1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 static struct inode *ext4_get_journal_inode(struct super_block *sb, 82 unsigned int journal_inum); 83 84 /* 85 * Lock ordering 86 * 87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 88 * i_mmap_rwsem (inode->i_mmap_rwsem)! 89 * 90 * page fault path: 91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 92 * page lock -> i_data_sem (rw) 93 * 94 * buffered write path: 95 * sb_start_write -> i_mutex -> mmap_sem 96 * sb_start_write -> i_mutex -> transaction start -> page lock -> 97 * i_data_sem (rw) 98 * 99 * truncate: 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * i_mmap_rwsem (w) -> page lock 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * transaction start -> i_data_sem (rw) 104 * 105 * direct IO: 106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 108 * transaction start -> i_data_sem (rw) 109 * 110 * writepages: 111 * transaction start -> page lock(s) -> i_data_sem (rw) 112 */ 113 114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 115 static struct file_system_type ext2_fs_type = { 116 .owner = THIS_MODULE, 117 .name = "ext2", 118 .mount = ext4_mount, 119 .kill_sb = kill_block_super, 120 .fs_flags = FS_REQUIRES_DEV, 121 }; 122 MODULE_ALIAS_FS("ext2"); 123 MODULE_ALIAS("ext2"); 124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 125 #else 126 #define IS_EXT2_SB(sb) (0) 127 #endif 128 129 130 static struct file_system_type ext3_fs_type = { 131 .owner = THIS_MODULE, 132 .name = "ext3", 133 .mount = ext4_mount, 134 .kill_sb = kill_block_super, 135 .fs_flags = FS_REQUIRES_DEV, 136 }; 137 MODULE_ALIAS_FS("ext3"); 138 MODULE_ALIAS("ext3"); 139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 140 141 static int ext4_verify_csum_type(struct super_block *sb, 142 struct ext4_super_block *es) 143 { 144 if (!ext4_has_feature_metadata_csum(sb)) 145 return 1; 146 147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 148 } 149 150 static __le32 ext4_superblock_csum(struct super_block *sb, 151 struct ext4_super_block *es) 152 { 153 struct ext4_sb_info *sbi = EXT4_SB(sb); 154 int offset = offsetof(struct ext4_super_block, s_checksum); 155 __u32 csum; 156 157 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 158 159 return cpu_to_le32(csum); 160 } 161 162 static int ext4_superblock_csum_verify(struct super_block *sb, 163 struct ext4_super_block *es) 164 { 165 if (!ext4_has_metadata_csum(sb)) 166 return 1; 167 168 return es->s_checksum == ext4_superblock_csum(sb, es); 169 } 170 171 void ext4_superblock_csum_set(struct super_block *sb) 172 { 173 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 174 175 if (!ext4_has_metadata_csum(sb)) 176 return; 177 178 es->s_checksum = ext4_superblock_csum(sb, es); 179 } 180 181 void *ext4_kvmalloc(size_t size, gfp_t flags) 182 { 183 void *ret; 184 185 ret = kmalloc(size, flags | __GFP_NOWARN); 186 if (!ret) 187 ret = __vmalloc(size, flags, PAGE_KERNEL); 188 return ret; 189 } 190 191 void *ext4_kvzalloc(size_t size, gfp_t flags) 192 { 193 void *ret; 194 195 ret = kzalloc(size, flags | __GFP_NOWARN); 196 if (!ret) 197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 198 return ret; 199 } 200 201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_block_bitmap_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 207 } 208 209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 215 } 216 217 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le32_to_cpu(bg->bg_inode_table_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 223 } 224 225 __u32 ext4_free_group_clusters(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_free_inodes_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 239 } 240 241 __u32 ext4_used_dirs_count(struct super_block *sb, 242 struct ext4_group_desc *bg) 243 { 244 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 247 } 248 249 __u32 ext4_itable_unused_count(struct super_block *sb, 250 struct ext4_group_desc *bg) 251 { 252 return le16_to_cpu(bg->bg_itable_unused_lo) | 253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 255 } 256 257 void ext4_block_bitmap_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_inode_bitmap_set(struct super_block *sb, 266 struct ext4_group_desc *bg, ext4_fsblk_t blk) 267 { 268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 271 } 272 273 void ext4_inode_table_set(struct super_block *sb, 274 struct ext4_group_desc *bg, ext4_fsblk_t blk) 275 { 276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 279 } 280 281 void ext4_free_group_clusters_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_free_inodes_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 295 } 296 297 void ext4_used_dirs_set(struct super_block *sb, 298 struct ext4_group_desc *bg, __u32 count) 299 { 300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 303 } 304 305 void ext4_itable_unused_set(struct super_block *sb, 306 struct ext4_group_desc *bg, __u32 count) 307 { 308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 311 } 312 313 314 static void __save_error_info(struct super_block *sb, const char *func, 315 unsigned int line) 316 { 317 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 318 319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 320 if (bdev_read_only(sb->s_bdev)) 321 return; 322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 323 es->s_last_error_time = cpu_to_le32(get_seconds()); 324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 325 es->s_last_error_line = cpu_to_le32(line); 326 if (!es->s_first_error_time) { 327 es->s_first_error_time = es->s_last_error_time; 328 strncpy(es->s_first_error_func, func, 329 sizeof(es->s_first_error_func)); 330 es->s_first_error_line = cpu_to_le32(line); 331 es->s_first_error_ino = es->s_last_error_ino; 332 es->s_first_error_block = es->s_last_error_block; 333 } 334 /* 335 * Start the daily error reporting function if it hasn't been 336 * started already 337 */ 338 if (!es->s_error_count) 339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 340 le32_add_cpu(&es->s_error_count, 1); 341 } 342 343 static void save_error_info(struct super_block *sb, const char *func, 344 unsigned int line) 345 { 346 __save_error_info(sb, func, line); 347 ext4_commit_super(sb, 1); 348 } 349 350 /* 351 * The del_gendisk() function uninitializes the disk-specific data 352 * structures, including the bdi structure, without telling anyone 353 * else. Once this happens, any attempt to call mark_buffer_dirty() 354 * (for example, by ext4_commit_super), will cause a kernel OOPS. 355 * This is a kludge to prevent these oops until we can put in a proper 356 * hook in del_gendisk() to inform the VFS and file system layers. 357 */ 358 static int block_device_ejected(struct super_block *sb) 359 { 360 struct inode *bd_inode = sb->s_bdev->bd_inode; 361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 362 363 return bdi->dev == NULL; 364 } 365 366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 367 { 368 struct super_block *sb = journal->j_private; 369 struct ext4_sb_info *sbi = EXT4_SB(sb); 370 int error = is_journal_aborted(journal); 371 struct ext4_journal_cb_entry *jce; 372 373 BUG_ON(txn->t_state == T_FINISHED); 374 spin_lock(&sbi->s_md_lock); 375 while (!list_empty(&txn->t_private_list)) { 376 jce = list_entry(txn->t_private_list.next, 377 struct ext4_journal_cb_entry, jce_list); 378 list_del_init(&jce->jce_list); 379 spin_unlock(&sbi->s_md_lock); 380 jce->jce_func(sb, jce, error); 381 spin_lock(&sbi->s_md_lock); 382 } 383 spin_unlock(&sbi->s_md_lock); 384 } 385 386 /* Deal with the reporting of failure conditions on a filesystem such as 387 * inconsistencies detected or read IO failures. 388 * 389 * On ext2, we can store the error state of the filesystem in the 390 * superblock. That is not possible on ext4, because we may have other 391 * write ordering constraints on the superblock which prevent us from 392 * writing it out straight away; and given that the journal is about to 393 * be aborted, we can't rely on the current, or future, transactions to 394 * write out the superblock safely. 395 * 396 * We'll just use the jbd2_journal_abort() error code to record an error in 397 * the journal instead. On recovery, the journal will complain about 398 * that error until we've noted it down and cleared it. 399 */ 400 401 static void ext4_handle_error(struct super_block *sb) 402 { 403 if (sb->s_flags & MS_RDONLY) 404 return; 405 406 if (!test_opt(sb, ERRORS_CONT)) { 407 journal_t *journal = EXT4_SB(sb)->s_journal; 408 409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 410 if (journal) 411 jbd2_journal_abort(journal, -EIO); 412 } 413 if (test_opt(sb, ERRORS_RO)) { 414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 415 /* 416 * Make sure updated value of ->s_mount_flags will be visible 417 * before ->s_flags update 418 */ 419 smp_wmb(); 420 sb->s_flags |= MS_RDONLY; 421 } 422 if (test_opt(sb, ERRORS_PANIC)) { 423 if (EXT4_SB(sb)->s_journal && 424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 425 return; 426 panic("EXT4-fs (device %s): panic forced after error\n", 427 sb->s_id); 428 } 429 } 430 431 #define ext4_error_ratelimit(sb) \ 432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 433 "EXT4-fs error") 434 435 void __ext4_error(struct super_block *sb, const char *function, 436 unsigned int line, const char *fmt, ...) 437 { 438 struct va_format vaf; 439 va_list args; 440 441 if (ext4_error_ratelimit(sb)) { 442 va_start(args, fmt); 443 vaf.fmt = fmt; 444 vaf.va = &args; 445 printk(KERN_CRIT 446 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 447 sb->s_id, function, line, current->comm, &vaf); 448 va_end(args); 449 } 450 save_error_info(sb, function, line); 451 ext4_handle_error(sb); 452 } 453 454 void __ext4_error_inode(struct inode *inode, const char *function, 455 unsigned int line, ext4_fsblk_t block, 456 const char *fmt, ...) 457 { 458 va_list args; 459 struct va_format vaf; 460 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 461 462 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 463 es->s_last_error_block = cpu_to_le64(block); 464 if (ext4_error_ratelimit(inode->i_sb)) { 465 va_start(args, fmt); 466 vaf.fmt = fmt; 467 vaf.va = &args; 468 if (block) 469 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 470 "inode #%lu: block %llu: comm %s: %pV\n", 471 inode->i_sb->s_id, function, line, inode->i_ino, 472 block, current->comm, &vaf); 473 else 474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 475 "inode #%lu: comm %s: %pV\n", 476 inode->i_sb->s_id, function, line, inode->i_ino, 477 current->comm, &vaf); 478 va_end(args); 479 } 480 save_error_info(inode->i_sb, function, line); 481 ext4_handle_error(inode->i_sb); 482 } 483 484 void __ext4_error_file(struct file *file, const char *function, 485 unsigned int line, ext4_fsblk_t block, 486 const char *fmt, ...) 487 { 488 va_list args; 489 struct va_format vaf; 490 struct ext4_super_block *es; 491 struct inode *inode = file_inode(file); 492 char pathname[80], *path; 493 494 es = EXT4_SB(inode->i_sb)->s_es; 495 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 496 if (ext4_error_ratelimit(inode->i_sb)) { 497 path = file_path(file, pathname, sizeof(pathname)); 498 if (IS_ERR(path)) 499 path = "(unknown)"; 500 va_start(args, fmt); 501 vaf.fmt = fmt; 502 vaf.va = &args; 503 if (block) 504 printk(KERN_CRIT 505 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 506 "block %llu: comm %s: path %s: %pV\n", 507 inode->i_sb->s_id, function, line, inode->i_ino, 508 block, current->comm, path, &vaf); 509 else 510 printk(KERN_CRIT 511 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 512 "comm %s: path %s: %pV\n", 513 inode->i_sb->s_id, function, line, inode->i_ino, 514 current->comm, path, &vaf); 515 va_end(args); 516 } 517 save_error_info(inode->i_sb, function, line); 518 ext4_handle_error(inode->i_sb); 519 } 520 521 const char *ext4_decode_error(struct super_block *sb, int errno, 522 char nbuf[16]) 523 { 524 char *errstr = NULL; 525 526 switch (errno) { 527 case -EFSCORRUPTED: 528 errstr = "Corrupt filesystem"; 529 break; 530 case -EFSBADCRC: 531 errstr = "Filesystem failed CRC"; 532 break; 533 case -EIO: 534 errstr = "IO failure"; 535 break; 536 case -ENOMEM: 537 errstr = "Out of memory"; 538 break; 539 case -EROFS: 540 if (!sb || (EXT4_SB(sb)->s_journal && 541 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 542 errstr = "Journal has aborted"; 543 else 544 errstr = "Readonly filesystem"; 545 break; 546 default: 547 /* If the caller passed in an extra buffer for unknown 548 * errors, textualise them now. Else we just return 549 * NULL. */ 550 if (nbuf) { 551 /* Check for truncated error codes... */ 552 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 553 errstr = nbuf; 554 } 555 break; 556 } 557 558 return errstr; 559 } 560 561 /* __ext4_std_error decodes expected errors from journaling functions 562 * automatically and invokes the appropriate error response. */ 563 564 void __ext4_std_error(struct super_block *sb, const char *function, 565 unsigned int line, int errno) 566 { 567 char nbuf[16]; 568 const char *errstr; 569 570 /* Special case: if the error is EROFS, and we're not already 571 * inside a transaction, then there's really no point in logging 572 * an error. */ 573 if (errno == -EROFS && journal_current_handle() == NULL && 574 (sb->s_flags & MS_RDONLY)) 575 return; 576 577 if (ext4_error_ratelimit(sb)) { 578 errstr = ext4_decode_error(sb, errno, nbuf); 579 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 580 sb->s_id, function, line, errstr); 581 } 582 583 save_error_info(sb, function, line); 584 ext4_handle_error(sb); 585 } 586 587 /* 588 * ext4_abort is a much stronger failure handler than ext4_error. The 589 * abort function may be used to deal with unrecoverable failures such 590 * as journal IO errors or ENOMEM at a critical moment in log management. 591 * 592 * We unconditionally force the filesystem into an ABORT|READONLY state, 593 * unless the error response on the fs has been set to panic in which 594 * case we take the easy way out and panic immediately. 595 */ 596 597 void __ext4_abort(struct super_block *sb, const char *function, 598 unsigned int line, const char *fmt, ...) 599 { 600 va_list args; 601 602 save_error_info(sb, function, line); 603 va_start(args, fmt); 604 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 605 function, line); 606 vprintk(fmt, args); 607 printk("\n"); 608 va_end(args); 609 610 if ((sb->s_flags & MS_RDONLY) == 0) { 611 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 612 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 613 /* 614 * Make sure updated value of ->s_mount_flags will be visible 615 * before ->s_flags update 616 */ 617 smp_wmb(); 618 sb->s_flags |= MS_RDONLY; 619 if (EXT4_SB(sb)->s_journal) 620 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 621 save_error_info(sb, function, line); 622 } 623 if (test_opt(sb, ERRORS_PANIC)) { 624 if (EXT4_SB(sb)->s_journal && 625 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 626 return; 627 panic("EXT4-fs panic from previous error\n"); 628 } 629 } 630 631 void __ext4_msg(struct super_block *sb, 632 const char *prefix, const char *fmt, ...) 633 { 634 struct va_format vaf; 635 va_list args; 636 637 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 638 return; 639 640 va_start(args, fmt); 641 vaf.fmt = fmt; 642 vaf.va = &args; 643 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 644 va_end(args); 645 } 646 647 #define ext4_warning_ratelimit(sb) \ 648 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 649 "EXT4-fs warning") 650 651 void __ext4_warning(struct super_block *sb, const char *function, 652 unsigned int line, const char *fmt, ...) 653 { 654 struct va_format vaf; 655 va_list args; 656 657 if (!ext4_warning_ratelimit(sb)) 658 return; 659 660 va_start(args, fmt); 661 vaf.fmt = fmt; 662 vaf.va = &args; 663 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 664 sb->s_id, function, line, &vaf); 665 va_end(args); 666 } 667 668 void __ext4_warning_inode(const struct inode *inode, const char *function, 669 unsigned int line, const char *fmt, ...) 670 { 671 struct va_format vaf; 672 va_list args; 673 674 if (!ext4_warning_ratelimit(inode->i_sb)) 675 return; 676 677 va_start(args, fmt); 678 vaf.fmt = fmt; 679 vaf.va = &args; 680 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 681 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 682 function, line, inode->i_ino, current->comm, &vaf); 683 va_end(args); 684 } 685 686 void __ext4_grp_locked_error(const char *function, unsigned int line, 687 struct super_block *sb, ext4_group_t grp, 688 unsigned long ino, ext4_fsblk_t block, 689 const char *fmt, ...) 690 __releases(bitlock) 691 __acquires(bitlock) 692 { 693 struct va_format vaf; 694 va_list args; 695 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 696 697 es->s_last_error_ino = cpu_to_le32(ino); 698 es->s_last_error_block = cpu_to_le64(block); 699 __save_error_info(sb, function, line); 700 701 if (ext4_error_ratelimit(sb)) { 702 va_start(args, fmt); 703 vaf.fmt = fmt; 704 vaf.va = &args; 705 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 706 sb->s_id, function, line, grp); 707 if (ino) 708 printk(KERN_CONT "inode %lu: ", ino); 709 if (block) 710 printk(KERN_CONT "block %llu:", 711 (unsigned long long) block); 712 printk(KERN_CONT "%pV\n", &vaf); 713 va_end(args); 714 } 715 716 if (test_opt(sb, ERRORS_CONT)) { 717 ext4_commit_super(sb, 0); 718 return; 719 } 720 721 ext4_unlock_group(sb, grp); 722 ext4_handle_error(sb); 723 /* 724 * We only get here in the ERRORS_RO case; relocking the group 725 * may be dangerous, but nothing bad will happen since the 726 * filesystem will have already been marked read/only and the 727 * journal has been aborted. We return 1 as a hint to callers 728 * who might what to use the return value from 729 * ext4_grp_locked_error() to distinguish between the 730 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 731 * aggressively from the ext4 function in question, with a 732 * more appropriate error code. 733 */ 734 ext4_lock_group(sb, grp); 735 return; 736 } 737 738 void ext4_update_dynamic_rev(struct super_block *sb) 739 { 740 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 741 742 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 743 return; 744 745 ext4_warning(sb, 746 "updating to rev %d because of new feature flag, " 747 "running e2fsck is recommended", 748 EXT4_DYNAMIC_REV); 749 750 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 751 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 752 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 753 /* leave es->s_feature_*compat flags alone */ 754 /* es->s_uuid will be set by e2fsck if empty */ 755 756 /* 757 * The rest of the superblock fields should be zero, and if not it 758 * means they are likely already in use, so leave them alone. We 759 * can leave it up to e2fsck to clean up any inconsistencies there. 760 */ 761 } 762 763 /* 764 * Open the external journal device 765 */ 766 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 767 { 768 struct block_device *bdev; 769 char b[BDEVNAME_SIZE]; 770 771 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 772 if (IS_ERR(bdev)) 773 goto fail; 774 return bdev; 775 776 fail: 777 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 778 __bdevname(dev, b), PTR_ERR(bdev)); 779 return NULL; 780 } 781 782 /* 783 * Release the journal device 784 */ 785 static void ext4_blkdev_put(struct block_device *bdev) 786 { 787 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 788 } 789 790 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 791 { 792 struct block_device *bdev; 793 bdev = sbi->journal_bdev; 794 if (bdev) { 795 ext4_blkdev_put(bdev); 796 sbi->journal_bdev = NULL; 797 } 798 } 799 800 static inline struct inode *orphan_list_entry(struct list_head *l) 801 { 802 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 803 } 804 805 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 806 { 807 struct list_head *l; 808 809 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 810 le32_to_cpu(sbi->s_es->s_last_orphan)); 811 812 printk(KERN_ERR "sb_info orphan list:\n"); 813 list_for_each(l, &sbi->s_orphan) { 814 struct inode *inode = orphan_list_entry(l); 815 printk(KERN_ERR " " 816 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 817 inode->i_sb->s_id, inode->i_ino, inode, 818 inode->i_mode, inode->i_nlink, 819 NEXT_ORPHAN(inode)); 820 } 821 } 822 823 static void ext4_put_super(struct super_block *sb) 824 { 825 struct ext4_sb_info *sbi = EXT4_SB(sb); 826 struct ext4_super_block *es = sbi->s_es; 827 int i, err; 828 829 ext4_unregister_li_request(sb); 830 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 831 832 flush_workqueue(sbi->rsv_conversion_wq); 833 destroy_workqueue(sbi->rsv_conversion_wq); 834 835 if (sbi->s_journal) { 836 err = jbd2_journal_destroy(sbi->s_journal); 837 sbi->s_journal = NULL; 838 if (err < 0) 839 ext4_abort(sb, "Couldn't clean up the journal"); 840 } 841 842 ext4_unregister_sysfs(sb); 843 ext4_es_unregister_shrinker(sbi); 844 del_timer_sync(&sbi->s_err_report); 845 ext4_release_system_zone(sb); 846 ext4_mb_release(sb); 847 ext4_ext_release(sb); 848 849 if (!(sb->s_flags & MS_RDONLY)) { 850 ext4_clear_feature_journal_needs_recovery(sb); 851 es->s_state = cpu_to_le16(sbi->s_mount_state); 852 } 853 if (!