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 158 } 159 160 void ext4_free_blks_set(struct super_block *sb, 161 struct ext4_group_desc *bg, __u32 count) 162 { 163 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 164 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 165 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 166 } 167 168 void ext4_free_inodes_set(struct super_block *sb, 169 struct ext4_group_desc *bg, __u32 count) 170 { 171 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 172 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 173 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 174 } 175 176 void ext4_used_dirs_set(struct super_block *sb, 177 struct ext4_group_desc *bg, __u32 count) 178 { 179 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 180 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 181 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 182 } 183 184 void ext4_itable_unused_set(struct super_block *sb, 185 struct ext4_group_desc *bg, __u32 count) 186 { 187 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 188 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 189 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 190 } 191 192 /* 193 * Wrappers for jbd2_journal_start/end. 194 * 195 * The only special thing we need to do here is to make sure that all 196 * journal_end calls result in the superblock being marked dirty, so 197 * that sync() will call the filesystem's write_super callback if 198 * appropriate. 199 */ 200 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) 201 { 202 journal_t *journal; 203 204 if (sb->s_flags & MS_RDONLY) 205 return ERR_PTR(-EROFS); 206 207 /* Special case here: if the journal has aborted behind our 208 * backs (eg. EIO in the commit thread), then we still need to 209 * take the FS itself readonly cleanly. */ 210 journal = EXT4_SB(sb)->s_journal; 211 if (journal) { 212 if (is_journal_aborted(journal)) { 213 ext4_abort(sb, __func__, "Detected aborted journal"); 214 return ERR_PTR(-EROFS); 215 } 216 return jbd2_journal_start(journal, nblocks); 217 } 218 /* 219 * We're not journaling, return the appropriate indication. 220 */ 221 current->journal_info = EXT4_NOJOURNAL_HANDLE; 222 return current->journal_info; 223 } 224 225 /* 226 * The only special thing we need to do here is to make sure that all 227 * jbd2_journal_stop calls result in the superblock being marked dirty, so 228 * that sync() will call the filesystem's write_super callback if 229 * appropriate. 230 */ 231 int __ext4_journal_stop(const char *where, handle_t *handle) 232 { 233 struct super_block *sb; 234 int err; 235 int rc; 236 237 if (!ext4_handle_valid(handle)) { 238 /* 239 * Do this here since we don't call jbd2_journal_stop() in 240 * no-journal mode. 241 */ 242 current->journal_info = NULL; 243 return 0; 244 } 245 sb = handle->h_transaction->t_journal->j_private; 246 err = handle->h_err; 247 rc = jbd2_journal_stop(handle); 248 249 if (!err) 250 err = rc; 251 if (err) 252 __ext4_std_error(sb, where, err); 253 return err; 254 } 255 256 void ext4_journal_abort_handle(const char *caller, const char *err_fn, 257 struct buffer_head *bh, handle_t *handle, int err) 258 { 259 char nbuf[16]; 260 const char *errstr = ext4_decode_error(NULL, err, nbuf); 261 262 BUG_ON(!ext4_handle_valid(handle)); 263 264 if (bh) 265 BUFFER_TRACE(bh, "abort"); 266 267 if (!handle->h_err) 268 handle->h_err = err; 269 270 if (is_handle_aborted(handle)) 271 return; 272 273 printk(KERN_ERR "%s: aborting transaction: %s in %s\n", 274 caller, errstr, err_fn); 275 276 jbd2_journal_abort_handle(handle); 277 } 278 279 /* Deal with the reporting of failure conditions on a filesystem such as 280 * inconsistencies detected or read IO failures. 281 * 282 * On ext2, we can store the error state of the filesystem in the 283 * superblock. That is not possible on ext4, because we may have other 284 * write ordering constraints on the superblock which prevent us from 285 * writing it out straight away; and given that the journal is about to 286 * be aborted, we can't rely on the current, or future, transactions to 287 * write out the superblock safely. 288 * 289 * We'll just use the jbd2_journal_abort() error code to record an error in 290 * the journal instead. On recovery, the journal will compain about 291 * that error until we've noted it down and cleared it. 292 */ 293 294 static void ext4_handle_error(struct super_block *sb) 295 { 296 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 297 298 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 299 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 300 301 if (sb->s_flags & MS_RDONLY) 302 return; 303 304 if (!test_opt(sb, ERRORS_CONT)) { 305 journal_t *journal = EXT4_SB(sb)->s_journal; 306 307 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 308 if (journal) 309 jbd2_journal_abort(journal, -EIO); 310 } 311 if (test_opt(sb, ERRORS_RO)) { 312 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 313 sb->s_flags |= MS_RDONLY; 314 } 315 ext4_commit_super(sb, 1); 316 if (test_opt(sb, ERRORS_PANIC)) 317 panic("EXT4-fs (device %s): panic forced after error\n", 318 sb->s_id); 319 } 320 321 void ext4_error(struct super_block *sb, const char *function, 322 const char *fmt, ...) 323 { 324 va_list args; 325 326 va_start(args, fmt); 327 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 328 vprintk(fmt, args); 329 printk("\n"); 330 va_end(args); 331 332 ext4_handle_error(sb); 333 } 334 335 static const char *ext4_decode_error(struct super_block *sb, int errno, 336 char nbuf[16]) 337 { 338 char *errstr = NULL; 339 340 switch (errno) { 341 case -EIO: 342 errstr = "IO failure"; 343 break; 344 case -ENOMEM: 345 errstr = "Out of memory"; 346 break; 347 case -EROFS: 348 if (!sb || (EXT4_SB(sb)->s_journal && 349 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 350 errstr = "Journal has aborted"; 351 else 352 errstr = "Readonly filesystem"; 353 break; 354 default: 355 /* If the caller passed in an extra buffer for unknown 356 * errors, textualise them now. Else we just return 357 * NULL. */ 358 if (nbuf) { 359 /* Check for truncated error codes... */ 360 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 361 errstr = nbuf; 362 } 363 break; 364 } 365 366 return errstr; 367 } 368 369 /* __ext4_std_error decodes expected errors from journaling functions 370 * automatically and invokes the appropriate error response. */ 371 372 void __ext4_std_error(struct super_block *sb, const char *function, int errno) 373 { 374 char nbuf[16]; 375 const char *errstr; 376 377 /* Special case: if the error is EROFS, and we're not already 378 * inside a transaction, then there's really no point in logging 379 * an error. */ 380 if (errno == -EROFS && journal_current_handle() == NULL && 381 (sb->s_flags & MS_RDONLY)) 382 return; 383 384 errstr = ext4_decode_error(sb, errno, nbuf); 385 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", 386 sb->s_id, function, errstr); 387 388 ext4_handle_error(sb); 389 } 390 391 /* 392 * ext4_abort is a much stronger failure handler than ext4_error. The 393 * abort function may be used to deal with unrecoverable failures such 394 * as journal IO errors or ENOMEM at a critical moment in log management. 395 * 396 * We unconditionally force the filesystem into an ABORT|READONLY state, 397 * unless the error response on the fs has been set to panic in which 398 * case we take the easy way out and panic immediately. 399 */ 400 401 void ext4_abort(struct super_block *sb, const char *function, 402 const char *fmt, ...) 403 { 404 va_list args; 405 406 va_start(args, fmt); 407 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 408 vprintk(fmt, args); 409 printk("\n"); 410 va_end(args); 411 412 if (test_opt(sb, ERRORS_PANIC)) 413 panic("EXT4-fs panic from previous error\n"); 414 415 if (sb->s_flags & MS_RDONLY) 416 return; 417 418 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 419 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 420 sb->s_flags |= MS_RDONLY; 421 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 422 if (EXT4_SB(sb)->s_journal) 423 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 424 } 425 426 void ext4_msg (struct super_block * sb, const char *prefix, 427 const char *fmt, ...) 428 { 429 va_list args; 430 431 va_start(args, fmt); 432 printk("%sEXT4-fs (%s): ", prefix, sb->s_id); 433 vprintk(fmt, args); 434 printk("\n"); 435 va_end(args); 436 } 437 438 void ext4_warning(struct super_block *sb, const char *function, 439 const char *fmt, ...) 440 { 441 va_list args; 442 443 va_start(args, fmt); 444 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", 445 sb->s_id, function); 446 vprintk(fmt, args); 447 printk("\n"); 448 va_end(args); 449 } 450 451 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, 452 const char *function, const char *fmt, ...) 453 __releases(bitlock) 454 __acquires(bitlock) 455 { 456 va_list args; 457 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 458 459 va_start(args, fmt); 460 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); 461 vprintk(fmt, args); 462 printk("\n"); 463 va_end(args); 464 465 if (test_opt(sb, ERRORS_CONT)) { 466 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 467 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 468 ext4_commit_super(sb, 0); 469 return; 470 } 471 ext4_unlock_group(sb, grp); 472 ext4_handle_error(sb); 473 /* 474 * We only get here in the ERRORS_RO case; relocking the group 475 * may be dangerous, but nothing bad will happen since the 476 * filesystem will have already been marked read/only and the 477 * journal has been aborted. We return 1 as a hint to callers 478 * who might what to use the return value from 479 * ext4_grp_locked_error() to distinguish beween the 480 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 481 * aggressively from the ext4 function in question, with a 482 * more appropriate error code. 483 */ 484 ext4_lock_group(sb, grp); 485 return; 486 } 487 488 void ext4_update_dynamic_rev(struct super_block *sb) 489 { 490 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 491 492 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 493 return; 494 495 ext4_warning(sb, __func__, 496 "updating to rev %d because of new feature flag, " 497 "running e2fsck is recommended", 498 EXT4_DYNAMIC_REV); 499 500 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 501 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 502 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 503 /* leave es->s_feature_*compat flags alone */ 504 /* es->s_uuid will be set by e2fsck if empty */ 505 506 /* 507 * The rest of the superblock fields should be zero, and if not it 508 * means they are likely already in use, so leave them alone. We 509 * can leave it up to e2fsck to clean up any inconsistencies there. 510 */ 511 } 512 513 /* 514 * Open the external journal device 515 */ 516 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 517 { 518 struct block_device *bdev; 519 char b[BDEVNAME_SIZE]; 520 521 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 522 if (IS_ERR(bdev)) 523 goto fail; 524 return bdev; 525 526 fail: 527 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 528 __bdevname(dev, b), PTR_ERR(bdev)); 529 return NULL; 530 } 531 532 /* 533 * Release the journal device 534 */ 535 static int ext4_blkdev_put(struct block_device *bdev) 536 { 537 bd_release(bdev); 538 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 539 } 540 541 static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 542 { 543 struct block_device *bdev; 544 int ret = -ENODEV; 545 546 bdev = sbi->journal_bdev; 547 if (bdev) { 548 ret = ext4_blkdev_put(bdev); 549 sbi->journal_bdev = NULL; 550 } 551 return ret; 552 } 553 554 static inline struct inode *orphan_list_entry(struct list_head *l) 555 { 556 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 557 } 558 559 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 560 { 561 struct list_head *l; 562 563 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 564 le32_to_cpu(sbi->s_es->s_last_orphan)); 565 566 printk(KERN_ERR "sb_info orphan list:\n"); 567 list_for_each(l, &sbi->s_orphan) { 568 struct inode *inode = orphan_list_entry(l); 569 printk(KERN_ERR " " 570 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 571 inode->i_sb->s_id, inode->i_ino, inode, 572 inode->i_mode, inode->i_nlink, 573 NEXT_ORPHAN(inode)); 574 } 575 } 576 577 static void ext4_put_super(struct super_block *sb) 578 { 579 struct ext4_sb_info *sbi = EXT4_SB(sb); 580 struct ext4_super_block *es = sbi->s_es; 581 int i, err; 582 583 lock_super(sb); 584 lock_kernel(); 585 if (sb->s_dirt) 586 ext4_commit_super(sb, 1); 587 588 ext4_release_system_zone(sb); 589 ext4_mb_release(sb); 590 ext4_ext_release(sb); 591 ext4_xattr_put_super(sb); 592 if (sbi->s_journal) { 593 err = jbd2_journal_destroy(sbi->s_journal); 594 sbi->s_journal = NULL; 595 if (err < 0) 596 ext4_abort(sb, __func__, 597 "Couldn't clean up the journal"); 598 } 599 if (!(sb->s_flags & MS_RDONLY)) { 600 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 601 es->s_state = cpu_to_le16(sbi->s_mount_state); 602 ext4_commit_super(sb, 1); 603 } 604 if (sbi->s_proc) { 605 remove_proc_entry(sb->s_id, ext4_proc_root); 606 } 607 kobject_del(&sbi->s_kobj); 608 609 for (i = 0; i < sbi->s_gdb_count; i++) 610 brelse(sbi->s_group_desc[i]); 611 kfree(sbi->s_group_desc); 612 if (is_vmalloc_addr(sbi->s_flex_groups)) 613 vfree(sbi->s_flex_groups); 614 else 615 kfree(sbi->s_flex_groups); 616 percpu_counter_destroy(&sbi->s_freeblocks_counter); 617 percpu_counter_destroy(&sbi->s_freeinodes_counter); 618 percpu_counter_destroy(&sbi->s_dirs_counter); 619 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 620 brelse(sbi->s_sbh); 621 #ifdef CONFIG_QUOTA 622 for (i = 0; i < MAXQUOTAS; i++) 623 kfree(sbi->s_qf_names[i]); 624 #endif 625 626 /* Debugging code just in case the in-memory inode orphan list 627 * isn't empty. The on-disk one can be non-empty if we've 628 * detected an error and taken the fs readonly, but the 629 * in-memory list had better be clean by this point. */ 630 if (!list_empty(&sbi->s_orphan)) 631 dump_orphan_list(sb, sbi); 632 J_ASSERT(list_empty(&sbi->s_orphan)); 633 634 invalidate_bdev(sb->s_bdev); 635 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 636 /* 637 * Invalidate the journal device's buffers. We don't want them 638 * floating about in memory - the physical journal device may 639 * hotswapped, and it breaks the `ro-after' testing code. 640 */ 641 sync_blockdev(sbi->journal_bdev); 642 invalidate_bdev(sbi->journal_bdev); 643 ext4_blkdev_remove(sbi); 644 } 645 sb->s_fs_info = NULL; 646 /* 647 * Now that we are completely done shutting down the 648 * superblock, we need to actually destroy the kobject. 