1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static int ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_lock 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_lock 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 146 bh_end_io_t *end_io) 147 { 148 /* 149 * buffer's verified bit is no longer valid after reading from 150 * disk again due to write out error, clear it to make sure we 151 * recheck the buffer contents. 152 */ 153 clear_buffer_verified(bh); 154 155 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 156 get_bh(bh); 157 submit_bh(REQ_OP_READ, op_flags, bh); 158 } 159 160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 161 bh_end_io_t *end_io) 162 { 163 BUG_ON(!buffer_locked(bh)); 164 165 if (ext4_buffer_uptodate(bh)) { 166 unlock_buffer(bh); 167 return; 168 } 169 __ext4_read_bh(bh, op_flags, end_io); 170 } 171 172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 173 { 174 BUG_ON(!buffer_locked(bh)); 175 176 if (ext4_buffer_uptodate(bh)) { 177 unlock_buffer(bh); 178 return 0; 179 } 180 181 __ext4_read_bh(bh, op_flags, end_io); 182 183 wait_on_buffer(bh); 184 if (buffer_uptodate(bh)) 185 return 0; 186 return -EIO; 187 } 188 189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 190 { 191 if (trylock_buffer(bh)) { 192 if (wait) 193 return ext4_read_bh(bh, op_flags, NULL); 194 ext4_read_bh_nowait(bh, op_flags, NULL); 195 return 0; 196 } 197 if (wait) { 198 wait_on_buffer(bh); 199 if (buffer_uptodate(bh)) 200 return 0; 201 return -EIO; 202 } 203 return 0; 204 } 205 206 /* 207 * This works like __bread_gfp() except it uses ERR_PTR for error 208 * returns. Currently with sb_bread it's impossible to distinguish 209 * between ENOMEM and EIO situations (since both result in a NULL 210 * return. 211 */ 212 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 213 sector_t block, int op_flags, 214 gfp_t gfp) 215 { 216 struct buffer_head *bh; 217 int ret; 218 219 bh = sb_getblk_gfp(sb, block, gfp); 220 if (bh == NULL) 221 return ERR_PTR(-ENOMEM); 222 if (ext4_buffer_uptodate(bh)) 223 return bh; 224 225 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 226 if (ret) { 227 put_bh(bh); 228 return ERR_PTR(ret); 229 } 230 return bh; 231 } 232 233 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 234 int op_flags) 235 { 236 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 237 } 238 239 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 240 sector_t block) 241 { 242 return __ext4_sb_bread_gfp(sb, block, 0, 0); 243 } 244 245 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 246 { 247 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 248 249 if (likely(bh)) { 250 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 251 brelse(bh); 252 } 253 } 254 255 static int ext4_verify_csum_type(struct super_block *sb, 256 struct ext4_super_block *es) 257 { 258 if (!ext4_has_feature_metadata_csum(sb)) 259 return 1; 260 261 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 262 } 263 264 static __le32 ext4_superblock_csum(struct super_block *sb, 265 struct ext4_super_block *es) 266 { 267 struct ext4_sb_info *sbi = EXT4_SB(sb); 268 int offset = offsetof(struct ext4_super_block, s_checksum); 269 __u32 csum; 270 271 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 272 273 return cpu_to_le32(csum); 274 } 275 276 static int ext4_superblock_csum_verify(struct super_block *sb, 277 struct ext4_super_block *es) 278 { 279 if (!ext4_has_metadata_csum(sb)) 280 return 1; 281 282 return es->s_checksum == ext4_superblock_csum(sb, es); 283 } 284 285 void ext4_superblock_csum_set(struct super_block *sb) 286 { 287 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 288 289 if (!ext4_has_metadata_csum(sb)) 290 return; 291 292 /* 293 * Locking the superblock prevents the scenario 294 * where: 295 * 1) a first thread pauses during checksum calculation. 296 * 2) a second thread updates the superblock, recalculates 297 * the checksum, and updates s_checksum 298 * 3) the first thread resumes and finishes its checksum calculation 299 * and updates s_checksum with a potentially stale or torn value. 300 */ 301 lock_buffer(EXT4_SB(sb)->s_sbh); 302 es->s_checksum = ext4_superblock_csum(sb, es); 303 unlock_buffer(EXT4_SB(sb)->s_sbh); 304 } 305 306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 307 struct ext4_group_desc *bg) 308 { 309 return le32_to_cpu(bg->bg_block_bitmap_lo) | 310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 312 } 313 314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 315 struct ext4_group_desc *bg) 316 { 317 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 320 } 321 322 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 323 struct ext4_group_desc *bg) 324 { 325 return le32_to_cpu(bg->bg_inode_table_lo) | 326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 328 } 329 330 __u32 ext4_free_group_clusters(struct super_block *sb, 331 struct ext4_group_desc *bg) 332 { 333 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 336 } 337 338 __u32 ext4_free_inodes_count(struct super_block *sb, 339 struct ext4_group_desc *bg) 340 { 341 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 344 } 345 346 __u32 ext4_used_dirs_count(struct super_block *sb, 347 struct ext4_group_desc *bg) 348 { 349 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 352 } 353 354 __u32 ext4_itable_unused_count(struct super_block *sb, 355 struct ext4_group_desc *bg) 356 { 357 return le16_to_cpu(bg->bg_itable_unused_lo) | 358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 360 } 361 362 void ext4_block_bitmap_set(struct super_block *sb, 363 struct ext4_group_desc *bg, ext4_fsblk_t blk) 364 { 365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 368 } 369 370 void ext4_inode_bitmap_set(struct super_block *sb, 371 struct ext4_group_desc *bg, ext4_fsblk_t blk) 372 { 373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 376 } 377 378 void ext4_inode_table_set(struct super_block *sb, 379 struct ext4_group_desc *bg, ext4_fsblk_t blk) 380 { 381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 384 } 385 386 void ext4_free_group_clusters_set(struct super_block *sb, 387 struct ext4_group_desc *bg, __u32 count) 388 { 389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 392 } 393 394 void ext4_free_inodes_set(struct super_block *sb, 395 struct ext4_group_desc *bg, __u32 count) 396 { 397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 400 } 401 402 void ext4_used_dirs_set(struct super_block *sb, 403 struct ext4_group_desc *bg, __u32 count) 404 { 405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 408 } 409 410 void ext4_itable_unused_set(struct super_block *sb, 411 struct ext4_group_desc *bg, __u32 count) 412 { 413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 416 } 417 418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 419 { 420 time64_t now = ktime_get_real_seconds(); 421 422 now = clamp_val(now, 0, (1ull << 40) - 1); 423 424 *lo = cpu_to_le32(lower_32_bits(now)); 425 *hi = upper_32_bits(now); 426 } 427 428 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 429 { 430 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 431 } 432 #define ext4_update_tstamp(es, tstamp) \ 433 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 434 #define ext4_get_tstamp(es, tstamp) \ 435 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 436 437 static void __save_error_info(struct super_block *sb, int error, 438 __u32 ino, __u64 block, 439 const char *func, unsigned int line) 440 { 441 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 442 int err; 443 444 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 445 if (bdev_read_only(sb->s_bdev)) 446 return; 447 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 448 ext4_update_tstamp(es, s_last_error_time); 449 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 450 es->s_last_error_line = cpu_to_le32(line); 451 es->s_last_error_ino = cpu_to_le32(ino); 452 es->s_last_error_block = cpu_to_le64(block); 453 switch (error) { 454 case EIO: 455 err = EXT4_ERR_EIO; 456 break; 457 case ENOMEM: 458 err = EXT4_ERR_ENOMEM; 459 break; 460 case EFSBADCRC: 