xref: /openbmc/linux/fs/ext4/super.c (revision fd589a8f)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43 
44 #include "ext4.h"
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "mballoc.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ext4.h>
52 
53 static int default_mb_history_length = 1000;
54 
55 module_param_named(default_mb_history_length, default_mb_history_length,
56 		   int, 0644);
57 MODULE_PARM_DESC(default_mb_history_length,
58 		 "Default number of entries saved for mb_history");
59 
60 struct proc_dir_entry *ext4_proc_root;
61 static struct kset *ext4_kset;
62 
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 			     unsigned long journal_devnum);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 					struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 				   struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static const char *ext4_decode_error(struct super_block *sb, int errno,
72 				     char nbuf[16]);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static void ext4_write_super(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 
79 
80 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
81 			       struct ext4_group_desc *bg)
82 {
83 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
84 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
85 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
86 }
87 
88 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
89 			       struct ext4_group_desc *bg)
90 {
91 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
92 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
93 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
94 }
95 
96 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
97 			      struct ext4_group_desc *bg)
98 {
99 	return le32_to_cpu(bg->bg_inode_table_lo) |
100 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
101 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
102 }
103 
104 __u32 ext4_free_blks_count(struct super_block *sb,
105 			      struct ext4_group_desc *bg)
106 {
107 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
108 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
109 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
110 }
111 
112 __u32 ext4_free_inodes_count(struct super_block *sb,
113 			      struct ext4_group_desc *bg)
114 {
115 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
116 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
117 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
118 }
119 
120 __u32 ext4_used_dirs_count(struct super_block *sb,
121 			      struct ext4_group_desc *bg)
122 {
123 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
124 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
125 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
126 }
127 
128 __u32 ext4_itable_unused_count(struct super_block *sb,
129 			      struct ext4_group_desc *bg)
130 {
131 	return le16_to_cpu(bg->bg_itable_unused_lo) |
132 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
133 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
134 }
135 
136 void ext4_block_bitmap_set(struct super_block *sb,
137 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
138 {
139 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
140 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
141 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
142 }
143 
144 void ext4_inode_bitmap_set(struct super_block *sb,
145 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
146 {
147 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
148 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
149 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
150 }
151 
152 void ext4_inode_table_set(struct super_block *sb,
153 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
154 {
155 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
156 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
157 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
158 }
159 
160 void ext4_free_blks_set(struct super_block *sb,
161 			  struct ext4_group_desc *bg, __u32 count)
162 {
163 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
164 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
165 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
166 }
167 
168 void ext4_free_inodes_set(struct super_block *sb,
169 			  struct ext4_group_desc *bg, __u32 count)
170 {
171 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
172 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
173 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
174 }
175 
176 void ext4_used_dirs_set(struct super_block *sb,
177 			  struct ext4_group_desc *bg, __u32 count)
178 {
179 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
180 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
181 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
182 }
183 
184 void ext4_itable_unused_set(struct super_block *sb,
185 			  struct ext4_group_desc *bg, __u32 count)
186 {
187 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
188 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
189 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
190 }
191 
192 /*
193  * Wrappers for jbd2_journal_start/end.
194  *
195  * The only special thing we need to do here is to make sure that all
196  * journal_end calls result in the superblock being marked dirty, so
197  * that sync() will call the filesystem's write_super callback if
198  * appropriate.
199  */
200 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
201 {
202 	journal_t *journal;
203 
204 	if (sb->s_flags & MS_RDONLY)
205 		return ERR_PTR(-EROFS);
206 
207 	/* Special case here: if the journal has aborted behind our
208 	 * backs (eg. EIO in the commit thread), then we still need to
209 	 * take the FS itself readonly cleanly. */
210 	journal = EXT4_SB(sb)->s_journal;
211 	if (journal) {
212 		if (is_journal_aborted(journal)) {
213 			ext4_abort(sb, __func__, "Detected aborted journal");
214 			return ERR_PTR(-EROFS);
215 		}
216 		return jbd2_journal_start(journal, nblocks);
217 	}
218 	/*
219 	 * We're not journaling, return the appropriate indication.
220 	 */
221 	current->journal_info = EXT4_NOJOURNAL_HANDLE;
222 	return current->journal_info;
223 }
224 
225 /*
226  * The only special thing we need to do here is to make sure that all
227  * jbd2_journal_stop calls result in the superblock being marked dirty, so
228  * that sync() will call the filesystem's write_super callback if
229  * appropriate.
230  */
231 int __ext4_journal_stop(const char *where, handle_t *handle)
232 {
233 	struct super_block *sb;
234 	int err;
235 	int rc;
236 
237 	if (!ext4_handle_valid(handle)) {
238 		/*
239 		 * Do this here since we don't call jbd2_journal_stop() in
240 		 * no-journal mode.
241 		 */
242 		current->journal_info = NULL;
243 		return 0;
244 	}
245 	sb = handle->h_transaction->t_journal->j_private;
246 	err = handle->h_err;
247 	rc = jbd2_journal_stop(handle);
248 
249 	if (!err)
250 		err = rc;
251 	if (err)
252 		__ext4_std_error(sb, where, err);
253 	return err;
254 }
255 
256 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
257 		struct buffer_head *bh, handle_t *handle, int err)
258 {
259 	char nbuf[16];
260 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
261 
262 	BUG_ON(!ext4_handle_valid(handle));
263 
264 	if (bh)
265 		BUFFER_TRACE(bh, "abort");
266 
267 	if (!handle->h_err)
268 		handle->h_err = err;
269 
270 	if (is_handle_aborted(handle))
271 		return;
272 
273 	printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
274 	       caller, errstr, err_fn);
275 
276 	jbd2_journal_abort_handle(handle);
277 }
278 
279 /* Deal with the reporting of failure conditions on a filesystem such as
280  * inconsistencies detected or read IO failures.
281  *
282  * On ext2, we can store the error state of the filesystem in the
283  * superblock.  That is not possible on ext4, because we may have other
284  * write ordering constraints on the superblock which prevent us from
285  * writing it out straight away; and given that the journal is about to
286  * be aborted, we can't rely on the current, or future, transactions to
287  * write out the superblock safely.
288  *
289  * We'll just use the jbd2_journal_abort() error code to record an error in
290  * the journal instead.  On recovery, the journal will compain about
291  * that error until we've noted it down and cleared it.
292  */
293 
294 static void ext4_handle_error(struct super_block *sb)
295 {
296 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
297 
298 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
299 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
300 
301 	if (sb->s_flags & MS_RDONLY)
302 		return;
303 
304 	if (!test_opt(sb, ERRORS_CONT)) {
305 		journal_t *journal = EXT4_SB(sb)->s_journal;
306 
307 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
308 		if (journal)
309 			jbd2_journal_abort(journal, -EIO);
310 	}
311 	if (test_opt(sb, ERRORS_RO)) {
312 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
313 		sb->s_flags |= MS_RDONLY;
314 	}
315 	ext4_commit_super(sb, 1);
316 	if (test_opt(sb, ERRORS_PANIC))
317 		panic("EXT4-fs (device %s): panic forced after error\n",
318 			sb->s_id);
319 }
320 
321 void ext4_error(struct super_block *sb, const char *function,
322 		const char *fmt, ...)
323 {
324 	va_list args;
325 
326 	va_start(args, fmt);
327 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
328 	vprintk(fmt, args);
329 	printk("\n");
330 	va_end(args);
331 
332 	ext4_handle_error(sb);
333 }
334 
335 static const char *ext4_decode_error(struct super_block *sb, int errno,
336 				     char nbuf[16])
337 {
338 	char *errstr = NULL;
339 
340 	switch (errno) {
341 	case -EIO:
342 		errstr = "IO failure";
343 		break;
344 	case -ENOMEM:
345 		errstr = "Out of memory";
346 		break;
347 	case -EROFS:
348 		if (!sb || (EXT4_SB(sb)->s_journal &&
349 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
350 			errstr = "Journal has aborted";
351 		else
352 			errstr = "Readonly filesystem";
353 		break;
354 	default:
355 		/* If the caller passed in an extra buffer for unknown
356 		 * errors, textualise them now.  Else we just return
357 		 * NULL. */
358 		if (nbuf) {
359 			/* Check for truncated error codes... */
360 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
361 				errstr = nbuf;
362 		}
363 		break;
364 	}
365 
366 	return errstr;
367 }
368 
369 /* __ext4_std_error decodes expected errors from journaling functions
370  * automatically and invokes the appropriate error response.  */
371 
372 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
373 {
374 	char nbuf[16];
375 	const char *errstr;
376 
377 	/* Special case: if the error is EROFS, and we're not already
378 	 * inside a transaction, then there's really no point in logging
379 	 * an error. */
380 	if (errno == -EROFS && journal_current_handle() == NULL &&
381 	    (sb->s_flags & MS_RDONLY))
382 		return;
383 
384 	errstr = ext4_decode_error(sb, errno, nbuf);
385 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
386 	       sb->s_id, function, errstr);
387 
388 	ext4_handle_error(sb);
389 }
390 
391 /*
392  * ext4_abort is a much stronger failure handler than ext4_error.  The
393  * abort function may be used to deal with unrecoverable failures such
394  * as journal IO errors or ENOMEM at a critical moment in log management.
395  *
396  * We unconditionally force the filesystem into an ABORT|READONLY state,
397  * unless the error response on the fs has been set to panic in which
398  * case we take the easy way out and panic immediately.
399  */
400 
401 void ext4_abort(struct super_block *sb, const char *function,
402 		const char *fmt, ...)
403 {
404 	va_list args;
405 
406 	va_start(args, fmt);
407 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
408 	vprintk(fmt, args);
409 	printk("\n");
410 	va_end(args);
411 
412 	if (test_opt(sb, ERRORS_PANIC))
413 		panic("EXT4-fs panic from previous error\n");
414 
415 	if (sb->s_flags & MS_RDONLY)
416 		return;
417 
418 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
419 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
420 	sb->s_flags |= MS_RDONLY;
421 	EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
422 	if (EXT4_SB(sb)->s_journal)
423 		jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
424 }
425 
426 void ext4_msg (struct super_block * sb, const char *prefix,
427 		   const char *fmt, ...)
428 {
429 	va_list args;
430 
431 	va_start(args, fmt);
432 	printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
433 	vprintk(fmt, args);
434 	printk("\n");
435 	va_end(args);
436 }
437 
438 void ext4_warning(struct super_block *sb, const char *function,
439 		  const char *fmt, ...)
440 {
441 	va_list args;
442 
443 	va_start(args, fmt);
444 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
445 	       sb->s_id, function);
446 	vprintk(fmt, args);
447 	printk("\n");
448 	va_end(args);
449 }
450 
451 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
452 			   const char *function, const char *fmt, ...)
453 __releases(bitlock)
454 __acquires(bitlock)
455 {
456 	va_list args;
457 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
458 
459 	va_start(args, fmt);
460 	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
461 	vprintk(fmt, args);
462 	printk("\n");
463 	va_end(args);
464 
465 	if (test_opt(sb, ERRORS_CONT)) {
466 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
467 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
468 		ext4_commit_super(sb, 0);
469 		return;
470 	}
471 	ext4_unlock_group(sb, grp);
472 	ext4_handle_error(sb);
473 	/*
474 	 * We only get here in the ERRORS_RO case; relocking the group
475 	 * may be dangerous, but nothing bad will happen since the
476 	 * filesystem will have already been marked read/only and the
477 	 * journal has been aborted.  We return 1 as a hint to callers
478 	 * who might what to use the return value from
479 	 * ext4_grp_locked_error() to distinguish beween the
480 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
481 	 * aggressively from the ext4 function in question, with a
482 	 * more appropriate error code.
483 	 */
484 	ext4_lock_group(sb, grp);
485 	return;
486 }
487 
488 void ext4_update_dynamic_rev(struct super_block *sb)
489 {
490 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
491 
492 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
493 		return;
494 
495 	ext4_warning(sb, __func__,
496 		     "updating to rev %d because of new feature flag, "
497 		     "running e2fsck is recommended",
498 		     EXT4_DYNAMIC_REV);
499 
500 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
501 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
502 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
503 	/* leave es->s_feature_*compat flags alone */
504 	/* es->s_uuid will be set by e2fsck if empty */
505 
506 	/*
507 	 * The rest of the superblock fields should be zero, and if not it
508 	 * means they are likely already in use, so leave them alone.  We
509 	 * can leave it up to e2fsck to clean up any inconsistencies there.
510 	 */
511 }
512 
513 /*
514  * Open the external journal device
515  */
516 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
517 {
518 	struct block_device *bdev;
519 	char b[BDEVNAME_SIZE];
520 
521 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
522 	if (IS_ERR(bdev))
523 		goto fail;
524 	return bdev;
525 
526 fail:
527 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
528 			__bdevname(dev, b), PTR_ERR(bdev));
529 	return NULL;
530 }
531 
532 /*
533  * Release the journal device
534  */
535 static int ext4_blkdev_put(struct block_device *bdev)
536 {
537 	bd_release(bdev);
538 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
539 }
540 
541 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
542 {
543 	struct block_device *bdev;
544 	int ret = -ENODEV;
545 
546 	bdev = sbi->journal_bdev;
547 	if (bdev) {
548 		ret = ext4_blkdev_put(bdev);
549 		sbi->journal_bdev = NULL;
550 	}
551 	return ret;
552 }
553 
554 static inline struct inode *orphan_list_entry(struct list_head *l)
555 {
556 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
557 }
558 
559 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
560 {
561 	struct list_head *l;
562 
563 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
564 		 le32_to_cpu(sbi->s_es->s_last_orphan));
565 
566 	printk(KERN_ERR "sb_info orphan list:\n");
567 	list_for_each(l, &sbi->s_orphan) {
568 		struct inode *inode = orphan_list_entry(l);
569 		printk(KERN_ERR "  "
570 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
571 		       inode->i_sb->s_id, inode->i_ino, inode,
572 		       inode->i_mode, inode->i_nlink,
573 		       NEXT_ORPHAN(inode));
574 	}
575 }
576 
577 static void ext4_put_super(struct super_block *sb)
578 {
579 	struct ext4_sb_info *sbi = EXT4_SB(sb);
580 	struct ext4_super_block *es = sbi->s_es;
581 	int i, err;
582 
583 	lock_super(sb);
584 	lock_kernel();
585 	if (sb->s_dirt)
586 		ext4_commit_super(sb, 1);
587 
588 	ext4_release_system_zone(sb);
589 	ext4_mb_release(sb);
590 	ext4_ext_release(sb);
591 	ext4_xattr_put_super(sb);
592 	if (sbi->s_journal) {
593 		err = jbd2_journal_destroy(sbi->s_journal);
594 		sbi->s_journal = NULL;
595 		if (err < 0)
596 			ext4_abort(sb, __func__,
597 				   "Couldn't clean up the journal");
598 	}
599 	if (!(sb->s_flags & MS_RDONLY)) {
600 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
601 		es->s_state = cpu_to_le16(sbi->s_mount_state);
602 		ext4_commit_super(sb, 1);
603 	}
604 	if (sbi->s_proc) {
605 		remove_proc_entry(sb->s_id, ext4_proc_root);
606 	}
607 	kobject_del(&sbi->s_kobj);
608 
609 	for (i = 0; i < sbi->s_gdb_count; i++)
610 		brelse(sbi->s_group_desc[i]);
611 	kfree(sbi->s_group_desc);
612 	if (is_vmalloc_addr(sbi->s_flex_groups))
613 		vfree(sbi->s_flex_groups);
614 	else
615 		kfree(sbi->s_flex_groups);
616 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
617 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
618 	percpu_counter_destroy(&sbi->s_dirs_counter);
619 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
620 	brelse(sbi->s_sbh);
621 #ifdef CONFIG_QUOTA
622 	for (i = 0; i < MAXQUOTAS; i++)
623 		kfree(sbi->s_qf_names[i]);
624 #endif
625 
626 	/* Debugging code just in case the in-memory inode orphan list
627 	 * isn't empty.  The on-disk one can be non-empty if we've
628 	 * detected an error and taken the fs readonly, but the
629 	 * in-memory list had better be clean by this point. */
630 	if (!list_empty(&sbi->s_orphan))
631 		dump_orphan_list(sb, sbi);
632 	J_ASSERT(list_empty(&sbi->s_orphan));
633 
634 	invalidate_bdev(sb->s_bdev);
635 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
636 		/*
637 		 * Invalidate the journal device's buffers.  We don't want them
638 		 * floating about in memory - the physical journal device may
639 		 * hotswapped, and it breaks the `ro-after' testing code.