649 */ 650 unlock_kernel(); 651 unlock_super(sb); 652 kobject_put(&sbi->s_kobj); 653 wait_for_completion(&sbi->s_kobj_unregister); 654 kfree(sbi->s_blockgroup_lock); 655 kfree(sbi); 656 } 657 658 static struct kmem_cache *ext4_inode_cachep; 659 660 /* 661 * Called inside transaction, so use GFP_NOFS 662 */ 663 static struct inode *ext4_alloc_inode(struct super_block *sb) 664 { 665 struct ext4_inode_info *ei; 666 667 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 668 if (!ei) 669 return NULL; 670 671 ei->vfs_inode.i_version = 1; 672 ei->vfs_inode.i_data.writeback_index = 0; 673 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); 674 INIT_LIST_HEAD(&ei->i_prealloc_list); 675 spin_lock_init(&ei->i_prealloc_lock); 676 /* 677 * Note: We can be called before EXT4_SB(sb)->s_journal is set, 678 * therefore it can be null here. Don't check it, just initialize 679 * jinode. 680 */ 681 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); 682 ei->i_reserved_data_blocks = 0; 683 ei->i_reserved_meta_blocks = 0; 684 ei->i_allocated_meta_blocks = 0; 685 ei->i_delalloc_reserved_flag = 0; 686 spin_lock_init(&(ei->i_block_reservation_lock)); 687 688 return &ei->vfs_inode; 689 } 690 691 static void ext4_destroy_inode(struct inode *inode) 692 { 693 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 694 ext4_msg(inode->i_sb, KERN_ERR, 695 "Inode %lu (%p): orphan list check failed!", 696 inode->i_ino, EXT4_I(inode)); 697 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 698 EXT4_I(inode), sizeof(struct ext4_inode_info), 699 true); 700 dump_stack(); 701 } 702 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 703 } 704 705 static void init_once(void *foo) 706 { 707 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 708 709 INIT_LIST_HEAD(&ei->i_orphan); 710 #ifdef CONFIG_EXT4_FS_XATTR 711 init_rwsem(&ei->xattr_sem); 712 #endif 713 init_rwsem(&ei->i_data_sem); 714 inode_init_once(&ei->vfs_inode); 715 } 716 717 static int init_inodecache(void) 718 { 719 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 720 sizeof(struct ext4_inode_info), 721 0, (SLAB_RECLAIM_ACCOUNT| 722 SLAB_MEM_SPREAD), 723 init_once); 724 if (ext4_inode_cachep == NULL) 725 return -ENOMEM; 726 return 0; 727 } 728 729 static void destroy_inodecache(void) 730 { 731 kmem_cache_destroy(ext4_inode_cachep); 732 } 733 734 static void ext4_clear_inode(struct inode *inode) 735 { 736 ext4_discard_preallocations(inode); 737 if (EXT4_JOURNAL(inode)) 738 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, 739 &EXT4_I(inode)->jinode); 740 } 741 742 static inline void ext4_show_quota_options(struct seq_file *seq, 743 struct super_block *sb) 744 { 745 #if defined(CONFIG_QUOTA) 746 struct ext4_sb_info *sbi = EXT4_SB(sb); 747 748 if (sbi->s_jquota_fmt) 749 seq_printf(seq, ",jqfmt=%s", 750 (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); 751 752 if (sbi->s_qf_names[USRQUOTA]) 753 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 754 755 if (sbi->s_qf_names[GRPQUOTA]) 756 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 757 758 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) 759 seq_puts(seq, ",usrquota"); 760 761 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) 762 seq_puts(seq, ",grpquota"); 763 #endif 764 } 765 766 /* 767 * Show an option if 768 * - it's set to a non-default value OR 769 * - if the per-sb default is different from the global default 770 */ 771 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) 772 { 773 int def_errors; 774 unsigned long def_mount_opts; 775 struct super_block *sb = vfs->mnt_sb; 776 struct ext4_sb_info *sbi = EXT4_SB(sb); 777 struct ext4_super_block *es = sbi->s_es; 778 779 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 780 def_errors = le16_to_cpu(es->s_errors); 781 782 if (sbi->s_sb_block != 1) 783 seq_printf(seq, ",sb=%llu", sbi->s_sb_block); 784 if (test_opt(sb, MINIX_DF)) 785 seq_puts(seq, ",minixdf"); 786 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) 787 seq_puts(seq, ",grpid"); 788 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) 789 seq_puts(seq, ",nogrpid"); 790 if (sbi->s_resuid != EXT4_DEF_RESUID || 791 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { 792 seq_printf(seq, ",resuid=%u", sbi->s_resuid); 793 } 794 if (sbi->s_resgid != EXT4_DEF_RESGID || 795 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { 796 seq_printf(seq, ",resgid=%u", sbi->s_resgid); 797 } 798 if (test_opt(sb, ERRORS_RO)) { 799 if (def_errors == EXT4_ERRORS_PANIC || 800 def_errors == EXT4_ERRORS_CONTINUE) { 801 seq_puts(seq, ",errors=remount-ro"); 802 } 803 } 804 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 805 seq_puts(seq, ",errors=continue"); 806 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 807 seq_puts(seq, ",errors=panic"); 808 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) 809 seq_puts(seq, ",nouid32"); 810 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) 811 seq_puts(seq, ",debug"); 812 if (test_opt(sb, OLDALLOC)) 813 seq_puts(seq, ",oldalloc"); 814 #ifdef CONFIG_EXT4_FS_XATTR 815 if (test_opt(sb, XATTR_USER) && 816 !(def_mount_opts & EXT4_DEFM_XATTR_USER)) 817 seq_puts(seq, ",user_xattr"); 818 if (!test_opt(sb, XATTR_USER) && 819 (def_mount_opts & EXT4_DEFM_XATTR_USER)) { 820 seq_puts(seq, ",nouser_xattr"); 821 } 822 #endif 823 #ifdef CONFIG_EXT4_FS_POSIX_ACL 824 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) 825 seq_puts(seq, ",acl"); 826 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) 827 seq_puts(seq, ",noacl"); 828 #endif 829 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 830 seq_printf(seq, ",commit=%u", 831 (unsigned) (sbi->s_commit_interval / HZ)); 832 } 833 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { 834 seq_printf(seq, ",min_batch_time=%u", 835 (unsigned) sbi->s_min_batch_time); 836 } 837 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { 838 seq_printf(seq, ",max_batch_time=%u", 839 (unsigned) sbi->s_min_batch_time); 840 } 841 842 /* 843 * We're changing the default of barrier mount option, so 844 * let's always display its mount state so it's clear what its 845 * status is. 846 */ 847 seq_puts(seq, ",barrier="); 848 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); 849 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 850 seq_puts(seq, ",journal_async_commit"); 851 if (test_opt(sb, NOBH)) 852 seq_puts(seq, ",nobh"); 853 if (test_opt(sb, I_VERSION)) 854 seq_puts(seq, ",i_version"); 855 if (!test_opt(sb, DELALLOC)) 856 seq_puts(seq, ",nodelalloc"); 857 858 859 if (sbi->s_stripe) 860 seq_printf(seq, ",stripe=%lu", sbi->s_stripe); 861 /* 862 * journal mode get enabled in different ways 863 * So just print the value even if we didn't specify it 864 */ 865 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 866 seq_puts(seq, ",data=journal"); 867 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 868 seq_puts(seq, ",data=ordered"); 869 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 870 seq_puts(seq, ",data=writeback"); 871 872 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 873 seq_printf(seq, ",inode_readahead_blks=%u", 874 sbi->s_inode_readahead_blks); 875 876 if (test_opt(sb, DATA_ERR_ABORT)) 877 seq_puts(seq, ",data_err=abort"); 878 879 if (test_opt(sb, NO_AUTO_DA_ALLOC)) 880 seq_puts(seq, ",noauto_da_alloc"); 881 882 ext4_show_quota_options(seq, sb); 883 884 return 0; 885 } 886 887 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 888 u64 ino, u32 generation) 889 { 890 struct inode *inode; 891 892 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 893 return ERR_PTR(-ESTALE); 894 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 895 return ERR_PTR(-ESTALE); 896 897 /* iget isn't really right if the inode is currently unallocated!! 898 * 899 * ext4_read_inode will return a bad_inode if the inode had been 900 * deleted, so we should be safe. 901 * 902 * Currently we don't know the generation for parent directory, so 903 * a generation of 0 means "accept any" 904 */ 905 inode = ext4_iget(sb, ino); 906 if (IS_ERR(inode)) 907 return ERR_CAST(inode); 908 if (generation && inode->i_generation != generation) { 909 iput(inode); 910 return ERR_PTR(-ESTALE); 911 } 912 913 return inode; 914 } 915 916 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 917 int fh_len, int fh_type) 918 { 919 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 920 ext4_nfs_get_inode); 921 } 922 923 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 924 int fh_len, int fh_type) 925 { 926 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 927 ext4_nfs_get_inode); 928 } 929 930 /* 931 * Try to release metadata pages (indirect blocks, directories) which are 932 * mapped via the block device. Since these pages could have journal heads 933 * which would prevent try_to_free_buffers() from freeing them, we must use 934 * jbd2 layer's try_to_free_buffers() function to release them. 935 */ 936 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 937 gfp_t wait) 938 { 939 journal_t *journal = EXT4_SB(sb)->s_journal; 940 941 WARN_ON(PageChecked(page)); 942 if (!page_has_buffers(page)) 943 return 0; 944 if (journal) 945 return jbd2_journal_try_to_free_buffers(journal, page, 946 wait & ~__GFP_WAIT); 947 return try_to_free_buffers(page); 948 } 949 950 #ifdef CONFIG_QUOTA 951 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 952 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 953 954 static int ext4_write_dquot(struct dquot *dquot); 955 static int ext4_acquire_dquot(struct dquot *dquot); 956 static int ext4_release_dquot(struct dquot *dquot); 957 static int ext4_mark_dquot_dirty(struct dquot *dquot); 958 static int ext4_write_info(struct super_block *sb, int type); 959 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 960 char *path, int remount); 961 static int ext4_quota_on_mount(struct super_block *sb, int type); 962 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 963 size_t len, loff_t off); 964 static ssize_t ext4_quota_write(struct super_block *sb, int type, 965 const char *data, size_t len, loff_t off); 966 967 static struct dquot_operations ext4_quota_operations = { 968 .initialize = dquot_initialize, 969 .drop = dquot_drop, 970 .alloc_space = dquot_alloc_space, 971 .reserve_space = dquot_reserve_space, 972 .claim_space = dquot_claim_space, 973 .release_rsv = dquot_release_reserved_space, 974 .get_reserved_space = ext4_get_reserved_space, 975 .alloc_inode = dquot_alloc_inode, 976 .free_space = dquot_free_space, 977 .free_inode = dquot_free_inode, 978 .transfer = dquot_transfer, 979 .write_dquot = ext4_write_dquot, 980 .acquire_dquot = ext4_acquire_dquot, 981 .release_dquot = ext4_release_dquot, 982 .mark_dirty = ext4_mark_dquot_dirty, 983 .write_info = ext4_write_info, 984 .alloc_dquot = dquot_alloc, 985 .destroy_dquot = dquot_destroy, 986 }; 987 988 static struct quotactl_ops ext4_qctl_operations = { 989 .quota_on = ext4_quota_on, 990 .quota_off = vfs_quota_off, 991 .quota_sync = vfs_quota_sync, 992 .get_info = vfs_get_dqinfo, 993 .set_info = vfs_set_dqinfo, 994 .get_dqblk = vfs_get_dqblk, 995 .set_dqblk = vfs_set_dqblk 996 }; 997 #endif 998 999 static const struct super_operations ext4_sops = { 1000 .alloc_inode = ext4_alloc_inode, 1001 .destroy_inode = ext4_destroy_inode, 1002 .write_inode = ext4_write_inode, 1003 .dirty_inode = ext4_dirty_inode, 1004 .delete_inode = ext4_delete_inode, 1005 .put_super = ext4_put_super, 1006 .sync_fs = ext4_sync_fs, 1007 .freeze_fs = ext4_freeze, 1008 .unfreeze_fs = ext4_unfreeze, 1009 .statfs = ext4_statfs, 1010 .remount_fs = ext4_remount, 1011 .clear_inode = ext4_clear_inode, 1012 .show_options = ext4_show_options, 1013 #ifdef CONFIG_QUOTA 1014 .quota_read = ext4_quota_read, 1015 .quota_write = ext4_quota_write, 1016 #endif 1017 .bdev_try_to_free_page = bdev_try_to_free_page, 1018 }; 1019 1020 static const struct super_operations ext4_nojournal_sops = { 1021 .alloc_inode = ext4_alloc_inode, 1022 .destroy_inode = ext4_destroy_inode, 1023 .write_inode = ext4_write_inode, 1024 .dirty_inode = ext4_dirty_inode, 1025 .delete_inode = ext4_delete_inode, 1026 .write_super = ext4_write_super, 1027 .put_super = ext4_put_super, 1028 .statfs = ext4_statfs, 1029 .remount_fs = ext4_remount, 1030 .clear_inode = ext4_clear_inode, 1031 .show_options = ext4_show_options, 1032 #ifdef CONFIG_QUOTA 1033 .quota_read = ext4_quota_read, 1034 .quota_write = ext4_quota_write, 1035 #endif 1036 .bdev_try_to_free_page = bdev_try_to_free_page, 1037 }; 1038 1039 static const struct export_operations ext4_export_ops = { 1040 .fh_to_dentry = ext4_fh_to_dentry, 1041 .fh_to_parent = ext4_fh_to_parent, 1042 .get_parent = ext4_get_parent, 1043 }; 1044 1045 enum { 1046 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1047 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1048 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, 1049 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1050 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, 1051 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1052 Opt_journal_update, Opt_journal_dev, 1053 Opt_journal_checksum, Opt_journal_async_commit, 1054 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1055 Opt_data_err_abort, Opt_data_err_ignore, Opt_mb_history_length, 1056 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1057 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, 1058 Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, 1059 Opt_usrquota, Opt_grpquota, Opt_i_version, 1060 Opt_stripe, Opt_delalloc, Opt_nodelalloc, 1061 Opt_block_validity, Opt_noblock_validity, 1062 Opt_inode_readahead_blks, Opt_journal_ioprio 1063 }; 1064 1065 static const match_table_t tokens = { 1066 {Opt_bsd_df, "bsddf"}, 1067 {Opt_minix_df, "minixdf"}, 1068 {Opt_grpid, "grpid"}, 1069 {Opt_grpid, "bsdgroups"}, 1070 {Opt_nogrpid, "nogrpid"}, 1071 {Opt_nogrpid, "sysvgroups"}, 1072 {Opt_resgid, "resgid=%u"}, 1073 {Opt_resuid, "resuid=%u"}, 1074 {Opt_sb, "sb=%u"}, 1075 {Opt_err_cont, "errors=continue"}, 1076 {Opt_err_panic, "errors=panic"}, 1077 {Opt_err_ro, "errors=remount-ro"}, 1078 {Opt_nouid32, "nouid32"}, 1079 {Opt_debug, "debug"}, 1080 {Opt_oldalloc, "oldalloc"}, 1081 {Opt_orlov, "orlov"}, 1082 {Opt_user_xattr, "user_xattr"}, 1083 {Opt_nouser_xattr, "nouser_xattr"}, 1084 {Opt_acl, "acl"}, 1085 {Opt_noacl, "noacl"}, 1086 {Opt_noload, "noload"}, 1087 {Opt_nobh, "nobh"}, 1088 {Opt_bh, "bh"}, 1089 {Opt_commit, "commit=%u"}, 1090 {Opt_min_batch_time, "min_batch_time=%u"}, 1091 {Opt_max_batch_time, "max_batch_time=%u"}, 1092 {Opt_journal_update, "journal=update"}, 1093 {Opt_journal_dev, "journal_dev=%u"}, 1094 {Opt_journal_checksum, "journal_checksum"}, 1095 {Opt_journal_async_commit, "journal_async_commit"}, 1096 {Opt_abort, "abort"}, 1097 {Opt_data_journal, "data=journal"}, 1098 {Opt_data_ordered, "data=ordered"}, 1099 {Opt_data_writeback, "data=writeback"}, 1100 {Opt_data_err_abort, "data_err=abort"}, 1101 {Opt_data_err_ignore, "data_err=ignore"}, 1102 {Opt_mb_history_length, "mb_history_length=%u"}, 1103 {Opt_offusrjquota, "usrjquota="}, 1104 {Opt_usrjquota, "usrjquota=%s"}, 1105 {Opt_offgrpjquota, "grpjquota="}, 1106 {Opt_grpjquota, "grpjquota=%s"}, 1107 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1108 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1109 {Opt_grpquota, "grpquota"}, 1110 {Opt_noquota, "noquota"}, 1111 {Opt_quota, "quota"}, 1112 {Opt_usrquota, "usrquota"}, 1113 {Opt_barrier, "barrier=%u"}, 1114 {Opt_barrier, "barrier"}, 1115 {Opt_nobarrier, "nobarrier"}, 1116 {Opt_i_version, "i_version"}, 1117 {Opt_stripe, "stripe=%u"}, 1118 {Opt_resize, "resize"}, 1119 {Opt_delalloc, "delalloc"}, 1120 {Opt_nodelalloc, "nodelalloc"}, 1121 {Opt_block_validity, "block_validity"}, 1122 {Opt_noblock_validity, "noblock_validity"}, 1123 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1124 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1125 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1126 {Opt_auto_da_alloc, "auto_da_alloc"}, 1127 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1128 {Opt_err, NULL}, 1129 }; 1130 1131 static ext4_fsblk_t get_sb_block(void **data) 1132 { 1133 ext4_fsblk_t sb_block; 1134 char *options = (char *) *data; 1135 1136 if (!options || strncmp(options, "sb=", 3) != 0) 1137 return 1; /* Default location */ 1138 1139 options += 3; 1140 /* TODO: use simple_strtoll with >32bit ext4 */ 1141 sb_block = simple_strtoul(options, &options, 0); 1142 if (*options && *options != ',') { 1143 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1144 (char *) *data); 1145 return 1; 1146 } 1147 if (*options == ',') 1148 options++; 1149 *data = (void *) options; 1150 1151 return sb_block; 1152 } 1153 1154 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1155 1156 static int parse_options(char *options, struct super_block *sb, 1157 unsigned long *journal_devnum, 1158 unsigned int *journal_ioprio, 1159 ext4_fsblk_t *n_blocks_count, int is_remount) 1160 { 1161 struct ext4_sb_info *sbi = EXT4_SB(sb); 1162 char *p; 1163 substring_t args[MAX_OPT_ARGS]; 1164 int data_opt = 0; 1165 int option; 1166 #ifdef CONFIG_QUOTA 1167 int qtype, qfmt; 1168 char *qname; 1169 #endif 1170 1171 if (!options) 1172 return 1; 1173 1174 while ((p = strsep(&options, ",")) != NULL) { 1175 int token; 1176 if (!