(sb->s_flags & MS_RDONLY)) 854 ext4_commit_super(sb, 1); 855 856 for (i = 0; i < sbi->s_gdb_count; i++) 857 brelse(sbi->s_group_desc[i]); 858 kvfree(sbi->s_group_desc); 859 kvfree(sbi->s_flex_groups); 860 percpu_counter_destroy(&sbi->s_freeclusters_counter); 861 percpu_counter_destroy(&sbi->s_freeinodes_counter); 862 percpu_counter_destroy(&sbi->s_dirs_counter); 863 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 864 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 865 brelse(sbi->s_sbh); 866 #ifdef CONFIG_QUOTA 867 for (i = 0; i < EXT4_MAXQUOTAS; i++) 868 kfree(sbi->s_qf_names[i]); 869 #endif 870 871 /* Debugging code just in case the in-memory inode orphan list 872 * isn't empty. The on-disk one can be non-empty if we've 873 * detected an error and taken the fs readonly, but the 874 * in-memory list had better be clean by this point. */ 875 if (!list_empty(&sbi->s_orphan)) 876 dump_orphan_list(sb, sbi); 877 J_ASSERT(list_empty(&sbi->s_orphan)); 878 879 sync_blockdev(sb->s_bdev); 880 invalidate_bdev(sb->s_bdev); 881 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 882 /* 883 * Invalidate the journal device's buffers. We don't want them 884 * floating about in memory - the physical journal device may 885 * hotswapped, and it breaks the `ro-after' testing code. 886 */ 887 sync_blockdev(sbi->journal_bdev); 888 invalidate_bdev(sbi->journal_bdev); 889 ext4_blkdev_remove(sbi); 890 } 891 if (sbi->s_mb_cache) { 892 ext4_xattr_destroy_cache(sbi->s_mb_cache); 893 sbi->s_mb_cache = NULL; 894 } 895 if (sbi->s_mmp_tsk) 896 kthread_stop(sbi->s_mmp_tsk); 897 sb->s_fs_info = NULL; 898 /* 899 * Now that we are completely done shutting down the 900 * superblock, we need to actually destroy the kobject. 901 */ 902 kobject_put(&sbi->s_kobj); 903 wait_for_completion(&sbi->s_kobj_unregister); 904 if (sbi->s_chksum_driver) 905 crypto_free_shash(sbi->s_chksum_driver); 906 kfree(sbi->s_blockgroup_lock); 907 kfree(sbi); 908 } 909 910 static struct kmem_cache *ext4_inode_cachep; 911 912 /* 913 * Called inside transaction, so use GFP_NOFS 914 */ 915 static struct inode *ext4_alloc_inode(struct super_block *sb) 916 { 917 struct ext4_inode_info *ei; 918 919 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 920 if (!ei) 921 return NULL; 922 923 ei->vfs_inode.i_version = 1; 924 spin_lock_init(&ei->i_raw_lock); 925 INIT_LIST_HEAD(&ei->i_prealloc_list); 926 spin_lock_init(&ei->i_prealloc_lock); 927 ext4_es_init_tree(&ei->i_es_tree); 928 rwlock_init(&ei->i_es_lock); 929 INIT_LIST_HEAD(&ei->i_es_list); 930 ei->i_es_all_nr = 0; 931 ei->i_es_shk_nr = 0; 932 ei->i_es_shrink_lblk = 0; 933 ei->i_reserved_data_blocks = 0; 934 ei->i_reserved_meta_blocks = 0; 935 ei->i_allocated_meta_blocks = 0; 936 ei->i_da_metadata_calc_len = 0; 937 ei->i_da_metadata_calc_last_lblock = 0; 938 spin_lock_init(&(ei->i_block_reservation_lock)); 939 #ifdef CONFIG_QUOTA 940 ei->i_reserved_quota = 0; 941 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 942 #endif 943 ei->jinode = NULL; 944 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 945 spin_lock_init(&ei->i_completed_io_lock); 946 ei->i_sync_tid = 0; 947 ei->i_datasync_tid = 0; 948 atomic_set(&ei->i_unwritten, 0); 949 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 950 return &ei->vfs_inode; 951 } 952 953 static int ext4_drop_inode(struct inode *inode) 954 { 955 int drop = generic_drop_inode(inode); 956 957 trace_ext4_drop_inode(inode, drop); 958 return drop; 959 } 960 961 static void ext4_i_callback(struct rcu_head *head) 962 { 963 struct inode *inode = container_of(head, struct inode, i_rcu); 964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 965 } 966 967 static void ext4_destroy_inode(struct inode *inode) 968 { 969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 970 ext4_msg(inode->i_sb, KERN_ERR, 971 "Inode %lu (%p): orphan list check failed!", 972 inode->i_ino, EXT4_I(inode)); 973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 974 EXT4_I(inode), sizeof(struct ext4_inode_info), 975 true); 976 dump_stack(); 977 } 978 call_rcu(&inode->i_rcu, ext4_i_callback); 979 } 980 981 static void init_once(void *foo) 982 { 983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 984 985 INIT_LIST_HEAD(&ei->i_orphan); 986 init_rwsem(&ei->xattr_sem); 987 init_rwsem(&ei->i_data_sem); 988 init_rwsem(&ei->i_mmap_sem); 989 inode_init_once(&ei->vfs_inode); 990 } 991 992 static int __init init_inodecache(void) 993 { 994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 995 sizeof(struct ext4_inode_info), 996 0, (SLAB_RECLAIM_ACCOUNT| 997 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 998 init_once); 999 if (ext4_inode_cachep == NULL) 1000 return -ENOMEM; 1001 return 0; 1002 } 1003 1004 static void destroy_inodecache(void) 1005 { 1006 /* 1007 * Make sure all delayed rcu free inodes are flushed before we 1008 * destroy cache. 1009 */ 1010 rcu_barrier(); 1011 kmem_cache_destroy(ext4_inode_cachep); 1012 } 1013 1014 void ext4_clear_inode(struct inode *inode) 1015 { 1016 invalidate_inode_buffers(inode); 1017 clear_inode(inode); 1018 dquot_drop(inode); 1019 ext4_discard_preallocations(inode); 1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1021 if (EXT4_I(inode)->jinode) { 1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1023 EXT4_I(inode)->jinode); 1024 jbd2_free_inode(EXT4_I(inode)->jinode); 1025 EXT4_I(inode)->jinode = NULL; 1026 } 1027 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1028 fscrypt_put_encryption_info(inode, NULL); 1029 #endif 1030 } 1031 1032 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1033 u64 ino, u32 generation) 1034 { 1035 struct inode *inode; 1036 1037 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1038 return ERR_PTR(-ESTALE); 1039 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1040 return ERR_PTR(-ESTALE); 1041 1042 /* iget isn't really right if the inode is currently unallocated!! 1043 * 1044 * ext4_read_inode will return a bad_inode if the inode had been 1045 * deleted, so we should be safe. 1046 * 1047 * Currently we don't know the generation for parent directory, so 1048 * a generation of 0 means "accept any" 1049 */ 1050 inode = ext4_iget_normal(sb, ino); 1051 if (IS_ERR(inode)) 1052 return ERR_CAST(inode); 1053 if (generation && inode->i_generation != generation) { 1054 iput(inode); 1055 return ERR_PTR(-ESTALE); 1056 } 1057 1058 return inode; 1059 } 1060 1061 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1062 int fh_len, int fh_type) 1063 { 1064 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1065 ext4_nfs_get_inode); 1066 } 1067 1068 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1069 int fh_len, int fh_type) 1070 { 1071 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1072 ext4_nfs_get_inode); 1073 } 1074 1075 /* 1076 * Try to release metadata pages (indirect blocks, directories) which are 1077 * mapped via the block device. Since these pages could have journal heads 1078 * which would prevent try_to_free_buffers() from freeing them, we must use 1079 * jbd2 layer's try_to_free_buffers() function to release them. 1080 */ 1081 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1082 gfp_t wait) 1083 { 1084 journal_t *journal = EXT4_SB(sb)->s_journal; 1085 1086 WARN_ON(PageChecked(page)); 1087 if (!page_has_buffers(page)) 1088 return 0; 1089 if (journal) 1090 return jbd2_journal_try_to_free_buffers(journal, page, 1091 wait & ~__GFP_DIRECT_RECLAIM); 1092 return try_to_free_buffers(page); 1093 } 1094 1095 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1096 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1097 { 1098 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1099 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1100 } 1101 1102 static int ext4_key_prefix(struct inode *inode, u8 **key) 1103 { 1104 *key = EXT4_SB(inode->i_sb)->key_prefix; 1105 return EXT4_SB(inode->i_sb)->key_prefix_size; 1106 } 1107 1108 static int ext4_prepare_context(struct inode *inode) 1109 { 1110 return ext4_convert_inline_data(inode); 1111 } 1112 1113 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1114 void *fs_data) 1115 { 1116 handle_t *handle; 1117 int res, res2; 1118 1119 /* fs_data is null when internally used. */ 1120 if (fs_data) { 1121 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1122 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, 1123 len, 0); 1124 if (!res) { 1125 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1126 ext4_clear_inode_state(inode, 1127 EXT4_STATE_MAY_INLINE_DATA); 1128 } 1129 return res; 1130 } 1131 1132 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1133 ext4_jbd2_credits_xattr(inode)); 1134 if (IS_ERR(handle)) 1135 return PTR_ERR(handle); 1136 1137 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1138 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, 1139 len, 0); 1140 if (!res) { 1141 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1142 res = ext4_mark_inode_dirty(handle, inode); 1143 if (res) 1144 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1145 } 1146 res2 = ext4_journal_stop(handle); 1147 if (!res) 1148 res = res2; 1149 return res; 1150 } 1151 1152 static int ext4_dummy_context(struct inode *inode) 1153 { 1154 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1155 } 1156 1157 static unsigned ext4_max_namelen(struct inode *inode) 1158 { 1159 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1160 EXT4_NAME_LEN; 1161 } 1162 1163 static struct fscrypt_operations ext4_cryptops = { 1164 .get_context = ext4_get_context, 1165 .key_prefix = ext4_key_prefix, 1166 .prepare_context = ext4_prepare_context, 1167 .set_context = ext4_set_context, 1168 .dummy_context = ext4_dummy_context, 1169 .is_encrypted = ext4_encrypted_inode, 1170 .empty_dir = ext4_empty_dir, 1171 .max_namelen = ext4_max_namelen, 1172 }; 1173 #else 1174 static struct fscrypt_operations ext4_cryptops = { 1175 .is_encrypted = ext4_encrypted_inode, 1176 }; 1177 #endif 1178 1179 #ifdef CONFIG_QUOTA 1180 static char *quotatypes[] = INITQFNAMES; 1181 #define QTYPE2NAME(t) (quotatypes[t]) 1182 1183 static int ext4_write_dquot(struct dquot *dquot); 1184 static int ext4_acquire_dquot(struct dquot *dquot); 1185 static int ext4_release_dquot(struct dquot *dquot); 1186 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1187 static int ext4_write_info(struct super_block *sb, int type); 1188 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1189 struct path *path); 1190 static int ext4_quota_off(struct super_block *sb, int type); 1191 static int ext4_quota_on_mount(struct super_block *sb, int type); 1192 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1193 size_t len, loff_t off); 1194 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1195 const char *data, size_t len, loff_t off); 1196 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1197 unsigned int flags); 1198 static int ext4_enable_quotas(struct super_block *sb); 1199 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1200 1201 static struct dquot **ext4_get_dquots(struct inode *inode) 1202 { 1203 return EXT4_I(inode)->i_dquot; 1204 } 1205 1206 static const struct dquot_operations ext4_quota_operations = { 1207 .get_reserved_space = ext4_get_reserved_space, 1208 .write_dquot = ext4_write_dquot, 1209 .acquire_dquot = ext4_acquire_dquot, 1210 .release_dquot = ext4_release_dquot, 1211 .mark_dirty = ext4_mark_dquot_dirty, 1212 .write_info = ext4_write_info, 1213 .alloc_dquot = dquot_alloc, 1214 .destroy_dquot = dquot_destroy, 1215 .get_projid = ext4_get_projid, 1216 .get_next_id = ext4_get_next_id, 1217 }; 1218 1219 static const struct quotactl_ops ext4_qctl_operations = { 1220 .quota_on = ext4_quota_on, 1221 .quota_off = ext4_quota_off, 1222 .quota_sync = dquot_quota_sync, 1223 .get_state = dquot_get_state, 1224 .set_info = dquot_set_dqinfo, 1225 .get_dqblk = dquot_get_dqblk, 1226 .set_dqblk = dquot_set_dqblk, 1227 .get_nextdqblk = dquot_get_next_dqblk, 1228 }; 1229 #endif 1230 1231 static const struct super_operations ext4_sops = { 1232 .alloc_inode = ext4_alloc_inode, 1233 .destroy_inode = ext4_destroy_inode, 1234 .write_inode = ext4_write_inode, 1235 .dirty_inode = ext4_dirty_inode, 1236 .drop_inode = ext4_drop_inode, 1237 .evict_inode = ext4_evict_inode, 1238 .put_super = ext4_put_super, 1239 .sync_fs = ext4_sync_fs, 1240 .freeze_fs = ext4_freeze, 1241 .unfreeze_fs = ext4_unfreeze, 1242 .statfs = ext4_statfs, 1243 .remount_fs = ext4_remount, 1244 .show_options = ext4_show_options, 1245 #ifdef CONFIG_QUOTA 1246 .quota_read = ext4_quota_read, 1247 .quota_write = ext4_quota_write, 1248 .get_dquots = ext4_get_dquots, 1249 #endif 1250 .bdev_try_to_free_page = bdev_try_to_free_page, 1251 }; 1252 1253 static const struct export_operations ext4_export_ops = { 1254 .fh_to_dentry = ext4_fh_to_dentry, 1255 .fh_to_parent = ext4_fh_to_parent, 1256 .get_parent = ext4_get_parent, 1257 }; 1258 1259 enum { 1260 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1261 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1262 Opt_nouid32, Opt_debug, Opt_removed, 1263 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1264 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1265 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1266 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1267 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1268 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1269 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1270 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1271 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1272 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1273 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1274 Opt_lazytime, Opt_nolazytime, 1275 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1276 Opt_inode_readahead_blks, Opt_journal_ioprio, 1277 Opt_dioread_nolock, Opt_dioread_lock, 1278 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1279 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1280 }; 1281 1282 static const match_table_t tokens = { 1283 {Opt_bsd_df, "bsddf"}, 1284 {Opt_minix_df, "minixdf"}, 1285 {Opt_grpid, "grpid"}, 1286 {Opt_grpid, "bsdgroups"}, 1287 {Opt_nogrpid, "nogrpid"}, 1288 {Opt_nogrpid, "sysvgroups"}, 1289 {Opt_resgid, "resgid=%u"}, 1290 {Opt_resuid, "resuid=%u"}, 1291 {Opt_sb, "sb=%u"}, 1292 {Opt_err_cont, "errors=continue"}, 1293 {Opt_err_panic, "errors=panic"}, 1294 {Opt_err_ro, "errors=remount-ro"}, 1295 {Opt_nouid32, "nouid32"}, 1296 {Opt_debug, "debug"}, 1297 {Opt_removed, "oldalloc"}, 1298 {Opt_removed, "orlov"}, 1299 {Opt_user_xattr, "user_xattr"}, 1300 {Opt_nouser_xattr, "nouser_xattr"}, 1301 {Opt_acl, "acl"}, 1302 {Opt_noacl, "noacl"}, 1303 {Opt_noload, "norecovery"}, 1304 {Opt_noload, "noload"}, 1305 {Opt_removed, "nobh"}, 1306 {Opt_removed, "bh"}, 1307 {Opt_commit, "commit=%u"}, 1308 {Opt_min_batch_time, "min_batch_time=%u"}, 1309 {Opt_max_batch_time, "max_batch_time=%u"}, 1310 {Opt_journal_dev, "journal_dev=%u"}, 1311 {Opt_journal_path, "journal_path=%s"}, 1312 {Opt_journal_checksum, "journal_checksum"}, 1313 {Opt_nojournal_checksum, "nojournal_checksum"}, 1314 {Opt_journal_async_commit, "journal_async_commit"}, 1315 {Opt_abort, "abort"}, 1316 {Opt_data_journal, "data=journal"}, 1317 {Opt_data_ordered, "data=ordered"}, 1318 {Opt_data_writeback, "data=writeback"}, 1319 {Opt_data_err_abort, "data_err=abort"}, 1320 {Opt_data_err_ignore, "data_err=ignore"}, 1321 {Opt_offusrjquota, "usrjquota="}, 1322 {Opt_usrjquota, "usrjquota=%s"}, 1323 {Opt_offgrpjquota, "grpjquota="}, 1324 {Opt_grpjquota, "grpjquota=%s"}, 1325 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1326 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1327 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1328 {Opt_grpquota, "grpquota"}, 1329 {Opt_noquota, "noquota"}, 1330 {Opt_quota, "quota"}, 1331 {Opt_usrquota, "usrquota"}, 1332 {Opt_prjquota, "prjquota"}, 1333 {Opt_barrier, "barrier=%u"}, 1334 {Opt_barrier, "barrier"}, 1335 {Opt_nobarrier, "nobarrier"}, 1336 {Opt_i_version, "i_version"}, 1337 {Opt_dax, "dax"}, 1338 {Opt_stripe, "stripe=%u"}, 1339 {Opt_delalloc, "delalloc"}, 1340 {Opt_lazytime, "lazytime"}, 1341 {Opt_nolazytime, "nolazytime"}, 1342 {Opt_nodelalloc, "nodelalloc"}, 1343 {Opt_removed, "mblk_io_submit"}, 1344 {Opt_removed, "nomblk_io_submit"}, 1345 {Opt_block_validity, "block_validity"}, 1346 {Opt_noblock_validity, "noblock_validity"}, 1347 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1348 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1349 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1350 {Opt_auto_da_alloc, "auto_da_alloc"}, 1351 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1352 {Opt_dioread_nolock, "dioread_nolock"}, 1353 {Opt_dioread_lock, "dioread_lock"}, 1354 {Opt_discard, "discard"}, 1355 {Opt_nodiscard, "nodiscard"}, 1356 {Opt_init_itable, "init_itable=%u"}, 1357 {Opt_init_itable, "init_itable"}, 1358 {Opt_noinit_itable, "noinit_itable"}, 1359 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1360 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1361 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1362 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1363 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1364 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1365 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1366 {Opt_err, NULL}, 1367 }; 1368 1369 static ext4_fsblk_t get_sb_block(void **data) 1370 { 1371 ext4_fsblk_t sb_block; 1372 char *options = (char *) *data; 1373 1374 if (!options || strncmp(options, "sb=", 3) != 0) 1375 return 1; /* Default location */ 1376 1377 options += 3; 1378 /* TODO: use simple_strtoll with >32bit ext4 */ 1379 sb_block = simple_strtoul(options, &options, 0); 1380 if (*options && *options != ',') { 1381 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1382 (char *) *data); 1383 return 1; 1384 } 1385 if (*options == ',') 1386 options++; 1387 *data = (void *) options; 1388 1389 return sb_block; 1390 } 1391 1392 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1393 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1394 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1395 1396 #ifdef CONFIG_QUOTA 1397 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1398 { 1399 struct ext4_sb_info *sbi = EXT4_SB(sb); 1400 char *qname; 1401 int ret = -1; 1402 1403 if (sb_any_quota_loaded(sb) && 1404 !sbi->s_qf_names[qtype]) { 1405 ext4_msg(sb, KERN_ERR, 1406 "Cannot change journaled " 1407 "quota options when quota turned on"); 1408 return -1; 1409 } 1410 if (ext4_has_feature_quota(sb)) { 1411 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1412 "ignored when QUOTA feature is enabled"); 1413 return 1; 1414 } 1415 qname = match_strdup(args); 1416 if (!qname) { 1417 ext4_msg(sb, KERN_ERR, 1418 "Not enough memory for storing quotafile name"); 1419 return -1; 1420 } 1421 if (sbi->s_qf_names[qtype]) { 1422 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1423 ret = 1; 1424 else 1425 ext4_msg(sb, KERN_ERR, 1426 "%s quota file already specified", 1427 QTYPE2NAME(qtype)); 1428 goto errout; 1429 } 1430 if (strchr(qname, '/')) { 1431 ext4_msg(sb, KERN_ERR, 1432 "quotafile must be on filesystem root"); 1433 goto errout; 1434 } 1435 sbi->s_qf_names[qtype] = qname; 1436 set_opt(sb, QUOTA); 1437 return 1; 1438 errout: 1439 kfree(qname); 1440 return ret; 1441 } 1442 1443 static int clear_qf_name(struct super_block *sb, int qtype) 1444 { 1445 1446 struct ext4_sb_info *sbi = EXT4_SB(sb); 1447 1448 if (sb_any_quota_loaded(sb) && 1449 sbi->s_qf_names[qtype]) { 1450 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1451 " when quota turned on"); 1452 return -1; 1453 } 1454 kfree(sbi->s_qf_names[qtype]); 1455 sbi->s_qf_names[qtype] = NULL; 1456 return 1; 1457 } 1458 #endif 1459 1460 #define MOPT_SET 0x0001 1461 #define MOPT_CLEAR 0x0002 1462 #define MOPT_NOSUPPORT 0x0004 1463 #define MOPT_EXPLICIT 0x0008 1464 #define MOPT_CLEAR_ERR 0x0010 1465 #define MOPT_GTE0 0x0020 1466 #ifdef CONFIG_QUOTA 1467 #define MOPT_Q 0 1468 #define MOPT_QFMT 0x0040 1469 #else 1470 #define MOPT_Q MOPT_NOSUPPORT 1471 #define MOPT_QFMT MOPT_NOSUPPORT 1472 #endif 1473 #define MOPT_DATAJ 0x0080 1474 #define MOPT_NO_EXT2 0x0100 1475 #define MOPT_NO_EXT3 0x0200 1476 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1477 #define MOPT_STRING 0x0400 1478 1479 static const struct mount_opts { 1480 int token; 1481 int mount_opt; 1482 int flags; 1483 } ext4_mount_opts[] = { 1484 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1485 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1486 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1487 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1488 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1489 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1490 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1491 MOPT_EXT4_ONLY | MOPT_SET}, 1492 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1493 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1494 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1495 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1496 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1497 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1498 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1499 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1500 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1501 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1502 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1503 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1504 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1505 EXT4_MOUNT_JOURNAL_CHECKSUM), 1506 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1507 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1508 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1509 