640 		 */
641 		sync_blockdev(sbi->journal_bdev);
642 		invalidate_bdev(sbi->journal_bdev);
643 		ext4_blkdev_remove(sbi);
644 	}
645 	sb->s_fs_info = NULL;
646 	/*
647 	 * Now that we are completely done shutting down the
648 	 * superblock, we need to actually destroy the kobject.
649 	 */
650 	unlock_kernel();
651 	unlock_super(sb);
652 	kobject_put(&sbi->s_kobj);
653 	wait_for_completion(&sbi->s_kobj_unregister);
654 	kfree(sbi->s_blockgroup_lock);
655 	kfree(sbi);
656 }
657 
658 static struct kmem_cache *ext4_inode_cachep;
659 
660 /*
661  * Called inside transaction, so use GFP_NOFS
662  */
663 static struct inode *ext4_alloc_inode(struct super_block *sb)
664 {
665 	struct ext4_inode_info *ei;
666 
667 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
668 	if (!ei)
669 		return NULL;
670 
671 	ei->vfs_inode.i_version = 1;
672 	ei->vfs_inode.i_data.writeback_index = 0;
673 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
674 	INIT_LIST_HEAD(&ei->i_prealloc_list);
675 	spin_lock_init(&ei->i_prealloc_lock);
676 	/*
677 	 * Note:  We can be called before EXT4_SB(sb)->s_journal is set,
678 	 * therefore it can be null here.  Don't check it, just initialize
679 	 * jinode.
680 	 */
681 	jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
682 	ei->i_reserved_data_blocks = 0;
683 	ei->i_reserved_meta_blocks = 0;
684 	ei->i_allocated_meta_blocks = 0;
685 	ei->i_delalloc_reserved_flag = 0;
686 	spin_lock_init(&(ei->i_block_reservation_lock));
687 
688 	return &ei->vfs_inode;
689 }
690 
691 static void ext4_destroy_inode(struct inode *inode)
692 {
693 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
694 		ext4_msg(inode->i_sb, KERN_ERR,
695 			 "Inode %lu (%p): orphan list check failed!",
696 			 inode->i_ino, EXT4_I(inode));
697 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
698 				EXT4_I(inode), sizeof(struct ext4_inode_info),
699 				true);
700 		dump_stack();
701 	}
702 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
703 }
704 
705 static void init_once(void *foo)
706 {
707 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
708 
709 	INIT_LIST_HEAD(&ei->i_orphan);
710 #ifdef CONFIG_EXT4_FS_XATTR
711 	init_rwsem(&ei->xattr_sem);
712 #endif
713 	init_rwsem(&ei->i_data_sem);
714 	inode_init_once(&ei->vfs_inode);
715 }
716 
717 static int init_inodecache(void)
718 {
719 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
720 					     sizeof(struct ext4_inode_info),
721 					     0, (SLAB_RECLAIM_ACCOUNT|
722 						SLAB_MEM_SPREAD),
723 					     init_once);
724 	if (ext4_inode_cachep == NULL)
725 		return -ENOMEM;
726 	return 0;
727 }
728 
729 static void destroy_inodecache(void)
730 {
731 	kmem_cache_destroy(ext4_inode_cachep);
732 }
733 
734 static void ext4_clear_inode(struct inode *inode)
735 {
736 	ext4_discard_preallocations(inode);
737 	if (EXT4_JOURNAL(inode))
738 		jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
739 				       &EXT4_I(inode)->jinode);
740 }
741 
742 static inline void ext4_show_quota_options(struct seq_file *seq,
743 					   struct super_block *sb)
744 {
745 #if defined(CONFIG_QUOTA)
746 	struct ext4_sb_info *sbi = EXT4_SB(sb);
747 
748 	if (sbi->s_jquota_fmt)
749 		seq_printf(seq, ",jqfmt=%s",
750 		(sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0");
751 
752 	if (sbi->s_qf_names[USRQUOTA])
753 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
754 
755 	if (sbi->s_qf_names[GRPQUOTA])
756 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
757 
758 	if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
759 		seq_puts(seq, ",usrquota");
760 
761 	if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
762 		seq_puts(seq, ",grpquota");
763 #endif
764 }
765 
766 /*
767  * Show an option if
768  *  - it's set to a non-default value OR
769  *  - if the per-sb default is different from the global default
770  */
771 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
772 {
773 	int def_errors;
774 	unsigned long def_mount_opts;
775 	struct super_block *sb = vfs->mnt_sb;
776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
777 	struct ext4_super_block *es = sbi->s_es;
778 
779 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
780 	def_errors     = le16_to_cpu(es->s_errors);
781 
782 	if (sbi->s_sb_block != 1)
783 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
784 	if (test_opt(sb, MINIX_DF))
785 		seq_puts(seq, ",minixdf");
786 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
787 		seq_puts(seq, ",grpid");
788 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
789 		seq_puts(seq, ",nogrpid");
790 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
791 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
792 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
793 	}
794 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
795 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
796 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
797 	}
798 	if (test_opt(sb, ERRORS_RO)) {
799 		if (def_errors == EXT4_ERRORS_PANIC ||
800 		    def_errors == EXT4_ERRORS_CONTINUE) {
801 			seq_puts(seq, ",errors=remount-ro");
802 		}
803 	}
804 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
805 		seq_puts(seq, ",errors=continue");
806 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
807 		seq_puts(seq, ",errors=panic");
808 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
809 		seq_puts(seq, ",nouid32");
810 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
811 		seq_puts(seq, ",debug");
812 	if (test_opt(sb, OLDALLOC))
813 		seq_puts(seq, ",oldalloc");
814 #ifdef CONFIG_EXT4_FS_XATTR
815 	if (test_opt(sb, XATTR_USER) &&
816 		!(def_mount_opts & EXT4_DEFM_XATTR_USER))
817 		seq_puts(seq, ",user_xattr");
818 	if (!test_opt(sb, XATTR_USER) &&
819 	    (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
820 		seq_puts(seq, ",nouser_xattr");
821 	}
822 #endif
823 #ifdef CONFIG_EXT4_FS_POSIX_ACL
824 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
825 		seq_puts(seq, ",acl");
826 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
827 		seq_puts(seq, ",noacl");
828 #endif
829 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
830 		seq_printf(seq, ",commit=%u",
831 			   (unsigned) (sbi->s_commit_interval / HZ));
832 	}
833 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
834 		seq_printf(seq, ",min_batch_time=%u",
835 			   (unsigned) sbi->s_min_batch_time);
836 	}
837 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
838 		seq_printf(seq, ",max_batch_time=%u",
839 			   (unsigned) sbi->s_min_batch_time);
840 	}
841 
842 	/*
843 	 * We're changing the default of barrier mount option, so
844 	 * let's always display its mount state so it's clear what its
845 	 * status is.
846 	 */
847 	seq_puts(seq, ",barrier=");
848 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
849 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
850 		seq_puts(seq, ",journal_async_commit");
851 	if (test_opt(sb, NOBH))
852 		seq_puts(seq, ",nobh");
853 	if (test_opt(sb, I_VERSION))
854 		seq_puts(seq, ",i_version");
855 	if (!test_opt(sb, DELALLOC))
856 		seq_puts(seq, ",nodelalloc");
857 
858 
859 	if (sbi->s_stripe)
860 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
861 	/*
862 	 * journal mode get enabled in different ways
863 	 * So just print the value even if we didn't specify it
864 	 */
865 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
866 		seq_puts(seq, ",data=journal");
867 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
868 		seq_puts(seq, ",data=ordered");
869 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
870 		seq_puts(seq, ",data=writeback");
871 
872 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
873 		seq_printf(seq, ",inode_readahead_blks=%u",
874 			   sbi->s_inode_readahead_blks);
875 
876 	if (test_opt(sb, DATA_ERR_ABORT))
877 		seq_puts(seq, ",data_err=abort");
878 
879 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
880 		seq_puts(seq, ",noauto_da_alloc");
881 
882 	ext4_show_quota_options(seq, sb);
883 
884 	return 0;
885 }
886 
887 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
888 					u64 ino, u32 generation)
889 {
890 	struct inode *inode;
891 
892 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
893 		return ERR_PTR(-ESTALE);
894 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
895 		return ERR_PTR(-ESTALE);
896 
897 	/* iget isn't really right if the inode is currently unallocated!!
898 	 *
899 	 * ext4_read_inode will return a bad_inode if the inode had been
900 	 * deleted, so we should be safe.
901 	 *
902 	 * Currently we don't know the generation for parent directory, so
903 	 * a generation of 0 means "accept any"
904 	 */
905 	inode = ext4_iget(sb, ino);
906 	if (IS_ERR(inode))
907 		return ERR_CAST(inode);
908 	if (generation && inode->i_generation != generation) {
909 		iput(inode);
910 		return ERR_PTR(-ESTALE);
911 	}
912 
913 	return inode;
914 }
915 
916 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
917 					int fh_len, int fh_type)
918 {
919 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
920 				    ext4_nfs_get_inode);
921 }
922 
923 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
924 					int fh_len, int fh_type)
925 {
926 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
927 				    ext4_nfs_get_inode);
928 }
929 
930 /*
931  * Try to release metadata pages (indirect blocks, directories) which are
932  * mapped via the block device.  Since these pages could have journal heads
933  * which would prevent try_to_free_buffers() from freeing them, we must use
934  * jbd2 layer's try_to_free_buffers() function to release them.
935  */
936 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
937 				 gfp_t wait)
938 {
939 	journal_t *journal = EXT4_SB(sb)->s_journal;
940 
941 	WARN_ON(PageChecked(page));
942 	if (!page_has_buffers(page))
943 		return 0;
944 	if (journal)
945 		return jbd2_journal_try_to_free_buffers(journal, page,
946 							wait & ~__GFP_WAIT);
947 	return try_to_free_buffers(page);
948 }
949 
950 #ifdef CONFIG_QUOTA
951 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
952 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
953 
954 static int ext4_write_dquot(struct dquot *dquot);
955 static int ext4_acquire_dquot(struct dquot *dquot);
956 static int ext4_release_dquot(struct dquot *dquot);
957 static int ext4_mark_dquot_dirty(struct dquot *dquot);
958 static int ext4_write_info(struct super_block *sb, int type);
959 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
960 				char *path, int remount);
961 static int ext4_quota_on_mount(struct super_block *sb, int type);
962 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
963 			       size_t len, loff_t off);
964 static ssize_t ext4_quota_write(struct super_block *sb, int type,
965 				const char *data, size_t len, loff_t off);
966 
967 static struct dquot_operations ext4_quota_operations = {
968 	.initialize	= dquot_initialize,
969 	.drop		= dquot_drop,
970 	.alloc_space	= dquot_alloc_space,
971 	.reserve_space	= dquot_reserve_space,
972 	.claim_space	= dquot_claim_space,
973 	.release_rsv	= dquot_release_reserved_space,
974 	.get_reserved_space = ext4_get_reserved_space,
975 	.alloc_inode	= dquot_alloc_inode,
976 	.free_space	= dquot_free_space,
977 	.free_inode	= dquot_free_inode,
978 	.transfer	= dquot_transfer,
979 	.write_dquot	= ext4_write_dquot,
980 	.acquire_dquot	= ext4_acquire_dquot,
981 	.release_dquot	= ext4_release_dquot,
982 	.mark_dirty	= ext4_mark_dquot_dirty,
983 	.write_info	= ext4_write_info,
984 	.alloc_dquot	= dquot_alloc,
985 	.destroy_dquot	= dquot_destroy,
986 };
987 
988 static struct quotactl_ops ext4_qctl_operations = {
989 	.quota_on	= ext4_quota_on,
990 	.quota_off	= vfs_quota_off,
991 	.quota_sync	= vfs_quota_sync,
992 	.get_info	= vfs_get_dqinfo,
993 	.set_info	= vfs_set_dqinfo,
994 	.get_dqblk	= vfs_get_dqblk,
995 	.set_dqblk	= vfs_set_dqblk
996 };
997 #endif
998 
999 static const struct super_operations ext4_sops = {
1000 	.alloc_inode	= ext4_alloc_inode,
1001 	.destroy_inode	= ext4_destroy_inode,
1002 	.write_inode	= ext4_write_inode,
1003 	.dirty_inode	= ext4_dirty_inode,
1004 	.delete_inode	= ext4_delete_inode,
1005 	.put_super	= ext4_put_super,
1006 	.sync_fs	= ext4_sync_fs,
1007 	.freeze_fs	= ext4_freeze,
1008 	.unfreeze_fs	= ext4_unfreeze,
1009 	.statfs		= ext4_statfs,
1010 	.remount_fs	= ext4_remount,
1011 	.clear_inode	= ext4_clear_inode,
1012 	.show_options	= ext4_show_options,
1013 #ifdef CONFIG_QUOTA
1014 	.quota_read	= ext4_quota_read,
1015 	.quota_write	= ext4_quota_write,
1016 #endif
1017 	.bdev_try_to_free_page = bdev_try_to_free_page,
1018 };
1019 
1020 static const struct super_operations ext4_nojournal_sops = {
1021 	.alloc_inode	= ext4_alloc_inode,
1022 	.destroy_inode	= ext4_destroy_inode,
1023 	.write_inode	= ext4_write_inode,
1024 	.dirty_inode	= ext4_dirty_inode,
1025 	.delete_inode	= ext4_delete_inode,
1026 	.write_super	= ext4_write_super,
1027 	.put_super	= ext4_put_super,
1028 	.statfs		= ext4_statfs,
1029 	.remount_fs	= ext4_remount,
1030 	.clear_inode	= ext4_clear_inode,
1031 	.show_options	= ext4_show_options,
1032 #ifdef CONFIG_QUOTA
1033 	.quota_read	= ext4_quota_read,
1034 	.quota_write	= ext4_quota_write,
1035 #endif
1036 	.bdev_try_to_free_page = bdev_try_to_free_page,
1037 };
1038 
1039 static const struct export_operations ext4_export_ops = {
1040 	.fh_to_dentry = ext4_fh_to_dentry,
1041 	.fh_to_parent = ext4_fh_to_parent,
1042 	.get_parent = ext4_get_parent,
1043 };
1044 
1045 enum {
1046 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1047 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1048 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1049 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1050 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1051 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1052 	Opt_journal_update, Opt_journal_dev,
1053 	Opt_journal_checksum, Opt_journal_async_commit,
1054 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1055 	Opt_data_err_abort, Opt_data_err_ignore, Opt_mb_history_length,
1056 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1057 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
1058 	Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize,
1059 	Opt_usrquota, Opt_grpquota, Opt_i_version,
1060 	Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1061 	Opt_block_validity, Opt_noblock_validity,
1062 	Opt_inode_readahead_blks, Opt_journal_ioprio
1063 };
1064 
1065 static const match_table_t tokens = {
1066 	{Opt_bsd_df, "bsddf"},
1067 	{Opt_minix_df, "minixdf"},
1068 	{Opt_grpid, "grpid"},
1069 	{Opt_grpid, "bsdgroups"},
1070 	{Opt_nogrpid, "nogrpid"},
1071 	{Opt_nogrpid, "sysvgroups"},
1072 	{Opt_resgid, "resgid=%u"},
1073 	{Opt_resuid, "resuid=%u"},
1074 	{Opt_sb, "sb=%u"},
1075 	{Opt_err_cont, "errors=continue"},
1076 	{Opt_err_panic, "errors=panic"},
1077 	{Opt_err_ro, "errors=remount-ro"},
1078 	{Opt_nouid32, "nouid32"},
1079 	{Opt_debug, "debug"},