461 err = EXT4_ERR_EFSBADCRC; 462 break; 463 case 0: 464 case EFSCORRUPTED: 465 err = EXT4_ERR_EFSCORRUPTED; 466 break; 467 case ENOSPC: 468 err = EXT4_ERR_ENOSPC; 469 break; 470 case ENOKEY: 471 err = EXT4_ERR_ENOKEY; 472 break; 473 case EROFS: 474 err = EXT4_ERR_EROFS; 475 break; 476 case EFBIG: 477 err = EXT4_ERR_EFBIG; 478 break; 479 case EEXIST: 480 err = EXT4_ERR_EEXIST; 481 break; 482 case ERANGE: 483 err = EXT4_ERR_ERANGE; 484 break; 485 case EOVERFLOW: 486 err = EXT4_ERR_EOVERFLOW; 487 break; 488 case EBUSY: 489 err = EXT4_ERR_EBUSY; 490 break; 491 case ENOTDIR: 492 err = EXT4_ERR_ENOTDIR; 493 break; 494 case ENOTEMPTY: 495 err = EXT4_ERR_ENOTEMPTY; 496 break; 497 case ESHUTDOWN: 498 err = EXT4_ERR_ESHUTDOWN; 499 break; 500 case EFAULT: 501 err = EXT4_ERR_EFAULT; 502 break; 503 default: 504 err = EXT4_ERR_UNKNOWN; 505 } 506 es->s_last_error_errcode = err; 507 if (!es->s_first_error_time) { 508 es->s_first_error_time = es->s_last_error_time; 509 es->s_first_error_time_hi = es->s_last_error_time_hi; 510 strncpy(es->s_first_error_func, func, 511 sizeof(es->s_first_error_func)); 512 es->s_first_error_line = cpu_to_le32(line); 513 es->s_first_error_ino = es->s_last_error_ino; 514 es->s_first_error_block = es->s_last_error_block; 515 es->s_first_error_errcode = es->s_last_error_errcode; 516 } 517 /* 518 * Start the daily error reporting function if it hasn't been 519 * started already 520 */ 521 if (!es->s_error_count) 522 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 523 le32_add_cpu(&es->s_error_count, 1); 524 } 525 526 static void save_error_info(struct super_block *sb, int error, 527 __u32 ino, __u64 block, 528 const char *func, unsigned int line) 529 { 530 __save_error_info(sb, error, ino, block, func, line); 531 if (!bdev_read_only(sb->s_bdev)) 532 ext4_commit_super(sb, 1); 533 } 534 535 /* 536 * The del_gendisk() function uninitializes the disk-specific data 537 * structures, including the bdi structure, without telling anyone 538 * else. Once this happens, any attempt to call mark_buffer_dirty() 539 * (for example, by ext4_commit_super), will cause a kernel OOPS. 540 * This is a kludge to prevent these oops until we can put in a proper 541 * hook in del_gendisk() to inform the VFS and file system layers. 542 */ 543 static int block_device_ejected(struct super_block *sb) 544 { 545 struct inode *bd_inode = sb->s_bdev->bd_inode; 546 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 547 548 return bdi->dev == NULL; 549 } 550 551 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 552 { 553 struct super_block *sb = journal->j_private; 554 struct ext4_sb_info *sbi = EXT4_SB(sb); 555 int error = is_journal_aborted(journal); 556 struct ext4_journal_cb_entry *jce; 557 558 BUG_ON(txn->t_state == T_FINISHED); 559 560 ext4_process_freed_data(sb, txn->t_tid); 561 562 spin_lock(&sbi->s_md_lock); 563 while (!list_empty(&txn->t_private_list)) { 564 jce = list_entry(txn->t_private_list.next, 565 struct ext4_journal_cb_entry, jce_list); 566 list_del_init(&jce->jce_list); 567 spin_unlock(&sbi->s_md_lock); 568 jce->jce_func(sb, jce, error); 569 spin_lock(&sbi->s_md_lock); 570 } 571 spin_unlock(&sbi->s_md_lock); 572 } 573 574 /* 575 * This writepage callback for write_cache_pages() 576 * takes care of a few cases after page cleaning. 577 * 578 * write_cache_pages() already checks for dirty pages 579 * and calls clear_page_dirty_for_io(), which we want, 580 * to write protect the pages. 581 * 582 * However, we may have to redirty a page (see below.) 583 */ 584 static int ext4_journalled_writepage_callback(struct page *page, 585 struct writeback_control *wbc, 586 void *data) 587 { 588 transaction_t *transaction = (transaction_t *) data; 589 struct buffer_head *bh, *head; 590 struct journal_head *jh; 591 592 bh = head = page_buffers(page); 593 do { 594 /* 595 * We have to redirty a page in these cases: 596 * 1) If buffer is dirty, it means the page was dirty because it 597 * contains a buffer that needs checkpointing. So the dirty bit 598 * needs to be preserved so that checkpointing writes the buffer 599 * properly. 600 * 2) If buffer is not part of the committing transaction 601 * (we may have just accidentally come across this buffer because 602 * inode range tracking is not exact) or if the currently running 603 * transaction already contains this buffer as well, dirty bit 604 * needs to be preserved so that the buffer gets writeprotected 605 * properly on running transaction's commit. 606 */ 607 jh = bh2jh(bh); 608 if (buffer_dirty(bh) || 609 (jh && (jh->b_transaction != transaction || 610 jh->b_next_transaction))) { 611 redirty_page_for_writepage(wbc, page); 612 goto out; 613 } 614 } while ((bh = bh->b_this_page) != head); 615 616 out: 617 return AOP_WRITEPAGE_ACTIVATE; 618 } 619 620 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 621 { 622 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 623 struct writeback_control wbc = { 624 .sync_mode = WB_SYNC_ALL, 625 .nr_to_write = LONG_MAX, 626 .range_start = jinode->i_dirty_start, 627 .range_end = jinode->i_dirty_end, 628 }; 629 630 return write_cache_pages(mapping, &wbc, 631 ext4_journalled_writepage_callback, 632 jinode->i_transaction); 633 } 634 635 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 636 { 637 int ret; 638 639 if (ext4_should_journal_data(jinode->i_vfs_inode)) 640 ret = ext4_journalled_submit_inode_data_buffers(jinode); 641 else 642 ret = jbd2_journal_submit_inode_data_buffers(jinode); 643 644 return ret; 645 } 646 647 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 648 { 649 int ret = 0; 650 651 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 652 ret = jbd2_journal_finish_inode_data_buffers(jinode); 653 654 return ret; 655 } 656 657 static bool system_going_down(void) 658 { 659 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 660 || system_state == SYSTEM_RESTART; 661 } 662 663 /* Deal with the reporting of failure conditions on a filesystem such as 664 * inconsistencies detected or read IO failures. 665 * 666 * On ext2, we can store the error state of the filesystem in the 667 * superblock. That is not possible on ext4, because we may have other 668 * write ordering constraints on the superblock which prevent us from 669 * writing it out straight away; and given that the journal is about to 670 * be aborted, we can't rely on the current, or future, transactions to 671 * write out the superblock safely. 672 * 673 * We'll just use the jbd2_journal_abort() error code to record an error in 674 * the journal instead. On recovery, the journal will complain about 675 * that error until we've noted it down and cleared it. 676 */ 677 678 static void ext4_handle_error(struct super_block *sb) 679 { 680 if (test_opt(sb, WARN_ON_ERROR)) 681 WARN_ON_ONCE(1); 682 683 if (sb_rdonly(sb)) 684 return; 685 686 if (!test_opt(sb, ERRORS_CONT)) { 687 journal_t *journal = EXT4_SB(sb)->s_journal; 688 689 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 690 if (journal) 691 jbd2_journal_abort(journal, -EIO); 692 } 693 /* 694 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 695 * could panic during 'reboot -f' as the underlying device got already 696 * disabled. 697 */ 698 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 699 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 700 /* 701 * Make sure updated value of ->s_mount_flags will be visible 702 * before ->s_flags update 703 */ 704 smp_wmb(); 705 sb->s_flags |= SB_RDONLY; 706 } else if (test_opt(sb, ERRORS_PANIC)) { 707 panic("EXT4-fs (device %s): panic forced after error\n", 708 sb->s_id); 709 } 710 } 711 712 #define ext4_error_ratelimit(sb) \ 713 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 714 "EXT4-fs error") 715 716 void __ext4_error(struct super_block *sb, const char *function, 717 unsigned int line, int error, __u64 block, 718 const char *fmt, ...) 