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1510 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1511 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1512 MOPT_NO_EXT2}, 1513 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1514 MOPT_NO_EXT2}, 1515 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1516 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1517 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1518 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1519 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1520 {Opt_commit, 0, MOPT_GTE0}, 1521 {Opt_max_batch_time, 0, MOPT_GTE0}, 1522 {Opt_min_batch_time, 0, MOPT_GTE0}, 1523 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1524 {Opt_init_itable, 0, MOPT_GTE0}, 1525 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1526 {Opt_stripe, 0, MOPT_GTE0}, 1527 {Opt_resuid, 0, MOPT_GTE0}, 1528 {Opt_resgid, 0, MOPT_GTE0}, 1529 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1530 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1531 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1532 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1533 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1534 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1535 MOPT_NO_EXT2 | MOPT_DATAJ}, 1536 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1537 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1538 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1539 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1540 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1541 #else 1542 {Opt_acl, 0, MOPT_NOSUPPORT}, 1543 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1544 #endif 1545 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1546 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1547 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1548 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1549 MOPT_SET | MOPT_Q}, 1550 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1551 MOPT_SET | MOPT_Q}, 1552 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1553 MOPT_SET | MOPT_Q}, 1554 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1555 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1556 MOPT_CLEAR | MOPT_Q}, 1557 {Opt_usrjquota, 0, MOPT_Q}, 1558 {Opt_grpjquota, 0, MOPT_Q}, 1559 {Opt_offusrjquota, 0, MOPT_Q}, 1560 {Opt_offgrpjquota, 0, MOPT_Q}, 1561 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1562 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1563 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1564 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1565 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1566 {Opt_err, 0, 0} 1567 }; 1568 1569 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1570 substring_t *args, unsigned long *journal_devnum, 1571 unsigned int *journal_ioprio, int is_remount) 1572 { 1573 struct ext4_sb_info *sbi = EXT4_SB(sb); 1574 const struct mount_opts *m; 1575 kuid_t uid; 1576 kgid_t gid; 1577 int arg = 0; 1578 1579 #ifdef CONFIG_QUOTA 1580 if (token == Opt_usrjquota) 1581 return set_qf_name(sb, USRQUOTA, &args[0]); 1582 else if (token == Opt_grpjquota) 1583 return set_qf_name(sb, GRPQUOTA, &args[0]); 1584 else if (token == Opt_offusrjquota) 1585 return clear_qf_name(sb, USRQUOTA); 1586 else if (token == Opt_offgrpjquota) 1587 return clear_qf_name(sb, GRPQUOTA); 1588 #endif 1589 switch (token) { 1590 case Opt_noacl: 1591 case Opt_nouser_xattr: 1592 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1593 break; 1594 case Opt_sb: 1595 return 1; /* handled by get_sb_block() */ 1596 case Opt_removed: 1597 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1598 return 1; 1599 case Opt_abort: 1600 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1601 return 1; 1602 case Opt_i_version: 1603 sb->s_flags |= MS_I_VERSION; 1604 return 1; 1605 case Opt_lazytime: 1606 sb->s_flags |= MS_LAZYTIME; 1607 return 1; 1608 case Opt_nolazytime: 1609 sb->s_flags &= ~MS_LAZYTIME; 1610 return 1; 1611 } 1612 1613 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1614 if (token == m->token) 1615 break; 1616 1617 if (m->token == Opt_err) { 1618 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1619 "or missing value", opt); 1620 return -1; 1621 } 1622 1623 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1624 ext4_msg(sb, KERN_ERR, 1625 "Mount option \"%s\" incompatible with ext2", opt); 1626 return -1; 1627 } 1628 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1629 ext4_msg(sb, KERN_ERR, 1630 "Mount option \"%s\" incompatible with ext3", opt); 1631 return -1; 1632 } 1633 1634 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1635 return -1; 1636 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1637 return -1; 1638 if (m->flags & MOPT_EXPLICIT) { 1639 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1640 set_opt2(sb, EXPLICIT_DELALLOC); 1641 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1642 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1643 } else 1644 return -1; 1645 } 1646 if (m->flags & MOPT_CLEAR_ERR) 1647 clear_opt(sb, ERRORS_MASK); 1648 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1649 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1650 "options when quota turned on"); 1651 return -1; 1652 } 1653 1654 if (m->flags & MOPT_NOSUPPORT) { 1655 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1656 } else if (token == Opt_commit) { 1657 if (arg == 0) 1658 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1659 sbi->s_commit_interval = HZ * arg; 1660 } else if (token == Opt_max_batch_time) { 1661 sbi->s_max_batch_time = arg; 1662 } else if (token == Opt_min_batch_time) { 1663 sbi->s_min_batch_time = arg; 1664 } else if (token == Opt_inode_readahead_blks) { 1665 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1666 ext4_msg(sb, KERN_ERR, 1667 "EXT4-fs: inode_readahead_blks must be " 1668 "0 or a power of 2 smaller than 2^31"); 1669 return -1; 1670 } 1671 sbi->s_inode_readahead_blks = arg; 1672 } else if (token == Opt_init_itable) { 1673 set_opt(sb, INIT_INODE_TABLE); 1674 if (!args->from) 1675 arg = EXT4_DEF_LI_WAIT_MULT; 1676 sbi->s_li_wait_mult = arg; 1677 } else if (token == Opt_max_dir_size_kb) { 1678 sbi->s_max_dir_size_kb = arg; 1679 } else if (token == Opt_stripe) { 1680 sbi->s_stripe = arg; 1681 } else if (token == Opt_resuid) { 1682 uid = make_kuid(current_user_ns(), arg); 1683 if (!uid_valid(uid)) { 1684 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1685 return -1; 1686 } 1687 sbi->s_resuid = uid; 1688 } else if (token == Opt_resgid) { 1689 gid = make_kgid(current_user_ns(), arg); 1690 if (!gid_valid(gid)) { 1691 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1692 return -1; 1693 } 1694 sbi->s_resgid = gid; 1695 } else if (token == Opt_journal_dev) { 1696 if (is_remount) { 1697 ext4_msg(sb, KERN_ERR, 1698 "Cannot specify journal on remount"); 1699 return -1; 1700 } 1701 *journal_devnum = arg; 1702 } else if (token == Opt_journal_path) { 1703 char *journal_path; 1704 struct inode *journal_inode; 1705 struct path path; 1706 int error; 1707 1708 if (is_remount) { 1709 ext4_msg(sb, KERN_ERR, 1710 "Cannot specify journal on remount"); 1711 return -1; 1712 } 1713 journal_path = match_strdup(&args[0]); 1714 if (!journal_path) { 1715 ext4_msg(sb, KERN_ERR, "error: could not dup " 1716 "journal device string"); 1717 return -1; 1718 } 1719 1720 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1721 if (error) { 1722 ext4_msg(sb, KERN_ERR, "error: could not find " 1723 "journal device path: error %d", error); 1724 kfree(journal_path); 1725 return -1; 1726 } 1727 1728 journal_inode = d_inode(path.dentry); 1729 if (!S_ISBLK(journal_inode->i_mode)) { 1730 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1731 "is not a block device", journal_path); 1732 path_put(&path); 1733 kfree(journal_path); 1734 return -1; 1735 } 1736 1737 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1738 path_put(&path); 1739 kfree(journal_path); 1740 } else if (token == Opt_journal_ioprio) { 1741 if (arg > 7) { 1742 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1743 " (must be 0-7)"); 1744 return -1; 1745 } 1746 *journal_ioprio = 1747 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1748 } else if (token == Opt_test_dummy_encryption) { 1749 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1750 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1751 ext4_msg(sb, KERN_WARNING, 1752 "Test dummy encryption mode enabled"); 1753 #else 1754 ext4_msg(sb, KERN_WARNING, 1755 "Test dummy encryption mount option ignored"); 1756 #endif 1757 } else if (m->flags & MOPT_DATAJ) { 1758 if (is_remount) { 1759 if (!sbi->s_journal) 1760 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1761 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1762 ext4_msg(sb, KERN_ERR, 1763 "Cannot change data mode on remount"); 1764 return -1; 1765 } 1766 } else { 1767 clear_opt(sb, DATA_FLAGS); 1768 sbi->s_mount_opt |= m->mount_opt; 1769 } 1770 #ifdef CONFIG_QUOTA 1771 } else if (m->flags & MOPT_QFMT) { 1772 if (sb_any_quota_loaded(sb) && 1773 sbi->s_jquota_fmt != m->mount_opt) { 1774 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1775 "quota options when quota turned on"); 1776 return -1; 1777 } 1778 if (ext4_has_feature_quota(sb)) { 1779 ext4_msg(sb, KERN_INFO, 1780 "Quota format mount options ignored " 1781 "when QUOTA feature is enabled"); 1782 return 1; 1783 } 1784 sbi->s_jquota_fmt = m->mount_opt; 1785 #endif 1786 } else if (token == Opt_dax) { 1787 #ifdef CONFIG_FS_DAX 1788 ext4_msg(sb, KERN_WARNING, 1789 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1790 sbi->s_mount_opt |= m->mount_opt; 1791 #else 1792 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1793 return -1; 1794 #endif 1795 } else if (token == Opt_data_err_abort) { 1796 sbi->s_mount_opt |= m->mount_opt; 1797 } else if (token == Opt_data_err_ignore) { 1798 sbi->s_mount_opt &= ~m->mount_opt; 1799 } else { 1800 if (!args->from) 1801 arg = 1; 1802 if (m->flags & MOPT_CLEAR) 1803 arg = !arg; 1804 else if (unlikely(!(m->flags & MOPT_SET))) { 1805 ext4_msg(sb, KERN_WARNING, 1806 "buggy handling of option %s", opt); 1807 WARN_ON(1); 1808 return -1; 1809 } 1810 if (arg != 0) 1811 sbi->s_mount_opt |= m->mount_opt; 1812 else 1813 sbi->s_mount_opt &= ~m->mount_opt; 1814 } 1815 return 1; 1816 } 1817 1818 static int parse_options(char *options, struct super_block *sb, 1819 unsigned long *journal_devnum, 1820 unsigned int *journal_ioprio, 1821 int is_remount) 1822 { 1823 struct ext4_sb_info *sbi = EXT4_SB(sb); 1824 char *p; 1825 substring_t args[MAX_OPT_ARGS]; 1826 int token; 1827 1828 if (!options) 1829 return 1; 1830 1831 while ((p = strsep(&options, ",")) != NULL) { 1832 if (!*p) 1833 continue; 1834 /* 1835 * Initialize args struct so we know whether arg was 1836 * found; some options take optional arguments. 1837 */ 1838 args[0].to = args[0].from = NULL; 1839 token = match_token(p, tokens, args); 1840 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1841 journal_ioprio, is_remount) < 0) 1842 return 0; 1843 } 1844 #ifdef CONFIG_QUOTA 1845 /* 1846 * We do the test below only for project quotas. 'usrquota' and 1847 * 'grpquota' mount options are allowed even without quota feature 1848 * to support legacy quotas in quota files. 1849 */ 1850 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1851 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1852 "Cannot enable project quota enforcement."); 1853 return 0; 1854 } 1855 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1856 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1857 clear_opt(sb, USRQUOTA); 1858 1859 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1860 clear_opt(sb, GRPQUOTA); 1861 1862 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1863 ext4_msg(sb, KERN_ERR, "old and new quota " 1864 "format mixing"); 1865 return 0; 1866 } 1867 1868 if (!sbi->s_jquota_fmt) { 1869 ext4_msg(sb, KERN_ERR, "journaled quota format " 1870 "not specified"); 1871 return 0; 1872 } 1873 } 1874 #endif 1875 if (test_opt(sb, DIOREAD_NOLOCK)) { 1876 int blocksize = 1877 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1878 1879 if (blocksize < PAGE_SIZE) { 1880 ext4_msg(sb, KERN_ERR, "can't mount with " 1881 "dioread_nolock if block size != PAGE_SIZE"); 1882 return 0; 1883 } 1884 } 1885 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1886 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1887 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1888 "in data=ordered mode"); 1889 return 0; 1890 } 1891 return 1; 1892 } 1893 1894 static inline void ext4_show_quota_options(struct seq_file *seq, 1895 struct super_block *sb) 1896 { 1897 #if defined(CONFIG_QUOTA) 1898 struct ext4_sb_info *sbi = EXT4_SB(sb); 1899 1900 if (sbi->s_jquota_fmt) { 1901 char *fmtname = ""; 1902 1903 switch (sbi->s_jquota_fmt) { 1904 case QFMT_VFS_OLD: 1905 fmtname = "vfsold"; 1906 break; 1907 case QFMT_VFS_V0: 1908 fmtname = "vfsv0"; 1909 break; 1910 case QFMT_VFS_V1: 1911 fmtname = "vfsv1"; 1912 break; 1913 } 1914 seq_printf(seq, ",jqfmt=%s", fmtname); 1915 } 1916 1917 if (sbi->s_qf_names[USRQUOTA]) 1918 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1919 1920 if (sbi->s_qf_names[GRPQUOTA]) 1921 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1922 #endif 1923 } 1924 1925 static const char *token2str(int token) 1926 { 1927 const struct match_token *t; 1928 1929 for (t = tokens; t->token != Opt_err; t++) 1930 if (t->token == token && !strchr(t->pattern, '=')) 1931 break; 1932 return t->pattern; 1933 } 1934 1935 /* 1936 * Show an option if 1937 * - it's set to a non-default value OR 1938 * - if the per-sb default is different from the global default 1939 */ 1940 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1941 int nodefs) 1942 { 1943 struct ext4_sb_info *sbi = EXT4_SB(sb); 1944 struct ext4_super_block *es = sbi->s_es; 1945 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1946 const struct mount_opts *m; 1947 char sep = nodefs ? '\n' : ','; 1948 1949 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1950 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1951 1952 if (sbi->s_sb_block != 1) 1953 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1954 1955 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1956 int want_set = m->flags & MOPT_SET; 1957 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1958 (m->flags & MOPT_CLEAR_ERR)) 1959 continue; 1960 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1961 continue; /* skip if same as the default */ 1962 if ((want_set && 1963 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1964 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1965 continue; /* select Opt_noFoo vs Opt_Foo */ 1966 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1967 } 1968 1969 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1970 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1971 SEQ_OPTS_PRINT("resuid=%u", 1972 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1973 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1974 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1975 SEQ_OPTS_PRINT("resgid=%u", 1976 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1977 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1978 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1979 SEQ_OPTS_PUTS("errors=remount-ro"); 1980 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1981 SEQ_OPTS_PUTS("errors=continue"); 1982 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1983 SEQ_OPTS_PUTS("errors=panic"); 1984 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1985 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1986 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1987 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1988 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1989 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1990 if (sb->s_flags & MS_I_VERSION) 1991 SEQ_OPTS_PUTS("i_version"); 1992 if (nodefs || sbi->s_stripe) 1993 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1994 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1995 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1996 SEQ_OPTS_PUTS("data=journal"); 1997 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1998 SEQ_OPTS_PUTS("data=ordered"); 1999 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2000 SEQ_OPTS_PUTS("data=writeback"); 2001 } 2002 if (nodefs || 2003 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2004 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2005 sbi->s_inode_readahead_blks); 2006 2007 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2008 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2009 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2010 if (nodefs || sbi->s_max_dir_size_kb) 2011 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2012 if (test_opt(sb, DATA_ERR_ABORT)) 2013 SEQ_OPTS_PUTS("data_err=abort"); 2014 2015 ext4_show_quota_options(seq, sb); 2016 return 0; 2017 } 2018 2019 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2020 { 2021 return _ext4_show_options(seq, root->d_sb, 0); 2022 } 2023 2024 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2025 { 2026 struct super_block *sb = seq->private; 2027 int rc; 2028 2029 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2030 rc = _ext4_show_options(seq, sb, 1); 2031 seq_puts(seq, "\n"); 2032 return rc; 2033 } 2034 2035 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2036 int read_only) 2037 { 2038 struct ext4_sb_info *sbi = EXT4_SB(sb); 2039 int res = 0; 2040 2041 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2042 ext4_msg(sb, KERN_ERR, "revision level too high, " 2043 "forcing read-only mode"); 2044 res = MS_RDONLY; 2045 } 2046 if (read_only) 2047 goto done; 2048 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2049 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2050 "running e2fsck is recommended"); 2051 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2052 ext4_msg(sb, KERN_WARNING, 2053 "warning: mounting fs with errors, " 2054 "running e2fsck is recommended"); 2055 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2056 le16_to_cpu(es->s_mnt_count) >= 2057 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2058 ext4_msg(sb, KERN_WARNING, 2059 "warning: maximal mount count reached, " 2060 "running e2fsck is recommended"); 2061 else if (le32_to_cpu(es->s_checkinterval) && 2062 (le32_to_cpu(es->s_lastcheck) + 2063 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2064 ext4_msg(sb, KERN_WARNING, 2065 "warning: checktime reached, " 2066 "running e2fsck is recommended"); 2067 if (!sbi->s_journal) 2068 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2069 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2070 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2071 le16_add_cpu(&es->s_mnt_count, 1); 2072 es->s_mtime = cpu_to_le32(get_seconds()); 2073 ext4_update_dynamic_rev(sb); 2074 if (sbi->s_journal) 2075 ext4_set_feature_journal_needs_recovery(sb); 2076 2077 ext4_commit_super(sb, 1); 2078 done: 2079 if (test_opt(sb, DEBUG)) 2080 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2081 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2082 sb->s_blocksize, 2083 sbi->s_groups_count, 2084 EXT4_BLOCKS_PER_GROUP(sb), 2085 EXT4_INODES_PER_GROUP(sb), 2086 sbi->s_mount_opt, sbi->s_mount_opt2); 2087 2088 cleancache_init_fs(sb); 2089 return res; 2090 } 2091 2092 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2093 { 2094 struct ext4_sb_info *sbi = EXT4_SB(sb); 2095 struct flex_groups *new_groups; 2096 int size; 2097 2098 if (!sbi->s_log_groups_per_flex) 2099 return 0; 2100 2101 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2102 if (size <= sbi->s_flex_groups_allocated) 2103 return 0; 2104 2105 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2106 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2107 if (!new_groups) { 2108 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2109 size / (int) sizeof(struct flex_groups)); 2110 return -ENOMEM; 2111 } 2112 2113 if (sbi->s_flex_groups) { 2114 memcpy(new_groups, sbi->s_flex_groups, 2115 (sbi->s_flex_groups_allocated * 2116 sizeof(struct flex_groups))); 2117 kvfree(sbi->s_flex_groups); 2118 } 2119 sbi->s_flex_groups = new_groups; 2120 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2121 return 0; 2122 } 2123 2124 static int ext4_fill_flex_info(struct super_block *sb) 2125 { 2126 struct ext4_sb_info *sbi = EXT4_SB(sb); 2127 struct ext4_group_desc *gdp = NULL; 2128 ext4_group_t flex_group; 2129 int i, err; 2130 2131 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2132 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2133 sbi->s_log_groups_per_flex = 0; 2134 return 1; 2135 } 2136 2137 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2138 if (err) 2139 goto failed; 2140 2141 for (i = 0; i < sbi->s_groups_count; i++) { 2142 gdp = ext4_get_group_desc(sb, i, NULL); 2143 2144 flex_group = ext4_flex_group(sbi, i); 2145 atomic_add(ext4_free_inodes_count(sb, gdp), 2146 &sbi->s_flex_groups[flex_group].free_inodes); 2147 atomic64_add(ext4_free_group_clusters(sb, gdp), 2148 &sbi->s_flex_groups[flex_group].free_clusters); 2149 atomic_add(ext4_used_dirs_count(sb, gdp), 2150 &sbi->s_flex_groups[flex_group].used_dirs); 2151 } 2152 2153 return 1; 2154 failed: 2155 return 0; 2156 } 2157 2158 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2159 struct ext4_group_desc *gdp) 2160 { 2161 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2162 __u16 crc = 0; 2163 __le32 le_group = cpu_to_le32(block_group); 2164 struct ext4_sb_info *sbi = EXT4_SB(sb); 2165 2166 if (ext4_has_metadata_csum(sbi->s_sb)) { 2167 /* Use new metadata_csum algorithm */ 2168 __u32 csum32; 2169 __u16 dummy_csum = 0; 2170 2171 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2172 sizeof(le_group)); 2173 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2174 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2175 sizeof(dummy_csum)); 2176 offset += sizeof(dummy_csum); 2177 if (offset < sbi->s_desc_size) 2178 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2179 sbi->s_desc_size - offset); 2180 2181 crc = csum32 & 0xFFFF; 2182 goto out; 2183 } 2184 2185 /* old crc16 code */ 2186 if (!ext4_has_feature_gdt_csum(sb)) 2187 return 0; 2188 2189 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2190 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2191 crc = crc16(crc, (__u8 *)gdp, offset); 2192 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2193 /* for checksum of struct ext4_group_desc do the rest...