1080 	{Opt_oldalloc, "oldalloc"},
1081 	{Opt_orlov, "orlov"},
1082 	{Opt_user_xattr, "user_xattr"},
1083 	{Opt_nouser_xattr, "nouser_xattr"},
1084 	{Opt_acl, "acl"},
1085 	{Opt_noacl, "noacl"},
1086 	{Opt_noload, "noload"},
1087 	{Opt_nobh, "nobh"},
1088 	{Opt_bh, "bh"},
1089 	{Opt_commit, "commit=%u"},
1090 	{Opt_min_batch_time, "min_batch_time=%u"},
1091 	{Opt_max_batch_time, "max_batch_time=%u"},
1092 	{Opt_journal_update, "journal=update"},
1093 	{Opt_journal_dev, "journal_dev=%u"},
1094 	{Opt_journal_checksum, "journal_checksum"},
1095 	{Opt_journal_async_commit, "journal_async_commit"},
1096 	{Opt_abort, "abort"},
1097 	{Opt_data_journal, "data=journal"},
1098 	{Opt_data_ordered, "data=ordered"},
1099 	{Opt_data_writeback, "data=writeback"},
1100 	{Opt_data_err_abort, "data_err=abort"},
1101 	{Opt_data_err_ignore, "data_err=ignore"},
1102 	{Opt_mb_history_length, "mb_history_length=%u"},
1103 	{Opt_offusrjquota, "usrjquota="},
1104 	{Opt_usrjquota, "usrjquota=%s"},
1105 	{Opt_offgrpjquota, "grpjquota="},
1106 	{Opt_grpjquota, "grpjquota=%s"},
1107 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1108 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1109 	{Opt_grpquota, "grpquota"},
1110 	{Opt_noquota, "noquota"},
1111 	{Opt_quota, "quota"},
1112 	{Opt_usrquota, "usrquota"},
1113 	{Opt_barrier, "barrier=%u"},
1114 	{Opt_barrier, "barrier"},
1115 	{Opt_nobarrier, "nobarrier"},
1116 	{Opt_i_version, "i_version"},
1117 	{Opt_stripe, "stripe=%u"},
1118 	{Opt_resize, "resize"},
1119 	{Opt_delalloc, "delalloc"},
1120 	{Opt_nodelalloc, "nodelalloc"},
1121 	{Opt_block_validity, "block_validity"},
1122 	{Opt_noblock_validity, "noblock_validity"},
1123 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1124 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1125 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1126 	{Opt_auto_da_alloc, "auto_da_alloc"},
1127 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1128 	{Opt_err, NULL},
1129 };
1130 
1131 static ext4_fsblk_t get_sb_block(void **data)
1132 {
1133 	ext4_fsblk_t	sb_block;
1134 	char		*options = (char *) *data;
1135 
1136 	if (!options || strncmp(options, "sb=", 3) != 0)
1137 		return 1;	/* Default location */
1138 
1139 	options += 3;
1140 	/* TODO: use simple_strtoll with >32bit ext4 */
1141 	sb_block = simple_strtoul(options, &options, 0);
1142 	if (*options && *options != ',') {
1143 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1144 		       (char *) *data);
1145 		return 1;
1146 	}
1147 	if (*options == ',')
1148 		options++;
1149 	*data = (void *) options;
1150 
1151 	return sb_block;
1152 }
1153 
1154 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1155 
1156 static int parse_options(char *options, struct super_block *sb,
1157 			 unsigned long *journal_devnum,
1158 			 unsigned int *journal_ioprio,
1159 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1160 {
1161 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1162 	char *p;
1163 	substring_t args[MAX_OPT_ARGS];
1164 	int data_opt = 0;
1165 	int option;
1166 #ifdef CONFIG_QUOTA
1167 	int qtype, qfmt;
1168 	char *qname;
1169 #endif
1170 
1171 	if (!options)
1172 		return 1;
1173 
1174 	while ((p = strsep(&options, ",")) != NULL) {
1175 		int token;
1176 		if (!*p)
1177 			continue;
1178 
1179 		token = match_token(p, tokens, args);
1180 		switch (token) {
1181 		case Opt_bsd_df:
1182 			clear_opt(sbi->s_mount_opt, MINIX_DF);
1183 			break;
1184 		case Opt_minix_df:
1185 			set_opt(sbi->s_mount_opt, MINIX_DF);
1186 			break;
1187 		case Opt_grpid:
1188 			set_opt(sbi->s_mount_opt, GRPID);
1189 			break;
1190 		case Opt_nogrpid:
1191 			clear_opt(sbi->s_mount_opt, GRPID);
1192 			break;
1193 		case Opt_resuid:
1194 			if (match_int(&args[0], &option))
1195 				return 0;
1196 			sbi->s_resuid = option;
1197 			break;
1198 		case Opt_resgid:
1199 			if (match_int(&args[0], &option))
1200 				return 0;
1201 			sbi->s_resgid = option;
1202 			break;
1203 		case Opt_sb:
1204 			/* handled by get_sb_block() instead of here */
1205 			/* *sb_block = match_int(&args[0]); */
1206 			break;
1207 		case Opt_err_panic:
1208 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1209 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1210 			set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1211 			break;
1212 		case Opt_err_ro:
1213 			clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1214 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1215 			set_opt(sbi->s_mount_opt, ERRORS_RO);
1216 			break;
1217 		case Opt_err_cont:
1218 			clear_opt(sbi->s_mount_opt, ERRORS_RO);
1219 			clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1220 			set_opt(sbi->s_mount_opt, ERRORS_CONT);
1221 			break;
1222 		case Opt_nouid32:
1223 			set_opt(sbi->s_mount_opt, NO_UID32);
1224 			break;
1225 		case Opt_debug:
1226 			set_opt(sbi->s_mount_opt, DEBUG);
1227 			break;
1228 		case Opt_oldalloc:
1229 			set_opt(sbi->s_mount_opt, OLDALLOC);
1230 			break;
1231 		case Opt_orlov:
1232 			clear_opt(sbi->s_mount_opt, OLDALLOC);
1233 			break;
1234 #ifdef CONFIG_EXT4_FS_XATTR
1235 		case Opt_user_xattr:
1236 			set_opt(sbi->s_mount_opt, XATTR_USER);
1237 			break;
1238 		case Opt_nouser_xattr:
1239 			clear_opt(sbi->s_mount_opt, XATTR_USER);
1240 			break;
1241 #else
1242 		case Opt_user_xattr:
1243 		case Opt_nouser_xattr:
1244 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1245 			break;
1246 #endif
1247 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1248 		case Opt_acl:
1249 			set_opt(sbi->s_mount_opt, POSIX_ACL);
1250 			break;
1251 		case Opt_noacl:
1252 			clear_opt(sbi->s_mount_opt, POSIX_ACL);
1253 			break;
1254 #else
1255 		case Opt_acl:
1256 		case Opt_noacl:
1257 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1258 			break;
1259 #endif
1260 		case Opt_journal_update:
1261 			/* @@@ FIXME */
1262 			/* Eventually we will want to be able to create
1263 			   a journal file here.  For now, only allow the
1264 			   user to specify an existing inode to be the
1265 			   journal file. */
1266 			if (is_remount) {
1267 				ext4_msg(sb, KERN_ERR,
1268 					 "Cannot specify journal on remount");
1269 				return 0;
1270 			}
1271 			set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1272 			break;
1273 		case Opt_journal_dev:
1274 			if (is_remount) {
1275 				ext4_msg(sb, KERN_ERR,
1276 					"Cannot specify journal on remount");
1277 				return 0;
1278 			}
1279 			if (match_int(&args[0], &option))
1280 				return 0;
1281 			*journal_devnum = option;
1282 			break;
1283 		case Opt_journal_checksum:
1284 			break;	/* Kept for backwards compatibility */
1285 		case Opt_journal_async_commit:
1286 			set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1287 			break;
1288 		case Opt_noload:
1289 			set_opt(sbi->s_mount_opt, NOLOAD);
1290 			break;
1291 		case Opt_commit:
1292 			if (match_int(&args[0], &option))
1293 				return 0;
1294 			if (option < 0)
1295 				return 0;
1296 			if (option == 0)
1297 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1298 			sbi->s_commit_interval = HZ * option;
1299 			break;
1300 		case Opt_max_batch_time:
1301 			if (match_int(&args[0], &option))
1302 				return 0;
1303 			if (option < 0)
1304 				return 0;
1305 			if (option == 0)
1306 				option = EXT4_DEF_MAX_BATCH_TIME;
1307 			sbi->s_max_batch_time = option;
1308 			break;
1309 		case Opt_min_batch_time:
1310 			if (match_int(&args[0], &option))
1311 				return 0;
1312 			if (option < 0)
1313 				return 0;
1314 			sbi->s_min_batch_time = option;
1315 			break;
1316 		case Opt_data_journal:
1317 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1318 			goto datacheck;
1319 		case Opt_data_ordered:
1320 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1321 			goto datacheck;
1322 		case Opt_data_writeback:
1323 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1324 		datacheck:
1325 			if (is_remount) {
1326 				if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1327 						!= data_opt) {
1328 					ext4_msg(sb, KERN_ERR,
1329 						"Cannot change data mode on remount");
1330 					return 0;
1331 				}
1332 			} else {
1333 				sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1334 				sbi->s_mount_opt |= data_opt;
1335 			}
1336 			break;
1337 		case Opt_data_err_abort:
1338 			set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1339 			break;
1340 		case Opt_data_err_ignore:
1341 			clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1342 			break;
1343 		case Opt_mb_history_length:
1344 			if (match_int(&args[0], &option))
1345 				return 0;
1346 			if (option < 0)
1347 				return 0;
1348 			sbi->s_mb_history_max = option;
1349 			break;
1350 #ifdef CONFIG_QUOTA
1351 		case Opt_usrjquota:
1352 			qtype = USRQUOTA;
1353 			goto set_qf_name;
1354 		case Opt_grpjquota:
1355 			qtype = GRPQUOTA;
1356 set_qf_name:
1357 			if (sb_any_quota_loaded(sb) &&
1358 			    !sbi->s_qf_names[qtype]) {
1359 				ext4_msg(sb, KERN_ERR,
1360 				       "Cannot change journaled "
1361 				       "quota options when quota turned on");
1362 				return 0;
1363 			}
1364 			qname = match_strdup(&args[0]);
1365 			if (!qname) {
1366 				ext4_msg(sb, KERN_ERR,
1367 					"Not enough memory for "
1368 					"storing quotafile name");
1369 				return 0;
1370 			}
1371 			if (sbi->s_qf_names[qtype] &&
1372 			    strcmp(sbi->s_qf_names[qtype], qname)) {
1373 				ext4_msg(sb, KERN_ERR,
1374 					"%s quota file already "
1375 					"specified", QTYPE2NAME(qtype));
1376 				kfree(qname);
1377 				return 0;
1378 			}
1379 			sbi->s_qf_names[qtype] = qname;
1380 			if (strchr(sbi->s_qf_names[qtype], '/')) {
1381 				ext4_msg(sb, KERN_ERR,
1382 					"quotafile must be on "
1383 					"filesystem root");
1384 				kfree(sbi->s_qf_names[qtype]);
1385 				sbi->s_qf_names[qtype] = NULL;
1386 				return 0;
1387 			}
1388 			set_opt(sbi->s_mount_opt, QUOTA);
1389 			break;
1390 		case Opt_offusrjquota:
1391 			qtype = USRQUOTA;
1392 			goto clear_qf_name;
1393 		case Opt_offgrpjquota:
1394 			qtype = GRPQUOTA;
1395 clear_qf_name:
1396 			if (sb_any_quota_loaded(sb) &&
1397 			    sbi->s_qf_names[qtype]) {
1398 				ext4_msg(sb, KERN_ERR, "Cannot change "
1399 					"journaled quota options when "
1400 					"quota turned on");
1401 				return 0;
1402 			}
1403 			/*
1404 			 * The space will be released later when all options
1405 			 * are confirmed to be correct
1406 			 */
1407 			sbi->s_qf_names[qtype] = NULL;
1408 			break;
1409 		case Opt_jqfmt_vfsold:
1410 			qfmt = QFMT_VFS_OLD;
1411 			goto set_qf_format;
1412 		case Opt_jqfmt_vfsv0:
1413 			qfmt = QFMT_VFS_V0;
1414 set_qf_format:
1415 			if (sb_any_quota_loaded(sb) &&
1416 			    sbi->s_jquota_fmt != qfmt) {
1417 				ext4_msg(sb, KERN_ERR, "Cannot change "
1418 					"journaled quota options when "
1419 					"quota turned on");
1420 				return 0;
1421 			}
1422 			sbi->s_jquota_fmt = qfmt;
1423 			break;
1424 		case Opt_quota:
1425 		case Opt_usrquota:
1426 			set_opt(sbi->s_mount_opt, QUOTA);
1427 			set_opt(sbi->s_mount_opt, USRQUOTA);
1428 			break;
1429 		case Opt_grpquota:
1430 			set_opt(sbi->s_mount_opt, QUOTA);
1431 			set_opt(sbi->s_mount_opt, GRPQUOTA);
1432 			break;
1433 		case Opt_noquota:
1434 			if (sb_any_quota_loaded(sb)) {
1435 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1436 					"options when quota turned on");
1437 				return 0;
1438 			}
1439 			clear_opt(sbi->s_mount_opt, QUOTA);
1440 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1441 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1442 			break;
1443 #else
1444 		case Opt_quota:
1445 		case Opt_usrquota:
1446 		case Opt_grpquota:
1447 			ext4_msg(sb, KERN_ERR,
1448 				"quota options not supported");
1449 			break;
1450 		case Opt_usrjquota:
1451 		case Opt_grpjquota:
1452 		case Opt_offusrjquota:
1453 		case Opt_offgrpjquota:
1454 		case Opt_jqfmt_vfsold:
1455 		case Opt_jqfmt_vfsv0:
1456 			ext4_msg(sb, KERN_ERR,
1457 				"journaled quota options not supported");
1458 			break;
1459 		case Opt_noquota:
1460 			break;
1461 #endif
1462 		case Opt_abort:
1463 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1464 			break;
1465 		case Opt_nobarrier:
1466 			clear_opt(sbi->s_mount_opt, BARRIER);
1467 			break;
1468 		case Opt_barrier:
1469 			if (match_int(&args[0], &option)) {
1470 				set_opt(sbi->s_mount_opt, BARRIER);
1471 				break;
1472 			}
1473 			if (option)
1474 				set_opt(sbi->s_mount_opt, BARRIER);
1475 			else
1476 				clear_opt(sbi->s_mount_opt, BARRIER);
1477 			break;
1478 		case Opt_ignore:
1479 			break;
1480 		case Opt_resize:
1481 			if (!is_remount) {
1482 				ext4_msg(sb, KERN_ERR,
1483 					"resize option only available "
1484 					"for remount");
1485 				return 0;
1486 			}
1487 			if (match_int(&args[0], &option) != 0)
1488 				return 0;
1489 			*n_blocks_count = option;
1490 			break;
1491 		case Opt_nobh:
1492 			set_opt(sbi->s_mount_opt, NOBH);
1493 			break;
1494 		case Opt_bh:
1495 			clear_opt(sbi->s_mount_opt, NOBH);
1496 			break;
1497 		case Opt_i_version:
1498 			set_opt(sbi->s_mount_opt, I_VERSION);
1499 			sb->s_flags |= MS_I_VERSION;
1500 			break;
1501 		case Opt_nodelalloc:
1502 			clear_opt(sbi->s_mount_opt, DELALLOC);
1503 			break;
1504 		case Opt_stripe:
1505 			if (match_int(&args[0], &option))
1506 				return 0;
1507 			if (option < 0)
1508 				return 0;
1509 			sbi->s_stripe = option;
1510 			break;
1511 		case Opt_delalloc:
1512 			set_opt(sbi->s_mount_opt, DELALLOC);
1513 			break;
1514 		case Opt_block_validity:
1515 			set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1516 			break;
1517 		case Opt_noblock_validity:
1518 			clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1519 			break;
1520 		case Opt_inode_readahead_blks:
1521 			if (match_int(&args[0], &option))
1522 				return 0;
1523 			if (option < 0 || option > (1 << 30))
1524 				return 0;
1525 			if (!is_power_of_2(option)) {
1526 				ext4_msg(sb, KERN_ERR,
1527 					 "EXT4-fs: inode_readahead_blks"
1528 					 " must be a power of 2");
1529 				return 0;
1530 			}
1531 			sbi->s_inode_readahead_blks = option;
1532 			break;
1533 		case Opt_journal_ioprio:
1534 			if (match_int(&args[0], &option))
1535 				return 0;
1536 			if (option < 0 || option > 7)
1537 				break;
1538 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1539 							    option);
1540 			break;
1541 		case Opt_noauto_da_alloc:
1542 			set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1543 			break;
1544 		case Opt_auto_da_alloc:
1545 			if (match_int(&args[0], &option)) {
1546 				clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1547 				break;
1548 			}
1549 			if (option)
1550 				clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1551 			else
1552 				set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1553 			break;
1554 		default:
1555 			ext4_msg(sb, KERN_ERR,
1556 			       "Unrecognized mount option \"%s\" "
1557 			       "or missing value", p);
1558 			return 0;
1559 		}
1560 	}
1561 #ifdef CONFIG_QUOTA