*p) 1177 continue; 1178 1179 token = match_token(p, tokens, args); 1180 switch (token) { 1181 case Opt_bsd_df: 1182 clear_opt(sbi->s_mount_opt, MINIX_DF); 1183 break; 1184 case Opt_minix_df: 1185 set_opt(sbi->s_mount_opt, MINIX_DF); 1186 break; 1187 case Opt_grpid: 1188 set_opt(sbi->s_mount_opt, GRPID); 1189 break; 1190 case Opt_nogrpid: 1191 clear_opt(sbi->s_mount_opt, GRPID); 1192 break; 1193 case Opt_resuid: 1194 if (match_int(&args[0], &option)) 1195 return 0; 1196 sbi->s_resuid = option; 1197 break; 1198 case Opt_resgid: 1199 if (match_int(&args[0], &option)) 1200 return 0; 1201 sbi->s_resgid = option; 1202 break; 1203 case Opt_sb: 1204 /* handled by get_sb_block() instead of here */ 1205 /* *sb_block = match_int(&args[0]); */ 1206 break; 1207 case Opt_err_panic: 1208 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1209 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1210 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 1211 break; 1212 case Opt_err_ro: 1213 clear_opt(sbi->s_mount_opt, ERRORS_CONT); 1214 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1215 set_opt(sbi->s_mount_opt, ERRORS_RO); 1216 break; 1217 case Opt_err_cont: 1218 clear_opt(sbi->s_mount_opt, ERRORS_RO); 1219 clear_opt(sbi->s_mount_opt, ERRORS_PANIC); 1220 set_opt(sbi->s_mount_opt, ERRORS_CONT); 1221 break; 1222 case Opt_nouid32: 1223 set_opt(sbi->s_mount_opt, NO_UID32); 1224 break; 1225 case Opt_debug: 1226 set_opt(sbi->s_mount_opt, DEBUG); 1227 break; 1228 case Opt_oldalloc: 1229 set_opt(sbi->s_mount_opt, OLDALLOC); 1230 break; 1231 case Opt_orlov: 1232 clear_opt(sbi->s_mount_opt, OLDALLOC); 1233 break; 1234 #ifdef CONFIG_EXT4_FS_XATTR 1235 case Opt_user_xattr: 1236 set_opt(sbi->s_mount_opt, XATTR_USER); 1237 break; 1238 case Opt_nouser_xattr: 1239 clear_opt(sbi->s_mount_opt, XATTR_USER); 1240 break; 1241 #else 1242 case Opt_user_xattr: 1243 case Opt_nouser_xattr: 1244 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); 1245 break; 1246 #endif 1247 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1248 case Opt_acl: 1249 set_opt(sbi->s_mount_opt, POSIX_ACL); 1250 break; 1251 case Opt_noacl: 1252 clear_opt(sbi->s_mount_opt, POSIX_ACL); 1253 break; 1254 #else 1255 case Opt_acl: 1256 case Opt_noacl: 1257 ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); 1258 break; 1259 #endif 1260 case Opt_journal_update: 1261 /* @@@ FIXME */ 1262 /* Eventually we will want to be able to create 1263 a journal file here. For now, only allow the 1264 user to specify an existing inode to be the 1265 journal file. */ 1266 if (is_remount) { 1267 ext4_msg(sb, KERN_ERR, 1268 "Cannot specify journal on remount"); 1269 return 0; 1270 } 1271 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); 1272 break; 1273 case Opt_journal_dev: 1274 if (is_remount) { 1275 ext4_msg(sb, KERN_ERR, 1276 "Cannot specify journal on remount"); 1277 return 0; 1278 } 1279 if (match_int(&args[0], &option)) 1280 return 0; 1281 *journal_devnum = option; 1282 break; 1283 case Opt_journal_checksum: 1284 break; /* Kept for backwards compatibility */ 1285 case Opt_journal_async_commit: 1286 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); 1287 break; 1288 case Opt_noload: 1289 set_opt(sbi->s_mount_opt, NOLOAD); 1290 break; 1291 case Opt_commit: 1292 if (match_int(&args[0], &option)) 1293 return 0; 1294 if (option < 0) 1295 return 0; 1296 if (option == 0) 1297 option = JBD2_DEFAULT_MAX_COMMIT_AGE; 1298 sbi->s_commit_interval = HZ * option; 1299 break; 1300 case Opt_max_batch_time: 1301 if (match_int(&args[0], &option)) 1302 return 0; 1303 if (option < 0) 1304 return 0; 1305 if (option == 0) 1306 option = EXT4_DEF_MAX_BATCH_TIME; 1307 sbi->s_max_batch_time = option; 1308 break; 1309 case Opt_min_batch_time: 1310 if (match_int(&args[0], &option)) 1311 return 0; 1312 if (option < 0) 1313 return 0; 1314 sbi->s_min_batch_time = option; 1315 break; 1316 case Opt_data_journal: 1317 data_opt = EXT4_MOUNT_JOURNAL_DATA; 1318 goto datacheck; 1319 case Opt_data_ordered: 1320 data_opt = EXT4_MOUNT_ORDERED_DATA; 1321 goto datacheck; 1322 case Opt_data_writeback: 1323 data_opt = EXT4_MOUNT_WRITEBACK_DATA; 1324 datacheck: 1325 if (is_remount) { 1326 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) 1327 != data_opt) { 1328 ext4_msg(sb, KERN_ERR, 1329 "Cannot change data mode on remount"); 1330 return 0; 1331 } 1332 } else { 1333 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; 1334 sbi->s_mount_opt |= data_opt; 1335 } 1336 break; 1337 case Opt_data_err_abort: 1338 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1339 break; 1340 case Opt_data_err_ignore: 1341 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); 1342 break; 1343 case Opt_mb_history_length: 1344 if (match_int(&args[0], &option)) 1345 return 0; 1346 if (option < 0) 1347 return 0; 1348 sbi->s_mb_history_max = option; 1349 break; 1350 #ifdef CONFIG_QUOTA 1351 case Opt_usrjquota: 1352 qtype = USRQUOTA; 1353 goto set_qf_name; 1354 case Opt_grpjquota: 1355 qtype = GRPQUOTA; 1356 set_qf_name: 1357 if (sb_any_quota_loaded(sb) && 1358 !sbi->s_qf_names[qtype]) { 1359 ext4_msg(sb, KERN_ERR, 1360 "Cannot change journaled " 1361 "quota options when quota turned on"); 1362 return 0; 1363 } 1364 qname = match_strdup(&args[0]); 1365 if (!qname) { 1366 ext4_msg(sb, KERN_ERR, 1367 "Not enough memory for " 1368 "storing quotafile name"); 1369 return 0; 1370 } 1371 if (sbi->s_qf_names[qtype] && 1372 strcmp(sbi->s_qf_names[qtype], qname)) { 1373 ext4_msg(sb, KERN_ERR, 1374 "%s quota file already " 1375 "specified", QTYPE2NAME(qtype)); 1376 kfree(qname); 1377 return 0; 1378 } 1379 sbi->s_qf_names[qtype] = qname; 1380 if (strchr(sbi->s_qf_names[qtype], '/')) { 1381 ext4_msg(sb, KERN_ERR, 1382 "quotafile must be on " 1383 "filesystem root"); 1384 kfree(sbi->s_qf_names[qtype]); 1385 sbi->s_qf_names[qtype] = NULL; 1386 return 0; 1387 } 1388 set_opt(sbi->s_mount_opt, QUOTA); 1389 break; 1390 case Opt_offusrjquota: 1391 qtype = USRQUOTA; 1392 goto clear_qf_name; 1393 case Opt_offgrpjquota: 1394 qtype = GRPQUOTA; 1395 clear_qf_name: 1396 if (sb_any_quota_loaded(sb) && 1397 sbi->s_qf_names[qtype]) { 1398 ext4_msg(sb, KERN_ERR, "Cannot change " 1399 "journaled quota options when " 1400 "quota turned on"); 1401 return 0; 1402 } 1403 /* 1404 * The space will be released later when all options 1405 * are confirmed to be correct 1406 */ 1407 sbi->s_qf_names[qtype] = NULL; 1408 break; 1409 case Opt_jqfmt_vfsold: 1410 qfmt = QFMT_VFS_OLD; 1411 goto set_qf_format; 1412 case Opt_jqfmt_vfsv0: 1413 qfmt = QFMT_VFS_V0; 1414 set_qf_format: 1415 if (sb_any_quota_loaded(sb) && 1416 sbi->s_jquota_fmt != qfmt) { 1417 ext4_msg(sb, KERN_ERR, "Cannot change " 1418 "journaled quota options when " 1419 "quota turned on"); 1420 return 0; 1421 } 1422 sbi->s_jquota_fmt = qfmt; 1423 break; 1424 case Opt_quota: 1425 case Opt_usrquota: 1426 set_opt(sbi->s_mount_opt, QUOTA); 1427 set_opt(sbi->s_mount_opt, USRQUOTA); 1428 break; 1429 case Opt_grpquota: 1430 set_opt(sbi->s_mount_opt, QUOTA); 1431 set_opt(sbi->s_mount_opt, GRPQUOTA); 1432 break; 1433 case Opt_noquota: 1434 if (sb_any_quota_loaded(sb)) { 1435 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1436 "options when quota turned on"); 1437 return 0; 1438 } 1439 clear_opt(sbi->s_mount_opt, QUOTA); 1440 clear_opt(sbi->s_mount_opt, USRQUOTA); 1441 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1442 break; 1443 #else 1444 case Opt_quota: 1445 case Opt_usrquota: 1446 case Opt_grpquota: 1447 ext4_msg(sb, KERN_ERR, 1448 "quota options not supported"); 1449 break; 1450 case Opt_usrjquota: 1451 case Opt_grpjquota: 1452 case Opt_offusrjquota: 1453 case Opt_offgrpjquota: 1454 case Opt_jqfmt_vfsold: 1455 case Opt_jqfmt_vfsv0: 1456 ext4_msg(sb, KERN_ERR, 1457 "journaled quota options not supported"); 1458 break; 1459 case Opt_noquota: 1460 break; 1461 #endif 1462 case Opt_abort: 1463 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1464 break; 1465 case Opt_nobarrier: 1466 clear_opt(sbi->s_mount_opt, BARRIER); 1467 break; 1468 case Opt_barrier: 1469 if (match_int(&args[0], &option)) { 1470 set_opt(sbi->s_mount_opt, BARRIER); 1471 break; 1472 } 1473 if (option) 1474 set_opt(sbi->s_mount_opt, BARRIER); 1475 else 1476 clear_opt(sbi->s_mount_opt, BARRIER); 1477 break; 1478 case Opt_ignore: 1479 break; 1480 case Opt_resize: 1481 if (!is_remount) { 1482 ext4_msg(sb, KERN_ERR, 1483 "resize option only available " 1484 "for remount"); 1485 return 0; 1486 } 1487 if (match_int(&args[0], &option) != 0) 1488 return 0; 1489 *n_blocks_count = option; 1490 break; 1491 case Opt_nobh: 1492 set_opt(sbi->s_mount_opt, NOBH); 1493 break; 1494 case Opt_bh: 1495 clear_opt(sbi->s_mount_opt, NOBH); 1496 break; 1497 case Opt_i_version: 1498 set_opt(sbi->s_mount_opt, I_VERSION); 1499 sb->s_flags |= MS_I_VERSION; 1500 break; 1501 case Opt_nodelalloc: 1502 clear_opt(sbi->s_mount_opt, DELALLOC); 1503 break; 1504 case Opt_stripe: 1505 if (match_int(&args[0], &option)) 1506 return 0; 1507 if (option < 0) 1508 return 0; 1509 sbi->s_stripe = option; 1510 break; 1511 case Opt_delalloc: 1512 set_opt(sbi->s_mount_opt, DELALLOC); 1513 break; 1514 case Opt_block_validity: 1515 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1516 break; 1517 case Opt_noblock_validity: 1518 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); 1519 break; 1520 case Opt_inode_readahead_blks: 1521 if (match_int(&args[0], &option)) 1522 return 0; 1523 if (option < 0 || option > (1 << 30)) 1524 return 0; 1525 if (!is_power_of_2(option)) { 1526 ext4_msg(sb, KERN_ERR, 1527 "EXT4-fs: inode_readahead_blks" 1528 " must be a power of 2"); 1529 return 0; 1530 } 1531 sbi->s_inode_readahead_blks = option; 1532 break; 1533 case Opt_journal_ioprio: 1534 if (match_int(&args[0], &option)) 1535 return 0; 1536 if (option < 0 || option > 7) 1537 break; 1538 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 1539 option); 1540 break; 1541 case Opt_noauto_da_alloc: 1542 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1543 break; 1544 case Opt_auto_da_alloc: 1545 if (match_int(&args[0], &option)) { 1546 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1547 break; 1548 } 1549 if (option) 1550 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); 1551 else 1552 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); 1553 break; 1554 default: 1555 ext4_msg(sb, KERN_ERR, 1556 "Unrecognized mount option \"%s\" " 1557 "or missing value", p); 1558 return 0; 1559 } 1560 } 1561 #ifdef CONFIG_QUOTA 1562 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1563 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && 1564 sbi->s_qf_names[USRQUOTA]) 1565 clear_opt(sbi->s_mount_opt, USRQUOTA); 1566 1567 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && 1568 sbi->s_qf_names[GRPQUOTA]) 1569 clear_opt(sbi->s_mount_opt, GRPQUOTA); 1570 1571 if ((sbi->s_qf_names[USRQUOTA] && 1572 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || 1573 (sbi->s_qf_names[GRPQUOTA] && 1574 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { 1575 ext4_msg(sb, KERN_ERR, "old and new quota " 1576 "format mixing"); 1577 return 0; 1578 } 1579 1580 if (!sbi->s_jquota_fmt) { 1581 ext4_msg(sb, KERN_ERR, "journaled quota format " 1582 "not specified"); 1583 return 0; 1584 } 1585 } else { 1586 if (sbi->s_jquota_fmt) { 1587 ext4_msg(sb, KERN_ERR, "journaled quota format " 1588 "specified with no journaling " 1589 "enabled"); 1590 return 0; 1591 } 1592 } 1593 #endif 1594 return 1; 1595 } 1596 1597 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1598 int read_only) 1599 { 1600 struct ext4_sb_info *sbi = EXT4_SB(sb); 1601 int res = 0; 1602 1603 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1604 ext4_msg(sb, KERN_ERR, "revision level too high, " 1605 "forcing read-only mode"); 1606 res = MS_RDONLY; 1607 } 1608 if (read_only) 1609 return res; 1610 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1611 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1612 "running e2fsck is recommended"); 1613 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1614 ext4_msg(sb, KERN_WARNING, 1615 "warning: mounting fs with errors, " 1616 "running e2fsck is recommended"); 1617 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && 1618 le16_to_cpu(es->s_mnt_count) >= 1619 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1620 ext4_msg(sb, KERN_WARNING, 1621 "warning: maximal mount count reached, " 1622 "running e2fsck is recommended"); 1623 else if (le32_to_cpu(es->s_checkinterval) && 1624 (le32_to_cpu(es->s_lastcheck) + 1625 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1626 ext4_msg(sb, KERN_WARNING, 1627 "warning: checktime reached, " 1628 "running e2fsck is recommended"); 1629 if (!sbi->s_journal) 1630 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1631 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1632 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1633 le16_add_cpu(&es->s_mnt_count, 1); 1634 es->s_mtime = cpu_to_le32(get_seconds()); 1635 ext4_update_dynamic_rev(sb); 1636 if (sbi->s_journal) 1637 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1638 1639 ext4_commit_super(sb, 1); 1640 if (test_opt(sb, DEBUG)) 1641 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1642 "bpg=%lu, ipg=%lu, mo=%04x]\n", 1643 sb->s_blocksize, 1644 sbi->s_groups_count, 1645 EXT4_BLOCKS_PER_GROUP(sb), 1646 EXT4_INODES_PER_GROUP(sb), 1647 sbi->s_mount_opt); 1648 1649 if (EXT4_SB(sb)->s_journal) { 1650 ext4_msg(sb, KERN_INFO, "%s journal on %s", 1651 EXT4_SB(sb)->s_journal->j_inode ? "internal" : 1652 "external", EXT4_SB(sb)->s_journal->j_devname); 1653 } else { 1654 ext4_msg(sb, KERN_INFO, "no journal"); 1655 } 1656 return res; 1657 } 1658 1659 static int ext4_fill_flex_info(struct super_block *sb) 1660 { 1661 struct ext4_sb_info *sbi = EXT4_SB(sb); 1662 struct ext4_group_desc *gdp = NULL; 1663 ext4_group_t flex_group_count; 1664 ext4_group_t flex_group; 1665 int groups_per_flex = 0; 1666 size_t size; 1667 int i; 1668 1669 if (!sbi->s_es->s_log_groups_per_flex) { 1670 sbi->s_log_groups_per_flex = 0; 1671 return 1; 1672 } 1673 1674 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1675 groups_per_flex = 1 << sbi->s_log_groups_per_flex; 1676 1677 /* We allocate both existing and potentially added groups */ 1678 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + 1679 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << 1680 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; 1681 size = flex_group_count * sizeof(struct flex_groups); 1682 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); 1683 if (sbi->s_flex_groups == NULL) { 1684 sbi->s_flex_groups = vmalloc(size); 1685 if (sbi->s_flex_groups) 1686 memset(sbi->s_flex_groups, 0, size); 1687 } 1688 if (sbi->s_flex_groups == NULL) { 1689 ext4_msg(sb, KERN_ERR, "not enough memory for " 1690 "%u flex groups", flex_group_count); 1691 goto failed; 1692 } 1693 1694 for (i = 0; i < sbi->s_groups_count; i++) { 1695 gdp = ext4_get_group_desc(sb, i, NULL); 1696 1697 flex_group = ext4_flex_group(sbi, i); 1698 atomic_add(ext4_free_inodes_count(sb, gdp), 1699 &sbi->s_flex_groups[flex_group].free_inodes); 1700 atomic_add(ext4_free_blks_count(sb, gdp), 1701 &sbi->s_flex_groups[flex_group].free_blocks); 1702 atomic_add(ext4_used_dirs_count(sb, gdp), 1703 &sbi->s_flex_groups[flex_group].used_dirs); 1704 } 1705 1706 return 1; 1707 failed: 1708 return 0; 1709 } 1710 1711 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1712 struct ext4_group_desc *gdp) 1713 { 1714 __u16 crc = 0; 1715 1716 if (sbi->s_es->s_feature_ro_compat & 1717 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { 1718 int offset = offsetof(struct ext4_group_desc, bg_checksum); 1719 __le32 le_group = cpu_to_le32(block_group); 1720 1721 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1722 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1723 crc = crc16(crc, (__u8 *)gdp, offset); 1724 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1725 /* for checksum of struct ext4_group_desc do the rest...*/ 1726 if ((sbi->s_es->s_feature_incompat & 1727 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1728 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1729 crc = crc16(crc, (__u8 *)gdp + offset, 1730 le16_to_cpu(sbi->s_es->s_desc_size) - 1731 offset); 1732 } 1733 1734 return cpu_to_le16(crc); 1735 } 1736 1737 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, 1738 struct ext4_group_desc *gdp) 1739 { 1740 if ((sbi->s_es->s_feature_ro_compat & 1741 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && 1742 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) 1743 return 0; 1744 1745 return 1; 1746 } 1747 1748 /* Called at mount-time, super-block is locked */ 1749 static int ext4_check_descriptors(struct super_block *sb) 1750 { 1751 struct ext4_sb_info *sbi = EXT4_SB(sb); 1752 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 1753 ext4_fsblk_t last_block; 1754 ext4_fsblk_t block_bitmap; 1755 ext4_fsblk_t inode_bitmap; 1756 ext4_fsblk_t inode_table; 1757 int flexbg_flag = 0; 1758 ext4_group_t i; 1759 1760 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 1761 flexbg_flag = 1; 1762 1763 ext4_debug("Checking group descriptors"); 1764 1765 for (i = 0; i < sbi->s_groups_count; i++) { 1766 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 1767 1768 if (i == sbi->s_groups_count - 1 || flexbg_flag) 1769 last_block = ext4_blocks_count(sbi->s_es) - 1; 1770 else 1771 last_block = first_block + 1772 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 1773 1774 block_bitmap = ext4_block_bitmap(sb, gdp); 1775 if (block_bitmap < first_block || block_bitmap > last_block) { 1776 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1777 "Block bitmap for group %u not in group " 1778 "(block %llu)!", i, block_bitmap); 1779 return 0; 1780 } 1781 inode_bitmap = ext4_inode_bitmap(sb, gdp); 1782 if (inode_bitmap < first_block || inode_bitmap > last_block) { 1783 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1784 "Inode bitmap for group %u not in group " 1785 "(block %llu)!", i, inode_bitmap); 1786 return 0; 1787 } 1788 inode_table = ext4_inode_table(sb, gdp); 1789 if (inode_table < first_block || 1790 inode_table + sbi->s_itb_per_group - 1 > last_block) { 1791 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1792 "Inode table for group %u not in group " 1793 "(block %llu)!", i, inode_table); 1794 return 0; 1795 } 1796 ext4_lock_group(sb, i); 1797 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { 1798 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 1799 "Checksum for group %u failed (%u!=%u)", 1800 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 1801 gdp)), le16_to_cpu(gdp->bg_checksum)); 1802 if (!(sb->s_flags & MS_RDONLY)) { 1803 ext4_unlock_group(sb, i); 1804 return 0; 1805 } 1806 } 1807 ext4_unlock_group(sb, i); 1808 if (!flexbg_flag) 1809 first_block += EXT4_BLOCKS_PER_GROUP(sb); 1810 } 1811 1812 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); 1813 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 1814 return 1; 1815 } 1816 1817 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 1818 * the superblock) which were deleted from all directories, but held open by 1819 * a process at the time of a crash. We walk the list and try to delete these 1820 * inodes at recovery time (only with a read-write filesystem). 1821 * 1822 * In order to keep the orphan inode chain consistent during traversal (in 1823 * case of crash during recovery), we link each inode into the superblock 1824 * orphan list_head and handle it the same way as an inode deletion during 1825 * normal operation (which journals the operations for us). 1826 * 1827 * We only do an iget() and an iput() on each inode, which is very safe if we 1828 * accidentally point at an in-use or already deleted inode. The worst that 1829 * can happen in this case is that we get a "bit already cleared" message from 1830 * ext4_free_inode(). The only reason we would point at a wrong inode is if 1831 * e2fsck was run on this filesystem, and it must have already done the orphan 1832 * inode cleanup for us, so we can safely abort without any further action. 1833 */ 1834 static void ext4_orphan_cleanup(struct super_block *sb, 1835 struct ext4_super_block *es) 1836 { 1837 unsigned int s_flags = sb->s_flags; 1838 int nr_orphans = 0, nr_truncates = 0; 1839 #ifdef CONFIG_QUOTA 1840 int i; 1841 #endif 1842 if (!es->s_last_orphan) { 1843 jbd_debug(4, "no orphan inodes to clean up\n"); 1844 return; 1845 } 1846 1847 if (bdev_read_only(sb->s_bdev)) { 1848 ext4_msg(sb, KERN_ERR, "write access " 1849 "unavailable, skipping orphan cleanup"); 1850 return; 1851 } 1852 1853 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 1854 if (es->s_last_orphan) 1855 jbd_debug(1, "Errors on filesystem, " 1856 "clearing orphan list.\n"); 1857 es->s_last_orphan = 0; 1858 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 1859 return; 1860 } 1861 1862 if (s_flags & MS_RDONLY) { 1863 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 1864 sb->s_flags &= ~MS_RDONLY; 1865 } 1866 #ifdef CONFIG_QUOTA 1867 /* Needed for iput() to work correctly and not trash data */ 1868 sb->s_flags |= MS_ACTIVE; 1869 /* Turn on quotas so that they are updated correctly */ 1870 for (i = 0; i < MAXQUOTAS; i++) { 1871 if (EXT4_SB(sb)->s_qf_names[i]) { 1872 int ret = ext4_quota_on_mount(sb, i); 1873 if (ret < 0) 1874 ext4_msg(sb, KERN_ERR, 1875 "Cannot turn on journaled " 1876 "quota: error %d", ret); 1877 } 1878 } 1879 #endif 1880 1881 while (es->s_last_orphan) { 1882 struct inode *inode; 1883 1884 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 1885 if (IS_ERR(inode)) { 1886 es->s_last_orphan = 0; 1887 break; 1888 } 1889 1890 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 1891 vfs_dq_init(inode); 1892 if (inode->i_nlink) { 1893 ext4_msg(sb, KERN_DEBUG, 1894 "%s: truncating inode %lu to %lld bytes", 1895 __func__, inode->i_ino, inode->i_size); 1896 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 1897 inode->i_ino, inode->i_size); 1898 ext4_truncate(inode); 1899 nr_truncates++; 1900 } else { 1901 ext4_msg(sb, KERN_DEBUG, 1902 "%s: deleting unreferenced inode %lu", 1903 __func__, inode->i_ino); 1904 jbd_debug(2, "deleting unreferenced inode %lu\n", 1905 inode->i_ino); 1906 nr_orphans++; 1907 } 1908 iput(inode); /* The delete magic happens here! */ 1909 } 1910 1911 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 1912 1913 if (nr_orphans) 1914 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 1915 PLURAL(nr_orphans)); 1916 if (nr_truncates) 1917 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 1918 PLURAL(nr_truncates)); 1919 #ifdef CONFIG_QUOTA 1920 /* Turn quotas off */ 1921 for (i = 0; i < MAXQUOTAS; i++) { 1922 if (sb_dqopt(sb)->files[i]) 1923 vfs_quota_off(sb, i, 0); 1924 } 1925 #endif 1926 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1927 } 1928 1929 /* 1930 * Maximal extent format file size. 1931 * Resulting logical blkno at s_maxbytes must fit in our on-disk 1932 * extent format containers, within a sector_t, and within i_blocks 1933 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 1934 * so that won't be a limiting factor. 1935 * 1936 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 1937 */ 1938 static loff_t ext4_max_size(int blkbits, int has_huge_files) 1939 { 1940 loff_t res; 1941 loff_t upper_limit = MAX_LFS_FILESIZE; 1942 1943 /* small i_blocks in vfs inode? */ 1944 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1945 /* 1946 * CONFIG_LBDAF is not enabled implies the inode 1947 * i_block represent total blocks in 512 bytes 1948 * 32 == size of vfs inode i_blocks * 8 1949 */ 1950 upper_limit = (1LL << 32) - 1; 1951 1952 /* total blocks in file system block size */ 1953 upper_limit >>= (blkbits - 9); 1954 upper_limit <<= blkbits; 1955 } 1956 1957 /* 32-bit extent-start container, ee_block */ 1958 res = 1LL << 32; 1959 res <<= blkbits; 1960 res -= 1; 1961 1962 /* Sanity check against vm- & vfs- imposed limits */ 1963 if (res > upper_limit) 1964 res = upper_limit; 1965 1966 return res; 1967 } 1968 1969 /* 1970 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 1971 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 1972 * We need to be 1 filesystem block less than the 2^48 sector limit. 1973 */ 1974 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 1975 { 1976 loff_t res = EXT4_NDIR_BLOCKS; 1977 int meta_blocks; 1978 loff_t upper_limit; 1979 /* This is calculated to be the largest file size for a dense, block 1980 * mapped file such that the file's total number of 512-byte sectors, 1981 * including data and all indirect blocks, does not exceed (2^48 - 1). 1982 * 1983 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 1984 * number of 512-byte sectors of the file. 1985 */ 1986 1987 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 1988 /* 1989 * !has_huge_files or CONFIG_LBDAF not enabled implies that 1990 * the inode i_block field represents total file blocks in 1991 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 1992 */ 1993 upper_limit = (1LL << 32) - 1; 1994 1995 /* total blocks in file system block size */ 1996 upper_limit >>= (bits - 9); 1997 1998 } else { 1999 /* 2000 * We use 48 bit ext4_inode i_blocks 2001 * With EXT4_HUGE_FILE_FL set the i_blocks 2002 * represent total number of blocks in 2003 * file system block size 2004 */ 2005 upper_limit = (1LL << 48) - 1; 2006 2007 } 2008 2009 /* indirect blocks */ 2010 meta_blocks = 1; 2011 /* double indirect blocks */ 2012 meta_blocks += 1 + (1LL << (bits-2)); 2013 /* tripple indirect blocks */ 2014 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2015 2016 upper_limit -= meta_blocks; 2017 upper_limit <<= bits; 2018 2019 res += 1LL << (bits-2); 2020 res += 1LL << (2*(bits-2)); 2021 res += 1LL << (3*(bits-2)); 2022 res <<= bits; 2023 if (res > upper_limit) 2024 res = upper_limit; 2025 2026 if (res > MAX_LFS_FILESIZE) 2027 res = MAX_LFS_FILESIZE; 2028 2029 return res; 2030 } 2031 2032 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2033 ext4_fsblk_t logical_sb_block, int nr) 2034 { 2035 struct ext4_sb_info *sbi = EXT4_SB(sb); 2036 ext4_group_t bg, first_meta_bg; 2037 int has_super = 0; 2038 2039 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2040 2041 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2042 nr < first_meta_bg) 2043 return logical_sb_block + nr + 1; 2044 bg = sbi->s_desc_per_block * nr; 2045 if (ext4_bg_has_super(sb, bg)) 2046 has_super = 1; 2047 2048 return (has_super + ext4_group_first_block_no(sb, bg)); 2049 } 2050 2051 /** 2052 * ext4_get_stripe_size: Get the stripe size. 2053 * @sbi: In memory super block info 2054 * 2055 * If we have specified it via mount option, then 2056 * use the mount option value. If the value specified at mount time is 2057 * greater than the blocks per group use the super block value. 2058 * If the super block value is greater than blocks per group return 0. 2059 * Allocator needs it be less than blocks per group. 