*/ 2194 if (ext4_has_feature_64bit(sb) && 2195 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2196 crc = crc16(crc, (__u8 *)gdp + offset, 2197 le16_to_cpu(sbi->s_es->s_desc_size) - 2198 offset); 2199 2200 out: 2201 return cpu_to_le16(crc); 2202 } 2203 2204 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2205 struct ext4_group_desc *gdp) 2206 { 2207 if (ext4_has_group_desc_csum(sb) && 2208 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2209 return 0; 2210 2211 return 1; 2212 } 2213 2214 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2215 struct ext4_group_desc *gdp) 2216 { 2217 if (!ext4_has_group_desc_csum(sb)) 2218 return; 2219 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2220 } 2221 2222 /* Called at mount-time, super-block is locked */ 2223 static int ext4_check_descriptors(struct super_block *sb, 2224 ext4_fsblk_t sb_block, 2225 ext4_group_t *first_not_zeroed) 2226 { 2227 struct ext4_sb_info *sbi = EXT4_SB(sb); 2228 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2229 ext4_fsblk_t last_block; 2230 ext4_fsblk_t block_bitmap; 2231 ext4_fsblk_t inode_bitmap; 2232 ext4_fsblk_t inode_table; 2233 int flexbg_flag = 0; 2234 ext4_group_t i, grp = sbi->s_groups_count; 2235 2236 if (ext4_has_feature_flex_bg(sb)) 2237 flexbg_flag = 1; 2238 2239 ext4_debug("Checking group descriptors"); 2240 2241 for (i = 0; i < sbi->s_groups_count; i++) { 2242 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2243 2244 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2245 last_block = ext4_blocks_count(sbi->s_es) - 1; 2246 else 2247 last_block = first_block + 2248 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2249 2250 if ((grp == sbi->s_groups_count) && 2251 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2252 grp = i; 2253 2254 block_bitmap = ext4_block_bitmap(sb, gdp); 2255 if (block_bitmap == sb_block) { 2256 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2257 "Block bitmap for group %u overlaps " 2258 "superblock", i); 2259 } 2260 if (block_bitmap < first_block || block_bitmap > last_block) { 2261 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2262 "Block bitmap for group %u not in group " 2263 "(block %llu)!", i, block_bitmap); 2264 return 0; 2265 } 2266 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2267 if (inode_bitmap == sb_block) { 2268 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2269 "Inode bitmap for group %u overlaps " 2270 "superblock", i); 2271 } 2272 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2273 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2274 "Inode bitmap for group %u not in group " 2275 "(block %llu)!", i, inode_bitmap); 2276 return 0; 2277 } 2278 inode_table = ext4_inode_table(sb, gdp); 2279 if (inode_table == sb_block) { 2280 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2281 "Inode table for group %u overlaps " 2282 "superblock", i); 2283 } 2284 if (inode_table < first_block || 2285 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2286 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2287 "Inode table for group %u not in group " 2288 "(block %llu)!", i, inode_table); 2289 return 0; 2290 } 2291 ext4_lock_group(sb, i); 2292 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2293 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2294 "Checksum for group %u failed (%u!=%u)", 2295 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2296 gdp)), le16_to_cpu(gdp->bg_checksum)); 2297 if (!(sb->s_flags & MS_RDONLY)) { 2298 ext4_unlock_group(sb, i); 2299 return 0; 2300 } 2301 } 2302 ext4_unlock_group(sb, i); 2303 if (!flexbg_flag) 2304 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2305 } 2306 if (NULL != first_not_zeroed) 2307 *first_not_zeroed = grp; 2308 return 1; 2309 } 2310 2311 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2312 * the superblock) which were deleted from all directories, but held open by 2313 * a process at the time of a crash. We walk the list and try to delete these 2314 * inodes at recovery time (only with a read-write filesystem). 2315 * 2316 * In order to keep the orphan inode chain consistent during traversal (in 2317 * case of crash during recovery), we link each inode into the superblock 2318 * orphan list_head and handle it the same way as an inode deletion during 2319 * normal operation (which journals the operations for us). 2320 * 2321 * We only do an iget() and an iput() on each inode, which is very safe if we 2322 * accidentally point at an in-use or already deleted inode. The worst that 2323 * can happen in this case is that we get a "bit already cleared" message from 2324 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2325 * e2fsck was run on this filesystem, and it must have already done the orphan 2326 * inode cleanup for us, so we can safely abort without any further action. 2327 */ 2328 static void ext4_orphan_cleanup(struct super_block *sb, 2329 struct ext4_super_block *es) 2330 { 2331 unsigned int s_flags = sb->s_flags; 2332 int nr_orphans = 0, nr_truncates = 0; 2333 #ifdef CONFIG_QUOTA 2334 int i; 2335 #endif 2336 if (!es->s_last_orphan) { 2337 jbd_debug(4, "no orphan inodes to clean up\n"); 2338 return; 2339 } 2340 2341 if (bdev_read_only(sb->s_bdev)) { 2342 ext4_msg(sb, KERN_ERR, "write access " 2343 "unavailable, skipping orphan cleanup"); 2344 return; 2345 } 2346 2347 /* Check if feature set would not allow a r/w mount */ 2348 if (!ext4_feature_set_ok(sb, 0)) { 2349 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2350 "unknown ROCOMPAT features"); 2351 return; 2352 } 2353 2354 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2355 /* don't clear list on RO mount w/ errors */ 2356 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2357 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2358 "clearing orphan list.\n"); 2359 es->s_last_orphan = 0; 2360 } 2361 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2362 return; 2363 } 2364 2365 if (s_flags & MS_RDONLY) { 2366 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2367 sb->s_flags &= ~MS_RDONLY; 2368 } 2369 #ifdef CONFIG_QUOTA 2370 /* Needed for iput() to work correctly and not trash data */ 2371 sb->s_flags |= MS_ACTIVE; 2372 /* Turn on quotas so that they are updated correctly */ 2373 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2374 if (EXT4_SB(sb)->s_qf_names[i]) { 2375 int ret = ext4_quota_on_mount(sb, i); 2376 if (ret < 0) 2377 ext4_msg(sb, KERN_ERR, 2378 "Cannot turn on journaled " 2379 "quota: error %d", ret); 2380 } 2381 } 2382 #endif 2383 2384 while (es->s_last_orphan) { 2385 struct inode *inode; 2386 2387 /* 2388 * We may have encountered an error during cleanup; if 2389 * so, skip the rest. 2390 */ 2391 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2392 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2393 es->s_last_orphan = 0; 2394 break; 2395 } 2396 2397 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2398 if (IS_ERR(inode)) { 2399 es->s_last_orphan = 0; 2400 break; 2401 } 2402 2403 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2404 dquot_initialize(inode); 2405 if (inode->i_nlink) { 2406 if (test_opt(sb, DEBUG)) 2407 ext4_msg(sb, KERN_DEBUG, 2408 "%s: truncating inode %lu to %lld bytes", 2409 __func__, inode->i_ino, inode->i_size); 2410 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2411 inode->i_ino, inode->i_size); 2412 inode_lock(inode); 2413 truncate_inode_pages(inode->i_mapping, inode->i_size); 2414 ext4_truncate(inode); 2415 inode_unlock(inode); 2416 nr_truncates++; 2417 } else { 2418 if (test_opt(sb, DEBUG)) 2419 ext4_msg(sb, KERN_DEBUG, 2420 "%s: deleting unreferenced inode %lu", 2421 __func__, inode->i_ino); 2422 jbd_debug(2, "deleting unreferenced inode %lu\n", 2423 inode->i_ino); 2424 nr_orphans++; 2425 } 2426 iput(inode); /* The delete magic happens here! */ 2427 } 2428 2429 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2430 2431 if (nr_orphans) 2432 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2433 PLURAL(nr_orphans)); 2434 if (nr_truncates) 2435 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2436 PLURAL(nr_truncates)); 2437 #ifdef CONFIG_QUOTA 2438 /* Turn quotas off */ 2439 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2440 if (sb_dqopt(sb)->files[i]) 2441 dquot_quota_off(sb, i); 2442 } 2443 #endif 2444 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2445 } 2446 2447 /* 2448 * Maximal extent format file size. 2449 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2450 * extent format containers, within a sector_t, and within i_blocks 2451 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2452 * so that won't be a limiting factor. 2453 * 2454 * However there is other limiting factor. We do store extents in the form 2455 * of starting block and length, hence the resulting length of the extent 2456 * covering maximum file size must fit into on-disk format containers as 2457 * well. Given that length is always by 1 unit bigger than max unit (because 2458 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2459 * 2460 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2461 */ 2462 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2463 { 2464 loff_t res; 2465 loff_t upper_limit = MAX_LFS_FILESIZE; 2466 2467 /* small i_blocks in vfs inode? */ 2468 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2469 /* 2470 * CONFIG_LBDAF is not enabled implies the inode 2471 * i_block represent total blocks in 512 bytes 2472 * 32 == size of vfs inode i_blocks * 8 2473 */ 2474 upper_limit = (1LL << 32) - 1; 2475 2476 /* total blocks in file system block size */ 2477 upper_limit >>= (blkbits - 9); 2478 upper_limit <<= blkbits; 2479 } 2480 2481 /* 2482 * 32-bit extent-start container, ee_block. We lower the maxbytes 2483 * by one fs block, so ee_len can cover the extent of maximum file 2484 * size 2485 */ 2486 res = (1LL << 32) - 1; 2487 res <<= blkbits; 2488 2489 /* Sanity check against vm- & vfs- imposed limits */ 2490 if (res > upper_limit) 2491 res = upper_limit; 2492 2493 return res; 2494 } 2495 2496 /* 2497 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2498 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2499 * We need to be 1 filesystem block less than the 2^48 sector limit. 2500 */ 2501 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2502 { 2503 loff_t res = EXT4_NDIR_BLOCKS; 2504 int meta_blocks; 2505 loff_t upper_limit; 2506 /* This is calculated to be the largest file size for a dense, block 2507 * mapped file such that the file's total number of 512-byte sectors, 2508 * including data and all indirect blocks, does not exceed (2^48 - 1). 2509 * 2510 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2511 * number of 512-byte sectors of the file. 2512 */ 2513 2514 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2515 /* 2516 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2517 * the inode i_block field represents total file blocks in 2518 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2519 */ 2520 upper_limit = (1LL << 32) - 1; 2521 2522 /* total blocks in file system block size */ 2523 upper_limit >>= (bits - 9); 2524 2525 } else { 2526 /* 2527 * We use 48 bit ext4_inode i_blocks 2528 * With EXT4_HUGE_FILE_FL set the i_blocks 2529 * represent total number of blocks in 2530 * file system block size 2531 */ 2532 upper_limit = (1LL << 48) - 1; 2533 2534 } 2535 2536 /* indirect blocks */ 2537 meta_blocks = 1; 2538 /* double indirect blocks */ 2539 meta_blocks += 1 + (1LL << (bits-2)); 2540 /* tripple indirect blocks */ 2541 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2542 2543 upper_limit -= meta_blocks; 2544 upper_limit <<= bits; 2545 2546 res += 1LL << (bits-2); 2547 res += 1LL << (2*(bits-2)); 2548 res += 1LL << (3*(bits-2)); 2549 res <<= bits; 2550 if (res > upper_limit) 2551 res = upper_limit; 2552 2553 if (res > MAX_LFS_FILESIZE) 2554 res = MAX_LFS_FILESIZE; 2555 2556 return res; 2557 } 2558 2559 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2560 ext4_fsblk_t logical_sb_block, int nr) 2561 { 2562 struct ext4_sb_info *sbi = EXT4_SB(sb); 2563 ext4_group_t bg, first_meta_bg; 2564 int has_super = 0; 2565 2566 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2567 2568 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2569 return logical_sb_block + nr + 1; 2570 bg = sbi->s_desc_per_block * nr; 2571 if (ext4_bg_has_super(sb, bg)) 2572 has_super = 1; 2573 2574 /* 2575 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2576 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2577 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2578 * compensate. 2579 */ 2580 if (sb->s_blocksize == 1024 && nr == 0 && 2581 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2582 has_super++; 2583 2584 return (has_super + ext4_group_first_block_no(sb, bg)); 2585 } 2586 2587 /** 2588 * ext4_get_stripe_size: Get the stripe size. 2589 * @sbi: In memory super block info 2590 * 2591 * If we have specified it via mount option, then 2592 * use the mount option value. If the value specified at mount time is 2593 * greater than the blocks per group use the super block value. 2594 * If the super block value is greater than blocks per group return 0. 2595 * Allocator needs it be less than blocks per group. 2596 * 2597 */ 2598 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2599 { 2600 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2601 unsigned long stripe_width = 2602 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2603 int ret; 2604 2605 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2606 ret = sbi->s_stripe; 2607 else if (stripe_width <= sbi->s_blocks_per_group) 2608 ret = stripe_width; 2609 else if (stride <= sbi->s_blocks_per_group) 2610 ret = stride; 2611 else 2612 ret = 0; 2613 2614 /* 2615 * If the stripe width is 1, this makes no sense and 2616 * we set it to 0 to turn off stripe handling code. 2617 */ 2618 if (ret <= 1) 2619 ret = 0; 2620 2621 return ret; 2622 } 2623 2624 /* 2625 * Check whether this filesystem can be mounted based on 2626 * the features present and the RDONLY/RDWR mount requested. 2627 * Returns 1 if this filesystem can be mounted as requested, 2628 * 0 if it cannot be. 2629 */ 2630 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2631 { 2632 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2633 ext4_msg(sb, KERN_ERR, 2634 "Couldn't mount because of " 2635 "unsupported optional features (%x)", 2636 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2637 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2638 return 0; 2639 } 2640 2641 if (readonly) 2642 return 1; 2643 2644 if (ext4_has_feature_readonly(sb)) { 2645 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2646 sb->s_flags |= MS_RDONLY; 2647 return 1; 2648 } 2649 2650 /* Check that feature set is OK for a read-write mount */ 2651 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2652 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2653 "unsupported optional features (%x)", 2654 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2655 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2656 return 0; 2657 } 2658 /* 2659 * Large file size enabled file system can only be mounted 2660 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2661 */ 2662 if (ext4_has_feature_huge_file(sb)) { 2663 if (sizeof(blkcnt_t) < sizeof(u64)) { 2664 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2665 "cannot be mounted RDWR without " 2666 "CONFIG_LBDAF"); 2667 return 0; 2668 } 2669 } 2670 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2671 ext4_msg(sb, KERN_ERR, 2672 "Can't support bigalloc feature without " 2673 "extents feature\n"); 2674 return 0; 2675 } 2676 2677 #ifndef CONFIG_QUOTA 2678 if (ext4_has_feature_quota(sb) && !readonly) { 2679 ext4_msg(sb, KERN_ERR, 2680 "Filesystem with quota feature cannot be mounted RDWR " 2681 "without CONFIG_QUOTA"); 2682 return 0; 2683 } 2684 if (ext4_has_feature_project(sb) && !readonly) { 2685 ext4_msg(sb, KERN_ERR, 2686 "Filesystem with project quota feature cannot be mounted RDWR " 2687 "without CONFIG_QUOTA"); 2688 return 0; 2689 } 2690 #endif /* CONFIG_QUOTA */ 2691 return 1; 2692 } 2693 2694 /* 2695 * This function is called once a day if we have errors logged 2696 * on the file system 2697 */ 2698 static void print_daily_error_info(unsigned long arg) 2699 { 2700 struct super_block *sb = (struct super_block *) arg; 2701 struct ext4_sb_info *sbi; 2702 struct ext4_super_block *es; 2703 2704 sbi = EXT4_SB(sb); 2705 es = sbi->s_es; 2706 2707 if (es->s_error_count) 2708 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2709 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2710 le32_to_cpu(es->s_error_count)); 2711 if (es->s_first_error_time) { 2712 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2713 sb->s_id, le32_to_cpu(es->s_first_error_time), 2714 (int) sizeof(es->s_first_error_func), 2715 es->s_first_error_func, 2716 le32_to_cpu(es->s_first_error_line)); 2717 if (es->s_first_error_ino) 2718 printk(": inode %u", 2719 le32_to_cpu(es->s_first_error_ino)); 2720 if (es->s_first_error_block) 2721 printk(": block %llu", (unsigned long long) 2722 le64_to_cpu(es->s_first_error_block)); 2723 printk("\n"); 2724 } 2725 if (es->s_last_error_time) { 2726 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2727 sb->s_id, le32_to_cpu(es->s_last_error_time), 2728 (int) sizeof(es->s_last_error_func), 2729 es->s_last_error_func, 2730 le32_to_cpu(es->s_last_error_line)); 2731 if (es->s_last_error_ino) 2732 printk(": inode %u", 2733 le32_to_cpu(es->s_last_error_ino)); 2734 if (es->s_last_error_block) 2735 printk(": block %llu", (unsigned long long) 2736 le64_to_cpu(es->s_last_error_block)); 2737 printk("\n"); 2738 } 2739 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2740 } 2741 2742 /* Find next suitable group and run ext4_init_inode_table */ 2743 static int ext4_run_li_request(struct ext4_li_request *elr) 2744 { 2745 struct ext4_group_desc *gdp = NULL; 2746 ext4_group_t group, ngroups; 2747 struct super_block *sb; 2748 unsigned long timeout = 0; 2749 int ret = 0; 2750 2751 sb = elr->lr_super; 2752 ngroups = EXT4_SB(sb)->s_groups_count; 2753 2754 for (group = elr->lr_next_group; group < ngroups; group++) { 2755 gdp = ext4_get_group_desc(sb, group, NULL); 2756 if (!gdp) { 2757 ret = 1; 2758 break; 2759 } 2760 2761 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2762 break; 2763 } 2764 2765 if (group >= ngroups) 2766 ret = 1; 2767 2768 if (!ret) { 2769 timeout = jiffies; 2770 ret = ext4_init_inode_table(sb, group, 2771 elr->lr_timeout ? 0 : 1); 2772 if (elr->lr_timeout == 0) { 2773 timeout = (jiffies - timeout) * 2774 elr->lr_sbi->s_li_wait_mult; 2775 elr->lr_timeout = timeout; 2776 } 2777 elr->lr_next_sched = jiffies + elr->lr_timeout; 2778 elr->lr_next_group = group + 1; 2779 } 2780 return ret; 2781 } 2782 2783 /* 2784 * Remove lr_request from the list_request and free the 2785 * request structure. Should be called with li_list_mtx held 2786 */ 2787 static void ext4_remove_li_request(struct ext4_li_request *elr) 2788 { 2789 struct ext4_sb_info *sbi; 2790 2791 if (!elr) 2792 return; 2793 2794 sbi = elr->lr_sbi; 2795 2796 list_del(&elr->lr_request); 2797 sbi->s_li_request = NULL; 2798 kfree(elr); 2799 } 2800 2801 static void ext4_unregister_li_request(struct super_block *sb) 2802 { 2803 mutex_lock(&ext4_li_mtx); 2804 if (!ext4_li_info) { 2805 mutex_unlock(&ext4_li_mtx); 2806 return; 2807 } 2808 2809 mutex_lock(&ext4_li_info->li_list_mtx); 2810 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2811 mutex_unlock(&ext4_li_info->li_list_mtx); 2812 mutex_unlock(&ext4_li_mtx); 2813 } 2814 2815 static struct task_struct *ext4_lazyinit_task; 2816 2817 /* 2818 * This is the function where ext4lazyinit thread lives. It walks 2819 * through the request list searching for next scheduled filesystem. 2820 * When such a fs is found, run the lazy initialization request 2821 * (ext4_rn_li_request) and keep track of the time spend in this 2822 * function. Based on that time we compute next schedule time of 2823 * the request. When walking through the list is complete, compute 2824 * next waking time and put itself into sleep. 