1562 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1563 		if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1564 		     sbi->s_qf_names[USRQUOTA])
1565 			clear_opt(sbi->s_mount_opt, USRQUOTA);
1566 
1567 		if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1568 		     sbi->s_qf_names[GRPQUOTA])
1569 			clear_opt(sbi->s_mount_opt, GRPQUOTA);
1570 
1571 		if ((sbi->s_qf_names[USRQUOTA] &&
1572 				(sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1573 		    (sbi->s_qf_names[GRPQUOTA] &&
1574 				(sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1575 			ext4_msg(sb, KERN_ERR, "old and new quota "
1576 					"format mixing");
1577 			return 0;
1578 		}
1579 
1580 		if (!sbi->s_jquota_fmt) {
1581 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1582 					"not specified");
1583 			return 0;
1584 		}
1585 	} else {
1586 		if (sbi->s_jquota_fmt) {
1587 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1588 					"specified with no journaling "
1589 					"enabled");
1590 			return 0;
1591 		}
1592 	}
1593 #endif
1594 	return 1;
1595 }
1596 
1597 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1598 			    int read_only)
1599 {
1600 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1601 	int res = 0;
1602 
1603 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1604 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1605 			 "forcing read-only mode");
1606 		res = MS_RDONLY;
1607 	}
1608 	if (read_only)
1609 		return res;
1610 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1611 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1612 			 "running e2fsck is recommended");
1613 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1614 		ext4_msg(sb, KERN_WARNING,
1615 			 "warning: mounting fs with errors, "
1616 			 "running e2fsck is recommended");
1617 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1618 		 le16_to_cpu(es->s_mnt_count) >=
1619 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1620 		ext4_msg(sb, KERN_WARNING,
1621 			 "warning: maximal mount count reached, "
1622 			 "running e2fsck is recommended");
1623 	else if (le32_to_cpu(es->s_checkinterval) &&
1624 		(le32_to_cpu(es->s_lastcheck) +
1625 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1626 		ext4_msg(sb, KERN_WARNING,
1627 			 "warning: checktime reached, "
1628 			 "running e2fsck is recommended");
1629 	if (!sbi->s_journal)
1630 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1631 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1632 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1633 	le16_add_cpu(&es->s_mnt_count, 1);
1634 	es->s_mtime = cpu_to_le32(get_seconds());
1635 	ext4_update_dynamic_rev(sb);
1636 	if (sbi->s_journal)
1637 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1638 
1639 	ext4_commit_super(sb, 1);
1640 	if (test_opt(sb, DEBUG))
1641 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1642 				"bpg=%lu, ipg=%lu, mo=%04x]\n",
1643 			sb->s_blocksize,
1644 			sbi->s_groups_count,
1645 			EXT4_BLOCKS_PER_GROUP(sb),
1646 			EXT4_INODES_PER_GROUP(sb),
1647 			sbi->s_mount_opt);
1648 
1649 	if (EXT4_SB(sb)->s_journal) {
1650 		ext4_msg(sb, KERN_INFO, "%s journal on %s",
1651 		       EXT4_SB(sb)->s_journal->j_inode ? "internal" :
1652 		       "external", EXT4_SB(sb)->s_journal->j_devname);
1653 	} else {
1654 		ext4_msg(sb, KERN_INFO, "no journal");
1655 	}
1656 	return res;
1657 }
1658 
1659 static int ext4_fill_flex_info(struct super_block *sb)
1660 {
1661 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1662 	struct ext4_group_desc *gdp = NULL;
1663 	ext4_group_t flex_group_count;
1664 	ext4_group_t flex_group;
1665 	int groups_per_flex = 0;
1666 	size_t size;
1667 	int i;
1668 
1669 	if (!sbi->s_es->s_log_groups_per_flex) {
1670 		sbi->s_log_groups_per_flex = 0;
1671 		return 1;
1672 	}
1673 
1674 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1675 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1676 
1677 	/* We allocate both existing and potentially added groups */
1678 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1679 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1680 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1681 	size = flex_group_count * sizeof(struct flex_groups);
1682 	sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1683 	if (sbi->s_flex_groups == NULL) {
1684 		sbi->s_flex_groups = vmalloc(size);
1685 		if (sbi->s_flex_groups)
1686 			memset(sbi->s_flex_groups, 0, size);
1687 	}
1688 	if (sbi->s_flex_groups == NULL) {
1689 		ext4_msg(sb, KERN_ERR, "not enough memory for "
1690 				"%u flex groups", flex_group_count);
1691 		goto failed;
1692 	}
1693 
1694 	for (i = 0; i < sbi->s_groups_count; i++) {
1695 		gdp = ext4_get_group_desc(sb, i, NULL);
1696 
1697 		flex_group = ext4_flex_group(sbi, i);
1698 		atomic_add(ext4_free_inodes_count(sb, gdp),
1699 			   &sbi->s_flex_groups[flex_group].free_inodes);
1700 		atomic_add(ext4_free_blks_count(sb, gdp),
1701 			   &sbi->s_flex_groups[flex_group].free_blocks);
1702 		atomic_add(ext4_used_dirs_count(sb, gdp),
1703 			   &sbi->s_flex_groups[flex_group].used_dirs);
1704 	}
1705 
1706 	return 1;
1707 failed:
1708 	return 0;
1709 }
1710 
1711 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1712 			    struct ext4_group_desc *gdp)
1713 {
1714 	__u16 crc = 0;
1715 
1716 	if (sbi->s_es->s_feature_ro_compat &
1717 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1718 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
1719 		__le32 le_group = cpu_to_le32(block_group);
1720 
1721 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1722 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1723 		crc = crc16(crc, (__u8 *)gdp, offset);
1724 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
1725 		/* for checksum of struct ext4_group_desc do the rest...*/
1726 		if ((sbi->s_es->s_feature_incompat &
1727 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1728 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
1729 			crc = crc16(crc, (__u8 *)gdp + offset,
1730 				    le16_to_cpu(sbi->s_es->s_desc_size) -
1731 					offset);
1732 	}
1733 
1734 	return cpu_to_le16(crc);
1735 }
1736 
1737 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1738 				struct ext4_group_desc *gdp)
1739 {
1740 	if ((sbi->s_es->s_feature_ro_compat &
1741 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1742 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1743 		return 0;
1744 
1745 	return 1;
1746 }
1747 
1748 /* Called at mount-time, super-block is locked */
1749 static int ext4_check_descriptors(struct super_block *sb)
1750 {
1751 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1752 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1753 	ext4_fsblk_t last_block;
1754 	ext4_fsblk_t block_bitmap;
1755 	ext4_fsblk_t inode_bitmap;
1756 	ext4_fsblk_t inode_table;
1757 	int flexbg_flag = 0;
1758 	ext4_group_t i;
1759 
1760 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1761 		flexbg_flag = 1;
1762 
1763 	ext4_debug("Checking group descriptors");
1764 
1765 	for (i = 0; i < sbi->s_groups_count; i++) {
1766 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1767 
1768 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
1769 			last_block = ext4_blocks_count(sbi->s_es) - 1;
1770 		else
1771 			last_block = first_block +
1772 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
1773 
1774 		block_bitmap = ext4_block_bitmap(sb, gdp);
1775 		if (block_bitmap < first_block || block_bitmap > last_block) {
1776 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1777 			       "Block bitmap for group %u not in group "
1778 			       "(block %llu)!", i, block_bitmap);
1779 			return 0;
1780 		}
1781 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
1782 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
1783 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1784 			       "Inode bitmap for group %u not in group "
1785 			       "(block %llu)!", i, inode_bitmap);
1786 			return 0;
1787 		}
1788 		inode_table = ext4_inode_table(sb, gdp);
1789 		if (inode_table < first_block ||
1790 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
1791 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1792 			       "Inode table for group %u not in group "
1793 			       "(block %llu)!", i, inode_table);
1794 			return 0;
1795 		}
1796 		ext4_lock_group(sb, i);
1797 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1798 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1799 				 "Checksum for group %u failed (%u!=%u)",
1800 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1801 				     gdp)), le16_to_cpu(gdp->bg_checksum));
1802 			if (!(sb->s_flags & MS_RDONLY)) {
1803 				ext4_unlock_group(sb, i);
1804 				return 0;
1805 			}
1806 		}
1807 		ext4_unlock_group(sb, i);
1808 		if (!flexbg_flag)
1809 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
1810 	}
1811 
1812 	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1813 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1814 	return 1;
1815 }
1816 
1817 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1818  * the superblock) which were deleted from all directories, but held open by
1819  * a process at the time of a crash.  We walk the list and try to delete these
1820  * inodes at recovery time (only with a read-write filesystem).
1821  *
1822  * In order to keep the orphan inode chain consistent during traversal (in
1823  * case of crash during recovery), we link each inode into the superblock
1824  * orphan list_head and handle it the same way as an inode deletion during
1825  * normal operation (which journals the operations for us).
1826  *
1827  * We only do an iget() and an iput() on each inode, which is very safe if we
1828  * accidentally point at an in-use or already deleted inode.  The worst that
1829  * can happen in this case is that we get a "bit already cleared" message from
1830  * ext4_free_inode().  The only reason we would point at a wrong inode is if
1831  * e2fsck was run on this filesystem, and it must have already done the orphan
1832  * inode cleanup for us, so we can safely abort without any further action.
1833  */
1834 static void ext4_orphan_cleanup(struct super_block *sb,
1835 				struct ext4_super_block *es)
1836 {
1837 	unsigned int s_flags = sb->s_flags;
1838 	int nr_orphans = 0, nr_truncates = 0;
1839 #ifdef CONFIG_QUOTA
1840 	int i;
1841 #endif
1842 	if (!es->s_last_orphan) {
1843 		jbd_debug(4, "no orphan inodes to clean up\n");
1844 		return;
1845 	}
1846 
1847 	if (bdev_read_only(sb->s_bdev)) {
1848 		ext4_msg(sb, KERN_ERR, "write access "
1849 			"unavailable, skipping orphan cleanup");
1850 		return;
1851 	}
1852 
1853 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1854 		if (es->s_last_orphan)
1855 			jbd_debug(1, "Errors on filesystem, "
1856 				  "clearing orphan list.\n");
1857 		es->s_last_orphan = 0;
1858 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1859 		return;
1860 	}
1861 
1862 	if (s_flags & MS_RDONLY) {
1863 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
1864 		sb->s_flags &= ~MS_RDONLY;
1865 	}
1866 #ifdef CONFIG_QUOTA
1867 	/* Needed for iput() to work correctly and not trash data */
1868 	sb->s_flags |= MS_ACTIVE;
1869 	/* Turn on quotas so that they are updated correctly */
1870 	for (i = 0; i < MAXQUOTAS; i++) {
1871 		if (EXT4_SB(sb)->s_qf_names[i]) {
1872 			int ret = ext4_quota_on_mount(sb, i);
1873 			if (ret < 0)
1874 				ext4_msg(sb, KERN_ERR,
1875 					"Cannot turn on journaled "
1876 					"quota: error %d", ret);
1877 		}
1878 	}
1879 #endif
1880 
1881 	while (es->s_last_orphan) {
1882 		struct inode *inode;
1883 
1884 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1885 		if (IS_ERR(inode)) {
1886 			es->s_last_orphan = 0;
1887 			break;
1888 		}
1889 
1890 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1891 		vfs_dq_init(inode);
1892 		if (inode->i_nlink) {
1893 			ext4_msg(sb, KERN_DEBUG,
1894 				"%s: truncating inode %lu to %lld bytes",
1895 				__func__, inode->i_ino, inode->i_size);
1896 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1897 				  inode->i_ino, inode->i_size);
1898 			ext4_truncate(inode);
1899 			nr_truncates++;
1900 		} else {
1901 			ext4_msg(sb, KERN_DEBUG,
1902 				"%s: deleting unreferenced inode %lu",
1903 				__func__, inode->i_ino);
1904 			jbd_debug(2, "deleting unreferenced inode %lu\n",
1905 				  inode->i_ino);
1906 			nr_orphans++;
1907 		}
1908 		iput(inode);  /* The delete magic happens here! */
1909 	}
1910 
1911 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1912 
1913 	if (nr_orphans)
1914 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
1915 		       PLURAL(nr_orphans));
1916 	if (nr_truncates)
1917 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
1918 		       PLURAL(nr_truncates));
1919 #ifdef CONFIG_QUOTA
1920 	/* Turn quotas off */
1921 	for (i = 0; i < MAXQUOTAS; i++) {
1922 		if (sb_dqopt(sb)->files[i])
1923 			vfs_quota_off(sb, i, 0);
1924 	}
1925 #endif
1926 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1927 }
1928 
1929 /*
1930  * Maximal extent format file size.
1931  * Resulting logical blkno at s_maxbytes must fit in our on-disk
1932  * extent format containers, within a sector_t, and within i_blocks
1933  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
1934  * so that won't be a limiting factor.
1935  *
1936  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1937  */
1938 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1939 {
1940 	loff_t res;
1941 	loff_t upper_limit = MAX_LFS_FILESIZE;
1942 
1943 	/* small i_blocks in vfs inode? */
1944 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1945 		/*
1946 		 * CONFIG_LBDAF is not enabled implies the inode
1947 		 * i_block represent total blocks in 512 bytes
1948 		 * 32 == size of vfs inode i_blocks * 8
1949 		 */
1950 		upper_limit = (1LL << 32) - 1;
1951 
1952 		/* total blocks in file system block size */
1953 		upper_limit >>= (blkbits - 9);
1954 		upper_limit <<= blkbits;
1955 	}
1956 
1957 	/* 32-bit extent-start container, ee_block */
1958 	res = 1LL << 32;
1959 	res <<= blkbits;
1960 	res -= 1;
1961 
1962 	/* Sanity check against vm- & vfs- imposed limits */
1963 	if (res > upper_limit)
1964 		res = upper_limit;
1965 
1966 	return res;
1967 }
1968 
1969 /*
1970  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
1971  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
1972  * We need to be 1 filesystem block less than the 2^48 sector limit.
1973  */
1974 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
1975 {
1976 	loff_t res = EXT4_NDIR_BLOCKS;
1977 	int meta_blocks;
1978 	loff_t upper_limit;
1979 	/* This is calculated to be the largest file size for a dense, block
1980 	 * mapped file such that the file's total number of 512-byte sectors,
1981 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
1982 	 *
1983 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
1984 	 * number of 512-byte sectors of the file.