719 { 720 struct va_format vaf; 721 va_list args; 722 723 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 724 return; 725 726 trace_ext4_error(sb, function, line); 727 if (ext4_error_ratelimit(sb)) { 728 va_start(args, fmt); 729 vaf.fmt = fmt; 730 vaf.va = &args; 731 printk(KERN_CRIT 732 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 733 sb->s_id, function, line, current->comm, &vaf); 734 va_end(args); 735 } 736 save_error_info(sb, error, 0, block, function, line); 737 ext4_handle_error(sb); 738 } 739 740 void __ext4_error_inode(struct inode *inode, const char *function, 741 unsigned int line, ext4_fsblk_t block, int error, 742 const char *fmt, ...) 743 { 744 va_list args; 745 struct va_format vaf; 746 747 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 748 return; 749 750 trace_ext4_error(inode->i_sb, function, line); 751 if (ext4_error_ratelimit(inode->i_sb)) { 752 va_start(args, fmt); 753 vaf.fmt = fmt; 754 vaf.va = &args; 755 if (block) 756 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 757 "inode #%lu: block %llu: comm %s: %pV\n", 758 inode->i_sb->s_id, function, line, inode->i_ino, 759 block, current->comm, &vaf); 760 else 761 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 762 "inode #%lu: comm %s: %pV\n", 763 inode->i_sb->s_id, function, line, inode->i_ino, 764 current->comm, &vaf); 765 va_end(args); 766 } 767 save_error_info(inode->i_sb, error, inode->i_ino, block, 768 function, line); 769 ext4_handle_error(inode->i_sb); 770 } 771 772 void __ext4_error_file(struct file *file, const char *function, 773 unsigned int line, ext4_fsblk_t block, 774 const char *fmt, ...) 775 { 776 va_list args; 777 struct va_format vaf; 778 struct inode *inode = file_inode(file); 779 char pathname[80], *path; 780 781 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 782 return; 783 784 trace_ext4_error(inode->i_sb, function, line); 785 if (ext4_error_ratelimit(inode->i_sb)) { 786 path = file_path(file, pathname, sizeof(pathname)); 787 if (IS_ERR(path)) 788 path = "(unknown)"; 789 va_start(args, fmt); 790 vaf.fmt = fmt; 791 vaf.va = &args; 792 if (block) 793 printk(KERN_CRIT 794 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 795 "block %llu: comm %s: path %s: %pV\n", 796 inode->i_sb->s_id, function, line, inode->i_ino, 797 block, current->comm, path, &vaf); 798 else 799 printk(KERN_CRIT 800 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 801 "comm %s: path %s: %pV\n", 802 inode->i_sb->s_id, function, line, inode->i_ino, 803 current->comm, path, &vaf); 804 va_end(args); 805 } 806 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 807 function, line); 808 ext4_handle_error(inode->i_sb); 809 } 810 811 const char *ext4_decode_error(struct super_block *sb, int errno, 812 char nbuf[16]) 813 { 814 char *errstr = NULL; 815 816 switch (errno) { 817 case -EFSCORRUPTED: 818 errstr = "Corrupt filesystem"; 819 break; 820 case -EFSBADCRC: 821 errstr = "Filesystem failed CRC"; 822 break; 823 case -EIO: 824 errstr = "IO failure"; 825 break; 826 case -ENOMEM: 827 errstr = "Out of memory"; 828 break; 829 case -EROFS: 830 if (!sb || (EXT4_SB(sb)->s_journal && 831 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 832 errstr = "Journal has aborted"; 833 else 834 errstr = "Readonly filesystem"; 835 break; 836 default: 837 /* If the caller passed in an extra buffer for unknown 838 * errors, textualise them now. Else we just return 839 * NULL. */ 840 if (nbuf) { 841 /* Check for truncated error codes... */ 842 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 843 errstr = nbuf; 844 } 845 break; 846 } 847 848 return errstr; 849 } 850 851 /* __ext4_std_error decodes expected errors from journaling functions 852 * automatically and invokes the appropriate error response. */ 853 854 void __ext4_std_error(struct super_block *sb, const char *function, 855 unsigned int line, int errno) 856 { 857 char nbuf[16]; 858 const char *errstr; 859 860 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 861 return; 862 863 /* Special case: if the error is EROFS, and we're not already 864 * inside a transaction, then there's really no point in logging 865 * an error. */ 866 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 867 return; 868 869 if (ext4_error_ratelimit(sb)) { 870 errstr = ext4_decode_error(sb, errno, nbuf); 871 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 872 sb->s_id, function, line, errstr); 873 } 874 875 save_error_info(sb, -errno, 0, 0, function, line); 876 ext4_handle_error(sb); 877 } 878 879 /* 880 * ext4_abort is a much stronger failure handler than ext4_error. The 881 * abort function may be used to deal with unrecoverable failures such 882 * as journal IO errors or ENOMEM at a critical moment in log management. 883 * 884 * We unconditionally force the filesystem into an ABORT|READONLY state, 885 * unless the error response on the fs has been set to panic in which 886 * case we take the easy way out and panic immediately. 887 */ 888 889 void __ext4_abort(struct super_block *sb, const char *function, 890 unsigned int line, int error, const char *fmt, ...) 891 { 892 struct va_format vaf; 893 va_list args; 894 895 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 896 return; 897 898 save_error_info(sb, error, 0, 0, function, line); 899 va_start(args, fmt); 900 vaf.fmt = fmt; 901 vaf.va = &args; 902 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 903 sb->s_id, function, line, &vaf); 904 va_end(args); 905 906 if (sb_rdonly(sb) == 0) { 907 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 908 if (EXT4_SB(sb)->s_journal) 909 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 910 911 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 912 /* 913 * Make sure updated value of ->s_mount_flags will be visible 914 * before ->s_flags update 915 */ 916 smp_wmb(); 917 sb->s_flags |= SB_RDONLY; 918 } 919 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) 920 panic("EXT4-fs panic from previous error\n"); 921 } 922 923 void __ext4_msg(struct super_block *sb, 924 const char *prefix, const char *fmt, ...) 925 { 926 struct va_format vaf; 927 va_list args; 928 929 atomic_inc(&EXT4_SB(sb)->s_msg_count); 930 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 931 return; 932 933 va_start(args, fmt); 934 vaf.fmt = fmt; 935 vaf.va = &args; 936 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 937 va_end(args); 938 } 939 940 static int ext4_warning_ratelimit(struct super_block *sb) 941 { 942 atomic_inc(&EXT4_SB(sb)->s_warning_count); 943 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 944 "EXT4-fs warning"); 945 } 946 947 void __ext4_warning(struct super_block *sb, const char *function, 948 unsigned int line, const char *fmt, ...) 949 { 950 struct va_format vaf; 951 va_list args; 952 953 if (!ext4_warning_ratelimit(sb)) 954 return; 955 956 va_start(args, fmt); 957 vaf.fmt = fmt; 958 vaf.va = &args; 959 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 960 sb->s_id, function, line, &vaf); 961 va_end(args); 962 } 963 964 void __ext4_warning_inode(const struct inode *inode, const char *function, 965 unsigned int line, const char *fmt, ...) 966 { 967 struct va_format vaf; 968 va_list args; 969 970 if (!ext4_warning_ratelimit(inode->i_sb)) 971 return; 972 973 va_start(args, fmt); 974 vaf.fmt = fmt; 975 vaf.va = &args; 976 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 977 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 978 function, line, inode->i_ino, current->comm, &vaf); 979 va_end(args); 980 } 981 982 void __ext4_grp_locked_error(const char *function, unsigned int line, 983 struct super_block *sb, ext4_group_t grp, 984 unsigned long ino, ext4_fsblk_t block, 985 const char *fmt, ...) 