2825 */ 2826 static int ext4_lazyinit_thread(void *arg) 2827 { 2828 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2829 struct list_head *pos, *n; 2830 struct ext4_li_request *elr; 2831 unsigned long next_wakeup, cur; 2832 2833 BUG_ON(NULL == eli); 2834 2835 cont_thread: 2836 while (true) { 2837 next_wakeup = MAX_JIFFY_OFFSET; 2838 2839 mutex_lock(&eli->li_list_mtx); 2840 if (list_empty(&eli->li_request_list)) { 2841 mutex_unlock(&eli->li_list_mtx); 2842 goto exit_thread; 2843 } 2844 list_for_each_safe(pos, n, &eli->li_request_list) { 2845 int err = 0; 2846 int progress = 0; 2847 elr = list_entry(pos, struct ext4_li_request, 2848 lr_request); 2849 2850 if (time_before(jiffies, elr->lr_next_sched)) { 2851 if (time_before(elr->lr_next_sched, next_wakeup)) 2852 next_wakeup = elr->lr_next_sched; 2853 continue; 2854 } 2855 if (down_read_trylock(&elr->lr_super->s_umount)) { 2856 if (sb_start_write_trylock(elr->lr_super)) { 2857 progress = 1; 2858 /* 2859 * We hold sb->s_umount, sb can not 2860 * be removed from the list, it is 2861 * now safe to drop li_list_mtx 2862 */ 2863 mutex_unlock(&eli->li_list_mtx); 2864 err = ext4_run_li_request(elr); 2865 sb_end_write(elr->lr_super); 2866 mutex_lock(&eli->li_list_mtx); 2867 n = pos->next; 2868 } 2869 up_read((&elr->lr_super->s_umount)); 2870 } 2871 /* error, remove the lazy_init job */ 2872 if (err) { 2873 ext4_remove_li_request(elr); 2874 continue; 2875 } 2876 if (!progress) { 2877 elr->lr_next_sched = jiffies + 2878 (prandom_u32() 2879 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2880 } 2881 if (time_before(elr->lr_next_sched, next_wakeup)) 2882 next_wakeup = elr->lr_next_sched; 2883 } 2884 mutex_unlock(&eli->li_list_mtx); 2885 2886 try_to_freeze(); 2887 2888 cur = jiffies; 2889 if ((time_after_eq(cur, next_wakeup)) || 2890 (MAX_JIFFY_OFFSET == next_wakeup)) { 2891 cond_resched(); 2892 continue; 2893 } 2894 2895 schedule_timeout_interruptible(next_wakeup - cur); 2896 2897 if (kthread_should_stop()) { 2898 ext4_clear_request_list(); 2899 goto exit_thread; 2900 } 2901 } 2902 2903 exit_thread: 2904 /* 2905 * It looks like the request list is empty, but we need 2906 * to check it under the li_list_mtx lock, to prevent any 2907 * additions into it, and of course we should lock ext4_li_mtx 2908 * to atomically free the list and ext4_li_info, because at 2909 * this point another ext4 filesystem could be registering 2910 * new one. 2911 */ 2912 mutex_lock(&ext4_li_mtx); 2913 mutex_lock(&eli->li_list_mtx); 2914 if (!list_empty(&eli->li_request_list)) { 2915 mutex_unlock(&eli->li_list_mtx); 2916 mutex_unlock(&ext4_li_mtx); 2917 goto cont_thread; 2918 } 2919 mutex_unlock(&eli->li_list_mtx); 2920 kfree(ext4_li_info); 2921 ext4_li_info = NULL; 2922 mutex_unlock(&ext4_li_mtx); 2923 2924 return 0; 2925 } 2926 2927 static void ext4_clear_request_list(void) 2928 { 2929 struct list_head *pos, *n; 2930 struct ext4_li_request *elr; 2931 2932 mutex_lock(&ext4_li_info->li_list_mtx); 2933 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2934 elr = list_entry(pos, struct ext4_li_request, 2935 lr_request); 2936 ext4_remove_li_request(elr); 2937 } 2938 mutex_unlock(&ext4_li_info->li_list_mtx); 2939 } 2940 2941 static int ext4_run_lazyinit_thread(void) 2942 { 2943 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2944 ext4_li_info, "ext4lazyinit"); 2945 if (IS_ERR(ext4_lazyinit_task)) { 2946 int err = PTR_ERR(ext4_lazyinit_task); 2947 ext4_clear_request_list(); 2948 kfree(ext4_li_info); 2949 ext4_li_info = NULL; 2950 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2951 "initialization thread\n", 2952 err); 2953 return err; 2954 } 2955 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2956 return 0; 2957 } 2958 2959 /* 2960 * Check whether it make sense to run itable init. thread or not. 2961 * If there is at least one uninitialized inode table, return 2962 * corresponding group number, else the loop goes through all 2963 * groups and return total number of groups. 2964 */ 2965 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2966 { 2967 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2968 struct ext4_group_desc *gdp = NULL; 2969 2970 for (group = 0; group < ngroups; group++) { 2971 gdp = ext4_get_group_desc(sb, group, NULL); 2972 if (!gdp) 2973 continue; 2974 2975 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2976 break; 2977 } 2978 2979 return group; 2980 } 2981 2982 static int ext4_li_info_new(void) 2983 { 2984 struct ext4_lazy_init *eli = NULL; 2985 2986 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2987 if (!eli) 2988 return -ENOMEM; 2989 2990 INIT_LIST_HEAD(&eli->li_request_list); 2991 mutex_init(&eli->li_list_mtx); 2992 2993 eli->li_state |= EXT4_LAZYINIT_QUIT; 2994 2995 ext4_li_info = eli; 2996 2997 return 0; 2998 } 2999 3000 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3001 ext4_group_t start) 3002 { 3003 struct ext4_sb_info *sbi = EXT4_SB(sb); 3004 struct ext4_li_request *elr; 3005 3006 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3007 if (!elr) 3008 return NULL; 3009 3010 elr->lr_super = sb; 3011 elr->lr_sbi = sbi; 3012 elr->lr_next_group = start; 3013 3014 /* 3015 * Randomize first schedule time of the request to 3016 * spread the inode table initialization requests 3017 * better. 3018 */ 3019 elr->lr_next_sched = jiffies + (prandom_u32() % 3020 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3021 return elr; 3022 } 3023 3024 int ext4_register_li_request(struct super_block *sb, 3025 ext4_group_t first_not_zeroed) 3026 { 3027 struct ext4_sb_info *sbi = EXT4_SB(sb); 3028 struct ext4_li_request *elr = NULL; 3029 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3030 int ret = 0; 3031 3032 mutex_lock(&ext4_li_mtx); 3033 if (sbi->s_li_request != NULL) { 3034 /* 3035 * Reset timeout so it can be computed again, because 3036 * s_li_wait_mult might have changed. 3037 */ 3038 sbi->s_li_request->lr_timeout = 0; 3039 goto out; 3040 } 3041 3042 if (first_not_zeroed == ngroups || 3043 (sb->s_flags & MS_RDONLY) || 3044 !test_opt(sb, INIT_INODE_TABLE)) 3045 goto out; 3046 3047 elr = ext4_li_request_new(sb, first_not_zeroed); 3048 if (!elr) { 3049 ret = -ENOMEM; 3050 goto out; 3051 } 3052 3053 if (NULL == ext4_li_info) { 3054 ret = ext4_li_info_new(); 3055 if (ret) 3056 goto out; 3057 } 3058 3059 mutex_lock(&ext4_li_info->li_list_mtx); 3060 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3061 mutex_unlock(&ext4_li_info->li_list_mtx); 3062 3063 sbi->s_li_request = elr; 3064 /* 3065 * set elr to NULL here since it has been inserted to 3066 * the request_list and the removal and free of it is 3067 * handled by ext4_clear_request_list from now on. 3068 */ 3069 elr = NULL; 3070 3071 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3072 ret = ext4_run_lazyinit_thread(); 3073 if (ret) 3074 goto out; 3075 } 3076 out: 3077 mutex_unlock(&ext4_li_mtx); 3078 if (ret) 3079 kfree(elr); 3080 return ret; 3081 } 3082 3083 /* 3084 * We do not need to lock anything since this is called on 3085 * module unload. 3086 */ 3087 static void ext4_destroy_lazyinit_thread(void) 3088 { 3089 /* 3090 * If thread exited earlier 3091 * there's nothing to be done. 3092 */ 3093 if (!ext4_li_info || !ext4_lazyinit_task) 3094 return; 3095 3096 kthread_stop(ext4_lazyinit_task); 3097 } 3098 3099 static int set_journal_csum_feature_set(struct super_block *sb) 3100 { 3101 int ret = 1; 3102 int compat, incompat; 3103 struct ext4_sb_info *sbi = EXT4_SB(sb); 3104 3105 if (ext4_has_metadata_csum(sb)) { 3106 /* journal checksum v3 */ 3107 compat = 0; 3108 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3109 } else { 3110 /* journal checksum v1 */ 3111 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3112 incompat = 0; 3113 } 3114 3115 jbd2_journal_clear_features(sbi->s_journal, 3116 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3117 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3118 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3119 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3120 ret = jbd2_journal_set_features(sbi->s_journal, 3121 compat, 0, 3122 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3123 incompat); 3124 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3125 ret = jbd2_journal_set_features(sbi->s_journal, 3126 compat, 0, 3127 incompat); 3128 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3129 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3130 } else { 3131 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3132 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3133 } 3134 3135 return ret; 3136 } 3137 3138 /* 3139 * Note: calculating the overhead so we can be compatible with 3140 * historical BSD practice is quite difficult in the face of 3141 * clusters/bigalloc. This is because multiple metadata blocks from 3142 * different block group can end up in the same allocation cluster. 3143 * Calculating the exact overhead in the face of clustered allocation 3144 * requires either O(all block bitmaps) in memory or O(number of block 3145 * groups**2) in time. We will still calculate the superblock for 3146 * older file systems --- and if we come across with a bigalloc file 3147 * system with zero in s_overhead_clusters the estimate will be close to 3148 * correct especially for very large cluster sizes --- but for newer 3149 * file systems, it's better to calculate this figure once at mkfs 3150 * time, and store it in the superblock. If the superblock value is 3151 * present (even for non-bigalloc file systems), we will use it. 3152 */ 3153 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3154 char *buf) 3155 { 3156 struct ext4_sb_info *sbi = EXT4_SB(sb); 3157 struct ext4_group_desc *gdp; 3158 ext4_fsblk_t first_block, last_block, b; 3159 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3160 int s, j, count = 0; 3161 3162 if (!ext4_has_feature_bigalloc(sb)) 3163 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3164 sbi->s_itb_per_group + 2); 3165 3166 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3167 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3168 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3169 for (i = 0; i < ngroups; i++) { 3170 gdp = ext4_get_group_desc(sb, i, NULL); 3171 b = ext4_block_bitmap(sb, gdp); 3172 if (b >= first_block && b <= last_block) { 3173 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3174 count++; 3175 } 3176 b = ext4_inode_bitmap(sb, gdp); 3177 if (b >= first_block && b <= last_block) { 3178 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3179 count++; 3180 } 3181 b = ext4_inode_table(sb, gdp); 3182 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3183 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3184 int c = EXT4_B2C(sbi, b - first_block); 3185 ext4_set_bit(c, buf); 3186 count++; 3187 } 3188 if (i != grp) 3189 continue; 3190 s = 0; 3191 if (ext4_bg_has_super(sb, grp)) { 3192 ext4_set_bit(s++, buf); 3193 count++; 3194 } 3195 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3196 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3197 count++; 3198 } 3199 } 3200 if (!count) 3201 return 0; 3202 return EXT4_CLUSTERS_PER_GROUP(sb) - 3203 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3204 } 3205 3206 /* 3207 * Compute the overhead and stash it in sbi->s_overhead 3208 */ 3209 int ext4_calculate_overhead(struct super_block *sb) 3210 { 3211 struct ext4_sb_info *sbi = EXT4_SB(sb); 3212 struct ext4_super_block *es = sbi->s_es; 3213 struct inode *j_inode; 3214 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3215 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3216 ext4_fsblk_t overhead = 0; 3217 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3218 3219 if (!buf) 3220 return -ENOMEM; 3221 3222 /* 3223 * Compute the overhead (FS structures). This is constant 3224 * for a given filesystem unless the number of block groups 3225 * changes so we cache the previous value until it does. 3226 */ 3227 3228 /* 3229 * All of the blocks before first_data_block are overhead 3230 */ 3231 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3232 3233 /* 3234 * Add the overhead found in each block group 3235 */ 3236 for (i = 0; i < ngroups; i++) { 3237 int blks; 3238 3239 blks = count_overhead(sb, i, buf); 3240 overhead += blks; 3241 if (blks) 3242 memset(buf, 0, PAGE_SIZE); 3243 cond_resched(); 3244 } 3245 3246 /* 3247 * Add the internal journal blocks whether the journal has been 3248 * loaded or not 3249 */ 3250 if (sbi->s_journal && !sbi->journal_bdev) 3251 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3252 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3253 j_inode = ext4_get_journal_inode(sb, j_inum); 3254 if (j_inode) { 3255 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3256 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3257 iput(j_inode); 3258 } else { 3259 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3260 } 3261 } 3262 sbi->s_overhead = overhead; 3263 smp_wmb(); 3264 free_page((unsigned long) buf); 3265 return 0; 3266 } 3267 3268 static void ext4_set_resv_clusters(struct super_block *sb) 3269 { 3270 ext4_fsblk_t resv_clusters; 3271 struct ext4_sb_info *sbi = EXT4_SB(sb); 3272 3273 /* 3274 * There's no need to reserve anything when we aren't using extents. 3275 * The space estimates are exact, there are no unwritten extents, 3276 * hole punching doesn't need new metadata... This is needed especially 3277 * to keep ext2/3 backward compatibility. 3278 */ 3279 if (!ext4_has_feature_extents(sb)) 3280 return; 3281 /* 3282 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3283 * This should cover the situations where we can not afford to run 3284 * out of space like for example punch hole, or converting 3285 * unwritten extents in delalloc path. In most cases such 3286 * allocation would require 1, or 2 blocks, higher numbers are 3287 * very rare. 3288 */ 3289 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3290 sbi->s_cluster_bits); 3291 3292 do_div(resv_clusters, 50); 3293 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3294 3295 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3296 } 3297 3298 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3299 { 3300 char *orig_data = kstrdup(data, GFP_KERNEL); 3301 struct buffer_head *bh; 3302 struct ext4_super_block *es = NULL; 3303 struct ext4_sb_info *sbi; 3304 ext4_fsblk_t block; 3305 ext4_fsblk_t sb_block = get_sb_block(&data); 3306 ext4_fsblk_t logical_sb_block; 3307 unsigned long offset = 0; 3308 unsigned long journal_devnum = 0; 3309 unsigned long def_mount_opts; 3310 struct inode *root; 3311 const char *descr; 3312 int ret = -ENOMEM; 3313 int blocksize, clustersize; 3314 unsigned int db_count; 3315 unsigned int i; 3316 int needs_recovery, has_huge_files, has_bigalloc; 3317 __u64 blocks_count; 3318 int err = 0; 3319 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3320 ext4_group_t first_not_zeroed; 3321 3322 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3323 if (!sbi) 3324 goto out_free_orig; 3325 3326 sbi->s_blockgroup_lock = 3327 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3328 if (!sbi->s_blockgroup_lock) { 3329 kfree(sbi); 3330 goto out_free_orig; 3331 } 3332 sb->s_fs_info = sbi; 3333 sbi->s_sb = sb; 3334 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3335 sbi->s_sb_block = sb_block; 3336 if (sb->s_bdev->bd_part) 3337 sbi->s_sectors_written_start = 3338 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3339 3340 /* Cleanup superblock name */ 3341 strreplace(sb->s_id, '/', '!'); 3342 3343 /* -EINVAL is default */ 3344 ret = -EINVAL; 3345 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3346 if (!blocksize) { 3347 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3348 goto out_fail; 3349 } 3350 3351 /* 3352 * The ext4 superblock will not be buffer aligned for other than 1kB 3353 * block sizes. We need to calculate the offset from buffer start. 3354 */ 3355 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3356 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3357 offset = do_div(logical_sb_block, blocksize); 3358 } else { 3359 logical_sb_block = sb_block; 3360 } 3361 3362 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3363 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3364 goto out_fail; 3365 } 3366 /* 3367 * Note: s_es must be initialized as soon as possible because 3368 * some ext4 macro-instructions depend on its value 3369 */ 3370 es = (struct ext4_super_block *) (bh->b_data + offset); 3371 sbi->s_es = es; 3372 sb->s_magic = le16_to_cpu(es->s_magic); 3373 if (sb->s_magic != EXT4_SUPER_MAGIC) 3374 goto cantfind_ext4; 3375 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3376 3377 /* Warn if metadata_csum and gdt_csum are both set. */ 3378 if (ext4_has_feature_metadata_csum(sb) && 3379 ext4_has_feature_gdt_csum(sb)) 3380 ext4_warning(sb, "metadata_csum and uninit_bg are " 3381 "redundant flags; please run fsck."); 3382 3383 /* Check for a known checksum algorithm */ 3384 if (!ext4_verify_csum_type(sb, es)) { 3385 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3386 "unknown checksum algorithm."); 3387 silent = 1; 3388 goto cantfind_ext4; 3389 } 3390 3391 /* Load the checksum driver */ 3392 if (ext4_has_feature_metadata_csum(sb)) { 3393 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3394 if (IS_ERR(sbi->s_chksum_driver)) { 3395 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3396 ret = PTR_ERR(sbi->s_chksum_driver); 3397 sbi->s_chksum_driver = NULL; 3398 goto failed_mount; 3399 } 3400 } 3401 3402 /* Check superblock checksum */ 3403 if (!ext4_superblock_csum_verify(sb, es)) { 3404 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3405 "invalid superblock checksum. Run e2fsck?"); 3406 silent = 1; 3407 ret = -EFSBADCRC; 3408 goto cantfind_ext4; 3409 } 3410 3411 /* Precompute checksum seed for all metadata */ 3412 if (ext4_has_feature_csum_seed(sb)) 3413 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3414 else if (ext4_has_metadata_csum(sb)) 3415 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3416 sizeof(es->s_uuid)); 3417 3418 /* Set defaults before we parse the mount options */ 3419 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3420 set_opt(sb, INIT_INODE_TABLE); 3421 if (def_mount_opts & EXT4_DEFM_DEBUG) 3422 set_opt(sb, DEBUG); 3423 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3424 set_opt(sb, GRPID); 3425 if (def_mount_opts & EXT4_DEFM_UID16) 3426 set_opt(sb, NO_UID32); 3427 /* xattr user namespace & acls are now defaulted on */ 3428 set_opt(sb, XATTR_USER); 3429 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3430 set_opt(sb, POSIX_ACL); 3431 #endif 3432 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3433 if (ext4_has_metadata_csum(sb)) 3434 set_opt(sb, JOURNAL_CHECKSUM); 3435 3436 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3437 set_opt(sb, JOURNAL_DATA); 3438 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3439 set_opt(sb, ORDERED_DATA); 3440 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3441 set_opt(sb, WRITEBACK_DATA); 3442 3443 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3444 set_opt(sb, ERRORS_PANIC); 3445 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3446 set_opt(sb, ERRORS_CONT); 3447 else 3448 set_opt(sb, ERRORS_RO); 3449 /* block_validity enabled by default; disable with noblock_validity */ 3450 set_opt(sb, BLOCK_VALIDITY); 3451 if (def_mount_opts & EXT4_DEFM_DISCARD) 3452 set_opt(sb, DISCARD); 3453 3454 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3455 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3456 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3457 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3458 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3459 3460 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3461 set_opt(sb, BARRIER); 3462 3463 /* 3464 * enable delayed allocation by default 3465 * Use -o nodelalloc to turn it off 3466 */ 3467 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3468 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3469 set_opt(sb, DELALLOC); 3470 3471 /* 3472 * set default s_li_wait_mult for lazyinit, for the case there is 3473 * no mount option specified. 3474 */ 3475 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3476 3477 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3478 &journal_devnum, &journal_ioprio, 0)) { 3479 ext4_msg(sb, KERN_WARNING, 3480 "failed to parse options in superblock: %s", 3481 sbi->s_es->s_mount_opts); 3482 } 3483 sbi->s_def_mount_opt = sbi->s_mount_opt; 3484 if (!parse_options((char *) data, sb, &journal_devnum, 3485 &journal_ioprio, 0)) 3486 goto failed_mount; 3487 3488 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3489 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3490 "with data=journal disables delayed " 3491 "allocation and O_DIRECT support!\n"); 3492 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3493 ext4_msg(sb, KERN_ERR, "can't mount with " 3494 "both data=journal and delalloc"); 3495 goto failed_mount; 3496 } 3497 if (test_opt(sb, DIOREAD_NOLOCK)) { 3498 ext4_msg(sb, KERN_ERR, "can't mount with " 3499 "both data=journal and dioread_nolock"); 3500 goto failed_mount; 3501 } 3502 if (test_opt(sb, DAX)) { 3503 ext4_msg(sb, KERN_ERR, "can't mount with " 3504 "both data=journal and dax"); 3505 goto failed_mount; 3506 } 3507 if (test_opt(sb, DELALLOC)) 3508 clear_opt(sb, DELALLOC); 3509 } else { 3510 sb->s_iflags |= SB_I_CGROUPWB; 3511 } 3512 3513 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3514 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3515 3516 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3517 (ext4_has_compat_features(sb) || 3518 ext4_has_ro_compat_features(sb) || 3519 ext4_has_incompat_features(sb))) 3520 ext4_msg(sb, KERN_WARNING, 3521 "feature flags set on rev 0 fs, " 3522 "running e2fsck is recommended"); 3523 3524 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3525 set_opt2(sb, HURD_COMPAT); 3526 if (ext4_has_feature_64bit(sb)) { 3527 ext4_msg(sb, KERN_ERR, 3528 "The Hurd can't support 64-bit file systems"); 3529 goto failed_mount; 3530 } 3531 } 3532 3533 if (IS_EXT2_SB(sb)) { 3534 if (ext2_feature_set_ok(sb)) 3535 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3536 "using the ext4 subsystem"); 3537 else { 3538 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3539 "to feature incompatibilities"); 3540 goto failed_mount; 3541 } 3542 } 3543 3544 if (IS_EXT3_SB(sb)) { 3545 if (ext3_feature_set_ok(sb)) 3546 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3547 "using the ext4 subsystem"); 3548 else { 3549 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3550 "to feature incompatibilities"); 3551 goto failed_mount; 3552 } 3553 } 3554 3555 /* 3556 * Check feature flags regardless of the revision level, since we 3557 * previously didn't change the revision level when setting the flags, 3558 * so there is a chance incompat flags are set on a rev 0 filesystem. 