1985 	 */
1986 
1987 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1988 		/*
1989 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
1990 		 * the inode i_block field represents total file blocks in
1991 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
1992 		 */
1993 		upper_limit = (1LL << 32) - 1;
1994 
1995 		/* total blocks in file system block size */
1996 		upper_limit >>= (bits - 9);
1997 
1998 	} else {
1999 		/*
2000 		 * We use 48 bit ext4_inode i_blocks
2001 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2002 		 * represent total number of blocks in
2003 		 * file system block size
2004 		 */
2005 		upper_limit = (1LL << 48) - 1;
2006 
2007 	}
2008 
2009 	/* indirect blocks */
2010 	meta_blocks = 1;
2011 	/* double indirect blocks */
2012 	meta_blocks += 1 + (1LL << (bits-2));
2013 	/* tripple indirect blocks */
2014 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2015 
2016 	upper_limit -= meta_blocks;
2017 	upper_limit <<= bits;
2018 
2019 	res += 1LL << (bits-2);
2020 	res += 1LL << (2*(bits-2));
2021 	res += 1LL << (3*(bits-2));
2022 	res <<= bits;
2023 	if (res > upper_limit)
2024 		res = upper_limit;
2025 
2026 	if (res > MAX_LFS_FILESIZE)
2027 		res = MAX_LFS_FILESIZE;
2028 
2029 	return res;
2030 }
2031 
2032 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2033 				   ext4_fsblk_t logical_sb_block, int nr)
2034 {
2035 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2036 	ext4_group_t bg, first_meta_bg;
2037 	int has_super = 0;
2038 
2039 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2040 
2041 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2042 	    nr < first_meta_bg)
2043 		return logical_sb_block + nr + 1;
2044 	bg = sbi->s_desc_per_block * nr;
2045 	if (ext4_bg_has_super(sb, bg))
2046 		has_super = 1;
2047 
2048 	return (has_super + ext4_group_first_block_no(sb, bg));
2049 }
2050 
2051 /**
2052  * ext4_get_stripe_size: Get the stripe size.
2053  * @sbi: In memory super block info
2054  *
2055  * If we have specified it via mount option, then
2056  * use the mount option value. If the value specified at mount time is
2057  * greater than the blocks per group use the super block value.
2058  * If the super block value is greater than blocks per group return 0.
2059  * Allocator needs it be less than blocks per group.
2060  *
2061  */
2062 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2063 {
2064 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2065 	unsigned long stripe_width =
2066 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2067 
2068 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2069 		return sbi->s_stripe;
2070 
2071 	if (stripe_width <= sbi->s_blocks_per_group)
2072 		return stripe_width;
2073 
2074 	if (stride <= sbi->s_blocks_per_group)
2075 		return stride;
2076 
2077 	return 0;
2078 }
2079 
2080 /* sysfs supprt */
2081 
2082 struct ext4_attr {
2083 	struct attribute attr;
2084 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2085 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2086 			 const char *, size_t);
2087 	int offset;
2088 };
2089 
2090 static int parse_strtoul(const char *buf,
2091 		unsigned long max, unsigned long *value)
2092 {
2093 	char *endp;
2094 
2095 	while (*buf && isspace(*buf))
2096 		buf++;
2097 	*value = simple_strtoul(buf, &endp, 0);
2098 	while (*endp && isspace(*endp))
2099 		endp++;
2100 	if (*endp || *value > max)
2101 		return -EINVAL;
2102 
2103 	return 0;
2104 }
2105 
2106 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2107 					      struct ext4_sb_info *sbi,
2108 					      char *buf)
2109 {
2110 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2111 			(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2112 }
2113 
2114 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2115 					 struct ext4_sb_info *sbi, char *buf)
2116 {
2117 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2118 
2119 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2120 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2121 			 sbi->s_sectors_written_start) >> 1);
2122 }
2123 
2124 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2125 					  struct ext4_sb_info *sbi, char *buf)
2126 {
2127 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2128 
2129 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2130 			sbi->s_kbytes_written +
2131 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2132 			  EXT4_SB(sb)->s_sectors_written_start) >> 1));
2133 }
2134 
2135 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2136 					  struct ext4_sb_info *sbi,
2137 					  const char *buf, size_t count)
2138 {
2139 	unsigned long t;
2140 
2141 	if (parse_strtoul(buf, 0x40000000, &t))
2142 		return -EINVAL;
2143 
2144 	if (!is_power_of_2(t))
2145 		return -EINVAL;
2146 
2147 	sbi->s_inode_readahead_blks = t;
2148 	return count;
2149 }
2150 
2151 static ssize_t sbi_ui_show(struct ext4_attr *a,
2152 			   struct ext4_sb_info *sbi, char *buf)
2153 {
2154 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2155 
2156 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2157 }
2158 
2159 static ssize_t sbi_ui_store(struct ext4_attr *a,
2160 			    struct ext4_sb_info *sbi,
2161 			    const char *buf, size_t count)
2162 {
2163 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2164 	unsigned long t;
2165 
2166 	if (parse_strtoul(buf, 0xffffffff, &t))
2167 		return -EINVAL;
2168 	*ui = t;
2169 	return count;
2170 }
2171 
2172 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2173 static struct ext4_attr ext4_attr_##_name = {			\
2174 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2175 	.show	= _show,					\
2176 	.store	= _store,					\
2177 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2178 }
2179 #define EXT4_ATTR(name, mode, show, store) \
2180 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2181 
2182 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2183 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2184 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2185 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2186 #define ATTR_LIST(name) &ext4_attr_##name.attr
2187 
2188 EXT4_RO_ATTR(delayed_allocation_blocks);
2189 EXT4_RO_ATTR(session_write_kbytes);
2190 EXT4_RO_ATTR(lifetime_write_kbytes);
2191 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2192 		 inode_readahead_blks_store, s_inode_readahead_blks);
2193 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2194 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2195 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2196 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2197 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2198 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2199 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2200 
2201 static struct attribute *ext4_attrs[] = {
2202 	ATTR_LIST(delayed_allocation_blocks),
2203 	ATTR_LIST(session_write_kbytes),
2204 	ATTR_LIST(lifetime_write_kbytes),
2205 	ATTR_LIST(inode_readahead_blks),
2206 	ATTR_LIST(inode_goal),
2207 	ATTR_LIST(mb_stats),
2208 	ATTR_LIST(mb_max_to_scan),
2209 	ATTR_LIST(mb_min_to_scan),
2210 	ATTR_LIST(mb_order2_req),
2211 	ATTR_LIST(mb_stream_req),
2212 	ATTR_LIST(mb_group_prealloc),
2213 	NULL,
2214 };
2215 
2216 static ssize_t ext4_attr_show(struct kobject *kobj,
2217 			      struct attribute *attr, char *buf)
2218 {
2219 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2220 						s_kobj);
2221 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2222 
2223 	return a->show ? a->show(a, sbi, buf) : 0;
2224 }
2225 
2226 static ssize_t ext4_attr_store(struct kobject *kobj,
2227 			       struct attribute *attr,
2228 			       const char *buf, size_t len)
2229 {
2230 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2231 						s_kobj);
2232 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2233 
2234 	return a->store ? a->store(a, sbi, buf, len) : 0;
2235 }
2236 
2237 static void ext4_sb_release(struct kobject *kobj)
2238 {
2239 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2240 						s_kobj);
2241 	complete(&sbi->s_kobj_unregister);
2242 }
2243 
2244 
2245 static struct sysfs_ops ext4_attr_ops = {
2246 	.show	= ext4_attr_show,
2247 	.store	= ext4_attr_store,
2248 };
2249 
2250 static struct kobj_type ext4_ktype = {
2251 	.default_attrs	= ext4_attrs,
2252 	.sysfs_ops	= &ext4_attr_ops,
2253 	.release	= ext4_sb_release,
2254 };
2255 
2256 /*
2257  * Check whether this filesystem can be mounted based on
2258  * the features present and the RDONLY/RDWR mount requested.
2259  * Returns 1 if this filesystem can be mounted as requested,
2260  * 0 if it cannot be.
2261  */
2262 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2263 {
2264 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2265 		ext4_msg(sb, KERN_ERR,
2266 			"Couldn't mount because of "
2267 			"unsupported optional features (%x)",
2268 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2269 			~EXT4_FEATURE_INCOMPAT_SUPP));
2270 		return 0;
2271 	}
2272 
2273 	if (readonly)
2274 		return 1;
2275 
2276 	/* Check that feature set is OK for a read-write mount */
2277 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2278 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2279 			 "unsupported optional features (%x)",
2280 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2281 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2282 		return 0;
2283 	}
2284 	/*
2285 	 * Large file size enabled file system can only be mounted
2286 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2287 	 */
2288 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2289 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2290 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2291 				 "cannot be mounted RDWR without "
2292 				 "CONFIG_LBDAF");
2293 			return 0;
2294 		}
2295 	}
2296 	return 1;
2297 }
2298 
2299 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2300 				__releases(kernel_lock)
2301 				__acquires(kernel_lock)
2302 {
2303 	struct buffer_head *bh;
2304 	struct ext4_super_block *es = NULL;
2305 	struct ext4_sb_info *sbi;
2306 	ext4_fsblk_t block;
2307 	ext4_fsblk_t sb_block = get_sb_block(&data);
2308 	ext4_fsblk_t logical_sb_block;
2309 	unsigned long offset = 0;
2310 	unsigned long journal_devnum = 0;
2311 	unsigned long def_mount_opts;
2312 	struct inode *root;
2313 	char *cp;
2314 	const char *descr;
2315 	int ret = -EINVAL;
2316 	int blocksize;
2317 	unsigned int db_count;
2318 	unsigned int i;
2319 	int needs_recovery, has_huge_files;
2320 	__u64 blocks_count;
2321 	int err;
2322 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2323 
2324 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2325 	if (!sbi)
2326 		return -ENOMEM;
2327 
2328 	sbi->s_blockgroup_lock =
2329 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2330 	if (!sbi->s_blockgroup_lock) {
2331 		kfree(sbi);
2332 		return -ENOMEM;
2333 	}
2334 	sb->s_fs_info = sbi;
2335 	sbi->s_mount_opt = 0;
2336 	sbi->s_resuid = EXT4_DEF_RESUID;
2337 	sbi->s_resgid = EXT4_DEF_RESGID;
2338 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2339 	sbi->s_sb_block = sb_block;
2340 	sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
2341 						      sectors[1]);
2342 
2343 	unlock_kernel();
2344 
2345 	/* Cleanup superblock name */
2346 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2347 		*cp = '!';
2348 
2349 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2350 	if (!blocksize) {
2351 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2352 		goto out_fail;
2353 	}
2354 
2355 	/*
2356 	 * The ext4 superblock will not be buffer aligned for other than 1kB
2357 	 * block sizes.  We need to calculate the offset from buffer start.
2358 	 */
2359 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2360 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2361 		offset = do_div(logical_sb_block, blocksize);
2362 	} else {
2363 		logical_sb_block = sb_block;
2364 	}
2365 
2366 	if (!(bh = sb_bread(sb, logical_sb_block))) {
2367 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
2368 		goto out_fail;
2369 	}
2370 	/*
2371 	 * Note: s_es must be initialized as soon as possible because
2372 	 *       some ext4 macro-instructions depend on its value
2373 	 */
2374 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2375 	sbi->s_es = es;
2376 	sb->s_magic = le16_to_cpu(es->s_magic);
2377 	if (sb->s_magic != EXT4_SUPER_MAGIC)
2378 		goto cantfind_ext4;
2379 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2380 
2381 	/* Set defaults before we parse the mount options */
2382 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2383 	if (def_mount_opts & EXT4_DEFM_DEBUG)
2384 		set_opt(sbi->s_mount_opt, DEBUG);
2385 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2386 		set_opt(sbi->s_mount_opt, GRPID);
2387 	if (def_mount_opts & EXT4_DEFM_UID16)
2388 		set_opt(sbi->s_mount_opt, NO_UID32);
2389 #ifdef CONFIG_EXT4_FS_XATTR
2390 	if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2391 		set_opt(sbi->s_mount_opt, XATTR_USER);
2392 #endif
2393 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2394 	if (def_mount_opts & EXT4_DEFM_ACL)
2395 		set_opt(sbi->s_mount_opt, POSIX_ACL);
2396 #endif
2397 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2398 		sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2399 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2400 		sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2401 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2402 		sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2403 
2404 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2405 		set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2406 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2407 		set_opt(sbi->s_mount_opt, ERRORS_CONT);
2408 	else
2409 		set_opt(sbi->s_mount_opt, ERRORS_RO);
2410 
2411 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2412 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2413 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2414 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2415 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2416 	sbi->s_mb_history_max = default_mb_history_length;
2417 
2418 	set_opt(sbi->s_mount_opt, BARRIER);
2419 
2420 	/*
2421 	 * enable delayed allocation by default
2422 	 * Use -o nodelalloc to turn it off
2423 	 */
2424 	set_opt(sbi->s_mount_opt, DELALLOC);
2425 
2426 	if (!parse_options((char *) data, sb, &journal_devnum,
2427 			   &journal_ioprio, NULL, 0))
2428 		goto failed_mount;
2429 
2430 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2431 		((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2432 
2433 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2434 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2435 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2436 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2437 		ext4_msg(sb, KERN_WARNING,
2438 		       "feature flags set on rev 0 fs, "
2439 		       "running e2fsck is recommended");
2440 
2441 	/*
2442 	 * Check feature flags regardless of the revision level, since we
2443 	 * previously didn't change the revision level when setting the flags,
2444 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
2445 	 */
2446 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
2447 		goto failed_mount;
2448 
2449 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2450 
2451 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2452 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
2453 		ext4_msg(sb, KERN_ERR,
2454 		       "Unsupported filesystem blocksize %d", blocksize);
2455 		goto failed_mount;
2456 	}
2457 
2458 	if (sb->s_blocksize != blocksize) {
2459 		/* Validate the filesystem blocksize */
2460 		if (!sb_set_blocksize(sb, blocksize)) {
2461 			ext4_msg(sb, KERN_ERR, "bad block size %d",
2462 					blocksize);
2463 			goto failed_mount;
2464 		}
2465 
2466 		brelse(bh);
2467 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2468 		offset = do_div(logical_sb_block, blocksize);
2469 		bh = sb_bread(sb, logical_sb_block);
2470 		if (!bh) {
2471 			ext4_msg(sb, KERN_ERR,
2472 			       "Can't read superblock on 2nd try");
2473 			goto failed_mount;
2474 		}
2475 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2476 		sbi->s_es = es;
2477 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2478 			ext4_msg(sb, KERN_ERR,
2479 			       "Magic mismatch, very weird!");
2480 			goto failed_mount;
2481 		}
2482 	}
2483 
2484 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2485 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2486 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2487 						      has_huge_files);
2488 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2489 
2490 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2491 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2492 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2493 	} else {
2494 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2495 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2496 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2497 		    (!is_power_of_2(sbi->s_inode_size)) ||
2498 		    (sbi->s_inode_size > blocksize)) {
2499 			ext4_msg(sb, KERN_ERR,
2500 			       "unsupported inode size: %d",
2501 			       sbi->s_inode_size);
2502 			goto failed_mount;
2503 		}
2504 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2505 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2506 	}
2507 
2508 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2509 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2510 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2511 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2512 		    !is_power_of_2(sbi->s_desc_size)) {
2513 			ext4_msg(sb, KERN_ERR,
2514 			       "unsupported descriptor size %lu",
2515 			       sbi->s_desc_size);
2516 			goto failed_mount;
2517 		}
2518 	} else
2519 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2520 
2521 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2522 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2523 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2524 		goto cantfind_ext4;
2525 
2526 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2527 	if (sbi->s_inodes_per_block == 0)
2528 		goto cantfind_ext4;
2529 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
2530 					sbi->s_inodes_per_block;
2531 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2532 	sbi->s_sbh = bh;
2533 	sbi->s_mount_state = le16_to_cpu(es->s_state);
2534 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2535 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2536 
2537 	for (i = 0; i < 4; i++)
2538 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2539 	sbi->s_def_hash_version = es->s_def_hash_version;
2540 	i = le32_to_cpu(es->s_flags);
2541 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
2542 		sbi->s_hash_unsigned = 3;
2543 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2544 #ifdef __CHAR_UNSIGNED__
2545 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2546 		sbi->s_hash_unsigned = 3;
2547 #else
2548 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2549 #endif
2550 		sb->s_dirt = 1;
2551 	}
2552 
2553 	if (sbi->s_blocks_per_group > blocksize * 8) {
2554 		ext4_msg(sb, KERN_ERR,
2555 		       "#blocks per group too big: %lu",
2556 		       sbi->s_blocks_per_group);
2557 		goto failed_mount;
2558 	}
2559 	if (sbi->s_inodes_per_group > blocksize * 8) {
2560 		ext4_msg(sb, KERN_ERR,
2561 		       "#inodes per group too big: %lu",
2562 		       sbi->s_inodes_per_group);
2563 		goto failed_mount;
2564 	}
2565 
2566 	/*
2567 	 * Test whether we have more sectors than will fit in sector_t,
2568 	 * and whether the max offset is addressable by the page cache.