986 __releases(bitlock) 987 __acquires(bitlock) 988 { 989 struct va_format vaf; 990 va_list args; 991 992 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 993 return; 994 995 trace_ext4_error(sb, function, line); 996 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 997 998 if (ext4_error_ratelimit(sb)) { 999 va_start(args, fmt); 1000 vaf.fmt = fmt; 1001 vaf.va = &args; 1002 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 1003 sb->s_id, function, line, grp); 1004 if (ino) 1005 printk(KERN_CONT "inode %lu: ", ino); 1006 if (block) 1007 printk(KERN_CONT "block %llu:", 1008 (unsigned long long) block); 1009 printk(KERN_CONT "%pV\n", &vaf); 1010 va_end(args); 1011 } 1012 1013 if (test_opt(sb, WARN_ON_ERROR)) 1014 WARN_ON_ONCE(1); 1015 1016 if (test_opt(sb, ERRORS_CONT)) { 1017 ext4_commit_super(sb, 0); 1018 return; 1019 } 1020 1021 ext4_unlock_group(sb, grp); 1022 ext4_commit_super(sb, 1); 1023 ext4_handle_error(sb); 1024 /* 1025 * We only get here in the ERRORS_RO case; relocking the group 1026 * may be dangerous, but nothing bad will happen since the 1027 * filesystem will have already been marked read/only and the 1028 * journal has been aborted. We return 1 as a hint to callers 1029 * who might what to use the return value from 1030 * ext4_grp_locked_error() to distinguish between the 1031 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1032 * aggressively from the ext4 function in question, with a 1033 * more appropriate error code. 1034 */ 1035 ext4_lock_group(sb, grp); 1036 return; 1037 } 1038 1039 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1040 ext4_group_t group, 1041 unsigned int flags) 1042 { 1043 struct ext4_sb_info *sbi = EXT4_SB(sb); 1044 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1045 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1046 int ret; 1047 1048 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1049 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1050 &grp->bb_state); 1051 if (!ret) 1052 percpu_counter_sub(&sbi->s_freeclusters_counter, 1053 grp->bb_free); 1054 } 1055 1056 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1057 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1058 &grp->bb_state); 1059 if (!ret && gdp) { 1060 int count; 1061 1062 count = ext4_free_inodes_count(sb, gdp); 1063 percpu_counter_sub(&sbi->s_freeinodes_counter, 1064 count); 1065 } 1066 } 1067 } 1068 1069 void ext4_update_dynamic_rev(struct super_block *sb) 1070 { 1071 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1072 1073 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1074 return; 1075 1076 ext4_warning(sb, 1077 "updating to rev %d because of new feature flag, " 1078 "running e2fsck is recommended", 1079 EXT4_DYNAMIC_REV); 1080 1081 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1082 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1083 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1084 /* leave es->s_feature_*compat flags alone */ 1085 /* es->s_uuid will be set by e2fsck if empty */ 1086 1087 /* 1088 * The rest of the superblock fields should be zero, and if not it 1089 * means they are likely already in use, so leave them alone. We 1090 * can leave it up to e2fsck to clean up any inconsistencies there. 1091 */ 1092 } 1093 1094 /* 1095 * Open the external journal device 1096 */ 1097 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1098 { 1099 struct block_device *bdev; 1100 1101 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1102 if (IS_ERR(bdev)) 1103 goto fail; 1104 return bdev; 1105 1106 fail: 1107 ext4_msg(sb, KERN_ERR, 1108 "failed to open journal device unknown-block(%u,%u) %ld", 1109 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1110 return NULL; 1111 } 1112 1113 /* 1114 * Release the journal device 1115 */ 1116 static void ext4_blkdev_put(struct block_device *bdev) 1117 { 1118 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1119 } 1120 1121 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1122 { 1123 struct block_device *bdev; 1124 bdev = sbi->s_journal_bdev; 1125 if (bdev) { 1126 ext4_blkdev_put(bdev); 1127 sbi->s_journal_bdev = NULL; 1128 } 1129 } 1130 1131 static inline struct inode *orphan_list_entry(struct list_head *l) 1132 { 1133 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1134 } 1135 1136 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1137 { 1138 struct list_head *l; 1139 1140 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1141 le32_to_cpu(sbi->s_es->s_last_orphan)); 1142 1143 printk(KERN_ERR "sb_info orphan list:\n"); 1144 list_for_each(l, &sbi->s_orphan) { 1145 struct inode *inode = orphan_list_entry(l); 1146 printk(KERN_ERR " " 1147 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1148 inode->i_sb->s_id, inode->i_ino, inode, 1149 inode->i_mode, inode->i_nlink, 1150 NEXT_ORPHAN(inode)); 1151 } 1152 } 1153 1154 #ifdef CONFIG_QUOTA 1155 static int ext4_quota_off(struct super_block *sb, int type); 1156 1157 static inline void ext4_quota_off_umount(struct super_block *sb) 1158 { 1159 int type; 1160 1161 /* Use our quota_off function to clear inode flags etc. */ 1162 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1163 ext4_quota_off(sb, type); 1164 } 1165 1166 /* 1167 * This is a helper function which is used in the mount/remount 1168 * codepaths (which holds s_umount) to fetch the quota file name. 1169 */ 1170 static inline char *get_qf_name(struct super_block *sb, 1171 struct ext4_sb_info *sbi, 1172 int type) 1173 { 1174 return rcu_dereference_protected(sbi->s_qf_names[type], 1175 lockdep_is_held(&sb->s_umount)); 1176 } 1177 #else 1178 static inline void ext4_quota_off_umount(struct super_block *sb) 1179 { 1180 } 1181 #endif 1182 1183 static void ext4_put_super(struct super_block *sb) 1184 { 1185 struct ext4_sb_info *sbi = EXT4_SB(sb); 1186 struct ext4_super_block *es = sbi->s_es; 1187 struct buffer_head **group_desc; 1188 struct flex_groups **flex_groups; 1189 int aborted = 0; 1190 int i, err; 1191 1192 ext4_unregister_li_request(sb); 1193 ext4_quota_off_umount(sb); 1194 1195 destroy_workqueue(sbi->rsv_conversion_wq); 1196 1197 /* 1198 * Unregister sysfs before destroying jbd2 journal. 1199 * Since we could still access attr_journal_task attribute via sysfs 1200 * path which could have sbi->s_journal->j_task as NULL 1201 */ 1202 ext4_unregister_sysfs(sb); 1203 1204 if (sbi->s_journal) { 1205 aborted = is_journal_aborted(sbi->s_journal); 1206 err = jbd2_journal_destroy(sbi->s_journal); 1207 sbi->s_journal = NULL; 1208 if ((err < 0) && !aborted) { 1209 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1210 } 1211 } 1212 1213 ext4_es_unregister_shrinker(sbi); 1214 del_timer_sync(&sbi->s_err_report); 1215 ext4_release_system_zone(sb); 1216 ext4_mb_release(sb); 1217 ext4_ext_release(sb); 1218 1219 if (!sb_rdonly(sb) && !aborted) { 1220 ext4_clear_feature_journal_needs_recovery(sb); 1221 es->s_state = cpu_to_le16(sbi->s_mount_state); 1222 } 1223 if (!sb_rdonly(sb)) 1224 ext4_commit_super(sb, 1); 1225 1226 rcu_read_lock(); 1227 group_desc = rcu_dereference(sbi->s_group_desc); 1228 for (i = 0; i < sbi->s_gdb_count; i++) 1229 brelse(group_desc[i]); 1230 kvfree(group_desc); 1231 flex_groups = rcu_dereference(sbi->s_flex_groups); 1232 if (flex_groups) { 1233 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1234 kvfree(flex_groups[i]); 1235 kvfree(flex_groups); 1236 } 1237 rcu_read_unlock(); 1238 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1239 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1240 percpu_counter_destroy(&sbi->s_dirs_counter); 1241 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1242 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1243 #ifdef CONFIG_QUOTA 1244 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1245 kfree(get_qf_name(sb, sbi, i)); 1246 #endif 1247 1248 /* Debugging code just in case the in-memory inode orphan list 1249 * isn't empty. The on-disk one can be non-empty if we've 1250 * detected an error and taken the fs readonly, but the 1251 * in-memory list had better be clean by this point. */ 1252 if (!list_empty(&sbi->s_orphan)) 1253 dump_orphan_list(sb, sbi); 1254 J_ASSERT(list_empty(&sbi->s_orphan)); 1255 1256 sync_blockdev(sb->s_bdev); 1257 invalidate_bdev(sb->s_bdev); 1258 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1259 /* 1260 * Invalidate the journal device's buffers. We don't want them 1261 * floating about in memory - the physical journal device may 1262 * hotswapped, and it breaks the `ro-after' testing code. 1263 */ 1264 sync_blockdev(sbi->s_journal_bdev); 1265 invalidate_bdev(sbi->s_journal_bdev); 1266 ext4_blkdev_remove(sbi); 1267 } 1268 1269 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1270 sbi->s_ea_inode_cache = NULL; 1271 1272 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1273 sbi->s_ea_block_cache = NULL; 1274 1275 if (sbi->s_mmp_tsk) 1276 kthread_stop(sbi->s_mmp_tsk); 1277 brelse(sbi->s_sbh); 1278 sb->s_fs_info = NULL; 1279 /* 1280 * Now that we are completely done shutting down the 1281 * superblock, we need to actually destroy the kobject. 