3559 */ 3560 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3561 goto failed_mount; 3562 3563 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3564 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3565 blocksize > EXT4_MAX_BLOCK_SIZE) { 3566 ext4_msg(sb, KERN_ERR, 3567 "Unsupported filesystem blocksize %d", blocksize); 3568 goto failed_mount; 3569 } 3570 3571 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3572 ext4_msg(sb, KERN_ERR, 3573 "Number of reserved GDT blocks insanely large: %d", 3574 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3575 goto failed_mount; 3576 } 3577 3578 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3579 err = bdev_dax_supported(sb, blocksize); 3580 if (err) 3581 goto failed_mount; 3582 } 3583 3584 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3585 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3586 es->s_encryption_level); 3587 goto failed_mount; 3588 } 3589 3590 if (sb->s_blocksize != blocksize) { 3591 /* Validate the filesystem blocksize */ 3592 if (!sb_set_blocksize(sb, blocksize)) { 3593 ext4_msg(sb, KERN_ERR, "bad block size %d", 3594 blocksize); 3595 goto failed_mount; 3596 } 3597 3598 brelse(bh); 3599 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3600 offset = do_div(logical_sb_block, blocksize); 3601 bh = sb_bread_unmovable(sb, logical_sb_block); 3602 if (!bh) { 3603 ext4_msg(sb, KERN_ERR, 3604 "Can't read superblock on 2nd try"); 3605 goto failed_mount; 3606 } 3607 es = (struct ext4_super_block *)(bh->b_data + offset); 3608 sbi->s_es = es; 3609 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3610 ext4_msg(sb, KERN_ERR, 3611 "Magic mismatch, very weird!"); 3612 goto failed_mount; 3613 } 3614 } 3615 3616 has_huge_files = ext4_has_feature_huge_file(sb); 3617 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3618 has_huge_files); 3619 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3620 3621 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3622 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3623 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3624 } else { 3625 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3626 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3627 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3628 (!is_power_of_2(sbi->s_inode_size)) || 3629 (sbi->s_inode_size > blocksize)) { 3630 ext4_msg(sb, KERN_ERR, 3631 "unsupported inode size: %d", 3632 sbi->s_inode_size); 3633 goto failed_mount; 3634 } 3635 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3636 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3637 } 3638 3639 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3640 if (ext4_has_feature_64bit(sb)) { 3641 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3642 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3643 !is_power_of_2(sbi->s_desc_size)) { 3644 ext4_msg(sb, KERN_ERR, 3645 "unsupported descriptor size %lu", 3646 sbi->s_desc_size); 3647 goto failed_mount; 3648 } 3649 } else 3650 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3651 3652 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3653 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3654 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3655 goto cantfind_ext4; 3656 3657 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3658 if (sbi->s_inodes_per_block == 0) 3659 goto cantfind_ext4; 3660 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3661 sbi->s_inodes_per_block; 3662 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3663 sbi->s_sbh = bh; 3664 sbi->s_mount_state = le16_to_cpu(es->s_state); 3665 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3666 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3667 3668 for (i = 0; i < 4; i++) 3669 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3670 sbi->s_def_hash_version = es->s_def_hash_version; 3671 if (ext4_has_feature_dir_index(sb)) { 3672 i = le32_to_cpu(es->s_flags); 3673 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3674 sbi->s_hash_unsigned = 3; 3675 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3676 #ifdef __CHAR_UNSIGNED__ 3677 if (!(sb->s_flags & MS_RDONLY)) 3678 es->s_flags |= 3679 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3680 sbi->s_hash_unsigned = 3; 3681 #else 3682 if (!(sb->s_flags & MS_RDONLY)) 3683 es->s_flags |= 3684 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3685 #endif 3686 } 3687 } 3688 3689 /* Handle clustersize */ 3690 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3691 has_bigalloc = ext4_has_feature_bigalloc(sb); 3692 if (has_bigalloc) { 3693 if (clustersize < blocksize) { 3694 ext4_msg(sb, KERN_ERR, 3695 "cluster size (%d) smaller than " 3696 "block size (%d)", clustersize, blocksize); 3697 goto failed_mount; 3698 } 3699 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3700 le32_to_cpu(es->s_log_block_size); 3701 sbi->s_clusters_per_group = 3702 le32_to_cpu(es->s_clusters_per_group); 3703 if (sbi->s_clusters_per_group > blocksize * 8) { 3704 ext4_msg(sb, KERN_ERR, 3705 "#clusters per group too big: %lu", 3706 sbi->s_clusters_per_group); 3707 goto failed_mount; 3708 } 3709 if (sbi->s_blocks_per_group != 3710 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3711 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3712 "clusters per group (%lu) inconsistent", 3713 sbi->s_blocks_per_group, 3714 sbi->s_clusters_per_group); 3715 goto failed_mount; 3716 } 3717 } else { 3718 if (clustersize != blocksize) { 3719 ext4_warning(sb, "fragment/cluster size (%d) != " 3720 "block size (%d)", clustersize, 3721 blocksize); 3722 clustersize = blocksize; 3723 } 3724 if (sbi->s_blocks_per_group > blocksize * 8) { 3725 ext4_msg(sb, KERN_ERR, 3726 "#blocks per group too big: %lu", 3727 sbi->s_blocks_per_group); 3728 goto failed_mount; 3729 } 3730 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3731 sbi->s_cluster_bits = 0; 3732 } 3733 sbi->s_cluster_ratio = clustersize / blocksize; 3734 3735 if (sbi->s_inodes_per_group > blocksize * 8) { 3736 ext4_msg(sb, KERN_ERR, 3737 "#inodes per group too big: %lu", 3738 sbi->s_inodes_per_group); 3739 goto failed_mount; 3740 } 3741 3742 /* Do we have standard group size of clustersize * 8 blocks ? */ 3743 if (sbi->s_blocks_per_group == clustersize << 3) 3744 set_opt2(sb, STD_GROUP_SIZE); 3745 3746 /* 3747 * Test whether we have more sectors than will fit in sector_t, 3748 * and whether the max offset is addressable by the page cache. 3749 */ 3750 err = generic_check_addressable(sb->s_blocksize_bits, 3751 ext4_blocks_count(es)); 3752 if (err) { 3753 ext4_msg(sb, KERN_ERR, "filesystem" 3754 " too large to mount safely on this system"); 3755 if (sizeof(sector_t) < 8) 3756 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3757 goto failed_mount; 3758 } 3759 3760 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3761 goto cantfind_ext4; 3762 3763 /* check blocks count against device size */ 3764 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3765 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3766 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3767 "exceeds size of device (%llu blocks)", 3768 ext4_blocks_count(es), blocks_count); 3769 goto failed_mount; 3770 } 3771 3772 /* 3773 * It makes no sense for the first data block to be beyond the end 3774 * of the filesystem. 3775 */ 3776 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3777 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3778 "block %u is beyond end of filesystem (%llu)", 3779 le32_to_cpu(es->s_first_data_block), 3780 ext4_blocks_count(es)); 3781 goto failed_mount; 3782 } 3783 blocks_count = (ext4_blocks_count(es) - 3784 le32_to_cpu(es->s_first_data_block) + 3785 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3786 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3787 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3788 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3789 "(block count %llu, first data block %u, " 3790 "blocks per group %lu)", sbi->s_groups_count, 3791 ext4_blocks_count(es), 3792 le32_to_cpu(es->s_first_data_block), 3793 EXT4_BLOCKS_PER_GROUP(sb)); 3794 goto failed_mount; 3795 } 3796 sbi->s_groups_count = blocks_count; 3797 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3798 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3799 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3800 EXT4_DESC_PER_BLOCK(sb); 3801 sbi->s_group_desc = ext4_kvmalloc(db_count * 3802 sizeof(struct buffer_head *), 3803 GFP_KERNEL); 3804 if (sbi->s_group_desc == NULL) { 3805 ext4_msg(sb, KERN_ERR, "not enough memory"); 3806 ret = -ENOMEM; 3807 goto failed_mount; 3808 } 3809 3810 bgl_lock_init(sbi->s_blockgroup_lock); 3811 3812 for (i = 0; i < db_count; i++) { 3813 block = descriptor_loc(sb, logical_sb_block, i); 3814 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3815 if (!sbi->s_group_desc[i]) { 3816 ext4_msg(sb, KERN_ERR, 3817 "can't read group descriptor %d", i); 3818 db_count = i; 3819 goto failed_mount2; 3820 } 3821 } 3822 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3823 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3824 ret = -EFSCORRUPTED; 3825 goto failed_mount2; 3826 } 3827 3828 sbi->s_gdb_count = db_count; 3829 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3830 spin_lock_init(&sbi->s_next_gen_lock); 3831 3832 setup_timer(&sbi->s_err_report, print_daily_error_info, 3833 (unsigned long) sb); 3834 3835 /* Register extent status tree shrinker */ 3836 if (ext4_es_register_shrinker(sbi)) 3837 goto failed_mount3; 3838 3839 sbi->s_stripe = ext4_get_stripe_size(sbi); 3840 sbi->s_extent_max_zeroout_kb = 32; 3841 3842 /* 3843 * set up enough so that it can read an inode 3844 */ 3845 sb->s_op = &ext4_sops; 3846 sb->s_export_op = &ext4_export_ops; 3847 sb->s_xattr = ext4_xattr_handlers; 3848 sb->s_cop = &ext4_cryptops; 3849 #ifdef CONFIG_QUOTA 3850 sb->dq_op = &ext4_quota_operations; 3851 if (ext4_has_feature_quota(sb)) 3852 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3853 else 3854 sb->s_qcop = &ext4_qctl_operations; 3855 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3856 #endif 3857 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3858 3859 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3860 mutex_init(&sbi->s_orphan_lock); 3861 3862 sb->s_root = NULL; 3863 3864 needs_recovery = (es->s_last_orphan != 0 || 3865 ext4_has_feature_journal_needs_recovery(sb)); 3866 3867 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3868 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3869 goto failed_mount3a; 3870 3871 /* 3872 * The first inode we look at is the journal inode. Don't try 3873 * root first: it may be modified in the journal! 3874 */ 3875 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3876 if (ext4_load_journal(sb, es, journal_devnum)) 3877 goto failed_mount3a; 3878 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3879 ext4_has_feature_journal_needs_recovery(sb)) { 3880 ext4_msg(sb, KERN_ERR, "required journal recovery " 3881 "suppressed and not mounted read-only"); 3882 goto failed_mount_wq; 3883 } else { 3884 /* Nojournal mode, all journal mount options are illegal */ 3885 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3886 ext4_msg(sb, KERN_ERR, "can't mount with " 3887 "journal_checksum, fs mounted w/o journal"); 3888 goto failed_mount_wq; 3889 } 3890 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3891 ext4_msg(sb, KERN_ERR, "can't mount with " 3892 "journal_async_commit, fs mounted w/o journal"); 3893 goto failed_mount_wq; 3894 } 3895 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3896 ext4_msg(sb, KERN_ERR, "can't mount with " 3897 "commit=%lu, fs mounted w/o journal", 3898 sbi->s_commit_interval / HZ); 3899 goto failed_mount_wq; 3900 } 3901 if (EXT4_MOUNT_DATA_FLAGS & 3902 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3903 ext4_msg(sb, KERN_ERR, "can't mount with " 3904 "data=, fs mounted w/o journal"); 3905 goto failed_mount_wq; 3906 } 3907 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3908 clear_opt(sb, JOURNAL_CHECKSUM); 3909 clear_opt(sb, DATA_FLAGS); 3910 sbi->s_journal = NULL; 3911 needs_recovery = 0; 3912 goto no_journal; 3913 } 3914 3915 if (ext4_has_feature_64bit(sb) && 3916 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3917 JBD2_FEATURE_INCOMPAT_64BIT)) { 3918 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3919 goto failed_mount_wq; 3920 } 3921 3922 if (!set_journal_csum_feature_set(sb)) { 3923 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3924 "feature set"); 3925 goto failed_mount_wq; 3926 } 3927 3928 /* We have now updated the journal if required, so we can 3929 * validate the data journaling mode. */ 3930 switch (test_opt(sb, DATA_FLAGS)) { 3931 case 0: 3932 /* No mode set, assume a default based on the journal 3933 * capabilities: ORDERED_DATA if the journal can 3934 * cope, else JOURNAL_DATA 3935 */ 3936 if (jbd2_journal_check_available_features 3937 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3938 set_opt(sb, ORDERED_DATA); 3939 else 3940 set_opt(sb, JOURNAL_DATA); 3941 break; 3942 3943 case EXT4_MOUNT_ORDERED_DATA: 3944 case EXT4_MOUNT_WRITEBACK_DATA: 3945 if (!jbd2_journal_check_available_features 3946 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3947 ext4_msg(sb, KERN_ERR, "Journal does not support " 3948 "requested data journaling mode"); 3949 goto failed_mount_wq; 3950 } 3951 default: 3952 break; 3953 } 3954 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3955 3956 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3957 3958 no_journal: 3959 sbi->s_mb_cache = ext4_xattr_create_cache(); 3960 if (!sbi->s_mb_cache) { 3961 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3962 goto failed_mount_wq; 3963 } 3964 3965 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3966 (blocksize != PAGE_SIZE)) { 3967 ext4_msg(sb, KERN_ERR, 3968 "Unsupported blocksize for fs encryption"); 3969 goto failed_mount_wq; 3970 } 3971 3972 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3973 !ext4_has_feature_encrypt(sb)) { 3974 ext4_set_feature_encrypt(sb); 3975 ext4_commit_super(sb, 1); 3976 } 3977 3978 /* 3979 * Get the # of file system overhead blocks from the 3980 * superblock if present. 3981 */ 3982 if (es->s_overhead_clusters) 3983 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3984 else { 3985 err = ext4_calculate_overhead(sb); 3986 if (err) 3987 goto failed_mount_wq; 3988 } 3989 3990 /* 3991 * The maximum number of concurrent works can be high and 3992 * concurrency isn't really necessary. Limit it to 1. 3993 */ 3994 EXT4_SB(sb)->rsv_conversion_wq = 3995 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3996 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3997 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3998 ret = -ENOMEM; 3999 goto failed_mount4; 4000 } 4001 4002 /* 4003 * The jbd2_journal_load will have done any necessary log recovery, 4004 * so we can safely mount the rest of the filesystem now. 4005 */ 4006 4007 root = ext4_iget(sb, EXT4_ROOT_INO); 4008 if (IS_ERR(root)) { 4009 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4010 ret = PTR_ERR(root); 4011 root = NULL; 4012 goto failed_mount4; 4013 } 4014 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4015 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4016 iput(root); 4017 goto failed_mount4; 4018 } 4019 sb->s_root = d_make_root(root); 4020 if (!sb->s_root) { 4021 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4022 ret = -ENOMEM; 4023 goto failed_mount4; 4024 } 4025 4026 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4027 sb->s_flags |= MS_RDONLY; 4028 4029 /* determine the minimum size of new large inodes, if present */ 4030 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4031 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4032 EXT4_GOOD_OLD_INODE_SIZE; 4033 if (ext4_has_feature_extra_isize(sb)) { 4034 if (sbi->s_want_extra_isize < 4035 le16_to_cpu(es->s_want_extra_isize)) 4036 sbi->s_want_extra_isize = 4037 le16_to_cpu(es->s_want_extra_isize); 4038 if (sbi->s_want_extra_isize < 4039 le16_to_cpu(es->s_min_extra_isize)) 4040 sbi->s_want_extra_isize = 4041 le16_to_cpu(es->s_min_extra_isize); 4042 } 4043 } 4044 /* Check if enough inode space is available */ 4045 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4046 sbi->s_inode_size) { 4047 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4048 EXT4_GOOD_OLD_INODE_SIZE; 4049 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4050 "available"); 4051 } 4052 4053 ext4_set_resv_clusters(sb); 4054 4055 err = ext4_setup_system_zone(sb); 4056 if (err) { 4057 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4058 "zone (%d)", err); 4059 goto failed_mount4a; 4060 } 4061 4062 ext4_ext_init(sb); 4063 err = ext4_mb_init(sb); 4064 if (err) { 4065 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4066 err); 4067 goto failed_mount5; 4068 } 4069 4070 block = ext4_count_free_clusters(sb); 4071 ext4_free_blocks_count_set(sbi->s_es, 4072 EXT4_C2B(sbi, block)); 4073 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4074 GFP_KERNEL); 4075 if (!err) { 4076 unsigned long freei = ext4_count_free_inodes(sb); 4077 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4078 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4079 GFP_KERNEL); 4080 } 4081 if (!err) 4082 err = percpu_counter_init(&sbi->s_dirs_counter, 4083 ext4_count_dirs(sb), GFP_KERNEL); 4084 if (!err) 4085 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4086 GFP_KERNEL); 4087 if (!err) 4088 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4089 4090 if (err) { 4091 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4092 goto failed_mount6; 4093 } 4094 4095 if (ext4_has_feature_flex_bg(sb)) 4096 if (!ext4_fill_flex_info(sb)) { 4097 ext4_msg(sb, KERN_ERR, 4098 "unable to initialize " 4099 "flex_bg meta info!"); 4100 goto failed_mount6; 4101 } 4102 4103 err = ext4_register_li_request(sb, first_not_zeroed); 4104 if (err) 4105 goto failed_mount6; 4106 4107 err = ext4_register_sysfs(sb); 4108 if (err) 4109 goto failed_mount7; 4110 4111 #ifdef CONFIG_QUOTA 4112 /* Enable quota usage during mount. */ 4113 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4114 err = ext4_enable_quotas(sb); 4115 if (err) 4116 goto failed_mount8; 4117 } 4118 #endif /* CONFIG_QUOTA */ 4119 4120 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4121 ext4_orphan_cleanup(sb, es); 4122 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4123 if (needs_recovery) { 4124 ext4_msg(sb, KERN_INFO, "recovery complete"); 4125 ext4_mark_recovery_complete(sb, es); 4126 } 4127 if (EXT4_SB(sb)->s_journal) { 4128 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4129 descr = " journalled data mode"; 4130 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4131 descr = " ordered data mode"; 4132 else 4133 descr = " writeback data mode"; 4134 } else 4135 descr = "out journal"; 4136 4137 if (test_opt(sb, DISCARD)) { 4138 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4139 if (!blk_queue_discard(q)) 4140 ext4_msg(sb, KERN_WARNING, 4141 "mounting with \"discard\" option, but " 4142 "the device does not support discard"); 4143 } 4144 4145 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4146 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4147 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4148 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4149 4150 if (es->s_error_count) 4151 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4152 4153 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4154 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4155 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4156 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4157 4158 kfree(orig_data); 4159 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4160 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX, 4161 EXT4_KEY_DESC_PREFIX_SIZE); 4162 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE; 4163 #endif 4164 return 0; 4165 4166 cantfind_ext4: 4167 if (!silent) 4168 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4169 goto failed_mount; 4170 4171 #ifdef CONFIG_QUOTA 4172 failed_mount8: 4173 ext4_unregister_sysfs(sb); 4174 #endif 4175 failed_mount7: 4176 ext4_unregister_li_request(sb); 4177 failed_mount6: 4178 ext4_mb_release(sb); 4179 if (sbi->s_flex_groups) 4180 kvfree(sbi->s_flex_groups); 4181 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4182 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4183 percpu_counter_destroy(&sbi->s_dirs_counter); 4184 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4185 failed_mount5: 4186 ext4_ext_release(sb); 4187 ext4_release_system_zone(sb); 4188 failed_mount4a: 4189 dput(sb->s_root); 4190 sb->s_root = NULL; 4191 failed_mount4: 4192 ext4_msg(sb, KERN_ERR, "mount failed"); 4193 if (EXT4_SB(sb)->rsv_conversion_wq) 4194 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4195 failed_mount_wq: 4196 if (sbi->s_mb_cache) { 4197 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4198 sbi->s_mb_cache = NULL; 4199 } 4200 if (sbi->s_journal) { 4201 jbd2_journal_destroy(sbi->s_journal); 4202 sbi->s_journal = NULL; 4203 } 4204 failed_mount3a: 4205 ext4_es_unregister_shrinker(sbi); 4206 failed_mount3: 4207 del_timer_sync(&sbi->s_err_report); 4208 if (sbi->s_mmp_tsk) 4209 kthread_stop(sbi->s_mmp_tsk); 4210 failed_mount2: 4211 for (i = 0; i < db_count; i++) 4212 brelse(sbi->s_group_desc[i]); 4213 kvfree(sbi->s_group_desc); 4214 failed_mount: 4215 if (sbi->s_chksum_driver) 4216 crypto_free_shash(sbi->s_chksum_driver); 4217 #ifdef CONFIG_QUOTA 4218 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4219 kfree(sbi->s_qf_names[i]); 4220 #endif 4221 ext4_blkdev_remove(sbi); 4222 brelse(bh); 4223 out_fail: 4224 sb->s_fs_info = NULL; 4225 kfree(sbi->s_blockgroup_lock); 4226 kfree(sbi); 4227 out_free_orig: 4228 kfree(orig_data); 4229 return err ? err : ret; 4230 } 4231 4232 /* 4233 * Setup any per-fs journal parameters now. We'll do this both on 4234 * initial mount, once the journal has been initialised but before we've 4235 * done any recovery; and again on any subsequent remount. 