2569 	 */
2570 	if ((ext4_blocks_count(es) >
2571 	     (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
2572 	    (ext4_blocks_count(es) >
2573 	     (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
2574 		ext4_msg(sb, KERN_ERR, "filesystem"
2575 			 " too large to mount safely on this system");
2576 		if (sizeof(sector_t) < 8)
2577 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
2578 		ret = -EFBIG;
2579 		goto failed_mount;
2580 	}
2581 
2582 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2583 		goto cantfind_ext4;
2584 
2585 	/* check blocks count against device size */
2586 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
2587 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
2588 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
2589 		       "exceeds size of device (%llu blocks)",
2590 		       ext4_blocks_count(es), blocks_count);
2591 		goto failed_mount;
2592 	}
2593 
2594 	/*
2595 	 * It makes no sense for the first data block to be beyond the end
2596 	 * of the filesystem.
2597 	 */
2598 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2599                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
2600 			 "block %u is beyond end of filesystem (%llu)",
2601 			 le32_to_cpu(es->s_first_data_block),
2602 			 ext4_blocks_count(es));
2603 		goto failed_mount;
2604 	}
2605 	blocks_count = (ext4_blocks_count(es) -
2606 			le32_to_cpu(es->s_first_data_block) +
2607 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
2608 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2609 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2610 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
2611 		       "(block count %llu, first data block %u, "
2612 		       "blocks per group %lu)", sbi->s_groups_count,
2613 		       ext4_blocks_count(es),
2614 		       le32_to_cpu(es->s_first_data_block),
2615 		       EXT4_BLOCKS_PER_GROUP(sb));
2616 		goto failed_mount;
2617 	}
2618 	sbi->s_groups_count = blocks_count;
2619 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
2620 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
2621 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2622 		   EXT4_DESC_PER_BLOCK(sb);
2623 	sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2624 				    GFP_KERNEL);
2625 	if (sbi->s_group_desc == NULL) {
2626 		ext4_msg(sb, KERN_ERR, "not enough memory");
2627 		goto failed_mount;
2628 	}
2629 
2630 #ifdef CONFIG_PROC_FS
2631 	if (ext4_proc_root)
2632 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2633 #endif
2634 
2635 	bgl_lock_init(sbi->s_blockgroup_lock);
2636 
2637 	for (i = 0; i < db_count; i++) {
2638 		block = descriptor_loc(sb, logical_sb_block, i);
2639 		sbi->s_group_desc[i] = sb_bread(sb, block);
2640 		if (!sbi->s_group_desc[i]) {
2641 			ext4_msg(sb, KERN_ERR,
2642 			       "can't read group descriptor %d", i);
2643 			db_count = i;
2644 			goto failed_mount2;
2645 		}
2646 	}
2647 	if (!ext4_check_descriptors(sb)) {
2648 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
2649 		goto failed_mount2;
2650 	}
2651 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2652 		if (!ext4_fill_flex_info(sb)) {
2653 			ext4_msg(sb, KERN_ERR,
2654 			       "unable to initialize "
2655 			       "flex_bg meta info!");
2656 			goto failed_mount2;
2657 		}
2658 
2659 	sbi->s_gdb_count = db_count;
2660 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2661 	spin_lock_init(&sbi->s_next_gen_lock);
2662 
2663 	err = percpu_counter_init(&sbi->s_freeblocks_counter,
2664 			ext4_count_free_blocks(sb));
2665 	if (!err) {
2666 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
2667 				ext4_count_free_inodes(sb));
2668 	}
2669 	if (!err) {
2670 		err = percpu_counter_init(&sbi->s_dirs_counter,
2671 				ext4_count_dirs(sb));
2672 	}
2673 	if (!err) {
2674 		err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2675 	}
2676 	if (err) {
2677 		ext4_msg(sb, KERN_ERR, "insufficient memory");
2678 		goto failed_mount3;
2679 	}
2680 
2681 	sbi->s_stripe = ext4_get_stripe_size(sbi);
2682 
2683 	/*
2684 	 * set up enough so that it can read an inode
2685 	 */
2686 	if (!test_opt(sb, NOLOAD) &&
2687 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
2688 		sb->s_op = &ext4_sops;
2689 	else
2690 		sb->s_op = &ext4_nojournal_sops;
2691 	sb->s_export_op = &ext4_export_ops;
2692 	sb->s_xattr = ext4_xattr_handlers;
2693 #ifdef CONFIG_QUOTA
2694 	sb->s_qcop = &ext4_qctl_operations;
2695 	sb->dq_op = &ext4_quota_operations;
2696 #endif
2697 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2698 	mutex_init(&sbi->s_orphan_lock);
2699 	mutex_init(&sbi->s_resize_lock);
2700 
2701 	sb->s_root = NULL;
2702 
2703 	needs_recovery = (es->s_last_orphan != 0 ||
2704 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
2705 				    EXT4_FEATURE_INCOMPAT_RECOVER));
2706 
2707 	/*
2708 	 * The first inode we look at is the journal inode.  Don't try
2709 	 * root first: it may be modified in the journal!
2710 	 */
2711 	if (!test_opt(sb, NOLOAD) &&
2712 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2713 		if (ext4_load_journal(sb, es, journal_devnum))
2714 			goto failed_mount3;
2715 		if (!(sb->s_flags & MS_RDONLY) &&
2716 		    EXT4_SB(sb)->s_journal->j_failed_commit) {
2717 			ext4_msg(sb, KERN_CRIT, "error: "
2718 			       "ext4_fill_super: Journal transaction "
2719 			       "%u is corrupt",
2720 			       EXT4_SB(sb)->s_journal->j_failed_commit);
2721 			if (test_opt(sb, ERRORS_RO)) {
2722 				ext4_msg(sb, KERN_CRIT,
2723 				       "Mounting filesystem read-only");
2724 				sb->s_flags |= MS_RDONLY;
2725 				EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2726 				es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2727 			}
2728 			if (test_opt(sb, ERRORS_PANIC)) {
2729 				EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
2730 				es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
2731 				ext4_commit_super(sb, 1);
2732 				goto failed_mount4;
2733 			}
2734 		}
2735 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2736 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2737 		ext4_msg(sb, KERN_ERR, "required journal recovery "
2738 		       "suppressed and not mounted read-only");
2739 		goto failed_mount4;
2740 	} else {
2741 		clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2742 		set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2743 		sbi->s_journal = NULL;
2744 		needs_recovery = 0;
2745 		goto no_journal;
2746 	}
2747 
2748 	if (ext4_blocks_count(es) > 0xffffffffULL &&
2749 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2750 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
2751 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
2752 		goto failed_mount4;
2753 	}
2754 
2755 	jbd2_journal_set_features(sbi->s_journal,
2756 				  JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2757 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
2758 		jbd2_journal_set_features(sbi->s_journal, 0, 0,
2759 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2760 	else
2761 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2762 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2763 
2764 	/* We have now updated the journal if required, so we can
2765 	 * validate the data journaling mode. */
2766 	switch (test_opt(sb, DATA_FLAGS)) {
2767 	case 0:
2768 		/* No mode set, assume a default based on the journal
2769 		 * capabilities: ORDERED_DATA if the journal can
2770 		 * cope, else JOURNAL_DATA
2771 		 */
2772 		if (jbd2_journal_check_available_features
2773 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2774 			set_opt(sbi->s_mount_opt, ORDERED_DATA);
2775 		else
2776 			set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2777 		break;
2778 
2779 	case EXT4_MOUNT_ORDERED_DATA:
2780 	case EXT4_MOUNT_WRITEBACK_DATA:
2781 		if (!jbd2_journal_check_available_features
2782 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2783 			ext4_msg(sb, KERN_ERR, "Journal does not support "
2784 			       "requested data journaling mode");
2785 			goto failed_mount4;
2786 		}
2787 	default:
2788 		break;
2789 	}
2790 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2791 
2792 no_journal:
2793 
2794 	if (test_opt(sb, NOBH)) {
2795 		if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2796 			ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
2797 				"its supported only with writeback mode");
2798 			clear_opt(sbi->s_mount_opt, NOBH);
2799 		}
2800 	}
2801 	/*
2802 	 * The jbd2_journal_load will have done any necessary log recovery,
2803 	 * so we can safely mount the rest of the filesystem now.
2804 	 */
2805 
2806 	root = ext4_iget(sb, EXT4_ROOT_INO);
2807 	if (IS_ERR(root)) {
2808 		ext4_msg(sb, KERN_ERR, "get root inode failed");
2809 		ret = PTR_ERR(root);
2810 		goto failed_mount4;
2811 	}
2812 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2813 		iput(root);
2814 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
2815 		goto failed_mount4;
2816 	}
2817 	sb->s_root = d_alloc_root(root);
2818 	if (!sb->s_root) {
2819 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
2820 		iput(root);
2821 		ret = -ENOMEM;
2822 		goto failed_mount4;
2823 	}
2824 
2825 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2826 
2827 	/* determine the minimum size of new large inodes, if present */
2828 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2829 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2830 						     EXT4_GOOD_OLD_INODE_SIZE;
2831 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2832 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2833 			if (sbi->s_want_extra_isize <
2834 			    le16_to_cpu(es->s_want_extra_isize))
2835 				sbi->s_want_extra_isize =
2836 					le16_to_cpu(es->s_want_extra_isize);
2837 			if (sbi->s_want_extra_isize <
2838 			    le16_to_cpu(es->s_min_extra_isize))
2839 				sbi->s_want_extra_isize =
2840 					le16_to_cpu(es->s_min_extra_isize);
2841 		}
2842 	}
2843 	/* Check if enough inode space is available */
2844 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2845 							sbi->s_inode_size) {
2846 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2847 						       EXT4_GOOD_OLD_INODE_SIZE;
2848 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
2849 			 "available");
2850 	}
2851 
2852 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
2853 		ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
2854 			 "requested data journaling mode");
2855 		clear_opt(sbi->s_mount_opt, DELALLOC);
2856 	} else if (test_opt(sb, DELALLOC))
2857 		ext4_msg(sb, KERN_INFO, "delayed allocation enabled");
2858 
2859 	err = ext4_setup_system_zone(sb);
2860 	if (err) {
2861 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
2862 			 "zone (%d)\n", err);
2863 		goto failed_mount4;
2864 	}
2865 
2866 	ext4_ext_init(sb);
2867 	err = ext4_mb_init(sb, needs_recovery);
2868 	if (err) {
2869 		ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
2870 			 err);
2871 		goto failed_mount4;
2872 	}
2873 
2874 	sbi->s_kobj.kset = ext4_kset;
2875 	init_completion(&sbi->s_kobj_unregister);
2876 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
2877 				   "%s", sb->s_id);
2878 	if (err) {
2879 		ext4_mb_release(sb);
2880 		ext4_ext_release(sb);
2881 		goto failed_mount4;
2882 	};
2883 
2884 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2885 	ext4_orphan_cleanup(sb, es);
2886 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2887 	if (needs_recovery) {
2888 		ext4_msg(sb, KERN_INFO, "recovery complete");
2889 		ext4_mark_recovery_complete(sb, es);
2890 	}
2891 	if (EXT4_SB(sb)->s_journal) {
2892 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2893 			descr = " journalled data mode";
2894 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2895 			descr = " ordered data mode";
2896 		else
2897 			descr = " writeback data mode";
2898 	} else
2899 		descr = "out journal";
2900 
2901 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
2902 
2903 	lock_kernel();
2904 	return 0;
2905 
2906 cantfind_ext4:
2907 	if (!silent)
2908 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
2909 	goto failed_mount;
2910 
2911 failed_mount4:
2912 	ext4_msg(sb, KERN_ERR, "mount failed");
2913 	ext4_release_system_zone(sb);
2914 	if (sbi->s_journal) {
2915 		jbd2_journal_destroy(sbi->s_journal);
2916 		sbi->s_journal = NULL;
2917 	}
2918 failed_mount3:
2919 	if (sbi->s_flex_groups) {
2920 		if (is_vmalloc_addr(sbi->s_flex_groups))
2921 			vfree(sbi->s_flex_groups);
2922 		else
2923 			kfree(sbi->s_flex_groups);
2924 	}
2925 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
2926 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
2927 	percpu_counter_destroy(&sbi->s_dirs_counter);
2928 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2929 failed_mount2:
2930 	for (i = 0; i < db_count; i++)
2931 		brelse(sbi->s_group_desc[i]);
2932 	kfree(sbi->s_group_desc);
2933 failed_mount:
2934 	if (sbi->s_proc) {
2935 		remove_proc_entry(sb->s_id, ext4_proc_root);
2936 	}
2937 #ifdef CONFIG_QUOTA
2938 	for (i = 0; i < MAXQUOTAS; i++)
2939 		kfree(sbi->s_qf_names[i]);
2940 #endif
2941 	ext4_blkdev_remove(sbi);
2942 	brelse(bh);
2943 out_fail:
2944 	sb->s_fs_info = NULL;
2945 	kfree(sbi->s_blockgroup_lock);
2946 	kfree(sbi);
2947 	lock_kernel();
2948 	return ret;
2949 }
2950 
2951 /*
2952  * Setup any per-fs journal parameters now.  We'll do this both on
2953  * initial mount, once the journal has been initialised but before we've
2954  * done any recovery; and again on any subsequent remount.
2955  */
2956 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
2957 {
2958 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2959 
2960 	journal->j_commit_interval = sbi->s_commit_interval;
2961 	journal->j_min_batch_time = sbi->s_min_batch_time;
2962 	journal->j_max_batch_time = sbi->s_max_batch_time;
2963 
2964 	spin_lock(&journal->j_state_lock);
2965 	if (test_opt(sb, BARRIER))
2966 		journal->j_flags |= JBD2_BARRIER;
2967 	else
2968 		journal->j_flags &= ~JBD2_BARRIER;
2969 	if (test_opt(sb, DATA_ERR_ABORT))
2970 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
2971 	else
2972 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
2973 	spin_unlock(&journal->j_state_lock);
2974 }
2975 
2976 static journal_t *ext4_get_journal(struct super_block *sb,
2977 				   unsigned int journal_inum)
2978 {
2979 	struct inode *journal_inode;
2980 	journal_t *journal;
2981 
2982 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
2983 
2984 	/* First, test for the existence of a valid inode on disk.  Bad
2985 	 * things happen if we iget() an unused inode, as the subsequent
2986 	 * iput() will try to delete it. */
2987 
2988 	journal_inode = ext4_iget(sb, journal_inum);
2989 	if (IS_ERR(journal_inode)) {
2990 		ext4_msg(sb, KERN_ERR, "no journal found");
2991 		return NULL;
2992 	}
2993 	if (!journal_inode->i_nlink) {
2994 		make_bad_inode(journal_inode);
2995 		iput(journal_inode);
2996 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
2997 		return NULL;
2998 	}
2999 
3000 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3001 		  journal_inode, journal_inode->i_size);
3002 	if (!S_ISREG(journal_inode->i_mode)) {
3003 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3004 		iput(journal_inode);
3005 		return NULL;
3006 	}
3007 
3008 	journal = jbd2_journal_init_inode(journal_inode);
3009 	if (!journal) {
3010 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3011 		iput(journal_inode);
3012 		return NULL;
3013 	}
3014 	journal->j_private = sb;
3015 	ext4_init_journal_params(sb, journal);
3016 	return journal;
3017 }
3018 
3019 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3020 				       dev_t j_dev)
3021 {
3022 	struct buffer_head *bh;
3023 	journal_t *journal;
3024 	ext4_fsblk_t start;
3025 	ext4_fsblk_t len;
3026 	int hblock, blocksize;
3027 	ext4_fsblk_t sb_block;
3028 	unsigned long offset;
3029 	struct ext4_super_block *es;
3030 	struct block_device *bdev;
3031 
3032 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3033 
3034 	bdev = ext4_blkdev_get(j_dev, sb);
3035 	if (bdev == NULL)
3036 		return NULL;
3037 
3038 	if (bd_claim(bdev, sb)) {
3039 		ext4_msg(sb, KERN_ERR,
3040 			"failed to claim external journal device");
3041 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3042 		return NULL;
3043 	}
3044 
3045 	blocksize = sb->s_blocksize;
3046 	hblock = bdev_logical_block_size(bdev);
3047 	if (blocksize < hblock) {
3048 		ext4_msg(sb, KERN_ERR,
3049 			"blocksize too small for journal device");
3050 		goto out_bdev;
3051 	}
3052 
3053 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3054 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3055 	set_blocksize(bdev, blocksize);
3056 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3057 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3058 		       "external journal");
3059 		goto out_bdev;
3060 	}
3061 
3062 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3063 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3064 	    !(le32_to_cpu(es->s_feature_incompat) &
3065 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3066 		ext4_msg(sb, KERN_ERR, "external journal has "
3067 					"bad superblock");
3068 		brelse(bh);
3069 		goto out_bdev;
3070 	}
3071 
3072 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3073 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3074 		brelse(bh);
3075 		goto out_bdev;
3076 	}
3077 
3078 	len = ext4_blocks_count(es);
3079 	start = sb_block + 1;
3080 	brelse(bh);	/* we're done with the superblock */
3081 
3082 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3083 					start, len, blocksize);
3084 	if (!journal) {
3085 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3086 		goto out_bdev;
3087 	}
3088 	journal->j_private = sb;
3089 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
3090 	wait_on_buffer(journal->j_sb_buffer);
3091 	if (!buffer_uptodate(journal->j_sb_buffer)) {
3092 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3093 		goto out_journal;
3094 	}
3095 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3096 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
3097 					"user (unsupported) - %d",
3098 			be32_to_cpu(journal->j_superblock->s_nr_users));
3099 		goto out_journal;
3100 	}
3101 	EXT4_SB(sb)->journal_bdev = bdev;
3102 	ext4_init_journal_params(sb, journal);
3103 	return journal;
3104 
3105 out_journal:
3106 	jbd2_journal_destroy(journal);
3107 out_bdev:
3108 	ext4_blkdev_put(bdev);
3109 	return NULL;
3110 }
3111 
3112 static int ext4_load_journal(struct super_block *sb,
3113 			     struct ext4_super_block *es,
3114 			     unsigned long journal_devnum)
3115 {
3116 	journal_t *journal;
3117 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3118 	dev_t journal_dev;
3119 	int err = 0;
3120 	int really_read_only;
3121 
3122 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3123 
3124 	if (journal_devnum &&
3125 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3126 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3127 			"numbers have changed");
3128 		journal_dev = new_decode_dev(journal_devnum);
3129 	} else
3130 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3131 
3132 	really_read_only = bdev_read_only(sb->s_bdev);
3133 
3134 	/*
3135 	 * Are we loading a blank journal or performing recovery after a
3136 	 * crash?  For recovery, we need to check in advance whether we
3137 	 * can get read-write access to the device.