2060 * 2061 */ 2062 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2063 { 2064 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2065 unsigned long stripe_width = 2066 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2067 2068 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2069 return sbi->s_stripe; 2070 2071 if (stripe_width <= sbi->s_blocks_per_group) 2072 return stripe_width; 2073 2074 if (stride <= sbi->s_blocks_per_group) 2075 return stride; 2076 2077 return 0; 2078 } 2079 2080 /* sysfs supprt */ 2081 2082 struct ext4_attr { 2083 struct attribute attr; 2084 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2085 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2086 const char *, size_t); 2087 int offset; 2088 }; 2089 2090 static int parse_strtoul(const char *buf, 2091 unsigned long max, unsigned long *value) 2092 { 2093 char *endp; 2094 2095 while (*buf && isspace(*buf)) 2096 buf++; 2097 *value = simple_strtoul(buf, &endp, 0); 2098 while (*endp && isspace(*endp)) 2099 endp++; 2100 if (*endp || *value > max) 2101 return -EINVAL; 2102 2103 return 0; 2104 } 2105 2106 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2107 struct ext4_sb_info *sbi, 2108 char *buf) 2109 { 2110 return snprintf(buf, PAGE_SIZE, "%llu\n", 2111 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2112 } 2113 2114 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2115 struct ext4_sb_info *sbi, char *buf) 2116 { 2117 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2118 2119 return snprintf(buf, PAGE_SIZE, "%lu\n", 2120 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2121 sbi->s_sectors_written_start) >> 1); 2122 } 2123 2124 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2125 struct ext4_sb_info *sbi, char *buf) 2126 { 2127 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2128 2129 return snprintf(buf, PAGE_SIZE, "%llu\n", 2130 sbi->s_kbytes_written + 2131 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2132 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 2133 } 2134 2135 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2136 struct ext4_sb_info *sbi, 2137 const char *buf, size_t count) 2138 { 2139 unsigned long t; 2140 2141 if (parse_strtoul(buf, 0x40000000, &t)) 2142 return -EINVAL; 2143 2144 if (!is_power_of_2(t)) 2145 return -EINVAL; 2146 2147 sbi->s_inode_readahead_blks = t; 2148 return count; 2149 } 2150 2151 static ssize_t sbi_ui_show(struct ext4_attr *a, 2152 struct ext4_sb_info *sbi, char *buf) 2153 { 2154 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2155 2156 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2157 } 2158 2159 static ssize_t sbi_ui_store(struct ext4_attr *a, 2160 struct ext4_sb_info *sbi, 2161 const char *buf, size_t count) 2162 { 2163 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2164 unsigned long t; 2165 2166 if (parse_strtoul(buf, 0xffffffff, &t)) 2167 return -EINVAL; 2168 *ui = t; 2169 return count; 2170 } 2171 2172 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2173 static struct ext4_attr ext4_attr_##_name = { \ 2174 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2175 .show = _show, \ 2176 .store = _store, \ 2177 .offset = offsetof(struct ext4_sb_info, _elname), \ 2178 } 2179 #define EXT4_ATTR(name, mode, show, store) \ 2180 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2181 2182 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2183 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2184 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2185 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2186 #define ATTR_LIST(name) &ext4_attr_##name.attr 2187 2188 EXT4_RO_ATTR(delayed_allocation_blocks); 2189 EXT4_RO_ATTR(session_write_kbytes); 2190 EXT4_RO_ATTR(lifetime_write_kbytes); 2191 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2192 inode_readahead_blks_store, s_inode_readahead_blks); 2193 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2194 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2195 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2196 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2197 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2198 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2199 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2200 2201 static struct attribute *ext4_attrs[] = { 2202 ATTR_LIST(delayed_allocation_blocks), 2203 ATTR_LIST(session_write_kbytes), 2204 ATTR_LIST(lifetime_write_kbytes), 2205 ATTR_LIST(inode_readahead_blks), 2206 ATTR_LIST(inode_goal), 2207 ATTR_LIST(mb_stats), 2208 ATTR_LIST(mb_max_to_scan), 2209 ATTR_LIST(mb_min_to_scan), 2210 ATTR_LIST(mb_order2_req), 2211 ATTR_LIST(mb_stream_req), 2212 ATTR_LIST(mb_group_prealloc), 2213 NULL, 2214 }; 2215 2216 static ssize_t ext4_attr_show(struct kobject *kobj, 2217 struct attribute *attr, char *buf) 2218 { 2219 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2220 s_kobj); 2221 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2222 2223 return a->show ? a->show(a, sbi, buf) : 0; 2224 } 2225 2226 static ssize_t ext4_attr_store(struct kobject *kobj, 2227 struct attribute *attr, 2228 const char *buf, size_t len) 2229 { 2230 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2231 s_kobj); 2232 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2233 2234 return a->store ? a->store(a, sbi, buf, len) : 0; 2235 } 2236 2237 static void ext4_sb_release(struct kobject *kobj) 2238 { 2239 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2240 s_kobj); 2241 complete(&sbi->s_kobj_unregister); 2242 } 2243 2244 2245 static struct sysfs_ops ext4_attr_ops = { 2246 .show = ext4_attr_show, 2247 .store = ext4_attr_store, 2248 }; 2249 2250 static struct kobj_type ext4_ktype = { 2251 .default_attrs = ext4_attrs, 2252 .sysfs_ops = &ext4_attr_ops, 2253 .release = ext4_sb_release, 2254 }; 2255 2256 /* 2257 * Check whether this filesystem can be mounted based on 2258 * the features present and the RDONLY/RDWR mount requested. 2259 * Returns 1 if this filesystem can be mounted as requested, 2260 * 0 if it cannot be. 2261 */ 2262 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2263 { 2264 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2265 ext4_msg(sb, KERN_ERR, 2266 "Couldn't mount because of " 2267 "unsupported optional features (%x)", 2268 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2269 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2270 return 0; 2271 } 2272 2273 if (readonly) 2274 return 1; 2275 2276 /* Check that feature set is OK for a read-write mount */ 2277 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2278 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2279 "unsupported optional features (%x)", 2280 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2281 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2282 return 0; 2283 } 2284 /* 2285 * Large file size enabled file system can only be mounted 2286 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2287 */ 2288 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2289 if (sizeof(blkcnt_t) < sizeof(u64)) { 2290 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2291 "cannot be mounted RDWR without " 2292 "CONFIG_LBDAF"); 2293 return 0; 2294 } 2295 } 2296 return 1; 2297 } 2298 2299 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 2300 __releases(kernel_lock) 2301 __acquires(kernel_lock) 2302 { 2303 struct buffer_head *bh; 2304 struct ext4_super_block *es = NULL; 2305 struct ext4_sb_info *sbi; 2306 ext4_fsblk_t block; 2307 ext4_fsblk_t sb_block = get_sb_block(&data); 2308 ext4_fsblk_t logical_sb_block; 2309 unsigned long offset = 0; 2310 unsigned long journal_devnum = 0; 2311 unsigned long def_mount_opts; 2312 struct inode *root; 2313 char *cp; 2314 const char *descr; 2315 int ret = -EINVAL; 2316 int blocksize; 2317 unsigned int db_count; 2318 unsigned int i; 2319 int needs_recovery, has_huge_files; 2320 __u64 blocks_count; 2321 int err; 2322 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 2323 2324 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2325 if (!sbi) 2326 return -ENOMEM; 2327 2328 sbi->s_blockgroup_lock = 2329 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 2330 if (!sbi->s_blockgroup_lock) { 2331 kfree(sbi); 2332 return -ENOMEM; 2333 } 2334 sb->s_fs_info = sbi; 2335 sbi->s_mount_opt = 0; 2336 sbi->s_resuid = EXT4_DEF_RESUID; 2337 sbi->s_resgid = EXT4_DEF_RESGID; 2338 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 2339 sbi->s_sb_block = sb_block; 2340 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, 2341 sectors[1]); 2342 2343 unlock_kernel(); 2344 2345 /* Cleanup superblock name */ 2346 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 2347 *cp = '!'; 2348 2349 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 2350 if (!blocksize) { 2351 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 2352 goto out_fail; 2353 } 2354 2355 /* 2356 * The ext4 superblock will not be buffer aligned for other than 1kB 2357 * block sizes. We need to calculate the offset from buffer start. 2358 */ 2359 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 2360 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2361 offset = do_div(logical_sb_block, blocksize); 2362 } else { 2363 logical_sb_block = sb_block; 2364 } 2365 2366 if (!(bh = sb_bread(sb, logical_sb_block))) { 2367 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 2368 goto out_fail; 2369 } 2370 /* 2371 * Note: s_es must be initialized as soon as possible because 2372 * some ext4 macro-instructions depend on its value 2373 */ 2374 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 2375 sbi->s_es = es; 2376 sb->s_magic = le16_to_cpu(es->s_magic); 2377 if (sb->s_magic != EXT4_SUPER_MAGIC) 2378 goto cantfind_ext4; 2379 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 2380 2381 /* Set defaults before we parse the mount options */ 2382 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 2383 if (def_mount_opts & EXT4_DEFM_DEBUG) 2384 set_opt(sbi->s_mount_opt, DEBUG); 2385 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 2386 set_opt(sbi->s_mount_opt, GRPID); 2387 if (def_mount_opts & EXT4_DEFM_UID16) 2388 set_opt(sbi->s_mount_opt, NO_UID32); 2389 #ifdef CONFIG_EXT4_FS_XATTR 2390 if (def_mount_opts & EXT4_DEFM_XATTR_USER) 2391 set_opt(sbi->s_mount_opt, XATTR_USER); 2392 #endif 2393 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2394 if (def_mount_opts & EXT4_DEFM_ACL) 2395 set_opt(sbi->s_mount_opt, POSIX_ACL); 2396 #endif 2397 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 2398 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 2399 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 2400 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 2401 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 2402 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; 2403 2404 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 2405 set_opt(sbi->s_mount_opt, ERRORS_PANIC); 2406 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 2407 set_opt(sbi->s_mount_opt, ERRORS_CONT); 2408 else 2409 set_opt(sbi->s_mount_opt, ERRORS_RO); 2410 2411 sbi->s_resuid = le16_to_cpu(es->s_def_resuid); 2412 sbi->s_resgid = le16_to_cpu(es->s_def_resgid); 2413 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 2414 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 2415 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 2416 sbi->s_mb_history_max = default_mb_history_length; 2417 2418 set_opt(sbi->s_mount_opt, BARRIER); 2419 2420 /* 2421 * enable delayed allocation by default 2422 * Use -o nodelalloc to turn it off 2423 */ 2424 set_opt(sbi->s_mount_opt, DELALLOC); 2425 2426 if (!parse_options((char *) data, sb, &journal_devnum, 2427 &journal_ioprio, NULL, 0)) 2428 goto failed_mount; 2429 2430 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 2431 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 2432 2433 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 2434 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 2435 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 2436 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 2437 ext4_msg(sb, KERN_WARNING, 2438 "feature flags set on rev 0 fs, " 2439 "running e2fsck is recommended"); 2440 2441 /* 2442 * Check feature flags regardless of the revision level, since we 2443 * previously didn't change the revision level when setting the flags, 2444 * so there is a chance incompat flags are set on a rev 0 filesystem. 2445 */ 2446 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 2447 goto failed_mount; 2448 2449 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 2450 2451 if (blocksize < EXT4_MIN_BLOCK_SIZE || 2452 blocksize > EXT4_MAX_BLOCK_SIZE) { 2453 ext4_msg(sb, KERN_ERR, 2454 "Unsupported filesystem blocksize %d", blocksize); 2455 goto failed_mount; 2456 } 2457 2458 if (sb->s_blocksize != blocksize) { 2459 /* Validate the filesystem blocksize */ 2460 if (!sb_set_blocksize(sb, blocksize)) { 2461 ext4_msg(sb, KERN_ERR, "bad block size %d", 2462 blocksize); 2463 goto failed_mount; 2464 } 2465 2466 brelse(bh); 2467 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 2468 offset = do_div(logical_sb_block, blocksize); 2469 bh = sb_bread(sb, logical_sb_block); 2470 if (!bh) { 2471 ext4_msg(sb, KERN_ERR, 2472 "Can't read superblock on 2nd try"); 2473 goto failed_mount; 2474 } 2475 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); 2476 sbi->s_es = es; 2477 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 2478 ext4_msg(sb, KERN_ERR, 2479 "Magic mismatch, very weird!"); 2480 goto failed_mount; 2481 } 2482 } 2483 2484 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 2485 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2486 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 2487 has_huge_files); 2488 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 2489 2490 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 2491 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 2492 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 2493 } else { 2494 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 2495 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 2496 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 2497 (!is_power_of_2(sbi->s_inode_size)) || 2498 (sbi->s_inode_size > blocksize)) { 2499 ext4_msg(sb, KERN_ERR, 2500 "unsupported inode size: %d", 2501 sbi->s_inode_size); 2502 goto failed_mount; 2503 } 2504 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 2505 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 2506 } 2507 2508 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 2509 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 2510 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 2511 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 2512 !is_power_of_2(sbi->s_desc_size)) { 2513 ext4_msg(sb, KERN_ERR, 2514 "unsupported descriptor size %lu", 2515 sbi->s_desc_size); 2516 goto failed_mount; 2517 } 2518 } else 2519 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 2520 2521 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 2522 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 2523 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 2524 goto cantfind_ext4; 2525 2526 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 2527 if (sbi->s_inodes_per_block == 0) 2528 goto cantfind_ext4; 2529 sbi->s_itb_per_group = sbi->s_inodes_per_group / 2530 sbi->s_inodes_per_block; 2531 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 2532 sbi->s_sbh = bh; 2533 sbi->s_mount_state = le16_to_cpu(es->s_state); 2534 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 2535 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 2536 2537 for (i = 0; i < 4; i++) 2538 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 2539 sbi->s_def_hash_version = es->s_def_hash_version; 2540 i = le32_to_cpu(es->s_flags); 2541 if (i & EXT2_FLAGS_UNSIGNED_HASH) 2542 sbi->s_hash_unsigned = 3; 2543 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 2544 #ifdef __CHAR_UNSIGNED__ 2545 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 2546 sbi->s_hash_unsigned = 3; 2547 #else 2548 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 2549 #endif 2550 sb->s_dirt = 1; 2551 } 2552 2553 if (sbi->s_blocks_per_group > blocksize * 8) { 2554 ext4_msg(sb, KERN_ERR, 2555 "#blocks per group too big: %lu", 2556 sbi->s_blocks_per_group); 2557 goto failed_mount; 2558 } 2559 if (sbi->s_inodes_per_group > blocksize * 8) { 2560 ext4_msg(sb, KERN_ERR, 2561 "#inodes per group too big: %lu", 2562 sbi->s_inodes_per_group); 2563 goto failed_mount; 2564 } 2565 2566 /* 2567 * Test whether we have more sectors than will fit in sector_t, 2568 * and whether the max offset is addressable by the page cache. 