4236 */ 4237 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4238 { 4239 struct ext4_sb_info *sbi = EXT4_SB(sb); 4240 4241 journal->j_commit_interval = sbi->s_commit_interval; 4242 journal->j_min_batch_time = sbi->s_min_batch_time; 4243 journal->j_max_batch_time = sbi->s_max_batch_time; 4244 4245 write_lock(&journal->j_state_lock); 4246 if (test_opt(sb, BARRIER)) 4247 journal->j_flags |= JBD2_BARRIER; 4248 else 4249 journal->j_flags &= ~JBD2_BARRIER; 4250 if (test_opt(sb, DATA_ERR_ABORT)) 4251 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4252 else 4253 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4254 write_unlock(&journal->j_state_lock); 4255 } 4256 4257 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4258 unsigned int journal_inum) 4259 { 4260 struct inode *journal_inode; 4261 4262 /* 4263 * Test for the existence of a valid inode on disk. Bad things 4264 * happen if we iget() an unused inode, as the subsequent iput() 4265 * will try to delete it. 4266 */ 4267 journal_inode = ext4_iget(sb, journal_inum); 4268 if (IS_ERR(journal_inode)) { 4269 ext4_msg(sb, KERN_ERR, "no journal found"); 4270 return NULL; 4271 } 4272 if (!journal_inode->i_nlink) { 4273 make_bad_inode(journal_inode); 4274 iput(journal_inode); 4275 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4276 return NULL; 4277 } 4278 4279 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4280 journal_inode, journal_inode->i_size); 4281 if (!S_ISREG(journal_inode->i_mode)) { 4282 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4283 iput(journal_inode); 4284 return NULL; 4285 } 4286 return journal_inode; 4287 } 4288 4289 static journal_t *ext4_get_journal(struct super_block *sb, 4290 unsigned int journal_inum) 4291 { 4292 struct inode *journal_inode; 4293 journal_t *journal; 4294 4295 BUG_ON(!ext4_has_feature_journal(sb)); 4296 4297 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4298 if (!journal_inode) 4299 return NULL; 4300 4301 journal = jbd2_journal_init_inode(journal_inode); 4302 if (!journal) { 4303 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4304 iput(journal_inode); 4305 return NULL; 4306 } 4307 journal->j_private = sb; 4308 ext4_init_journal_params(sb, journal); 4309 return journal; 4310 } 4311 4312 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4313 dev_t j_dev) 4314 { 4315 struct buffer_head *bh; 4316 journal_t *journal; 4317 ext4_fsblk_t start; 4318 ext4_fsblk_t len; 4319 int hblock, blocksize; 4320 ext4_fsblk_t sb_block; 4321 unsigned long offset; 4322 struct ext4_super_block *es; 4323 struct block_device *bdev; 4324 4325 BUG_ON(!ext4_has_feature_journal(sb)); 4326 4327 bdev = ext4_blkdev_get(j_dev, sb); 4328 if (bdev == NULL) 4329 return NULL; 4330 4331 blocksize = sb->s_blocksize; 4332 hblock = bdev_logical_block_size(bdev); 4333 if (blocksize < hblock) { 4334 ext4_msg(sb, KERN_ERR, 4335 "blocksize too small for journal device"); 4336 goto out_bdev; 4337 } 4338 4339 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4340 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4341 set_blocksize(bdev, blocksize); 4342 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4343 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4344 "external journal"); 4345 goto out_bdev; 4346 } 4347 4348 es = (struct ext4_super_block *) (bh->b_data + offset); 4349 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4350 !(le32_to_cpu(es->s_feature_incompat) & 4351 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4352 ext4_msg(sb, KERN_ERR, "external journal has " 4353 "bad superblock"); 4354 brelse(bh); 4355 goto out_bdev; 4356 } 4357 4358 if ((le32_to_cpu(es->s_feature_ro_compat) & 4359 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4360 es->s_checksum != ext4_superblock_csum(sb, es)) { 4361 ext4_msg(sb, KERN_ERR, "external journal has " 4362 "corrupt superblock"); 4363 brelse(bh); 4364 goto out_bdev; 4365 } 4366 4367 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4368 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4369 brelse(bh); 4370 goto out_bdev; 4371 } 4372 4373 len = ext4_blocks_count(es); 4374 start = sb_block + 1; 4375 brelse(bh); /* we're done with the superblock */ 4376 4377 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4378 start, len, blocksize); 4379 if (!journal) { 4380 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4381 goto out_bdev; 4382 } 4383 journal->j_private = sb; 4384 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4385 wait_on_buffer(journal->j_sb_buffer); 4386 if (!buffer_uptodate(journal->j_sb_buffer)) { 4387 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4388 goto out_journal; 4389 } 4390 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4391 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4392 "user (unsupported) - %d", 4393 be32_to_cpu(journal->j_superblock->s_nr_users)); 4394 goto out_journal; 4395 } 4396 EXT4_SB(sb)->journal_bdev = bdev; 4397 ext4_init_journal_params(sb, journal); 4398 return journal; 4399 4400 out_journal: 4401 jbd2_journal_destroy(journal); 4402 out_bdev: 4403 ext4_blkdev_put(bdev); 4404 return NULL; 4405 } 4406 4407 static int ext4_load_journal(struct super_block *sb, 4408 struct ext4_super_block *es, 4409 unsigned long journal_devnum) 4410 { 4411 journal_t *journal; 4412 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4413 dev_t journal_dev; 4414 int err = 0; 4415 int really_read_only; 4416 4417 BUG_ON(!ext4_has_feature_journal(sb)); 4418 4419 if (journal_devnum && 4420 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4421 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4422 "numbers have changed"); 4423 journal_dev = new_decode_dev(journal_devnum); 4424 } else 4425 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4426 4427 really_read_only = bdev_read_only(sb->s_bdev); 4428 4429 /* 4430 * Are we loading a blank journal or performing recovery after a 4431 * crash? For recovery, we need to check in advance whether we 4432 * can get read-write access to the device. 4433 */ 4434 if (ext4_has_feature_journal_needs_recovery(sb)) { 4435 if (sb->s_flags & MS_RDONLY) { 4436 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4437 "required on readonly filesystem"); 4438 if (really_read_only) { 4439 ext4_msg(sb, KERN_ERR, "write access " 4440 "unavailable, cannot proceed"); 4441 return -EROFS; 4442 } 4443 ext4_msg(sb, KERN_INFO, "write access will " 4444 "be enabled during recovery"); 4445 } 4446 } 4447 4448 if (journal_inum && journal_dev) { 4449 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4450 "and inode journals!"); 4451 return -EINVAL; 4452 } 4453 4454 if (journal_inum) { 4455 if (!(journal = ext4_get_journal(sb, journal_inum))) 4456 return -EINVAL; 4457 } else { 4458 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4459 return -EINVAL; 4460 } 4461 4462 if (!(journal->j_flags & JBD2_BARRIER)) 4463 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4464 4465 if (!ext4_has_feature_journal_needs_recovery(sb)) 4466 err = jbd2_journal_wipe(journal, !really_read_only); 4467 if (!err) { 4468 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4469 if (save) 4470 memcpy(save, ((char *) es) + 4471 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4472 err = jbd2_journal_load(journal); 4473 if (save) 4474 memcpy(((char *) es) + EXT4_S_ERR_START, 4475 save, EXT4_S_ERR_LEN); 4476 kfree(save); 4477 } 4478 4479 if (err) { 4480 ext4_msg(sb, KERN_ERR, "error loading journal"); 4481 jbd2_journal_destroy(journal); 4482 return err; 4483 } 4484 4485 EXT4_SB(sb)->s_journal = journal; 4486 ext4_clear_journal_err(sb, es); 4487 4488 if (!really_read_only && journal_devnum && 4489 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4490 es->s_journal_dev = cpu_to_le32(journal_devnum); 4491 4492 /* Make sure we flush the recovery flag to disk. */ 4493 ext4_commit_super(sb, 1); 4494 } 4495 4496 return 0; 4497 } 4498 4499 static int ext4_commit_super(struct super_block *sb, int sync) 4500 { 4501 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4502 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4503 int error = 0; 4504 4505 if (!sbh || block_device_ejected(sb)) 4506 return error; 4507 /* 4508 * If the file system is mounted read-only, don't update the 4509 * superblock write time. This avoids updating the superblock 4510 * write time when we are mounting the root file system 4511 * read/only but we need to replay the journal; at that point, 4512 * for people who are east of GMT and who make their clock 4513 * tick in localtime for Windows bug-for-bug compatibility, 4514 * the clock is set in the future, and this will cause e2fsck 4515 * to complain and force a full file system check. 4516 */ 4517 if (!(sb->s_flags & MS_RDONLY)) 4518 es->s_wtime = cpu_to_le32(get_seconds()); 4519 if (sb->s_bdev->bd_part) 4520 es->s_kbytes_written = 4521 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4522 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4523 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4524 else 4525 es->s_kbytes_written = 4526 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4527 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4528 ext4_free_blocks_count_set(es, 4529 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4530 &EXT4_SB(sb)->s_freeclusters_counter))); 4531 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4532 es->s_free_inodes_count = 4533 cpu_to_le32(percpu_counter_sum_positive( 4534 &EXT4_SB(sb)->s_freeinodes_counter)); 4535 BUFFER_TRACE(sbh, "marking dirty"); 4536 ext4_superblock_csum_set(sb); 4537 lock_buffer(sbh); 4538 if (buffer_write_io_error(sbh)) { 4539 /* 4540 * Oh, dear. A previous attempt to write the 4541 * superblock failed. This could happen because the 4542 * USB device was yanked out. Or it could happen to 4543 * be a transient write error and maybe the block will 4544 * be remapped. Nothing we can do but to retry the 4545 * write and hope for the best. 4546 */ 4547 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4548 "superblock detected"); 4549 clear_buffer_write_io_error(sbh); 4550 set_buffer_uptodate(sbh); 4551 } 4552 mark_buffer_dirty(sbh); 4553 unlock_buffer(sbh); 4554 if (sync) { 4555 error = __sync_dirty_buffer(sbh, 4556 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4557 if (error) 4558 return error; 4559 4560 error = buffer_write_io_error(sbh); 4561 if (error) { 4562 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4563 "superblock"); 4564 clear_buffer_write_io_error(sbh); 4565 set_buffer_uptodate(sbh); 4566 } 4567 } 4568 return error; 4569 } 4570 4571 /* 4572 * Have we just finished recovery? If so, and if we are mounting (or 4573 * remounting) the filesystem readonly, then we will end up with a 4574 * consistent fs on disk. Record that fact. 4575 */ 4576 static void ext4_mark_recovery_complete(struct super_block *sb, 4577 struct ext4_super_block *es) 4578 { 4579 journal_t *journal = EXT4_SB(sb)->s_journal; 4580 4581 if (!ext4_has_feature_journal(sb)) { 4582 BUG_ON(journal != NULL); 4583 return; 4584 } 4585 jbd2_journal_lock_updates(journal); 4586 if (jbd2_journal_flush(journal) < 0) 4587 goto out; 4588 4589 if (ext4_has_feature_journal_needs_recovery(sb) && 4590 sb->s_flags & MS_RDONLY) { 4591 ext4_clear_feature_journal_needs_recovery(sb); 4592 ext4_commit_super(sb, 1); 4593 } 4594 4595 out: 4596 jbd2_journal_unlock_updates(journal); 4597 } 4598 4599 /* 4600 * If we are mounting (or read-write remounting) a filesystem whose journal 4601 * has recorded an error from a previous lifetime, move that error to the 4602 * main filesystem now. 4603 */ 4604 static void ext4_clear_journal_err(struct super_block *sb, 4605 struct ext4_super_block *es) 4606 { 4607 journal_t *journal; 4608 int j_errno; 4609 const char *errstr; 4610 4611 BUG_ON(!ext4_has_feature_journal(sb)); 4612 4613 journal = EXT4_SB(sb)->s_journal; 4614 4615 /* 4616 * Now check for any error status which may have been recorded in the 4617 * journal by a prior ext4_error() or ext4_abort() 4618 */ 4619 4620 j_errno = jbd2_journal_errno(journal); 4621 if (j_errno) { 4622 char nbuf[16]; 4623 4624 errstr = ext4_decode_error(sb, j_errno, nbuf); 4625 ext4_warning(sb, "Filesystem error recorded " 4626 "from previous mount: %s", errstr); 4627 ext4_warning(sb, "Marking fs in need of filesystem check."); 4628 4629 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4630 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4631 ext4_commit_super(sb, 1); 4632 4633 jbd2_journal_clear_err(journal); 4634 jbd2_journal_update_sb_errno(journal); 4635 } 4636 } 4637 4638 /* 4639 * Force the running and committing transactions to commit, 4640 * and wait on the commit. 4641 */ 4642 int ext4_force_commit(struct super_block *sb) 4643 { 4644 journal_t *journal; 4645 4646 if (sb->s_flags & MS_RDONLY) 4647 return 0; 4648 4649 journal = EXT4_SB(sb)->s_journal; 4650 return ext4_journal_force_commit(journal); 4651 } 4652 4653 static int ext4_sync_fs(struct super_block *sb, int wait) 4654 { 4655 int ret = 0; 4656 tid_t target; 4657 bool needs_barrier = false; 4658 struct ext4_sb_info *sbi = EXT4_SB(sb); 4659 4660 trace_ext4_sync_fs(sb, wait); 4661 flush_workqueue(sbi->rsv_conversion_wq); 4662 /* 4663 * Writeback quota in non-journalled quota case - journalled quota has 4664 * no dirty dquots 4665 */ 4666 dquot_writeback_dquots(sb, -1); 4667 /* 4668 * Data writeback is possible w/o journal transaction, so barrier must 4669 * being sent at the end of the function. But we can skip it if 4670 * transaction_commit will do it for us. 4671 */ 4672 if (sbi->s_journal) { 4673 target = jbd2_get_latest_transaction(sbi->s_journal); 4674 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4675 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4676 needs_barrier = true; 4677 4678 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4679 if (wait) 4680 ret = jbd2_log_wait_commit(sbi->s_journal, 4681 target); 4682 } 4683 } else if (wait && test_opt(sb, BARRIER)) 4684 needs_barrier = true; 4685 if (needs_barrier) { 4686 int err; 4687 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4688 if (!ret) 4689 ret = err; 4690 } 4691 4692 return ret; 4693 } 4694 4695 /* 4696 * LVM calls this function before a (read-only) snapshot is created. This 4697 * gives us a chance to flush the journal completely and mark the fs clean. 4698 * 4699 * Note that only this function cannot bring a filesystem to be in a clean 4700 * state independently. It relies on upper layer to stop all data & metadata 4701 * modifications. 4702 */ 4703 static int ext4_freeze(struct super_block *sb) 4704 { 4705 int error = 0; 4706 journal_t *journal; 4707 4708 if (sb->s_flags & MS_RDONLY) 4709 return 0; 4710 4711 journal = EXT4_SB(sb)->s_journal; 4712 4713 if (journal) { 4714 /* Now we set up the journal barrier. */ 4715 jbd2_journal_lock_updates(journal); 4716 4717 /* 4718 * Don't clear the needs_recovery flag if we failed to 4719 * flush the journal. 4720 */ 4721 error = jbd2_journal_flush(journal); 4722 if (error < 0) 4723 goto out; 4724 4725 /* Journal blocked and flushed, clear needs_recovery flag. */ 4726 ext4_clear_feature_journal_needs_recovery(sb); 4727 } 4728 4729 error = ext4_commit_super(sb, 1); 4730 out: 4731 if (journal) 4732 /* we rely on upper layer to stop further updates */ 4733 jbd2_journal_unlock_updates(journal); 4734 return error; 4735 } 4736 4737 /* 4738 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4739 * flag here, even though the filesystem is not technically dirty yet. 4740 */ 4741 static int ext4_unfreeze(struct super_block *sb) 4742 { 4743 if (sb->s_flags & MS_RDONLY) 4744 return 0; 4745 4746 if (EXT4_SB(sb)->s_journal) { 4747 /* Reset the needs_recovery flag before the fs is unlocked. */ 4748 ext4_set_feature_journal_needs_recovery(sb); 4749 } 4750 4751 ext4_commit_super(sb, 1); 4752 return 0; 4753 } 4754 4755 /* 4756 * Structure to save mount options for ext4_remount's benefit 4757 */ 4758 struct ext4_mount_options { 4759 unsigned long s_mount_opt; 4760 unsigned long s_mount_opt2; 4761 kuid_t s_resuid; 4762 kgid_t s_resgid; 4763 unsigned long s_commit_interval; 4764 u32 s_min_batch_time, s_max_batch_time; 4765 #ifdef CONFIG_QUOTA 4766 int s_jquota_fmt; 4767 char *s_qf_names[EXT4_MAXQUOTAS]; 4768 #endif 4769 }; 4770 4771 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4772 { 4773 struct ext4_super_block *es; 4774 struct ext4_sb_info *sbi = EXT4_SB(sb); 4775 unsigned long old_sb_flags; 4776 struct ext4_mount_options old_opts; 4777 int enable_quota = 0; 4778 ext4_group_t g; 4779 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4780 int err = 0; 4781 #ifdef CONFIG_QUOTA 4782 int i, j; 4783 #endif 4784 char *orig_data = kstrdup(data, GFP_KERNEL); 4785 4786 /* Store the original options */ 4787 old_sb_flags = sb->s_flags; 4788 old_opts.s_mount_opt = sbi->s_mount_opt; 4789 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4790 old_opts.s_resuid = sbi->s_resuid; 4791 old_opts.s_resgid = sbi->s_resgid; 4792 old_opts.s_commit_interval = sbi->s_commit_interval; 4793 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4794 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4795 #ifdef CONFIG_QUOTA 4796 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4797 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4798 if (sbi->s_qf_names[i]) { 4799 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4800 GFP_KERNEL); 4801 if (!old_opts.s_qf_names[i]) { 4802 for (j = 0; j < i; j++) 4803 kfree(old_opts.s_qf_names[j]); 4804 kfree(orig_data); 4805 return -ENOMEM; 4806 } 4807 } else 4808 old_opts.s_qf_names[i] = NULL; 4809 #endif 4810 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4811 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4812 4813 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4814 err = -EINVAL; 4815 goto restore_opts; 4816 } 4817 4818 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4819 test_opt(sb, JOURNAL_CHECKSUM)) { 4820 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4821 "during remount not supported; ignoring"); 4822 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4823 } 4824 4825 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4826 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4827 ext4_msg(sb, KERN_ERR, "can't mount with " 4828 "both data=journal and delalloc"); 4829 err = -EINVAL; 4830 goto restore_opts; 4831 } 4832 if (test_opt(sb, DIOREAD_NOLOCK)) { 4833 ext4_msg(sb, KERN_ERR, "can't mount with " 4834 "both data=journal and dioread_nolock"); 4835 err = -EINVAL; 4836 goto restore_opts; 4837 } 4838 if (test_opt(sb, DAX)) { 4839 ext4_msg(sb, KERN_ERR, "can't mount with " 4840 "both data=journal and dax"); 4841 err = -EINVAL; 4842 goto restore_opts; 4843 } 4844 } 4845 4846 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4847 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4848 "dax flag with busy inodes while remounting"); 4849 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4850 } 4851 4852 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4853 ext4_abort(sb, "Abort forced by user"); 4854 4855 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4856 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4857 4858 es = sbi->s_es; 4859 4860 if (sbi->s_journal) { 4861 ext4_init_journal_params(sb, sbi->s_journal); 4862 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4863 } 4864 4865 if (*flags & MS_LAZYTIME) 4866 sb->s_flags |= MS_LAZYTIME; 4867 4868 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4869 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4870 err = -EROFS; 4871 goto restore_opts; 4872 } 4873 4874 if (*flags & MS_RDONLY) { 4875 err = sync_filesystem(sb); 4876 if (err < 0) 4877 goto restore_opts; 4878 err = dquot_suspend(sb, -1); 4879 if (err < 0) 4880 goto restore_opts; 4881 4882 /* 4883 * First of all, the unconditional stuff we have to do 4884 * to disable replay of the journal when we next remount 4885 */ 4886 sb->s_flags |= MS_RDONLY; 4887 4888 /* 4889 * OK, test if we are remounting a valid rw partition 4890 * readonly, and if so set the rdonly flag and then 4891 * mark the partition as valid again. 