1282 */ 1283 kobject_put(&sbi->s_kobj); 1284 wait_for_completion(&sbi->s_kobj_unregister); 1285 if (sbi->s_chksum_driver) 1286 crypto_free_shash(sbi->s_chksum_driver); 1287 kfree(sbi->s_blockgroup_lock); 1288 fs_put_dax(sbi->s_daxdev); 1289 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1290 #ifdef CONFIG_UNICODE 1291 utf8_unload(sb->s_encoding); 1292 #endif 1293 kfree(sbi); 1294 } 1295 1296 static struct kmem_cache *ext4_inode_cachep; 1297 1298 /* 1299 * Called inside transaction, so use GFP_NOFS 1300 */ 1301 static struct inode *ext4_alloc_inode(struct super_block *sb) 1302 { 1303 struct ext4_inode_info *ei; 1304 1305 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1306 if (!ei) 1307 return NULL; 1308 1309 inode_set_iversion(&ei->vfs_inode, 1); 1310 spin_lock_init(&ei->i_raw_lock); 1311 INIT_LIST_HEAD(&ei->i_prealloc_list); 1312 atomic_set(&ei->i_prealloc_active, 0); 1313 spin_lock_init(&ei->i_prealloc_lock); 1314 ext4_es_init_tree(&ei->i_es_tree); 1315 rwlock_init(&ei->i_es_lock); 1316 INIT_LIST_HEAD(&ei->i_es_list); 1317 ei->i_es_all_nr = 0; 1318 ei->i_es_shk_nr = 0; 1319 ei->i_es_shrink_lblk = 0; 1320 ei->i_reserved_data_blocks = 0; 1321 spin_lock_init(&(ei->i_block_reservation_lock)); 1322 ext4_init_pending_tree(&ei->i_pending_tree); 1323 #ifdef CONFIG_QUOTA 1324 ei->i_reserved_quota = 0; 1325 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1326 #endif 1327 ei->jinode = NULL; 1328 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1329 spin_lock_init(&ei->i_completed_io_lock); 1330 ei->i_sync_tid = 0; 1331 ei->i_datasync_tid = 0; 1332 atomic_set(&ei->i_unwritten, 0); 1333 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1334 ext4_fc_init_inode(&ei->vfs_inode); 1335 mutex_init(&ei->i_fc_lock); 1336 return &ei->vfs_inode; 1337 } 1338 1339 static int ext4_drop_inode(struct inode *inode) 1340 { 1341 int drop = generic_drop_inode(inode); 1342 1343 if (!drop) 1344 drop = fscrypt_drop_inode(inode); 1345 1346 trace_ext4_drop_inode(inode, drop); 1347 return drop; 1348 } 1349 1350 static void ext4_free_in_core_inode(struct inode *inode) 1351 { 1352 fscrypt_free_inode(inode); 1353 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1354 pr_warn("%s: inode %ld still in fc list", 1355 __func__, inode->i_ino); 1356 } 1357 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1358 } 1359 1360 static void ext4_destroy_inode(struct inode *inode) 1361 { 1362 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1363 ext4_msg(inode->i_sb, KERN_ERR, 1364 "Inode %lu (%p): orphan list check failed!", 1365 inode->i_ino, EXT4_I(inode)); 1366 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1367 EXT4_I(inode), sizeof(struct ext4_inode_info), 1368 true); 1369 dump_stack(); 1370 } 1371 } 1372 1373 static void init_once(void *foo) 1374 { 1375 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1376 1377 INIT_LIST_HEAD(&ei->i_orphan); 1378 init_rwsem(&ei->xattr_sem); 1379 init_rwsem(&ei->i_data_sem); 1380 init_rwsem(&ei->i_mmap_sem); 1381 inode_init_once(&ei->vfs_inode); 1382 ext4_fc_init_inode(&ei->vfs_inode); 1383 } 1384 1385 static int __init init_inodecache(void) 1386 { 1387 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1388 sizeof(struct ext4_inode_info), 0, 1389 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1390 SLAB_ACCOUNT), 1391 offsetof(struct ext4_inode_info, i_data), 1392 sizeof_field(struct ext4_inode_info, i_data), 1393 init_once); 1394 if (ext4_inode_cachep == NULL) 1395 return -ENOMEM; 1396 return 0; 1397 } 1398 1399 static void destroy_inodecache(void) 1400 { 1401 /* 1402 * Make sure all delayed rcu free inodes are flushed before we 1403 * destroy cache. 1404 */ 1405 rcu_barrier(); 1406 kmem_cache_destroy(ext4_inode_cachep); 1407 } 1408 1409 void ext4_clear_inode(struct inode *inode) 1410 { 1411 ext4_fc_del(inode); 1412 invalidate_inode_buffers(inode); 1413 clear_inode(inode); 1414 ext4_discard_preallocations(inode, 0); 1415 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1416 dquot_drop(inode); 1417 if (EXT4_I(inode)->jinode) { 1418 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1419 EXT4_I(inode)->jinode); 1420 jbd2_free_inode(EXT4_I(inode)->jinode); 1421 EXT4_I(inode)->jinode = NULL; 1422 } 1423 fscrypt_put_encryption_info(inode); 1424 fsverity_cleanup_inode(inode); 1425 } 1426 1427 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1428 u64 ino, u32 generation) 1429 { 1430 struct inode *inode; 1431 1432 /* 1433 * Currently we don't know the generation for parent directory, so 1434 * a generation of 0 means "accept any" 1435 */ 1436 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1437 if (IS_ERR(inode)) 1438 return ERR_CAST(inode); 1439 if (generation && inode->i_generation != generation) { 1440 iput(inode); 1441 return ERR_PTR(-ESTALE); 1442 } 1443 1444 return inode; 1445 } 1446 1447 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1448 int fh_len, int fh_type) 1449 { 1450 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1451 ext4_nfs_get_inode); 1452 } 1453 1454 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1455 int fh_len, int fh_type) 1456 { 1457 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1458 ext4_nfs_get_inode); 1459 } 1460 1461 static int ext4_nfs_commit_metadata(struct inode *inode) 1462 { 1463 struct writeback_control wbc = { 1464 .sync_mode = WB_SYNC_ALL 1465 }; 1466 1467 trace_ext4_nfs_commit_metadata(inode); 1468 return ext4_write_inode(inode, &wbc); 1469 } 1470 1471 /* 1472 * Try to release metadata pages (indirect blocks, directories) which are 1473 * mapped via the block device. Since these pages could have journal heads 1474 * which would prevent try_to_free_buffers() from freeing them, we must use 1475 * jbd2 layer's try_to_free_buffers() function to release them. 1476 */ 1477 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1478 gfp_t wait) 1479 { 1480 journal_t *journal = EXT4_SB(sb)->s_journal; 1481 1482 WARN_ON(PageChecked(page)); 1483 if (!page_has_buffers(page)) 1484 return 0; 1485 if (journal) 1486 return jbd2_journal_try_to_free_buffers(journal, page); 1487 1488 return try_to_free_buffers(page); 1489 } 1490 1491 #ifdef CONFIG_FS_ENCRYPTION 1492 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1493 { 1494 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1495 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1496 } 1497 1498 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1499 void *fs_data) 1500 { 1501 handle_t *handle = fs_data; 1502 int res, res2, credits, retries = 0; 1503 1504 /* 1505 * Encrypting the root directory is not allowed because e2fsck expects 1506 * lost+found to exist and be unencrypted, and encrypting the root 1507 * directory would imply encrypting the lost+found directory as well as 1508 * the filename "lost+found" itself. 