2569 */ 2570 if ((ext4_blocks_count(es) > 2571 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) || 2572 (ext4_blocks_count(es) > 2573 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) { 2574 ext4_msg(sb, KERN_ERR, "filesystem" 2575 " too large to mount safely on this system"); 2576 if (sizeof(sector_t) < 8) 2577 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 2578 ret = -EFBIG; 2579 goto failed_mount; 2580 } 2581 2582 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 2583 goto cantfind_ext4; 2584 2585 /* check blocks count against device size */ 2586 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 2587 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 2588 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 2589 "exceeds size of device (%llu blocks)", 2590 ext4_blocks_count(es), blocks_count); 2591 goto failed_mount; 2592 } 2593 2594 /* 2595 * It makes no sense for the first data block to be beyond the end 2596 * of the filesystem. 2597 */ 2598 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 2599 ext4_msg(sb, KERN_WARNING, "bad geometry: first data" 2600 "block %u is beyond end of filesystem (%llu)", 2601 le32_to_cpu(es->s_first_data_block), 2602 ext4_blocks_count(es)); 2603 goto failed_mount; 2604 } 2605 blocks_count = (ext4_blocks_count(es) - 2606 le32_to_cpu(es->s_first_data_block) + 2607 EXT4_BLOCKS_PER_GROUP(sb) - 1); 2608 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 2609 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 2610 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 2611 "(block count %llu, first data block %u, " 2612 "blocks per group %lu)", sbi->s_groups_count, 2613 ext4_blocks_count(es), 2614 le32_to_cpu(es->s_first_data_block), 2615 EXT4_BLOCKS_PER_GROUP(sb)); 2616 goto failed_mount; 2617 } 2618 sbi->s_groups_count = blocks_count; 2619 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 2620 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 2621 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 2622 EXT4_DESC_PER_BLOCK(sb); 2623 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), 2624 GFP_KERNEL); 2625 if (sbi->s_group_desc == NULL) { 2626 ext4_msg(sb, KERN_ERR, "not enough memory"); 2627 goto failed_mount; 2628 } 2629 2630 #ifdef CONFIG_PROC_FS 2631 if (ext4_proc_root) 2632 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 2633 #endif 2634 2635 bgl_lock_init(sbi->s_blockgroup_lock); 2636 2637 for (i = 0; i < db_count; i++) { 2638 block = descriptor_loc(sb, logical_sb_block, i); 2639 sbi->s_group_desc[i] = sb_bread(sb, block); 2640 if (!sbi->s_group_desc[i]) { 2641 ext4_msg(sb, KERN_ERR, 2642 "can't read group descriptor %d", i); 2643 db_count = i; 2644 goto failed_mount2; 2645 } 2646 } 2647 if (!ext4_check_descriptors(sb)) { 2648 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 2649 goto failed_mount2; 2650 } 2651 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2652 if (!ext4_fill_flex_info(sb)) { 2653 ext4_msg(sb, KERN_ERR, 2654 "unable to initialize " 2655 "flex_bg meta info!"); 2656 goto failed_mount2; 2657 } 2658 2659 sbi->s_gdb_count = db_count; 2660 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2661 spin_lock_init(&sbi->s_next_gen_lock); 2662 2663 err = percpu_counter_init(&sbi->s_freeblocks_counter, 2664 ext4_count_free_blocks(sb)); 2665 if (!err) { 2666 err = percpu_counter_init(&sbi->s_freeinodes_counter, 2667 ext4_count_free_inodes(sb)); 2668 } 2669 if (!err) { 2670 err = percpu_counter_init(&sbi->s_dirs_counter, 2671 ext4_count_dirs(sb)); 2672 } 2673 if (!err) { 2674 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); 2675 } 2676 if (err) { 2677 ext4_msg(sb, KERN_ERR, "insufficient memory"); 2678 goto failed_mount3; 2679 } 2680 2681 sbi->s_stripe = ext4_get_stripe_size(sbi); 2682 2683 /* 2684 * set up enough so that it can read an inode 2685 */ 2686 if (!test_opt(sb, NOLOAD) && 2687 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 2688 sb->s_op = &ext4_sops; 2689 else 2690 sb->s_op = &ext4_nojournal_sops; 2691 sb->s_export_op = &ext4_export_ops; 2692 sb->s_xattr = ext4_xattr_handlers; 2693 #ifdef CONFIG_QUOTA 2694 sb->s_qcop = &ext4_qctl_operations; 2695 sb->dq_op = &ext4_quota_operations; 2696 #endif 2697 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 2698 mutex_init(&sbi->s_orphan_lock); 2699 mutex_init(&sbi->s_resize_lock); 2700 2701 sb->s_root = NULL; 2702 2703 needs_recovery = (es->s_last_orphan != 0 || 2704 EXT4_HAS_INCOMPAT_FEATURE(sb, 2705 EXT4_FEATURE_INCOMPAT_RECOVER)); 2706 2707 /* 2708 * The first inode we look at is the journal inode. Don't try 2709 * root first: it may be modified in the journal! 2710 */ 2711 if (!test_opt(sb, NOLOAD) && 2712 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 2713 if (ext4_load_journal(sb, es, journal_devnum)) 2714 goto failed_mount3; 2715 if (!(sb->s_flags & MS_RDONLY) && 2716 EXT4_SB(sb)->s_journal->j_failed_commit) { 2717 ext4_msg(sb, KERN_CRIT, "error: " 2718 "ext4_fill_super: Journal transaction " 2719 "%u is corrupt", 2720 EXT4_SB(sb)->s_journal->j_failed_commit); 2721 if (test_opt(sb, ERRORS_RO)) { 2722 ext4_msg(sb, KERN_CRIT, 2723 "Mounting filesystem read-only"); 2724 sb->s_flags |= MS_RDONLY; 2725 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2726 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2727 } 2728 if (test_opt(sb, ERRORS_PANIC)) { 2729 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 2730 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 2731 ext4_commit_super(sb, 1); 2732 goto failed_mount4; 2733 } 2734 } 2735 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 2736 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 2737 ext4_msg(sb, KERN_ERR, "required journal recovery " 2738 "suppressed and not mounted read-only"); 2739 goto failed_mount4; 2740 } else { 2741 clear_opt(sbi->s_mount_opt, DATA_FLAGS); 2742 set_opt(sbi->s_mount_opt, WRITEBACK_DATA); 2743 sbi->s_journal = NULL; 2744 needs_recovery = 0; 2745 goto no_journal; 2746 } 2747 2748 if (ext4_blocks_count(es) > 0xffffffffULL && 2749 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 2750 JBD2_FEATURE_INCOMPAT_64BIT)) { 2751 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 2752 goto failed_mount4; 2753 } 2754 2755 jbd2_journal_set_features(sbi->s_journal, 2756 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); 2757 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) 2758 jbd2_journal_set_features(sbi->s_journal, 0, 0, 2759 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2760 else 2761 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2762 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2763 2764 /* We have now updated the journal if required, so we can 2765 * validate the data journaling mode. */ 2766 switch (test_opt(sb, DATA_FLAGS)) { 2767 case 0: 2768 /* No mode set, assume a default based on the journal 2769 * capabilities: ORDERED_DATA if the journal can 2770 * cope, else JOURNAL_DATA 2771 */ 2772 if (jbd2_journal_check_available_features 2773 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 2774 set_opt(sbi->s_mount_opt, ORDERED_DATA); 2775 else 2776 set_opt(sbi->s_mount_opt, JOURNAL_DATA); 2777 break; 2778 2779 case EXT4_MOUNT_ORDERED_DATA: 2780 case EXT4_MOUNT_WRITEBACK_DATA: 2781 if (!jbd2_journal_check_available_features 2782 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 2783 ext4_msg(sb, KERN_ERR, "Journal does not support " 2784 "requested data journaling mode"); 2785 goto failed_mount4; 2786 } 2787 default: 2788 break; 2789 } 2790 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 2791 2792 no_journal: 2793 2794 if (test_opt(sb, NOBH)) { 2795 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { 2796 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " 2797 "its supported only with writeback mode"); 2798 clear_opt(sbi->s_mount_opt, NOBH); 2799 } 2800 } 2801 /* 2802 * The jbd2_journal_load will have done any necessary log recovery, 2803 * so we can safely mount the rest of the filesystem now. 2804 */ 2805 2806 root = ext4_iget(sb, EXT4_ROOT_INO); 2807 if (IS_ERR(root)) { 2808 ext4_msg(sb, KERN_ERR, "get root inode failed"); 2809 ret = PTR_ERR(root); 2810 goto failed_mount4; 2811 } 2812 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2813 iput(root); 2814 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 2815 goto failed_mount4; 2816 } 2817 sb->s_root = d_alloc_root(root); 2818 if (!sb->s_root) { 2819 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 2820 iput(root); 2821 ret = -ENOMEM; 2822 goto failed_mount4; 2823 } 2824 2825 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); 2826 2827 /* determine the minimum size of new large inodes, if present */ 2828 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 2829 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2830 EXT4_GOOD_OLD_INODE_SIZE; 2831 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2832 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 2833 if (sbi->s_want_extra_isize < 2834 le16_to_cpu(es->s_want_extra_isize)) 2835 sbi->s_want_extra_isize = 2836 le16_to_cpu(es->s_want_extra_isize); 2837 if (sbi->s_want_extra_isize < 2838 le16_to_cpu(es->s_min_extra_isize)) 2839 sbi->s_want_extra_isize = 2840 le16_to_cpu(es->s_min_extra_isize); 2841 } 2842 } 2843 /* Check if enough inode space is available */ 2844 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 2845 sbi->s_inode_size) { 2846 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 2847 EXT4_GOOD_OLD_INODE_SIZE; 2848 ext4_msg(sb, KERN_INFO, "required extra inode space not" 2849 "available"); 2850 } 2851 2852 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 2853 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " 2854 "requested data journaling mode"); 2855 clear_opt(sbi->s_mount_opt, DELALLOC); 2856 } else if (test_opt(sb, DELALLOC)) 2857 ext4_msg(sb, KERN_INFO, "delayed allocation enabled"); 2858 2859 err = ext4_setup_system_zone(sb); 2860 if (err) { 2861 ext4_msg(sb, KERN_ERR, "failed to initialize system " 2862 "zone (%d)\n", err); 2863 goto failed_mount4; 2864 } 2865 2866 ext4_ext_init(sb); 2867 err = ext4_mb_init(sb, needs_recovery); 2868 if (err) { 2869 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", 2870 err); 2871 goto failed_mount4; 2872 } 2873 2874 sbi->s_kobj.kset = ext4_kset; 2875 init_completion(&sbi->s_kobj_unregister); 2876 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 2877 "%s", sb->s_id); 2878 if (err) { 2879 ext4_mb_release(sb); 2880 ext4_ext_release(sb); 2881 goto failed_mount4; 2882 }; 2883 2884 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 2885 ext4_orphan_cleanup(sb, es); 2886 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 2887 if (needs_recovery) { 2888 ext4_msg(sb, KERN_INFO, "recovery complete"); 2889 ext4_mark_recovery_complete(sb, es); 2890 } 2891 if (EXT4_SB(sb)->s_journal) { 2892 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2893 descr = " journalled data mode"; 2894 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2895 descr = " ordered data mode"; 2896 else 2897 descr = " writeback data mode"; 2898 } else 2899 descr = "out journal"; 2900 2901 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); 2902 2903 lock_kernel(); 2904 return 0; 2905 2906 cantfind_ext4: 2907 if (!silent) 2908 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 2909 goto failed_mount; 2910 2911 failed_mount4: 2912 ext4_msg(sb, KERN_ERR, "mount failed"); 2913 ext4_release_system_zone(sb); 2914 if (sbi->s_journal) { 2915 jbd2_journal_destroy(sbi->s_journal); 2916 sbi->s_journal = NULL; 2917 } 2918 failed_mount3: 2919 if (sbi->s_flex_groups) { 2920 if (is_vmalloc_addr(sbi->s_flex_groups)) 2921 vfree(sbi->s_flex_groups); 2922 else 2923 kfree(sbi->s_flex_groups); 2924 } 2925 percpu_counter_destroy(&sbi->s_freeblocks_counter); 2926 percpu_counter_destroy(&sbi->s_freeinodes_counter); 2927 percpu_counter_destroy(&sbi->s_dirs_counter); 2928 percpu_counter_destroy(&sbi->s_dirtyblocks_counter); 2929 failed_mount2: 2930 for (i = 0; i < db_count; i++) 2931 brelse(sbi->s_group_desc[i]); 2932 kfree(sbi->s_group_desc); 2933 failed_mount: 2934 if (sbi->s_proc) { 2935 remove_proc_entry(sb->s_id, ext4_proc_root); 2936 } 2937 #ifdef CONFIG_QUOTA 2938 for (i = 0; i < MAXQUOTAS; i++) 2939 kfree(sbi->s_qf_names[i]); 2940 #endif 2941 ext4_blkdev_remove(sbi); 2942 brelse(bh); 2943 out_fail: 2944 sb->s_fs_info = NULL; 2945 kfree(sbi->s_blockgroup_lock); 2946 kfree(sbi); 2947 lock_kernel(); 2948 return ret; 2949 } 2950 2951 /* 2952 * Setup any per-fs journal parameters now. We'll do this both on 2953 * initial mount, once the journal has been initialised but before we've 2954 * done any recovery; and again on any subsequent remount. 2955 */ 2956 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 2957 { 2958 struct ext4_sb_info *sbi = EXT4_SB(sb); 2959 2960 journal->j_commit_interval = sbi->s_commit_interval; 2961 journal->j_min_batch_time = sbi->s_min_batch_time; 2962 journal->j_max_batch_time = sbi->s_max_batch_time; 2963 2964 spin_lock(&journal->j_state_lock); 2965 if (test_opt(sb, BARRIER)) 2966 journal->j_flags |= JBD2_BARRIER; 2967 else 2968 journal->j_flags &= ~JBD2_BARRIER; 2969 if (test_opt(sb, DATA_ERR_ABORT)) 2970 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 2971 else 2972 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 2973 spin_unlock(&journal->j_state_lock); 2974 } 2975 2976 static journal_t *ext4_get_journal(struct super_block *sb, 2977 unsigned int journal_inum) 2978 { 2979 struct inode *journal_inode; 2980 journal_t *journal; 2981 2982 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 2983 2984 /* First, test for the existence of a valid inode on disk. Bad 2985 * things happen if we iget() an unused inode, as the subsequent 2986 * iput() will try to delete it. */ 2987 2988 journal_inode = ext4_iget(sb, journal_inum); 2989 if (IS_ERR(journal_inode)) { 2990 ext4_msg(sb, KERN_ERR, "no journal found"); 2991 return NULL; 2992 } 2993 if (!journal_inode->i_nlink) { 2994 make_bad_inode(journal_inode); 2995 iput(journal_inode); 2996 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 2997 return NULL; 2998 } 2999 3000 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 3001 journal_inode, journal_inode->i_size); 3002 if (!S_ISREG(journal_inode->i_mode)) { 3003 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 3004 iput(journal_inode); 3005 return NULL; 3006 } 3007 3008 journal = jbd2_journal_init_inode(journal_inode); 3009 if (!journal) { 3010 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 3011 iput(journal_inode); 3012 return NULL; 3013 } 3014 journal->j_private = sb; 3015 ext4_init_journal_params(sb, journal); 3016 return journal; 3017 } 3018 3019 static journal_t *ext4_get_dev_journal(struct super_block *sb, 3020 dev_t j_dev) 3021 { 3022 struct buffer_head *bh; 3023 journal_t *journal; 3024 ext4_fsblk_t start; 3025 ext4_fsblk_t len; 3026 int hblock, blocksize; 3027 ext4_fsblk_t sb_block; 3028 unsigned long offset; 3029 struct ext4_super_block *es; 3030 struct block_device *bdev; 3031 3032 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3033 3034 bdev = ext4_blkdev_get(j_dev, sb); 3035 if (bdev == NULL) 3036 return NULL; 3037 3038 if (bd_claim(bdev, sb)) { 3039 ext4_msg(sb, KERN_ERR, 3040 "failed to claim external journal device"); 3041 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 3042 return NULL; 3043 } 3044 3045 blocksize = sb->s_blocksize; 3046 hblock = bdev_logical_block_size(bdev); 3047 if (blocksize < hblock) { 3048 ext4_msg(sb, KERN_ERR, 3049 "blocksize too small for journal device"); 3050 goto out_bdev; 3051 } 3052 3053 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 3054 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 3055 set_blocksize(bdev, blocksize); 3056 if (!