4892 */ 4893 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4894 (sbi->s_mount_state & EXT4_VALID_FS)) 4895 es->s_state = cpu_to_le16(sbi->s_mount_state); 4896 4897 if (sbi->s_journal) 4898 ext4_mark_recovery_complete(sb, es); 4899 } else { 4900 /* Make sure we can mount this feature set readwrite */ 4901 if (ext4_has_feature_readonly(sb) || 4902 !ext4_feature_set_ok(sb, 0)) { 4903 err = -EROFS; 4904 goto restore_opts; 4905 } 4906 /* 4907 * Make sure the group descriptor checksums 4908 * are sane. If they aren't, refuse to remount r/w. 4909 */ 4910 for (g = 0; g < sbi->s_groups_count; g++) { 4911 struct ext4_group_desc *gdp = 4912 ext4_get_group_desc(sb, g, NULL); 4913 4914 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4915 ext4_msg(sb, KERN_ERR, 4916 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4917 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4918 le16_to_cpu(gdp->bg_checksum)); 4919 err = -EFSBADCRC; 4920 goto restore_opts; 4921 } 4922 } 4923 4924 /* 4925 * If we have an unprocessed orphan list hanging 4926 * around from a previously readonly bdev mount, 4927 * require a full umount/remount for now. 4928 */ 4929 if (es->s_last_orphan) { 4930 ext4_msg(sb, KERN_WARNING, "Couldn't " 4931 "remount RDWR because of unprocessed " 4932 "orphan inode list. Please " 4933 "umount/remount instead"); 4934 err = -EINVAL; 4935 goto restore_opts; 4936 } 4937 4938 /* 4939 * Mounting a RDONLY partition read-write, so reread 4940 * and store the current valid flag. (It may have 4941 * been changed by e2fsck since we originally mounted 4942 * the partition.) 4943 */ 4944 if (sbi->s_journal) 4945 ext4_clear_journal_err(sb, es); 4946 sbi->s_mount_state = le16_to_cpu(es->s_state); 4947 if (!ext4_setup_super(sb, es, 0)) 4948 sb->s_flags &= ~MS_RDONLY; 4949 if (ext4_has_feature_mmp(sb)) 4950 if (ext4_multi_mount_protect(sb, 4951 le64_to_cpu(es->s_mmp_block))) { 4952 err = -EROFS; 4953 goto restore_opts; 4954 } 4955 enable_quota = 1; 4956 } 4957 } 4958 4959 /* 4960 * Reinitialize lazy itable initialization thread based on 4961 * current settings 4962 */ 4963 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4964 ext4_unregister_li_request(sb); 4965 else { 4966 ext4_group_t first_not_zeroed; 4967 first_not_zeroed = ext4_has_uninit_itable(sb); 4968 ext4_register_li_request(sb, first_not_zeroed); 4969 } 4970 4971 ext4_setup_system_zone(sb); 4972 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4973 ext4_commit_super(sb, 1); 4974 4975 #ifdef CONFIG_QUOTA 4976 /* Release old quota file names */ 4977 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4978 kfree(old_opts.s_qf_names[i]); 4979 if (enable_quota) { 4980 if (sb_any_quota_suspended(sb)) 4981 dquot_resume(sb, -1); 4982 else if (ext4_has_feature_quota(sb)) { 4983 err = ext4_enable_quotas(sb); 4984 if (err) 4985 goto restore_opts; 4986 } 4987 } 4988 #endif 4989 4990 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4991 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4992 kfree(orig_data); 4993 return 0; 4994 4995 restore_opts: 4996 sb->s_flags = old_sb_flags; 4997 sbi->s_mount_opt = old_opts.s_mount_opt; 4998 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4999 sbi->s_resuid = old_opts.s_resuid; 5000 sbi->s_resgid = old_opts.s_resgid; 5001 sbi->s_commit_interval = old_opts.s_commit_interval; 5002 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5003 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5004 #ifdef CONFIG_QUOTA 5005 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5006 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5007 kfree(sbi->s_qf_names[i]); 5008 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5009 } 5010 #endif 5011 kfree(orig_data); 5012 return err; 5013 } 5014 5015 #ifdef CONFIG_QUOTA 5016 static int ext4_statfs_project(struct super_block *sb, 5017 kprojid_t projid, struct kstatfs *buf) 5018 { 5019 struct kqid qid; 5020 struct dquot *dquot; 5021 u64 limit; 5022 u64 curblock; 5023 5024 qid = make_kqid_projid(projid); 5025 dquot = dqget(sb, qid); 5026 if (IS_ERR(dquot)) 5027 return PTR_ERR(dquot); 5028 spin_lock(&dq_data_lock); 5029 5030 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5031 dquot->dq_dqb.dqb_bsoftlimit : 5032 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5033 if (limit && buf->f_blocks > limit) { 5034 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5035 buf->f_blocks = limit; 5036 buf->f_bfree = buf->f_bavail = 5037 (buf->f_blocks > curblock) ? 5038 (buf->f_blocks - curblock) : 0; 5039 } 5040 5041 limit = dquot->dq_dqb.dqb_isoftlimit ? 5042 dquot->dq_dqb.dqb_isoftlimit : 5043 dquot->dq_dqb.dqb_ihardlimit; 5044 if (limit && buf->f_files > limit) { 5045 buf->f_files = limit; 5046 buf->f_ffree = 5047 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5048 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5049 } 5050 5051 spin_unlock(&dq_data_lock); 5052 dqput(dquot); 5053 return 0; 5054 } 5055 #endif 5056 5057 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5058 { 5059 struct super_block *sb = dentry->d_sb; 5060 struct ext4_sb_info *sbi = EXT4_SB(sb); 5061 struct ext4_super_block *es = sbi->s_es; 5062 ext4_fsblk_t overhead = 0, resv_blocks; 5063 u64 fsid; 5064 s64 bfree; 5065 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5066 5067 if (!test_opt(sb, MINIX_DF)) 5068 overhead = sbi->s_overhead; 5069 5070 buf->f_type = EXT4_SUPER_MAGIC; 5071 buf->f_bsize = sb->s_blocksize; 5072 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5073 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5074 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5075 /* prevent underflow in case that few free space is available */ 5076 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5077 buf->f_bavail = buf->f_bfree - 5078 (ext4_r_blocks_count(es) + resv_blocks); 5079 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5080 buf->f_bavail = 0; 5081 buf->f_files = le32_to_cpu(es->s_inodes_count); 5082 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5083 buf->f_namelen = EXT4_NAME_LEN; 5084 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5085 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5086 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5087 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5088 5089 #ifdef CONFIG_QUOTA 5090 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5091 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5092 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5093 #endif 5094 return 0; 5095 } 5096 5097 /* Helper function for writing quotas on sync - we need to start transaction 5098 * before quota file is locked for write. Otherwise the are possible deadlocks: 5099 * Process 1 Process 2 5100 * ext4_create() quota_sync() 5101 * jbd2_journal_start() write_dquot() 5102 * dquot_initialize() down(dqio_mutex) 5103 * down(dqio_mutex) jbd2_journal_start() 5104 * 5105 */ 5106 5107 #ifdef CONFIG_QUOTA 5108 5109 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5110 { 5111 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5112 } 5113 5114 static int ext4_write_dquot(struct dquot *dquot) 5115 { 5116 int ret, err; 5117 handle_t *handle; 5118 struct inode *inode; 5119 5120 inode = dquot_to_inode(dquot); 5121 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5122 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5123 if (IS_ERR(handle)) 5124 return PTR_ERR(handle); 5125 ret = dquot_commit(dquot); 5126 err = ext4_journal_stop(handle); 5127 if (!ret) 5128 ret = err; 5129 return ret; 5130 } 5131 5132 static int ext4_acquire_dquot(struct dquot *dquot) 5133 { 5134 int ret, err; 5135 handle_t *handle; 5136 5137 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5138 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5139 if (IS_ERR(handle)) 5140 return PTR_ERR(handle); 5141 ret = dquot_acquire(dquot); 5142 err = ext4_journal_stop(handle); 5143 if (!ret) 5144 ret = err; 5145 return ret; 5146 } 5147 5148 static int ext4_release_dquot(struct dquot *dquot) 5149 { 5150 int ret, err; 5151 handle_t *handle; 5152 5153 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5154 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5155 if (IS_ERR(handle)) { 5156 /* Release dquot anyway to avoid endless cycle in dqput() */ 5157 dquot_release(dquot); 5158 return PTR_ERR(handle); 5159 } 5160 ret = dquot_release(dquot); 5161 err = ext4_journal_stop(handle); 5162 if (!ret) 5163 ret = err; 5164 return ret; 5165 } 5166 5167 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5168 { 5169 struct super_block *sb = dquot->dq_sb; 5170 struct ext4_sb_info *sbi = EXT4_SB(sb); 5171 5172 /* Are we journaling quotas? */ 5173 if (ext4_has_feature_quota(sb) || 5174 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5175 dquot_mark_dquot_dirty(dquot); 5176 return ext4_write_dquot(dquot); 5177 } else { 5178 return dquot_mark_dquot_dirty(dquot); 5179 } 5180 } 5181 5182 static int ext4_write_info(struct super_block *sb, int type) 5183 { 5184 int ret, err; 5185 handle_t *handle; 5186 5187 /* Data block + inode block */ 5188 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5189 if (IS_ERR(handle)) 5190 return PTR_ERR(handle); 5191 ret = dquot_commit_info(sb, type); 5192 err = ext4_journal_stop(handle); 5193 if (!ret) 5194 ret = err; 5195 return ret; 5196 } 5197 5198 /* 5199 * Turn on quotas during mount time - we need to find 5200 * the quota file and such... 5201 */ 5202 static int ext4_quota_on_mount(struct super_block *sb, int type) 5203 { 5204 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5205 EXT4_SB(sb)->s_jquota_fmt, type); 5206 } 5207 5208 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5209 { 5210 struct ext4_inode_info *ei = EXT4_I(inode); 5211 5212 /* The first argument of lockdep_set_subclass has to be 5213 * *exactly* the same as the argument to init_rwsem() --- in 5214 * this case, in init_once() --- or lockdep gets unhappy 5215 * because the name of the lock is set using the 5216 * stringification of the argument to init_rwsem(). 5217 */ 5218 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5219 lockdep_set_subclass(&ei->i_data_sem, subclass); 5220 } 5221 5222 /* 5223 * Standard function to be called on quota_on 5224 */ 5225 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5226 struct path *path) 5227 { 5228 int err; 5229 5230 if (!test_opt(sb, QUOTA)) 5231 return -EINVAL; 5232 5233 /* Quotafile not on the same filesystem? */ 5234 if (path->dentry->d_sb != sb) 5235 return -EXDEV; 5236 /* Journaling quota? */ 5237 if (EXT4_SB(sb)->s_qf_names[type]) { 5238 /* Quotafile not in fs root? */ 5239 if (path->dentry->d_parent != sb->s_root) 5240 ext4_msg(sb, KERN_WARNING, 5241 "Quota file not on filesystem root. " 5242 "Journaled quota will not work"); 5243 } 5244 5245 /* 5246 * When we journal data on quota file, we have to flush journal to see 5247 * all updates to the file when we bypass pagecache... 5248 */ 5249 if (EXT4_SB(sb)->s_journal && 5250 ext4_should_journal_data(d_inode(path->dentry))) { 5251 /* 5252 * We don't need to lock updates but journal_flush() could 5253 * otherwise be livelocked... 5254 */ 5255 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5256 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5257 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5258 if (err) 5259 return err; 5260 } 5261 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5262 err = dquot_quota_on(sb, type, format_id, path); 5263 if (err) 5264 lockdep_set_quota_inode(path->dentry->d_inode, 5265 I_DATA_SEM_NORMAL); 5266 return err; 5267 } 5268 5269 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5270 unsigned int flags) 5271 { 5272 int err; 5273 struct inode *qf_inode; 5274 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5275 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5276 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5277 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5278 }; 5279 5280 BUG_ON(!ext4_has_feature_quota(sb)); 5281 5282 if (!qf_inums[type]) 5283 return -EPERM; 5284 5285 qf_inode = ext4_iget(sb, qf_inums[type]); 5286 if (IS_ERR(qf_inode)) { 5287 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5288 return PTR_ERR(qf_inode); 5289 } 5290 5291 /* Don't account quota for quota files to avoid recursion */ 5292 qf_inode->i_flags |= S_NOQUOTA; 5293 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5294 err = dquot_enable(qf_inode, type, format_id, flags); 5295 iput(qf_inode); 5296 if (err) 5297 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5298 5299 return err; 5300 } 5301 5302 /* Enable usage tracking for all quota types. */ 5303 static int ext4_enable_quotas(struct super_block *sb) 5304 { 5305 int type, err = 0; 5306 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5307 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5308 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5309 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5310 }; 5311 bool quota_mopt[EXT4_MAXQUOTAS] = { 5312 test_opt(sb, USRQUOTA), 5313 test_opt(sb, GRPQUOTA), 5314 test_opt(sb, PRJQUOTA), 5315 }; 5316 5317 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5318 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5319 if (qf_inums[type]) { 5320 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5321 DQUOT_USAGE_ENABLED | 5322 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5323 if (err) { 5324 ext4_warning(sb, 5325 "Failed to enable quota tracking " 5326 "(type=%d, err=%d). Please run " 5327 "e2fsck to fix.", type, err); 5328 return err; 5329 } 5330 } 5331 } 5332 return 0; 5333 } 5334 5335 static int ext4_quota_off(struct super_block *sb, int type) 5336 { 5337 struct inode *inode = sb_dqopt(sb)->files[type]; 5338 handle_t *handle; 5339 5340 /* Force all delayed allocation blocks to be allocated. 5341 * Caller already holds s_umount sem */ 5342 if (test_opt(sb, DELALLOC)) 5343 sync_filesystem(sb); 5344 5345 if (!inode) 5346 goto out; 5347 5348 /* Update modification times of quota files when userspace can 5349 * start looking at them */ 5350 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5351 if (IS_ERR(handle)) 5352 goto out; 5353 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5354 ext4_mark_inode_dirty(handle, inode); 5355 ext4_journal_stop(handle); 5356 5357 out: 5358 return dquot_quota_off(sb, type); 5359 } 5360 5361 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5362 * acquiring the locks... As quota files are never truncated and quota code 5363 * itself serializes the operations (and no one else should touch the files) 5364 * we don't have to be afraid of races */ 5365 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5366 size_t len, loff_t off) 5367 { 5368 struct inode *inode = sb_dqopt(sb)->files[type]; 5369 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5370 int offset = off & (sb->s_blocksize - 1); 5371 int tocopy; 5372 size_t toread; 5373 struct buffer_head *bh; 5374 loff_t i_size = i_size_read(inode); 5375 5376 if (off > i_size) 5377 return 0; 5378 if (off+len > i_size) 5379 len = i_size-off; 5380 toread = len; 5381 while (toread > 0) { 5382 tocopy = sb->s_blocksize - offset < toread ? 5383 sb->s_blocksize - offset : toread; 5384 bh = ext4_bread(NULL, inode, blk, 0); 5385 if (IS_ERR(bh)) 5386 return PTR_ERR(bh); 5387 if (!bh) /* A hole? */ 5388 memset(data, 0, tocopy); 5389 else 5390 memcpy(data, bh->b_data+offset, tocopy); 5391 brelse(bh); 5392 offset = 0; 5393 toread -= tocopy; 5394 data += tocopy; 5395 blk++; 5396 } 5397 return len; 5398 } 5399 5400 /* Write to quotafile (we know the transaction is already started and has 5401 * enough credits) */ 5402 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5403 const char *data, size_t len, loff_t off) 5404 { 5405 struct inode *inode = sb_dqopt(sb)->files[type]; 5406 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5407 int err, offset = off & (sb->s_blocksize - 1); 5408 int retries = 0; 5409 struct buffer_head *bh; 5410 handle_t *handle = journal_current_handle(); 5411 5412 if (EXT4_SB(sb)->s_journal && !handle) { 5413 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5414 " cancelled because transaction is not started", 5415 (unsigned long long)off, (unsigned long long)len); 5416 return -EIO; 5417 } 5418 /* 5419 * Since we account only one data block in transaction credits, 5420 * then it is impossible to cross a block boundary. 5421 */ 5422 if (sb->s_blocksize - offset < len) { 5423 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5424 " cancelled because not block aligned", 5425 (unsigned long long)off, (unsigned long long)len); 5426 return -EIO; 5427 } 5428 5429 do { 5430 bh = ext4_bread(handle, inode, blk, 5431 EXT4_GET_BLOCKS_CREATE | 5432 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5433 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5434 ext4_should_retry_alloc(inode->i_sb, &retries)); 5435 if (IS_ERR(bh)) 5436 return PTR_ERR(bh); 5437 if (!bh) 5438 goto out; 5439 BUFFER_TRACE(bh, "get write access"); 5440 err = ext4_journal_get_write_access(handle, bh); 5441 if (err) { 5442 brelse(bh); 5443 return err; 5444 } 5445 lock_buffer(bh); 5446 memcpy(bh->b_data+offset, data, len); 5447 flush_dcache_page(bh->b_page); 5448 unlock_buffer(bh); 5449 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5450 brelse(bh); 5451 out: 5452 if (inode->i_size < off + len) { 5453 i_size_write(inode, off + len); 5454 EXT4_I(inode)->i_disksize = inode->i_size; 5455 ext4_mark_inode_dirty(handle, inode); 5456 } 5457 return len; 5458 } 5459 5460 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5461 { 5462 const struct quota_format_ops *ops; 5463 5464 if (!sb_has_quota_loaded(sb, qid->type)) 5465 return -ESRCH; 5466 ops = sb_dqopt(sb)->ops[qid->type]; 5467 if (!ops || !ops->get_next_id) 5468 return -ENOSYS; 5469 return dquot_get_next_id(sb, qid); 5470 } 5471 #endif 5472 5473 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5474 const char *dev_name, void *data) 5475 { 5476 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5477 } 5478 5479 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5480 static inline void register_as_ext2(void) 5481 { 5482 int err = register_filesystem(&ext2_fs_type); 5483 if (err) 5484 printk(KERN_WARNING 5485 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5486 } 5487 5488 static inline void unregister_as_ext2(void) 5489 { 5490 unregister_filesystem(&ext2_fs_type); 5491 } 5492 5493 static inline int ext2_feature_set_ok(struct super_block *sb) 5494 { 5495 if (ext4_has_unknown_ext2_incompat_features(sb)) 5496 return 0; 5497 if (sb->s_flags & MS_RDONLY) 5498 return 1; 5499 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5500 return 0; 5501 return 1; 5502 } 5503 #else 5504 static inline void register_as_ext2(void) { } 5505 static inline void unregister_as_ext2(void) { } 5506 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5507 #endif 5508 5509 static inline void register_as_ext3(void) 5510 { 5511 int err = register_filesystem(&ext3_fs_type); 5512 if (err) 5513 printk(KERN_WARNING 5514 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5515 } 5516 5517 static inline void unregister_as_ext3(void) 5518 { 5519 unregister_filesystem(&ext3_fs_type); 5520 } 5521 5522 static inline int ext3_feature_set_ok(struct super_block *sb) 5523 { 5524 if (ext4_has_unknown_ext3_incompat_features(sb)) 5525 return 0; 5526 if (!ext4_has_feature_journal(sb)) 5527 return 0; 5528 if (sb->s_flags & MS_RDONLY) 5529 return 1; 5530 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5531 return 0; 5532 return 1; 5533 } 5534 5535 static struct file_system_type ext4_fs_type = { 5536 .owner = THIS_MODULE, 5537 .name = "ext4", 5538 .mount = ext4_mount, 5539 .kill_sb = kill_block_super, 5540 .fs_flags = FS_REQUIRES_DEV, 5541 }; 5542 MODULE_ALIAS_FS("ext4"); 5543 5544 /* Shared across all ext4 file systems */ 5545 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5546 5547 static int __init ext4_init_fs(void) 5548 { 5549 int i, err; 5550 5551 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5552 ext4_li_info = NULL; 5553 mutex_init(&ext4_li_mtx); 5554 5555 /* Build-time check for flags consistency */ 5556 ext4_check_flag_values(); 5557 5558 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5559 init_waitqueue_head(&ext4__ioend_wq[i]); 5560 5561 err = ext4_init_es(); 5562 if (err) 5563 return err; 5564 5565 err = ext4_init_pageio(); 5566 if (err) 5567 goto out5; 5568 5569 err = ext4_init_system_zone(); 5570 if (err) 5571 goto out4; 5572 5573 err = ext4_init_sysfs(); 5574 if (err) 5575 goto out3; 5576 5577 err = ext4_init_mballoc(); 5578 if (err) 5579 goto out2; 5580 err = init_inodecache(); 5581 if (err) 5582 goto out1; 5583 register_as_ext3(); 5584 register_as_ext2(); 5585 err = register_filesystem(&ext4_fs_type); 5586 if (err) 5587 goto out; 5588 5589 return 0; 5590 out: 5591 unregister_as_ext2(); 5592 unregister_as_ext3(); 5593 destroy_inodecache(); 5594 out1: 5595 ext4_exit_mballoc(); 5596 out2: 5597 ext4_exit_sysfs(); 5598 out3: 5599 ext4_exit_system_zone(); 5600 out4: 5601 ext4_exit_pageio(); 5602 out5: 5603 ext4_exit_es(); 5604 5605 return err; 5606 } 5607 5608 static void __exit ext4_exit_fs(void) 5609 { 5610 ext4_destroy_lazyinit_thread(); 5611 unregister_as_ext2(); 5612 unregister_as_ext3(); 5613 unregister_filesystem(&ext4_fs_type); 5614 destroy_inodecache(); 5615 ext4_exit_mballoc(); 5616 ext4_exit_sysfs(); 5617 ext4_exit_system_zone(); 5618 ext4_exit_pageio(); 5619 ext4_exit_es(); 5620 } 5621 5622 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5623 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5624 MODULE_LICENSE("GPL"); 5625 module_init(ext4_init_fs) 5626 module_exit(ext4_exit_fs) 5627