1509 */ 1510 if (inode->i_ino == EXT4_ROOT_INO) 1511 return -EPERM; 1512 1513 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1514 return -EINVAL; 1515 1516 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1517 return -EOPNOTSUPP; 1518 1519 res = ext4_convert_inline_data(inode); 1520 if (res) 1521 return res; 1522 1523 /* 1524 * If a journal handle was specified, then the encryption context is 1525 * being set on a new inode via inheritance and is part of a larger 1526 * transaction to create the inode. Otherwise the encryption context is 1527 * being set on an existing inode in its own transaction. Only in the 1528 * latter case should the "retry on ENOSPC" logic be used. 1529 */ 1530 1531 if (handle) { 1532 res = ext4_xattr_set_handle(handle, inode, 1533 EXT4_XATTR_INDEX_ENCRYPTION, 1534 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1535 ctx, len, 0); 1536 if (!res) { 1537 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1538 ext4_clear_inode_state(inode, 1539 EXT4_STATE_MAY_INLINE_DATA); 1540 /* 1541 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1542 * S_DAX may be disabled 1543 */ 1544 ext4_set_inode_flags(inode, false); 1545 } 1546 return res; 1547 } 1548 1549 res = dquot_initialize(inode); 1550 if (res) 1551 return res; 1552 retry: 1553 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1554 &credits); 1555 if (res) 1556 return res; 1557 1558 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1559 if (IS_ERR(handle)) 1560 return PTR_ERR(handle); 1561 1562 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1563 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1564 ctx, len, 0); 1565 if (!res) { 1566 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1567 /* 1568 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1569 * S_DAX may be disabled 1570 */ 1571 ext4_set_inode_flags(inode, false); 1572 res = ext4_mark_inode_dirty(handle, inode); 1573 if (res) 1574 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1575 } 1576 res2 = ext4_journal_stop(handle); 1577 1578 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1579 goto retry; 1580 if (!res) 1581 res = res2; 1582 return res; 1583 } 1584 1585 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1586 { 1587 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1588 } 1589 1590 static bool ext4_has_stable_inodes(struct super_block *sb) 1591 { 1592 return ext4_has_feature_stable_inodes(sb); 1593 } 1594 1595 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1596 int *ino_bits_ret, int *lblk_bits_ret) 1597 { 1598 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1599 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1600 } 1601 1602 static const struct fscrypt_operations ext4_cryptops = { 1603 .key_prefix = "ext4:", 1604 .get_context = ext4_get_context, 1605 .set_context = ext4_set_context, 1606 .get_dummy_policy = ext4_get_dummy_policy, 1607 .empty_dir = ext4_empty_dir, 1608 .max_namelen = EXT4_NAME_LEN, 1609 .has_stable_inodes = ext4_has_stable_inodes, 1610 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1611 }; 1612 #endif 1613 1614 #ifdef CONFIG_QUOTA 1615 static const char * const quotatypes[] = INITQFNAMES; 1616 #define QTYPE2NAME(t) (quotatypes[t]) 1617 1618 static int ext4_write_dquot(struct dquot *dquot); 1619 static int ext4_acquire_dquot(struct dquot *dquot); 1620 static int ext4_release_dquot(struct dquot *dquot); 1621 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1622 static int ext4_write_info(struct super_block *sb, int type); 1623 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1624 const struct path *path); 1625 static int ext4_quota_on_mount(struct super_block *sb, int type); 1626 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1627 size_t len, loff_t off); 1628 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1629 const char *data, size_t len, loff_t off); 1630 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1631 unsigned int flags); 1632 static int ext4_enable_quotas(struct super_block *sb); 1633 1634 static struct dquot **ext4_get_dquots(struct inode *inode) 1635 { 1636 return EXT4_I(inode)->i_dquot; 1637 } 1638 1639 static const struct dquot_operations ext4_quota_operations = { 1640 .get_reserved_space = ext4_get_reserved_space, 1641 .write_dquot = ext4_write_dquot, 1642 .acquire_dquot = ext4_acquire_dquot, 1643 .release_dquot = ext4_release_dquot, 1644 .mark_dirty = ext4_mark_dquot_dirty, 1645 .write_info = ext4_write_info, 1646 .alloc_dquot = dquot_alloc, 1647 .destroy_dquot = dquot_destroy, 1648 .get_projid = ext4_get_projid, 1649 .get_inode_usage = ext4_get_inode_usage, 1650 .get_next_id = dquot_get_next_id, 1651 }; 1652 1653 static const struct quotactl_ops ext4_qctl_operations = { 1654 .quota_on = ext4_quota_on, 1655 .quota_off = ext4_quota_off, 1656 .quota_sync = dquot_quota_sync, 1657 .get_state = dquot_get_state, 1658 .set_info = dquot_set_dqinfo, 1659 .get_dqblk = dquot_get_dqblk, 1660 .set_dqblk = dquot_set_dqblk, 1661 .get_nextdqblk = dquot_get_next_dqblk, 1662 }; 1663 #endif 1664 1665 static const struct super_operations ext4_sops = { 1666 .alloc_inode = ext4_alloc_inode, 1667 .free_inode = ext4_free_in_core_inode, 1668 .destroy_inode = ext4_destroy_inode, 1669 .write_inode = ext4_write_inode, 1670 .dirty_inode = ext4_dirty_inode, 1671 .drop_inode = ext4_drop_inode, 1672 .evict_inode = ext4_evict_inode, 1673 .put_super = ext4_put_super, 1674 .sync_fs = ext4_sync_fs, 1675 .freeze_fs = ext4_freeze, 1676 .unfreeze_fs = ext4_unfreeze, 1677 .statfs = ext4_statfs, 1678 .remount_fs = ext4_remount, 1679 .show_options = ext4_show_options, 1680 #ifdef CONFIG_QUOTA 1681 .quota_read = ext4_quota_read, 1682 .quota_write = ext4_quota_write, 1683 .get_dquots = ext4_get_dquots, 1684 #endif 1685 .bdev_try_to_free_page = bdev_try_to_free_page, 1686 }; 1687 1688 static const struct export_operations ext4_export_ops = { 1689 .fh_to_dentry = ext4_fh_to_dentry, 1690 .fh_to_parent = ext4_fh_to_parent, 1691 .get_parent = ext4_get_parent, 1692 .commit_metadata = ext4_nfs_commit_metadata, 1693 }; 1694 1695 enum { 1696 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1697 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1698 Opt_nouid32, Opt_debug, Opt_removed, 1699 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1700 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1701 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1702 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1703 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1704 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1705 Opt_inlinecrypt, 1706 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1707 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1708 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1709 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1710 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1711 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1712 Opt_nowarn_on_error, Opt_mblk_io_submit, 1713 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1714 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1715 Opt_inode_readahead_blks, Opt_journal_ioprio, 1716 Opt_dioread_nolock, Opt_dioread_lock, 1717 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1718 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1719 Opt_prefetch_block_bitmaps, Opt_no_fc, 1720 #ifdef CONFIG_EXT4_DEBUG 1721 Opt_fc_debug_max_replay, 1722 #endif 1723 Opt_fc_debug_force 1724 }; 1725 1726 static const match_table_t tokens = { 1727 {Opt_bsd_df, "bsddf"}, 1728 {Opt_minix_df, "minixdf"}, 1729 {Opt_grpid, "grpid"}, 1730 {Opt_grpid, "bsdgroups"}, 1731 {Opt_nogrpid, "nogrpid"}, 1732 {Opt_nogrpid, "sysvgroups"}, 1733 {Opt_resgid, "resgid=%u"}, 1734 {Opt_resuid, "resuid=%u"}, 1735 {Opt_sb, "sb=%u"}, 1736 {Opt_err_cont, "errors=continue"}, 1737 {Opt_err_panic, "errors=panic"}, 1738 {Opt_err_ro, "errors=remount-ro"}, 1739 {Opt_nouid32, "nouid32"}, 1740 {Opt_debug, "debug"}, 1741 {Opt_removed, "oldalloc"}, 1742 {Opt_removed, "orlov"}, 1743 {Opt_user_xattr, "user_xattr"}, 1744 {Opt_nouser_xattr, "nouser_xattr"}, 1745 {Opt_acl, "acl"}, 1746 {Opt_noacl, "noacl"}, 1747 {Opt_noload, "norecovery"}, 1748 {Opt_noload, "noload"}, 1749 {Opt_removed, "nobh"}, 1750 {Opt_removed, "bh"}, 1751 {Opt_commit, "commit=%u"}, 1752 {Opt_min_batch_time, "min_batch_time=%u"}, 1753 {Opt_max_batch_time, "max_batch_time=%u"}, 1754 {Opt_journal_dev, "journal_dev=%u"}, 1755 {Opt_journal_path, "journal_path=%s"}, 1756 {Opt_journal_checksum, "journal_checksum"}, 1757 {Opt_nojournal_checksum, "nojournal_checksum"}, 1758 {Opt_journal_async_commit, "journal_async_commit"}, 1759 {Opt_abort, "abort"}, 1760 {Opt_data_journal, "data=journal"}, 1761 {Opt_data_ordered, "data=ordered"}, 1762 {Opt_data_writeback, "data=writeback"}, 1763 {Opt_data_err_abort, "data_err=abort"}, 1764 {Opt_data_err_ignore, "data_err=ignore"}, 1765 {Opt_offusrjquota, "usrjquota="}, 1766 {Opt_usrjquota, "usrjquota=%s"}, 1767 {Opt_offgrpjquota, "grpjquota="}, 1768 {Opt_grpjquota, "grpjquota=%s"}, 1769 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1770 