(bh = __bread(bdev, sb_block, blocksize))) { 3057 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 3058 "external journal"); 3059 goto out_bdev; 3060 } 3061 3062 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); 3063 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 3064 !(le32_to_cpu(es->s_feature_incompat) & 3065 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 3066 ext4_msg(sb, KERN_ERR, "external journal has " 3067 "bad superblock"); 3068 brelse(bh); 3069 goto out_bdev; 3070 } 3071 3072 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 3073 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 3074 brelse(bh); 3075 goto out_bdev; 3076 } 3077 3078 len = ext4_blocks_count(es); 3079 start = sb_block + 1; 3080 brelse(bh); /* we're done with the superblock */ 3081 3082 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 3083 start, len, blocksize); 3084 if (!journal) { 3085 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 3086 goto out_bdev; 3087 } 3088 journal->j_private = sb; 3089 ll_rw_block(READ, 1, &journal->j_sb_buffer); 3090 wait_on_buffer(journal->j_sb_buffer); 3091 if (!buffer_uptodate(journal->j_sb_buffer)) { 3092 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 3093 goto out_journal; 3094 } 3095 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 3096 ext4_msg(sb, KERN_ERR, "External journal has more than one " 3097 "user (unsupported) - %d", 3098 be32_to_cpu(journal->j_superblock->s_nr_users)); 3099 goto out_journal; 3100 } 3101 EXT4_SB(sb)->journal_bdev = bdev; 3102 ext4_init_journal_params(sb, journal); 3103 return journal; 3104 3105 out_journal: 3106 jbd2_journal_destroy(journal); 3107 out_bdev: 3108 ext4_blkdev_put(bdev); 3109 return NULL; 3110 } 3111 3112 static int ext4_load_journal(struct super_block *sb, 3113 struct ext4_super_block *es, 3114 unsigned long journal_devnum) 3115 { 3116 journal_t *journal; 3117 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 3118 dev_t journal_dev; 3119 int err = 0; 3120 int really_read_only; 3121 3122 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3123 3124 if (journal_devnum && 3125 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3126 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 3127 "numbers have changed"); 3128 journal_dev = new_decode_dev(journal_devnum); 3129 } else 3130 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 3131 3132 really_read_only = bdev_read_only(sb->s_bdev); 3133 3134 /* 3135 * Are we loading a blank journal or performing recovery after a 3136 * crash? For recovery, we need to check in advance whether we 3137 * can get read-write access to the device. 3138 */ 3139 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3140 if (sb->s_flags & MS_RDONLY) { 3141 ext4_msg(sb, KERN_INFO, "INFO: recovery " 3142 "required on readonly filesystem"); 3143 if (really_read_only) { 3144 ext4_msg(sb, KERN_ERR, "write access " 3145 "unavailable, cannot proceed"); 3146 return -EROFS; 3147 } 3148 ext4_msg(sb, KERN_INFO, "write access will " 3149 "be enabled during recovery"); 3150 } 3151 } 3152 3153 if (journal_inum && journal_dev) { 3154 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 3155 "and inode journals!"); 3156 return -EINVAL; 3157 } 3158 3159 if (journal_inum) { 3160 if (!(journal = ext4_get_journal(sb, journal_inum))) 3161 return -EINVAL; 3162 } else { 3163 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 3164 return -EINVAL; 3165 } 3166 3167 if (journal->j_flags & JBD2_BARRIER) 3168 ext4_msg(sb, KERN_INFO, "barriers enabled"); 3169 else 3170 ext4_msg(sb, KERN_INFO, "barriers disabled"); 3171 3172 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { 3173 err = jbd2_journal_update_format(journal); 3174 if (err) { 3175 ext4_msg(sb, KERN_ERR, "error updating journal"); 3176 jbd2_journal_destroy(journal); 3177 return err; 3178 } 3179 } 3180 3181 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 3182 err = jbd2_journal_wipe(journal, !really_read_only); 3183 if (!err) 3184 err = jbd2_journal_load(journal); 3185 3186 if (err) { 3187 ext4_msg(sb, KERN_ERR, "error loading journal"); 3188 jbd2_journal_destroy(journal); 3189 return err; 3190 } 3191 3192 EXT4_SB(sb)->s_journal = journal; 3193 ext4_clear_journal_err(sb, es); 3194 3195 if (journal_devnum && 3196 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 3197 es->s_journal_dev = cpu_to_le32(journal_devnum); 3198 3199 /* Make sure we flush the recovery flag to disk. */ 3200 ext4_commit_super(sb, 1); 3201 } 3202 3203 return 0; 3204 } 3205 3206 static int ext4_commit_super(struct super_block *sb, int sync) 3207 { 3208 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 3209 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 3210 int error = 0; 3211 3212 if (!sbh) 3213 return error; 3214 if (buffer_write_io_error(sbh)) { 3215 /* 3216 * Oh, dear. A previous attempt to write the 3217 * superblock failed. This could happen because the 3218 * USB device was yanked out. Or it could happen to 3219 * be a transient write error and maybe the block will 3220 * be remapped. Nothing we can do but to retry the 3221 * write and hope for the best. 3222 */ 3223 ext4_msg(sb, KERN_ERR, "previous I/O error to " 3224 "superblock detected"); 3225 clear_buffer_write_io_error(sbh); 3226 set_buffer_uptodate(sbh); 3227 } 3228 /* 3229 * If the file system is mounted read-only, don't update the 3230 * superblock write time. This avoids updating the superblock 3231 * write time when we are mounting the root file system 3232 * read/only but we need to replay the journal; at that point, 3233 * for people who are east of GMT and who make their clock 3234 * tick in localtime for Windows bug-for-bug compatibility, 3235 * the clock is set in the future, and this will cause e2fsck 3236 * to complain and force a full file system check. 3237 */ 3238 if (!(sb->s_flags & MS_RDONLY)) 3239 es->s_wtime = cpu_to_le32(get_seconds()); 3240 es->s_kbytes_written = 3241 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 3242 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 3243 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 3244 ext4_free_blocks_count_set(es, percpu_counter_sum_positive( 3245 &EXT4_SB(sb)->s_freeblocks_counter)); 3246 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( 3247 &EXT4_SB(sb)->s_freeinodes_counter)); 3248 sb->s_dirt = 0; 3249 BUFFER_TRACE(sbh, "marking dirty"); 3250 mark_buffer_dirty(sbh); 3251 if (sync) { 3252 error = sync_dirty_buffer(sbh); 3253 if (error) 3254 return error; 3255 3256 error = buffer_write_io_error(sbh); 3257 if (error) { 3258 ext4_msg(sb, KERN_ERR, "I/O error while writing " 3259 "superblock"); 3260 clear_buffer_write_io_error(sbh); 3261 set_buffer_uptodate(sbh); 3262 } 3263 } 3264 return error; 3265 } 3266 3267 /* 3268 * Have we just finished recovery? If so, and if we are mounting (or 3269 * remounting) the filesystem readonly, then we will end up with a 3270 * consistent fs on disk. Record that fact. 3271 */ 3272 static void ext4_mark_recovery_complete(struct super_block *sb, 3273 struct ext4_super_block *es) 3274 { 3275 journal_t *journal = EXT4_SB(sb)->s_journal; 3276 3277 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3278 BUG_ON(journal != NULL); 3279 return; 3280 } 3281 jbd2_journal_lock_updates(journal); 3282 if (jbd2_journal_flush(journal) < 0) 3283 goto out; 3284 3285 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 3286 sb->s_flags & MS_RDONLY) { 3287 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3288 ext4_commit_super(sb, 1); 3289 } 3290 3291 out: 3292 jbd2_journal_unlock_updates(journal); 3293 } 3294 3295 /* 3296 * If we are mounting (or read-write remounting) a filesystem whose journal 3297 * has recorded an error from a previous lifetime, move that error to the 3298 * main filesystem now. 3299 */ 3300 static void ext4_clear_journal_err(struct super_block *sb, 3301 struct ext4_super_block *es) 3302 { 3303 journal_t *journal; 3304 int j_errno; 3305 const char *errstr; 3306 3307 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 3308 3309 journal = EXT4_SB(sb)->s_journal; 3310 3311 /* 3312 * Now check for any error status which may have been recorded in the 3313 * journal by a prior ext4_error() or ext4_abort() 3314 */ 3315 3316 j_errno = jbd2_journal_errno(journal); 3317 if (j_errno) { 3318 char nbuf[16]; 3319 3320 errstr = ext4_decode_error(sb, j_errno, nbuf); 3321 ext4_warning(sb, __func__, "Filesystem error recorded " 3322 "from previous mount: %s", errstr); 3323 ext4_warning(sb, __func__, "Marking fs in need of " 3324 "filesystem check."); 3325 3326 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 3327 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 3328 ext4_commit_super(sb, 1); 3329 3330 jbd2_journal_clear_err(journal); 3331 } 3332 } 3333 3334 /* 3335 * Force the running and committing transactions to commit, 3336 * and wait on the commit. 3337 */ 3338 int ext4_force_commit(struct super_block *sb) 3339 { 3340 journal_t *journal; 3341 int ret = 0; 3342 3343 if (sb->s_flags & MS_RDONLY) 3344 return 0; 3345 3346 journal = EXT4_SB(sb)->s_journal; 3347 if (journal) 3348 ret = ext4_journal_force_commit(journal); 3349 3350 return ret; 3351 } 3352 3353 static void ext4_write_super(struct super_block *sb) 3354 { 3355 lock_super(sb); 3356 ext4_commit_super(sb, 1); 3357 unlock_super(sb); 3358 } 3359 3360 static int ext4_sync_fs(struct super_block *sb, int wait) 3361 { 3362 int ret = 0; 3363 tid_t target; 3364 3365 trace_ext4_sync_fs(sb, wait); 3366 if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) { 3367 if (wait) 3368 jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target); 3369 } 3370 return ret; 3371 } 3372 3373 /* 3374 * LVM calls this function before a (read-only) snapshot is created. This 3375 * gives us a chance to flush the journal completely and mark the fs clean. 3376 */ 3377 static int ext4_freeze(struct super_block *sb) 3378 { 3379 int error = 0; 3380 journal_t *journal; 3381 3382 if (sb->s_flags & MS_RDONLY) 3383 return 0; 3384 3385 journal = EXT4_SB(sb)->s_journal; 3386 3387 /* Now we set up the journal barrier. */ 3388 jbd2_journal_lock_updates(journal); 3389 3390 /* 3391 * Don't clear the needs_recovery flag if we failed to flush 3392 * the journal. 3393 */ 3394 error = jbd2_journal_flush(journal); 3395 if (error < 0) { 3396 out: 3397 jbd2_journal_unlock_updates(journal); 3398 return error; 3399 } 3400 3401 /* Journal blocked and flushed, clear needs_recovery flag. */ 3402 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3403 error = ext4_commit_super(sb, 1); 3404 if (error) 3405 goto out; 3406 return 0; 3407 } 3408 3409 /* 3410 * Called by LVM after the snapshot is done. We need to reset the RECOVER 3411 * flag here, even though the filesystem is not technically dirty yet. 3412 */ 3413 static int ext4_unfreeze(struct super_block *sb) 3414 { 3415 if (sb->s_flags & MS_RDONLY) 3416 return 0; 3417 3418 lock_super(sb); 3419 /* Reset the needs_recovery flag before the fs is unlocked. */ 3420 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 3421 ext4_commit_super(sb, 1); 3422 unlock_super(sb); 3423 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3424 return 0; 3425 } 3426 3427 static int ext4_remount(struct super_block *sb, int *flags, char *data) 3428 { 3429 struct ext4_super_block *es; 3430 struct ext4_sb_info *sbi = EXT4_SB(sb); 3431 ext4_fsblk_t n_blocks_count = 0; 3432 unsigned long old_sb_flags; 3433 struct ext4_mount_options old_opts; 3434 ext4_group_t g; 3435 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3436 int err; 3437 #ifdef CONFIG_QUOTA 3438 int i; 3439 #endif 3440 3441 lock_kernel(); 3442 3443 /* Store the original options */ 3444 lock_super(sb); 3445 old_sb_flags = sb->s_flags; 3446 old_opts.s_mount_opt = sbi->s_mount_opt; 3447 old_opts.s_resuid = sbi->s_resuid; 3448 old_opts.s_resgid = sbi->s_resgid; 3449 old_opts.s_commit_interval = sbi->s_commit_interval; 3450 old_opts.s_min_batch_time = sbi->s_min_batch_time; 3451 old_opts.s_max_batch_time = sbi->s_max_batch_time; 3452 #ifdef CONFIG_QUOTA 3453 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 3454 for (i = 0; i < MAXQUOTAS; i++) 3455 old_opts.s_qf_names[i] = sbi->s_qf_names[i]; 3456 #endif 3457 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 3458 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 3459 3460 /* 3461 * Allow the "check" option to be passed as a remount option. 3462 */ 3463 if (!parse_options(data, sb, NULL, &journal_ioprio, 3464 &n_blocks_count, 1)) { 3465 err = -EINVAL; 3466 goto restore_opts; 3467 } 3468 3469 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 3470 ext4_abort(sb, __func__, "Abort forced by user"); 3471 3472 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3473 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); 3474 3475 es = sbi->s_es; 3476 3477 if (sbi->s_journal) { 3478 ext4_init_journal_params(sb, sbi->s_journal); 3479 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3480 } 3481 3482 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || 3483 n_blocks_count > ext4_blocks_count(es)) { 3484 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 3485 err = -EROFS; 3486 goto restore_opts; 3487 } 3488 3489 if (*flags & MS_RDONLY) { 3490 /* 3491 * First of all, the unconditional stuff we have to do 3492 * to disable replay of the journal when we next remount 3493 */ 3494 sb->s_flags |= MS_RDONLY; 3495 3496 /* 3497 * OK, test if we are remounting a valid rw partition 3498 * readonly, and if so set the rdonly flag and then 3499 * mark the partition as valid again. 3500 */ 3501 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 3502 (sbi->s_mount_state & EXT4_VALID_FS)) 3503 es->s_state = cpu_to_le16(sbi->s_mount_state); 3504 3505 if (sbi->s_journal) 3506 ext4_mark_recovery_complete(sb, es); 3507 } else { 3508 /* Make sure we can mount this feature set readwrite */ 3509 if (!ext4_feature_set_ok(sb, 0)) { 3510 err = -EROFS; 3511 goto restore_opts; 3512 } 3513 /* 3514 * Make sure the group descriptor checksums 3515 * are sane. If they aren't, refuse to remount r/w. 3516 */ 3517 for (g = 0; g < sbi->s_groups_count; g++) { 3518 struct ext4_group_desc *gdp = 3519 ext4_get_group_desc(sb, g, NULL); 3520 3521 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { 3522 ext4_msg(sb, KERN_ERR, 3523 "ext4_remount: Checksum for group %u failed (%u!