3138 	 */
3139 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3140 		if (sb->s_flags & MS_RDONLY) {
3141 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
3142 					"required on readonly filesystem");
3143 			if (really_read_only) {
3144 				ext4_msg(sb, KERN_ERR, "write access "
3145 					"unavailable, cannot proceed");
3146 				return -EROFS;
3147 			}
3148 			ext4_msg(sb, KERN_INFO, "write access will "
3149 			       "be enabled during recovery");
3150 		}
3151 	}
3152 
3153 	if (journal_inum && journal_dev) {
3154 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3155 		       "and inode journals!");
3156 		return -EINVAL;
3157 	}
3158 
3159 	if (journal_inum) {
3160 		if (!(journal = ext4_get_journal(sb, journal_inum)))
3161 			return -EINVAL;
3162 	} else {
3163 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3164 			return -EINVAL;
3165 	}
3166 
3167 	if (journal->j_flags & JBD2_BARRIER)
3168 		ext4_msg(sb, KERN_INFO, "barriers enabled");
3169 	else
3170 		ext4_msg(sb, KERN_INFO, "barriers disabled");
3171 
3172 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3173 		err = jbd2_journal_update_format(journal);
3174 		if (err)  {
3175 			ext4_msg(sb, KERN_ERR, "error updating journal");
3176 			jbd2_journal_destroy(journal);
3177 			return err;
3178 		}
3179 	}
3180 
3181 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3182 		err = jbd2_journal_wipe(journal, !really_read_only);
3183 	if (!err)
3184 		err = jbd2_journal_load(journal);
3185 
3186 	if (err) {
3187 		ext4_msg(sb, KERN_ERR, "error loading journal");
3188 		jbd2_journal_destroy(journal);
3189 		return err;
3190 	}
3191 
3192 	EXT4_SB(sb)->s_journal = journal;
3193 	ext4_clear_journal_err(sb, es);
3194 
3195 	if (journal_devnum &&
3196 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3197 		es->s_journal_dev = cpu_to_le32(journal_devnum);
3198 
3199 		/* Make sure we flush the recovery flag to disk. */
3200 		ext4_commit_super(sb, 1);
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int ext4_commit_super(struct super_block *sb, int sync)
3207 {
3208 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3209 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3210 	int error = 0;
3211 
3212 	if (!sbh)
3213 		return error;
3214 	if (buffer_write_io_error(sbh)) {
3215 		/*
3216 		 * Oh, dear.  A previous attempt to write the
3217 		 * superblock failed.  This could happen because the
3218 		 * USB device was yanked out.  Or it could happen to
3219 		 * be a transient write error and maybe the block will
3220 		 * be remapped.  Nothing we can do but to retry the
3221 		 * write and hope for the best.
3222 		 */
3223 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
3224 		       "superblock detected");
3225 		clear_buffer_write_io_error(sbh);
3226 		set_buffer_uptodate(sbh);
3227 	}
3228 	/*
3229 	 * If the file system is mounted read-only, don't update the
3230 	 * superblock write time.  This avoids updating the superblock
3231 	 * write time when we are mounting the root file system
3232 	 * read/only but we need to replay the journal; at that point,
3233 	 * for people who are east of GMT and who make their clock
3234 	 * tick in localtime for Windows bug-for-bug compatibility,
3235 	 * the clock is set in the future, and this will cause e2fsck
3236 	 * to complain and force a full file system check.
3237 	 */
3238 	if (!(sb->s_flags & MS_RDONLY))
3239 		es->s_wtime = cpu_to_le32(get_seconds());
3240 	es->s_kbytes_written =
3241 		cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3242 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3243 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
3244 	ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3245 					&EXT4_SB(sb)->s_freeblocks_counter));
3246 	es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
3247 					&EXT4_SB(sb)->s_freeinodes_counter));
3248 	sb->s_dirt = 0;
3249 	BUFFER_TRACE(sbh, "marking dirty");
3250 	mark_buffer_dirty(sbh);
3251 	if (sync) {
3252 		error = sync_dirty_buffer(sbh);
3253 		if (error)
3254 			return error;
3255 
3256 		error = buffer_write_io_error(sbh);
3257 		if (error) {
3258 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
3259 			       "superblock");
3260 			clear_buffer_write_io_error(sbh);
3261 			set_buffer_uptodate(sbh);
3262 		}
3263 	}
3264 	return error;
3265 }
3266 
3267 /*
3268  * Have we just finished recovery?  If so, and if we are mounting (or
3269  * remounting) the filesystem readonly, then we will end up with a
3270  * consistent fs on disk.  Record that fact.
3271  */
3272 static void ext4_mark_recovery_complete(struct super_block *sb,
3273 					struct ext4_super_block *es)
3274 {
3275 	journal_t *journal = EXT4_SB(sb)->s_journal;
3276 
3277 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3278 		BUG_ON(journal != NULL);
3279 		return;
3280 	}
3281 	jbd2_journal_lock_updates(journal);
3282 	if (jbd2_journal_flush(journal) < 0)
3283 		goto out;
3284 
3285 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
3286 	    sb->s_flags & MS_RDONLY) {
3287 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3288 		ext4_commit_super(sb, 1);
3289 	}
3290 
3291 out:
3292 	jbd2_journal_unlock_updates(journal);
3293 }
3294 
3295 /*
3296  * If we are mounting (or read-write remounting) a filesystem whose journal
3297  * has recorded an error from a previous lifetime, move that error to the
3298  * main filesystem now.
3299  */
3300 static void ext4_clear_journal_err(struct super_block *sb,
3301 				   struct ext4_super_block *es)
3302 {
3303 	journal_t *journal;
3304 	int j_errno;
3305 	const char *errstr;
3306 
3307 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3308 
3309 	journal = EXT4_SB(sb)->s_journal;
3310 
3311 	/*
3312 	 * Now check for any error status which may have been recorded in the
3313 	 * journal by a prior ext4_error() or ext4_abort()
3314 	 */
3315 
3316 	j_errno = jbd2_journal_errno(journal);
3317 	if (j_errno) {
3318 		char nbuf[16];
3319 
3320 		errstr = ext4_decode_error(sb, j_errno, nbuf);
3321 		ext4_warning(sb, __func__, "Filesystem error recorded "
3322 			     "from previous mount: %s", errstr);
3323 		ext4_warning(sb, __func__, "Marking fs in need of "
3324 			     "filesystem check.");
3325 
3326 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3327 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3328 		ext4_commit_super(sb, 1);
3329 
3330 		jbd2_journal_clear_err(journal);
3331 	}
3332 }
3333 
3334 /*
3335  * Force the running and committing transactions to commit,
3336  * and wait on the commit.
3337  */
3338 int ext4_force_commit(struct super_block *sb)
3339 {
3340 	journal_t *journal;
3341 	int ret = 0;
3342 
3343 	if (sb->s_flags & MS_RDONLY)
3344 		return 0;
3345 
3346 	journal = EXT4_SB(sb)->s_journal;
3347 	if (journal)
3348 		ret = ext4_journal_force_commit(journal);
3349 
3350 	return ret;
3351 }
3352 
3353 static void ext4_write_super(struct super_block *sb)
3354 {
3355 	lock_super(sb);
3356 	ext4_commit_super(sb, 1);
3357 	unlock_super(sb);
3358 }
3359 
3360 static int ext4_sync_fs(struct super_block *sb, int wait)
3361 {
3362 	int ret = 0;
3363 	tid_t target;
3364 
3365 	trace_ext4_sync_fs(sb, wait);
3366 	if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) {
3367 		if (wait)
3368 			jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target);
3369 	}
3370 	return ret;
3371 }
3372 
3373 /*
3374  * LVM calls this function before a (read-only) snapshot is created.  This
3375  * gives us a chance to flush the journal completely and mark the fs clean.
3376  */
3377 static int ext4_freeze(struct super_block *sb)
3378 {
3379 	int error = 0;
3380 	journal_t *journal;
3381 
3382 	if (sb->s_flags & MS_RDONLY)
3383 		return 0;
3384 
3385 	journal = EXT4_SB(sb)->s_journal;
3386 
3387 	/* Now we set up the journal barrier. */
3388 	jbd2_journal_lock_updates(journal);
3389 
3390 	/*
3391 	 * Don't clear the needs_recovery flag if we failed to flush
3392 	 * the journal.
3393 	 */
3394 	error = jbd2_journal_flush(journal);
3395 	if (error < 0) {
3396 	out:
3397 		jbd2_journal_unlock_updates(journal);
3398 		return error;
3399 	}
3400 
3401 	/* Journal blocked and flushed, clear needs_recovery flag. */
3402 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3403 	error = ext4_commit_super(sb, 1);
3404 	if (error)
3405 		goto out;
3406 	return 0;
3407 }
3408 
3409 /*
3410  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
3411  * flag here, even though the filesystem is not technically dirty yet.
3412  */
3413 static int ext4_unfreeze(struct super_block *sb)
3414 {
3415 	if (sb->s_flags & MS_RDONLY)
3416 		return 0;
3417 
3418 	lock_super(sb);
3419 	/* Reset the needs_recovery flag before the fs is unlocked. */
3420 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3421 	ext4_commit_super(sb, 1);
3422 	unlock_super(sb);
3423 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3424 	return 0;
3425 }
3426 
3427 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3428 {
3429 	struct ext4_super_block *es;
3430 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3431 	ext4_fsblk_t n_blocks_count = 0;
3432 	unsigned long old_sb_flags;
3433 	struct ext4_mount_options old_opts;
3434 	ext4_group_t g;
3435 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3436 	int err;
3437 #ifdef CONFIG_QUOTA
3438 	int i;
3439 #endif
3440 
3441 	lock_kernel();
3442 
3443 	/* Store the original options */
3444 	lock_super(sb);
3445 	old_sb_flags = sb->s_flags;
3446 	old_opts.s_mount_opt = sbi->s_mount_opt;
3447 	old_opts.s_resuid = sbi->s_resuid;
3448 	old_opts.s_resgid = sbi->s_resgid;
3449 	old_opts.s_commit_interval = sbi->s_commit_interval;
3450 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
3451 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
3452 #ifdef CONFIG_QUOTA
3453 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3454 	for (i = 0; i < MAXQUOTAS; i++)
3455 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3456 #endif
3457 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3458 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3459 
3460 	/*
3461 	 * Allow the "check" option to be passed as a remount option.
3462 	 */
3463 	if (!parse_options(data, sb, NULL, &journal_ioprio,
3464 			   &n_blocks_count, 1)) {
3465 		err = -EINVAL;
3466 		goto restore_opts;
3467 	}
3468 
3469 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
3470 		ext4_abort(sb, __func__, "Abort forced by user");
3471 
3472 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3473 		((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3474 
3475 	es = sbi->s_es;
3476 
3477 	if (sbi->s_journal) {
3478 		ext4_init_journal_params(sb, sbi->s_journal);
3479 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3480 	}
3481 
3482 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3483 		n_blocks_count > ext4_blocks_count(es)) {
3484 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
3485 			err = -EROFS;
3486 			goto restore_opts;
3487 		}
3488 
3489 		if (*flags & MS_RDONLY) {
3490 			/*
3491 			 * First of all, the unconditional stuff we have to do
3492 			 * to disable replay of the journal when we next remount
3493 			 */
3494 			sb->s_flags |= MS_RDONLY;
3495 
3496 			/*
3497 			 * OK, test if we are remounting a valid rw partition
3498 			 * readonly, and if so set the rdonly flag and then
3499 			 * mark the partition as valid again.
3500 			 */
3501 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3502 			    (sbi->s_mount_state & EXT4_VALID_FS))
3503 				es->s_state = cpu_to_le16(sbi->s_mount_state);
3504 
3505 			if (sbi->s_journal)
3506 				ext4_mark_recovery_complete(sb, es);
3507 		} else {
3508 			/* Make sure we can mount this feature set readwrite */
3509 			if (!ext4_feature_set_ok(sb, 0)) {
3510 				err = -EROFS;
3511 				goto restore_opts;
3512 			}
3513 			/*
3514 			 * Make sure the group descriptor checksums
3515 			 * are sane.  If they aren't, refuse to remount r/w.
3516 			 */
3517 			for (g = 0; g < sbi->s_groups_count; g++) {
3518 				struct ext4_group_desc *gdp =
3519 					ext4_get_group_desc(sb, g, NULL);
3520 
3521 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3522 					ext4_msg(sb, KERN_ERR,
3523 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
3524 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3525 					       le16_to_cpu(gdp->bg_checksum));
3526 					err = -EINVAL;
3527 					goto restore_opts;
3528 				}
3529 			}
3530 
3531 			/*
3532 			 * If we have an unprocessed orphan list hanging
3533 			 * around from a previously readonly bdev mount,
3534 			 * require a full umount/remount for now.
3535 			 */
3536 			if (es->s_last_orphan) {
3537 				ext4_msg(sb, KERN_WARNING, "Couldn't "
3538 				       "remount RDWR because of unprocessed "
3539 				       "orphan inode list.  Please "
3540 				       "umount/remount instead");
3541 				err = -EINVAL;
3542 				goto restore_opts;
3543 			}
3544 
3545 			/*
3546 			 * Mounting a RDONLY partition read-write, so reread
3547 			 * and store the current valid flag.  (It may have
3548 			 * been changed by e2fsck since we originally mounted
3549 			 * the partition.)