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1771 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1772 {Opt_grpquota, "grpquota"}, 1773 {Opt_noquota, "noquota"}, 1774 {Opt_quota, "quota"}, 1775 {Opt_usrquota, "usrquota"}, 1776 {Opt_prjquota, "prjquota"}, 1777 {Opt_barrier, "barrier=%u"}, 1778 {Opt_barrier, "barrier"}, 1779 {Opt_nobarrier, "nobarrier"}, 1780 {Opt_i_version, "i_version"}, 1781 {Opt_dax, "dax"}, 1782 {Opt_dax_always, "dax=always"}, 1783 {Opt_dax_inode, "dax=inode"}, 1784 {Opt_dax_never, "dax=never"}, 1785 {Opt_stripe, "stripe=%u"}, 1786 {Opt_delalloc, "delalloc"}, 1787 {Opt_warn_on_error, "warn_on_error"}, 1788 {Opt_nowarn_on_error, "nowarn_on_error"}, 1789 {Opt_lazytime, "lazytime"}, 1790 {Opt_nolazytime, "nolazytime"}, 1791 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1792 {Opt_nodelalloc, "nodelalloc"}, 1793 {Opt_removed, "mblk_io_submit"}, 1794 {Opt_removed, "nomblk_io_submit"}, 1795 {Opt_block_validity, "block_validity"}, 1796 {Opt_noblock_validity, "noblock_validity"}, 1797 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1798 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1799 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1800 {Opt_auto_da_alloc, "auto_da_alloc"}, 1801 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1802 {Opt_dioread_nolock, "dioread_nolock"}, 1803 {Opt_dioread_lock, "nodioread_nolock"}, 1804 {Opt_dioread_lock, "dioread_lock"}, 1805 {Opt_discard, "discard"}, 1806 {Opt_nodiscard, "nodiscard"}, 1807 {Opt_init_itable, "init_itable=%u"}, 1808 {Opt_init_itable, "init_itable"}, 1809 {Opt_noinit_itable, "noinit_itable"}, 1810 {Opt_no_fc, "no_fc"}, 1811 {Opt_fc_debug_force, "fc_debug_force"}, 1812 #ifdef CONFIG_EXT4_DEBUG 1813 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1814 #endif 1815 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1816 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1817 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1818 {Opt_inlinecrypt, "inlinecrypt"}, 1819 {Opt_nombcache, "nombcache"}, 1820 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1821 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, 1822 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1823 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1824 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1825 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1826 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1827 {Opt_err, NULL}, 1828 }; 1829 1830 static ext4_fsblk_t get_sb_block(void **data) 1831 { 1832 ext4_fsblk_t sb_block; 1833 char *options = (char *) *data; 1834 1835 if (!options || strncmp(options, "sb=", 3) != 0) 1836 return 1; /* Default location */ 1837 1838 options += 3; 1839 /* TODO: use simple_strtoll with >32bit ext4 */ 1840 sb_block = simple_strtoul(options, &options, 0); 1841 if (*options && *options != ',') { 1842 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1843 (char *) *data); 1844 return 1; 1845 } 1846 if (*options == ',') 1847 options++; 1848 *data = (void *) options; 1849 1850 return sb_block; 1851 } 1852 1853 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1854 static const char deprecated_msg[] = 1855 "Mount option \"%s\" will be removed by %s\n" 1856 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1857 1858 #ifdef CONFIG_QUOTA 1859 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1860 { 1861 struct ext4_sb_info *sbi = EXT4_SB(sb); 1862 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1863 int ret = -1; 1864 1865 if (sb_any_quota_loaded(sb) && !old_qname) { 1866 ext4_msg(sb, KERN_ERR, 1867 "Cannot change journaled " 1868 "quota options when quota turned on"); 1869 return -1; 1870 } 1871 if (ext4_has_feature_quota(sb)) { 1872 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1873 "ignored when QUOTA feature is enabled"); 1874 return 1; 1875 } 1876 qname = match_strdup(args); 1877 if (!qname) { 1878 ext4_msg(sb, KERN_ERR, 1879 "Not enough memory for storing quotafile name"); 1880 return -1; 1881 } 1882 if (old_qname) { 1883 if (strcmp(old_qname, qname) == 0) 1884 ret = 1; 1885 else 1886 ext4_msg(sb, KERN_ERR, 1887 "%s quota file already specified", 1888 QTYPE2NAME(qtype)); 1889 goto errout; 1890 } 1891 if (strchr(qname, '/')) { 1892 ext4_msg(sb, KERN_ERR, 1893 "quotafile must be on filesystem root"); 1894 goto errout; 1895 } 1896 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1897 set_opt(sb, QUOTA); 1898 return 1; 1899 errout: 1900 kfree(qname); 1901 return ret; 1902 } 1903 1904 static int clear_qf_name(struct super_block *sb, int qtype) 1905 { 1906 1907 struct ext4_sb_info *sbi = EXT4_SB(sb); 1908 char *old_qname = get_qf_name(sb, sbi, qtype); 1909 1910 if (sb_any_quota_loaded(sb) && old_qname) { 1911 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1912 " when quota turned on"); 1913 return -1; 1914 } 1915 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1916 synchronize_rcu(); 1917 kfree(old_qname); 1918 return 1; 1919 } 1920 #endif 1921 1922 #define MOPT_SET 0x0001 1923 #define MOPT_CLEAR 0x0002 1924 #define MOPT_NOSUPPORT 0x0004 1925 #define MOPT_EXPLICIT 0x0008 1926 #define MOPT_CLEAR_ERR 0x0010 1927 #define MOPT_GTE0 0x0020 1928 #ifdef CONFIG_QUOTA 1929 #define MOPT_Q 0 1930 #define MOPT_QFMT 0x0040 1931 #else 1932 #define MOPT_Q MOPT_NOSUPPORT 1933 #define MOPT_QFMT MOPT_NOSUPPORT 1934 #endif 1935 #define MOPT_DATAJ 0x0080 1936 #define MOPT_NO_EXT2 0x0100 1937 #define MOPT_NO_EXT3 0x0200 1938 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1939 #define MOPT_STRING 0x0400 1940 #define MOPT_SKIP 0x0800 1941 #define MOPT_2 0x1000 1942 1943 static const struct mount_opts { 1944 int token; 1945 int mount_opt; 1946 int flags; 1947 } ext4_mount_opts[] = { 1948 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1949 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1950 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1951 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1952 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1953 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1954 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1955 MOPT_EXT4_ONLY | MOPT_SET}, 1956 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1957 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1958 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1959 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1960 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1961 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1962 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1963 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1964 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1965 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1966 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1967 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1968 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1969 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1970 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1971 EXT4_MOUNT_JOURNAL_CHECKSUM), 1972 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1973 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1974 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1975 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1976 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1977 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1978 MOPT_NO_EXT2}, 1979 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1980 MOPT_NO_EXT2}, 1981 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1982 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1983 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1984 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1985 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1986 {Opt_commit, 0, MOPT_GTE0}, 1987 {Opt_max_batch_time, 0, MOPT_GTE0}, 1988 {Opt_min_batch_time, 0, MOPT_GTE0}, 1989 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1990 {Opt_init_itable, 0, MOPT_GTE0}, 1991 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1992 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1993 