=%u)", 3524 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 3525 le16_to_cpu(gdp->bg_checksum)); 3526 err = -EINVAL; 3527 goto restore_opts; 3528 } 3529 } 3530 3531 /* 3532 * If we have an unprocessed orphan list hanging 3533 * around from a previously readonly bdev mount, 3534 * require a full umount/remount for now. 3535 */ 3536 if (es->s_last_orphan) { 3537 ext4_msg(sb, KERN_WARNING, "Couldn't " 3538 "remount RDWR because of unprocessed " 3539 "orphan inode list. Please " 3540 "umount/remount instead"); 3541 err = -EINVAL; 3542 goto restore_opts; 3543 } 3544 3545 /* 3546 * Mounting a RDONLY partition read-write, so reread 3547 * and store the current valid flag. (It may have 3548 * been changed by e2fsck since we originally mounted 3549 * the partition.) 3550 */ 3551 if (sbi->s_journal) 3552 ext4_clear_journal_err(sb, es); 3553 sbi->s_mount_state = le16_to_cpu(es->s_state); 3554 if ((err = ext4_group_extend(sb, es, n_blocks_count))) 3555 goto restore_opts; 3556 if (!ext4_setup_super(sb, es, 0)) 3557 sb->s_flags &= ~MS_RDONLY; 3558 } 3559 } 3560 ext4_setup_system_zone(sb); 3561 if (sbi->s_journal == NULL) 3562 ext4_commit_super(sb, 1); 3563 3564 #ifdef CONFIG_QUOTA 3565 /* Release old quota file names */ 3566 for (i = 0; i < MAXQUOTAS; i++) 3567 if (old_opts.s_qf_names[i] && 3568 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3569 kfree(old_opts.s_qf_names[i]); 3570 #endif 3571 unlock_super(sb); 3572 unlock_kernel(); 3573 return 0; 3574 3575 restore_opts: 3576 sb->s_flags = old_sb_flags; 3577 sbi->s_mount_opt = old_opts.s_mount_opt; 3578 sbi->s_resuid = old_opts.s_resuid; 3579 sbi->s_resgid = old_opts.s_resgid; 3580 sbi->s_commit_interval = old_opts.s_commit_interval; 3581 sbi->s_min_batch_time = old_opts.s_min_batch_time; 3582 sbi->s_max_batch_time = old_opts.s_max_batch_time; 3583 #ifdef CONFIG_QUOTA 3584 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 3585 for (i = 0; i < MAXQUOTAS; i++) { 3586 if (sbi->s_qf_names[i] && 3587 old_opts.s_qf_names[i] != sbi->s_qf_names[i]) 3588 kfree(sbi->s_qf_names[i]); 3589 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 3590 } 3591 #endif 3592 unlock_super(sb); 3593 unlock_kernel(); 3594 return err; 3595 } 3596 3597 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 3598 { 3599 struct super_block *sb = dentry->d_sb; 3600 struct ext4_sb_info *sbi = EXT4_SB(sb); 3601 struct ext4_super_block *es = sbi->s_es; 3602 u64 fsid; 3603 3604 if (test_opt(sb, MINIX_DF)) { 3605 sbi->s_overhead_last = 0; 3606 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { 3607 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3608 ext4_fsblk_t overhead = 0; 3609 3610 /* 3611 * Compute the overhead (FS structures). This is constant 3612 * for a given filesystem unless the number of block groups 3613 * changes so we cache the previous value until it does. 3614 */ 3615 3616 /* 3617 * All of the blocks before first_data_block are 3618 * overhead 3619 */ 3620 overhead = le32_to_cpu(es->s_first_data_block); 3621 3622 /* 3623 * Add the overhead attributed to the superblock and 3624 * block group descriptors. If the sparse superblocks 3625 * feature is turned on, then not all groups have this. 3626 */ 3627 for (i = 0; i < ngroups; i++) { 3628 overhead += ext4_bg_has_super(sb, i) + 3629 ext4_bg_num_gdb(sb, i); 3630 cond_resched(); 3631 } 3632 3633 /* 3634 * Every block group has an inode bitmap, a block 3635 * bitmap, and an inode table. 3636 */ 3637 overhead += ngroups * (2 + sbi->s_itb_per_group); 3638 sbi->s_overhead_last = overhead; 3639 smp_wmb(); 3640 sbi->s_blocks_last = ext4_blocks_count(es); 3641 } 3642 3643 buf->f_type = EXT4_SUPER_MAGIC; 3644 buf->f_bsize = sb->s_blocksize; 3645 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; 3646 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - 3647 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); 3648 ext4_free_blocks_count_set(es, buf->f_bfree); 3649 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 3650 if (buf->f_bfree < ext4_r_blocks_count(es)) 3651 buf->f_bavail = 0; 3652 buf->f_files = le32_to_cpu(es->s_inodes_count); 3653 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 3654 es->s_free_inodes_count = cpu_to_le32(buf->f_ffree); 3655 buf->f_namelen = EXT4_NAME_LEN; 3656 fsid = le64_to_cpup((void *)es->s_uuid) ^ 3657 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 3658 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 3659 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 3660 3661 return 0; 3662 } 3663 3664 /* Helper function for writing quotas on sync - we need to start transaction 3665 * before quota file is locked for write. Otherwise the are possible deadlocks: 3666 * Process 1 Process 2 3667 * ext4_create() quota_sync() 3668 * jbd2_journal_start() write_dquot() 3669 * vfs_dq_init() down(dqio_mutex) 3670 * down(dqio_mutex) jbd2_journal_start() 3671 * 3672 */ 3673 3674 #ifdef CONFIG_QUOTA 3675 3676 static inline struct inode *dquot_to_inode(struct dquot *dquot) 3677 { 3678 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; 3679 } 3680 3681 static int ext4_write_dquot(struct dquot *dquot) 3682 { 3683 int ret, err; 3684 handle_t *handle; 3685 struct inode *inode; 3686 3687 inode = dquot_to_inode(dquot); 3688 handle = ext4_journal_start(inode, 3689 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 3690 if (IS_ERR(handle)) 3691 return PTR_ERR(handle); 3692 ret = dquot_commit(dquot); 3693 err = ext4_journal_stop(handle); 3694 if (!ret) 3695 ret = err; 3696 return ret; 3697 } 3698 3699 static int ext4_acquire_dquot(struct dquot *dquot) 3700 { 3701 int ret, err; 3702 handle_t *handle; 3703 3704 handle = ext4_journal_start(dquot_to_inode(dquot), 3705 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 3706 if (IS_ERR(handle)) 3707 return PTR_ERR(handle); 3708 ret = dquot_acquire(dquot); 3709 err = ext4_journal_stop(handle); 3710 if (!ret) 3711 ret = err; 3712 return ret; 3713 } 3714 3715 static int ext4_release_dquot(struct dquot *dquot) 3716 { 3717 int ret, err; 3718 handle_t *handle; 3719 3720 handle = ext4_journal_start(dquot_to_inode(dquot), 3721 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 3722 if (IS_ERR(handle)) { 3723 /* Release dquot anyway to avoid endless cycle in dqput() */ 3724 dquot_release(dquot); 3725 return PTR_ERR(handle); 3726 } 3727 ret = dquot_release(dquot); 3728 err = ext4_journal_stop(handle); 3729 if (!ret) 3730 ret = err; 3731 return ret; 3732 } 3733 3734 static int ext4_mark_dquot_dirty(struct dquot *dquot) 3735 { 3736 /* Are we journaling quotas? */ 3737 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || 3738 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { 3739 dquot_mark_dquot_dirty(dquot); 3740 return ext4_write_dquot(dquot); 3741 } else { 3742 return dquot_mark_dquot_dirty(dquot); 3743 } 3744 } 3745 3746 static int ext4_write_info(struct super_block *sb, int type) 3747 { 3748 int ret, err; 3749 handle_t *handle; 3750 3751 /* Data block + inode block */ 3752 handle = ext4_journal_start(sb->s_root->d_inode, 2); 3753 if (IS_ERR(handle)) 3754 return PTR_ERR(handle); 3755 ret = dquot_commit_info(sb, type); 3756 err = ext4_journal_stop(handle); 3757 if (!ret) 3758 ret = err; 3759 return ret; 3760 } 3761 3762 /* 3763 * Turn on quotas during mount time - we need to find 3764 * the quota file and such... 3765 */ 3766 static int ext4_quota_on_mount(struct super_block *sb, int type) 3767 { 3768 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 3769 EXT4_SB(sb)->s_jquota_fmt, type); 3770 } 3771 3772 /* 3773 * Standard function to be called on quota_on 3774 */ 3775 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 3776 char *name, int remount) 3777 { 3778 int err; 3779 struct path path; 3780 3781 if (!test_opt(sb, QUOTA)) 3782 return -EINVAL; 3783 /* When remounting, no checks are needed and in fact, name is NULL */ 3784 if (remount) 3785 return vfs_quota_on(sb, type, format_id, name, remount); 3786 3787 err = kern_path(name, LOOKUP_FOLLOW, &path); 3788 if (err) 3789 return err; 3790 3791 /* Quotafile not on the same filesystem? */ 3792 if (path.mnt->mnt_sb != sb) { 3793 path_put(&path); 3794 return -EXDEV; 3795 } 3796 /* Journaling quota? */ 3797 if (EXT4_SB(sb)->s_qf_names[type]) { 3798 /* Quotafile not in fs root? */ 3799 if (path.dentry->d_parent != sb->s_root) 3800 ext4_msg(sb, KERN_WARNING, 3801 "Quota file not on filesystem root. " 3802 "Journaled quota will not work"); 3803 } 3804 3805 /* 3806 * When we journal data on quota file, we have to flush journal to see 3807 * all updates to the file when we bypass pagecache... 3808 */ 3809 if (EXT4_SB(sb)->s_journal && 3810 ext4_should_journal_data(path.dentry->d_inode)) { 3811 /* 3812 * We don't need to lock updates but journal_flush() could 3813 * otherwise be livelocked... 3814 */ 3815 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 3816 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 3817 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 3818 if (err) { 3819 path_put(&path); 3820 return err; 3821 } 3822 } 3823 3824 err = vfs_quota_on_path(sb, type, format_id, &path); 3825 path_put(&path); 3826 return err; 3827 } 3828 3829 /* Read data from quotafile - avoid pagecache and such because we cannot afford 3830 * acquiring the locks... As quota files are never truncated and quota code 3831 * itself serializes the operations (and noone else should touch the files) 3832 * we don't have to be afraid of races */ 3833 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 3834 size_t len, loff_t off) 3835 { 3836 struct inode *inode = sb_dqopt(sb)->files[type]; 3837 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3838 int err = 0; 3839 int offset = off & (sb->s_blocksize - 1); 3840 int tocopy; 3841 size_t toread; 3842 struct buffer_head *bh; 3843 loff_t i_size = i_size_read(inode); 3844 3845 if (off > i_size) 3846 return 0; 3847 if (off+len > i_size) 3848 len = i_size-off; 3849 toread = len; 3850 while (toread > 0) { 3851 tocopy = sb->s_blocksize - offset < toread ? 3852 sb->s_blocksize - offset : toread; 3853 bh = ext4_bread(NULL, inode, blk, 0, &err); 3854 if (err) 3855 return err; 3856 if (!bh) /* A hole? */ 3857 memset(data, 0, tocopy); 3858 else 3859 memcpy(data, bh->b_data+offset, tocopy); 3860 brelse(bh); 3861 offset = 0; 3862 toread -= tocopy; 3863 data += tocopy; 3864 blk++; 3865 } 3866 return len; 3867 } 3868 3869 /* Write to quotafile (we know the transaction is already started and has 3870 * enough credits) */ 3871 static ssize_t ext4_quota_write(struct super_block *sb, int type, 3872 const char *data, size_t len, loff_t off) 3873 { 3874 struct inode *inode = sb_dqopt(sb)->files[type]; 3875 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 3876 int err = 0; 3877 int offset = off & (sb->s_blocksize - 1); 3878 int tocopy; 3879 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; 3880 size_t towrite = len; 3881 struct buffer_head *bh; 3882 handle_t *handle = journal_current_handle(); 3883 3884 if (EXT4_SB(sb)->s_journal && !handle) { 3885 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 3886 " cancelled because transaction is not started", 3887 (unsigned long long)off, (unsigned long long)len); 3888 return -EIO; 3889 } 3890 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); 3891 while (towrite > 0) { 3892 tocopy = sb->s_blocksize - offset < towrite ? 3893 sb->s_blocksize - offset : towrite; 3894 bh = ext4_bread(handle, inode, blk, 1, &err); 3895 if (!bh) 3896 goto out; 3897 if (journal_quota) { 3898 err = ext4_journal_get_write_access(handle, bh); 3899 if (err) { 3900 brelse(bh); 3901 goto out; 3902 } 3903 } 3904 lock_buffer(bh); 3905 memcpy(bh->b_data+offset, data, tocopy); 3906 flush_dcache_page(bh->b_page); 3907 unlock_buffer(bh); 3908 if (journal_quota) 3909 err = ext4_handle_dirty_metadata(handle, NULL, bh); 3910 else { 3911 /* Always do at least ordered writes for quotas */ 3912 err = ext4_jbd2_file_inode(handle, inode); 3913 mark_buffer_dirty(bh); 3914 } 3915 brelse(bh); 3916 if (err) 3917 goto out; 3918 offset = 0; 3919 towrite -= tocopy; 3920 data += tocopy; 3921 blk++; 3922 } 3923 out: 3924 if (len == towrite) { 3925 mutex_unlock(&inode->i_mutex); 3926 return err; 3927 } 3928 if (inode->i_size < off+len-towrite) { 3929 i_size_write(inode, off+len-towrite); 3930 EXT4_I(inode)->i_disksize = inode->i_size; 3931 } 3932 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3933 ext4_mark_inode_dirty(handle, inode); 3934 mutex_unlock(&inode->i_mutex); 3935 return len - towrite; 3936 } 3937 3938 #endif 3939 3940 static int ext4_get_sb(struct file_system_type *fs_type, int flags, 3941 const char *dev_name, void *data, struct vfsmount *mnt) 3942 { 3943 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3944 } 3945 3946 static struct file_system_type ext4_fs_type = { 3947 .owner = THIS_MODULE, 3948 .name = "ext4", 3949 .get_sb = ext4_get_sb, 3950 .kill_sb = kill_block_super, 3951 .fs_flags = FS_REQUIRES_DEV, 3952 }; 3953 3954 #ifdef CONFIG_EXT4DEV_COMPAT 3955 static int ext4dev_get_sb(struct file_system_type *fs_type, int flags, 3956 const char *dev_name, void *data,struct vfsmount *mnt) 3957 { 3958 printk(KERN_WARNING "EXT4-fs (%s): Update your userspace programs " 3959 "to mount using ext4\n", dev_name); 3960 printk(KERN_WARNING "EXT4-fs (%s): ext4dev backwards compatibility " 3961 "will go away by 2.6.31\n", dev_name); 3962 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); 3963 } 3964 3965 static struct file_system_type ext4dev_fs_type = { 3966 .owner = THIS_MODULE, 3967 .name = "ext4dev", 3968 .get_sb = ext4dev_get_sb, 3969 .kill_sb = kill_block_super, 3970 .fs_flags = FS_REQUIRES_DEV, 3971 }; 3972 MODULE_ALIAS("ext4dev"); 3973 #endif 3974 3975 static int __init init_ext4_fs(void) 3976 { 3977 int err; 3978 3979 err = init_ext4_system_zone(); 3980 if (err) 3981 return err; 3982 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 3983 if (!ext4_kset) 3984 goto out4; 3985 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 3986 err = init_ext4_mballoc(); 3987 if (err) 3988 goto out3; 3989 3990 err = init_ext4_xattr(); 3991 if (err) 3992 goto out2; 3993 err = init_inodecache(); 3994 if (err) 3995 goto out1; 3996 err = register_filesystem(&ext4_fs_type); 3997 if (err) 3998 goto out; 3999 #ifdef CONFIG_EXT4DEV_COMPAT 4000 err = register_filesystem(&ext4dev_fs_type); 4001 if (err) { 4002 unregister_filesystem(&ext4_fs_type); 4003 goto out; 4004 } 4005 #endif 4006 return 0; 4007 out: 4008 destroy_inodecache(); 4009 out1: 4010 exit_ext4_xattr(); 4011 out2: 4012 exit_ext4_mballoc(); 4013 out3: 4014 remove_proc_entry("fs/ext4", NULL); 4015 kset_unregister(ext4_kset); 4016 out4: 4017 exit_ext4_system_zone(); 4018 return err; 4019 } 4020 4021 static void __exit exit_ext4_fs(void) 4022 { 4023 unregister_filesystem(&ext4_fs_type); 4024 #ifdef CONFIG_EXT4DEV_COMPAT 4025 unregister_filesystem(&ext4dev_fs_type); 4026 #endif 4027 destroy_inodecache(); 4028 exit_ext4_xattr(); 4029 exit_ext4_mballoc(); 4030 remove_proc_entry("fs/ext4", NULL); 4031 kset_unregister(ext4_kset); 4032 exit_ext4_system_zone(); 4033 } 4034 4035 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 4036 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 4037 MODULE_LICENSE("GPL"); 4038 module_init(init_ext4_fs) 4039 module_exit(exit_ext4_fs) 4040