3550 			 */
3551 			if (sbi->s_journal)
3552 				ext4_clear_journal_err(sb, es);
3553 			sbi->s_mount_state = le16_to_cpu(es->s_state);
3554 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3555 				goto restore_opts;
3556 			if (!ext4_setup_super(sb, es, 0))
3557 				sb->s_flags &= ~MS_RDONLY;
3558 		}
3559 	}
3560 	ext4_setup_system_zone(sb);
3561 	if (sbi->s_journal == NULL)
3562 		ext4_commit_super(sb, 1);
3563 
3564 #ifdef CONFIG_QUOTA
3565 	/* Release old quota file names */
3566 	for (i = 0; i < MAXQUOTAS; i++)
3567 		if (old_opts.s_qf_names[i] &&
3568 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3569 			kfree(old_opts.s_qf_names[i]);
3570 #endif
3571 	unlock_super(sb);
3572 	unlock_kernel();
3573 	return 0;
3574 
3575 restore_opts:
3576 	sb->s_flags = old_sb_flags;
3577 	sbi->s_mount_opt = old_opts.s_mount_opt;
3578 	sbi->s_resuid = old_opts.s_resuid;
3579 	sbi->s_resgid = old_opts.s_resgid;
3580 	sbi->s_commit_interval = old_opts.s_commit_interval;
3581 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
3582 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
3583 #ifdef CONFIG_QUOTA
3584 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3585 	for (i = 0; i < MAXQUOTAS; i++) {
3586 		if (sbi->s_qf_names[i] &&
3587 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3588 			kfree(sbi->s_qf_names[i]);
3589 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3590 	}
3591 #endif
3592 	unlock_super(sb);
3593 	unlock_kernel();
3594 	return err;
3595 }
3596 
3597 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3598 {
3599 	struct super_block *sb = dentry->d_sb;
3600 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3601 	struct ext4_super_block *es = sbi->s_es;
3602 	u64 fsid;
3603 
3604 	if (test_opt(sb, MINIX_DF)) {
3605 		sbi->s_overhead_last = 0;
3606 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3607 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3608 		ext4_fsblk_t overhead = 0;
3609 
3610 		/*
3611 		 * Compute the overhead (FS structures).  This is constant
3612 		 * for a given filesystem unless the number of block groups
3613 		 * changes so we cache the previous value until it does.
3614 		 */
3615 
3616 		/*
3617 		 * All of the blocks before first_data_block are
3618 		 * overhead
3619 		 */
3620 		overhead = le32_to_cpu(es->s_first_data_block);
3621 
3622 		/*
3623 		 * Add the overhead attributed to the superblock and
3624 		 * block group descriptors.  If the sparse superblocks
3625 		 * feature is turned on, then not all groups have this.
3626 		 */
3627 		for (i = 0; i < ngroups; i++) {
3628 			overhead += ext4_bg_has_super(sb, i) +
3629 				ext4_bg_num_gdb(sb, i);
3630 			cond_resched();
3631 		}
3632 
3633 		/*
3634 		 * Every block group has an inode bitmap, a block
3635 		 * bitmap, and an inode table.
3636 		 */
3637 		overhead += ngroups * (2 + sbi->s_itb_per_group);
3638 		sbi->s_overhead_last = overhead;
3639 		smp_wmb();
3640 		sbi->s_blocks_last = ext4_blocks_count(es);
3641 	}
3642 
3643 	buf->f_type = EXT4_SUPER_MAGIC;
3644 	buf->f_bsize = sb->s_blocksize;
3645 	buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3646 	buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3647 		       percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3648 	ext4_free_blocks_count_set(es, buf->f_bfree);
3649 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3650 	if (buf->f_bfree < ext4_r_blocks_count(es))
3651 		buf->f_bavail = 0;
3652 	buf->f_files = le32_to_cpu(es->s_inodes_count);
3653 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3654 	es->s_free_inodes_count = cpu_to_le32(buf->f_ffree);
3655 	buf->f_namelen = EXT4_NAME_LEN;
3656 	fsid = le64_to_cpup((void *)es->s_uuid) ^
3657 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3658 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3659 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3660 
3661 	return 0;
3662 }
3663 
3664 /* Helper function for writing quotas on sync - we need to start transaction
3665  * before quota file is locked for write. Otherwise the are possible deadlocks:
3666  * Process 1                         Process 2
3667  * ext4_create()                     quota_sync()
3668  *   jbd2_journal_start()                  write_dquot()
3669  *   vfs_dq_init()                         down(dqio_mutex)
3670  *     down(dqio_mutex)                    jbd2_journal_start()
3671  *
3672  */
3673 
3674 #ifdef CONFIG_QUOTA
3675 
3676 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3677 {
3678 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3679 }
3680 
3681 static int ext4_write_dquot(struct dquot *dquot)
3682 {
3683 	int ret, err;
3684 	handle_t *handle;
3685 	struct inode *inode;
3686 
3687 	inode = dquot_to_inode(dquot);
3688 	handle = ext4_journal_start(inode,
3689 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3690 	if (IS_ERR(handle))
3691 		return PTR_ERR(handle);
3692 	ret = dquot_commit(dquot);
3693 	err = ext4_journal_stop(handle);
3694 	if (!ret)
3695 		ret = err;
3696 	return ret;
3697 }
3698 
3699 static int ext4_acquire_dquot(struct dquot *dquot)
3700 {
3701 	int ret, err;
3702 	handle_t *handle;
3703 
3704 	handle = ext4_journal_start(dquot_to_inode(dquot),
3705 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3706 	if (IS_ERR(handle))
3707 		return PTR_ERR(handle);
3708 	ret = dquot_acquire(dquot);
3709 	err = ext4_journal_stop(handle);
3710 	if (!ret)
3711 		ret = err;
3712 	return ret;
3713 }
3714 
3715 static int ext4_release_dquot(struct dquot *dquot)
3716 {
3717 	int ret, err;
3718 	handle_t *handle;
3719 
3720 	handle = ext4_journal_start(dquot_to_inode(dquot),
3721 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3722 	if (IS_ERR(handle)) {
3723 		/* Release dquot anyway to avoid endless cycle in dqput() */
3724 		dquot_release(dquot);
3725 		return PTR_ERR(handle);
3726 	}
3727 	ret = dquot_release(dquot);
3728 	err = ext4_journal_stop(handle);
3729 	if (!ret)
3730 		ret = err;
3731 	return ret;
3732 }
3733 
3734 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3735 {
3736 	/* Are we journaling quotas? */
3737 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3738 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3739 		dquot_mark_dquot_dirty(dquot);
3740 		return ext4_write_dquot(dquot);
3741 	} else {
3742 		return dquot_mark_dquot_dirty(dquot);
3743 	}
3744 }
3745 
3746 static int ext4_write_info(struct super_block *sb, int type)
3747 {
3748 	int ret, err;
3749 	handle_t *handle;
3750 
3751 	/* Data block + inode block */
3752 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
3753 	if (IS_ERR(handle))
3754 		return PTR_ERR(handle);
3755 	ret = dquot_commit_info(sb, type);
3756 	err = ext4_journal_stop(handle);
3757 	if (!ret)
3758 		ret = err;
3759 	return ret;
3760 }
3761 
3762 /*
3763  * Turn on quotas during mount time - we need to find
3764  * the quota file and such...
3765  */
3766 static int ext4_quota_on_mount(struct super_block *sb, int type)
3767 {
3768 	return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3769 				  EXT4_SB(sb)->s_jquota_fmt, type);
3770 }
3771 
3772 /*
3773  * Standard function to be called on quota_on
3774  */
3775 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3776 			 char *name, int remount)
3777 {
3778 	int err;
3779 	struct path path;
3780 
3781 	if (!test_opt(sb, QUOTA))
3782 		return -EINVAL;
3783 	/* When remounting, no checks are needed and in fact, name is NULL */
3784 	if (remount)
3785 		return vfs_quota_on(sb, type, format_id, name, remount);
3786 
3787 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3788 	if (err)
3789 		return err;
3790 
3791 	/* Quotafile not on the same filesystem? */
3792 	if (path.mnt->mnt_sb != sb) {
3793 		path_put(&path);
3794 		return -EXDEV;
3795 	}
3796 	/* Journaling quota? */
3797 	if (EXT4_SB(sb)->s_qf_names[type]) {
3798 		/* Quotafile not in fs root? */
3799 		if (path.dentry->d_parent != sb->s_root)
3800 			ext4_msg(sb, KERN_WARNING,
3801 				"Quota file not on filesystem root. "
3802 				"Journaled quota will not work");
3803 	}
3804 
3805 	/*
3806 	 * When we journal data on quota file, we have to flush journal to see
3807 	 * all updates to the file when we bypass pagecache...
3808 	 */
3809 	if (EXT4_SB(sb)->s_journal &&
3810 	    ext4_should_journal_data(path.dentry->d_inode)) {
3811 		/*
3812 		 * We don't need to lock updates but journal_flush() could
3813 		 * otherwise be livelocked...
3814 		 */
3815 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3816 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3817 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3818 		if (err) {
3819 			path_put(&path);
3820 			return err;
3821 		}
3822 	}
3823 
3824 	err = vfs_quota_on_path(sb, type, format_id, &path);
3825 	path_put(&path);
3826 	return err;
3827 }
3828 
3829 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3830  * acquiring the locks... As quota files are never truncated and quota code
3831  * itself serializes the operations (and noone else should touch the files)
3832  * we don't have to be afraid of races */
3833 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3834 			       size_t len, loff_t off)
3835 {
3836 	struct inode *inode = sb_dqopt(sb)->files[type];
3837 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3838 	int err = 0;
3839 	int offset = off & (sb->s_blocksize - 1);
3840 	int tocopy;
3841 	size_t toread;
3842 	struct buffer_head *bh;
3843 	loff_t i_size = i_size_read(inode);
3844 
3845 	if (off > i_size)
3846 		return 0;
3847 	if (off+len > i_size)
3848 		len = i_size-off;
3849 	toread = len;
3850 	while (toread > 0) {
3851 		tocopy = sb->s_blocksize - offset < toread ?
3852 				sb->s_blocksize - offset : toread;
3853 		bh = ext4_bread(NULL, inode, blk, 0, &err);
3854 		if (err)
3855 			return err;
3856 		if (!bh)	/* A hole? */
3857 			memset(data, 0, tocopy);
3858 		else
3859 			memcpy(data, bh->b_data+offset, tocopy);
3860 		brelse(bh);
3861 		offset = 0;
3862 		toread -= tocopy;
3863 		data += tocopy;
3864 		blk++;
3865 	}
3866 	return len;
3867 }
3868 
3869 /* Write to quotafile (we know the transaction is already started and has
3870  * enough credits) */
3871 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3872 				const char *data, size_t len, loff_t off)
3873 {
3874 	struct inode *inode = sb_dqopt(sb)->files[type];
3875 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3876 	int err = 0;
3877 	int offset = off & (sb->s_blocksize - 1);
3878 	int tocopy;
3879 	int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3880 	size_t towrite = len;
3881 	struct buffer_head *bh;
3882 	handle_t *handle = journal_current_handle();
3883 
3884 	if (EXT4_SB(sb)->s_journal && !handle) {
3885 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
3886 			" cancelled because transaction is not started",
3887 			(unsigned long long)off, (unsigned long long)len);
3888 		return -EIO;
3889 	}
3890 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3891 	while (towrite > 0) {
3892 		tocopy = sb->s_blocksize - offset < towrite ?
3893 				sb->s_blocksize - offset : towrite;
3894 		bh = ext4_bread(handle, inode, blk, 1, &err);
3895 		if (!bh)
3896 			goto out;
3897 		if (journal_quota) {
3898 			err = ext4_journal_get_write_access(handle, bh);
3899 			if (err) {
3900 				brelse(bh);
3901 				goto out;
3902 			}
3903 		}
3904 		lock_buffer(bh);
3905 		memcpy(bh->b_data+offset, data, tocopy);
3906 		flush_dcache_page(bh->b_page);
3907 		unlock_buffer(bh);
3908 		if (journal_quota)
3909 			err = ext4_handle_dirty_metadata(handle, NULL, bh);
3910 		else {
3911 			/* Always do at least ordered writes for quotas */
3912 			err = ext4_jbd2_file_inode(handle, inode);
3913 			mark_buffer_dirty(bh);
3914 		}
3915 		brelse(bh);
3916 		if (err)
3917 			goto out;
3918 		offset = 0;
3919 		towrite -= tocopy;
3920 		data += tocopy;
3921 		blk++;
3922 	}
3923 out:
3924 	if (len == towrite) {
3925 		mutex_unlock(&inode->i_mutex);
3926 		return err;
3927 	}
3928 	if (inode->i_size < off+len-towrite) {
3929 		i_size_write(inode, off+len-towrite);
3930 		EXT4_I(inode)->i_disksize = inode->i_size;
3931 	}
3932 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3933 	ext4_mark_inode_dirty(handle, inode);
3934 	mutex_unlock(&inode->i_mutex);
3935 	return len - towrite;
3936 }
3937 
3938 #endif
3939 
3940 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
3941 		       const char *dev_name, void *data, struct vfsmount *mnt)
3942 {
3943 	return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3944 }
3945 
3946 static struct file_system_type ext4_fs_type = {
3947 	.owner		= THIS_MODULE,
3948 	.name		= "ext4",
3949 	.get_sb		= ext4_get_sb,
3950 	.kill_sb	= kill_block_super,
3951 	.fs_flags	= FS_REQUIRES_DEV,
3952 };
3953 
3954 #ifdef CONFIG_EXT4DEV_COMPAT
3955 static int ext4dev_get_sb(struct file_system_type *fs_type, int flags,
3956 			  const char *dev_name, void *data,struct vfsmount *mnt)
3957 {
3958 	printk(KERN_WARNING "EXT4-fs (%s): Update your userspace programs "
3959 	       "to mount using ext4\n", dev_name);
3960 	printk(KERN_WARNING "EXT4-fs (%s): ext4dev backwards compatibility "
3961 	       "will go away by 2.6.31\n", dev_name);
3962 	return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3963 }
3964 
3965 static struct file_system_type ext4dev_fs_type = {
3966 	.owner		= THIS_MODULE,
3967 	.name		= "ext4dev",
3968 	.get_sb		= ext4dev_get_sb,
3969 	.kill_sb	= kill_block_super,
3970 	.fs_flags	= FS_REQUIRES_DEV,
3971 };
3972 MODULE_ALIAS("ext4dev");
3973 #endif
3974 
3975 static int __init init_ext4_fs(void)
3976 {
3977 	int err;
3978 
3979 	err = init_ext4_system_zone();
3980 	if (err)
3981 		return err;
3982 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
3983 	if (!ext4_kset)
3984 		goto out4;
3985 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
3986 	err = init_ext4_mballoc();
3987 	if (err)
3988 		goto out3;
3989 
3990 	err = init_ext4_xattr();
3991 	if (err)
3992 		goto out2;
3993 	err = init_inodecache();
3994 	if (err)
3995 		goto out1;
3996 	err = register_filesystem(&ext4_fs_type);
3997 	if (err)
3998 		goto out;
3999 #ifdef CONFIG_EXT4DEV_COMPAT
4000 	err = register_filesystem(&ext4dev_fs_type);
4001 	if (err) {
4002 		unregister_filesystem(&ext4_fs_type);
4003 		goto out;
4004 	}
4005 #endif
4006 	return 0;
4007 out:
4008 	destroy_inodecache();
4009 out1:
4010 	exit_ext4_xattr();
4011 out2:
4012 	exit_ext4_mballoc();
4013 out3:
4014 	remove_proc_entry("fs/ext4", NULL);
4015 	kset_unregister(ext4_kset);
4016 out4:
4017 	exit_ext4_system_zone();
4018 	return err;
4019 }
4020 
4021 static void __exit exit_ext4_fs(void)
4022 {
4023 	unregister_filesystem(&ext4_fs_type);
4024 #ifdef CONFIG_EXT4DEV_COMPAT
4025 	unregister_filesystem(&ext4dev_fs_type);
4026 #endif
4027 	destroy_inodecache();
4028 	exit_ext4_xattr();
4029 	exit_ext4_mballoc();
4030 	remove_proc_entry("fs/ext4", NULL);
4031 	kset_unregister(ext4_kset);
4032 	exit_ext4_system_zone();
4033 }
4034 
4035 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4036 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4037 MODULE_LICENSE("GPL");
4038 module_init(init_ext4_fs)
4039 module_exit(exit_ext4_fs)
4040