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1994 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1995 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1996 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1997 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1998 {Opt_stripe, 0, MOPT_GTE0}, 1999 {Opt_resuid, 0, MOPT_GTE0}, 2000 {Opt_resgid, 0, MOPT_GTE0}, 2001 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 2002 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 2003 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 2004 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 2005 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 2006 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 2007 MOPT_NO_EXT2 | MOPT_DATAJ}, 2008 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 2009 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 2010 #ifdef CONFIG_EXT4_FS_POSIX_ACL 2011 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 2012 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 2013 #else 2014 {Opt_acl, 0, MOPT_NOSUPPORT}, 2015 {Opt_noacl, 0, MOPT_NOSUPPORT}, 2016 #endif 2017 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 2018 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 2019 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 2020 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 2021 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 2022 MOPT_SET | MOPT_Q}, 2023 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 2024 MOPT_SET | MOPT_Q}, 2025 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 2026 MOPT_SET | MOPT_Q}, 2027 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 2028 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 2029 MOPT_CLEAR | MOPT_Q}, 2030 {Opt_usrjquota, 0, MOPT_Q}, 2031 {Opt_grpjquota, 0, MOPT_Q}, 2032 {Opt_offusrjquota, 0, MOPT_Q}, 2033 {Opt_offgrpjquota, 0, MOPT_Q}, 2034 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 2035 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 2036 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 2037 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 2038 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 2039 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2040 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, 2041 MOPT_SET}, 2042 {Opt_no_fc, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2043 MOPT_CLEAR | MOPT_2 | MOPT_EXT4_ONLY}, 2044 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2045 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2046 #ifdef CONFIG_EXT4_DEBUG 2047 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2048 #endif 2049 {Opt_err, 0, 0} 2050 }; 2051 2052 #ifdef CONFIG_UNICODE 2053 static const struct ext4_sb_encodings { 2054 __u16 magic; 2055 char *name; 2056 char *version; 2057 } ext4_sb_encoding_map[] = { 2058 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2059 }; 2060 2061 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2062 const struct ext4_sb_encodings **encoding, 2063 __u16 *flags) 2064 { 2065 __u16 magic = le16_to_cpu(es->s_encoding); 2066 int i; 2067 2068 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2069 if (magic == ext4_sb_encoding_map[i].magic) 2070 break; 2071 2072 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2073 return -EINVAL; 2074 2075 *encoding = &ext4_sb_encoding_map[i]; 2076 *flags = le16_to_cpu(es->s_encoding_flags); 2077 2078 return 0; 2079 } 2080 #endif 2081 2082 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2083 const char *opt, 2084 const substring_t *arg, 2085 bool is_remount) 2086 { 2087 #ifdef CONFIG_FS_ENCRYPTION 2088 struct ext4_sb_info *sbi = EXT4_SB(sb); 2089 int err; 2090 2091 /* 2092 * This mount option is just for testing, and it's not worthwhile to 2093 * implement the extra complexity (e.g. RCU protection) that would be 2094 * needed to allow it to be set or changed during remount. We do allow 2095 * it to be specified during remount, but only if there is no change. 2096 */ 2097 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2098 ext4_msg(sb, KERN_WARNING, 2099 "Can't set test_dummy_encryption on remount"); 2100 return -1; 2101 } 2102 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2103 &sbi->s_dummy_enc_policy); 2104 if (err) { 2105 if (err == -EEXIST) 2106 ext4_msg(sb, KERN_WARNING, 2107 "Can't change test_dummy_encryption on remount"); 2108 else if (err == -EINVAL) 2109 ext4_msg(sb, KERN_WARNING, 2110 "Value of option \"%s\" is unrecognized", opt); 2111 else 2112 ext4_msg(sb, KERN_WARNING, 2113 "Error processing option \"%s\" [%d]", 2114 opt, err); 2115 return -1; 2116 } 2117 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2118 #else 2119 ext4_msg(sb, KERN_WARNING, 2120 "Test dummy encryption mount option ignored"); 2121 #endif 2122 return 1; 2123 } 2124 2125 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2126 substring_t *args, unsigned long *journal_devnum, 2127 unsigned int *journal_ioprio, int is_remount) 2128 { 2129 struct ext4_sb_info *sbi = EXT4_SB(sb); 2130 const struct mount_opts *m; 2131 kuid_t uid; 2132 kgid_t gid; 2133 int arg = 0; 2134 2135 #ifdef CONFIG_QUOTA 2136 if (token == Opt_usrjquota) 2137 return set_qf_name(sb, USRQUOTA, &args[0]); 2138 else if (token == Opt_grpjquota) 2139 return set_qf_name(sb, GRPQUOTA, &args[0]); 2140 else if (token == Opt_offusrjquota) 2141 return clear_qf_name(sb, USRQUOTA); 2142 else if (token == Opt_offgrpjquota) 2143 return clear_qf_name(sb, GRPQUOTA); 2144 #endif 2145 switch (token) { 2146 case Opt_noacl: 2147 case Opt_nouser_xattr: 2148 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2149 break; 2150 case Opt_sb: 2151 return 1; /* handled by get_sb_block() */ 2152 case Opt_removed: 2153 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2154 return 1; 2155 case Opt_abort: 2156 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 2157 return 1; 2158 case Opt_i_version: 2159 sb->s_flags |= SB_I_VERSION; 2160 return 1; 2161 case Opt_lazytime: 2162 sb->s_flags |= SB_LAZYTIME; 2163 return 1; 2164 case Opt_nolazytime: 2165 sb->s_flags &= ~SB_LAZYTIME; 2166 return 1; 2167 case Opt_inlinecrypt: 2168 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2169 sb->s_flags |= SB_INLINECRYPT; 2170 #else 2171 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2172 #endif 2173 return 1; 2174 } 2175 2176 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2177 if (token == m->token) 2178 break; 2179 2180 if (m->token == Opt_err) { 2181 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2182 "or missing value", opt); 2183 return -1; 2184 } 2185 2186 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2187 ext4_msg(sb, KERN_ERR, 2188 "Mount option \"%s\" incompatible with ext2", opt); 2189 return -1; 2190 } 2191 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2192 ext4_msg(sb, KERN_ERR, 2193 "Mount option \"%s\" incompatible with ext3", opt); 2194 return -1; 2195 } 2196 2197 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2198 return -1; 2199 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2200 return -1; 2201 if (m->flags & MOPT_EXPLICIT) { 2202 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2203 set_opt2(sb, EXPLICIT_DELALLOC); 2204 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2205 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2206 } else 2207 return -1; 2208 } 2209 if (m->flags & MOPT_CLEAR_ERR) 2210 clear_opt(sb, ERRORS_MASK); 2211 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2212 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2213 "options when quota turned on"); 2214 return -1; 2215 } 2216 2217 if (m->flags & MOPT_NOSUPPORT) { 2218 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2219 } else if (token == Opt_commit) { 2220 if (arg == 0) 2221 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2222 else if (arg > INT_MAX / HZ) { 2223 ext4_msg(sb, KERN_ERR, 2224 "Invalid commit interval %d, " 2225 "must be smaller than %d", 2226 arg, INT_MAX / HZ); 2227 return -1; 2228 } 2229 sbi->s_commit_interval = HZ * arg; 2230 } else if (token == Opt_debug_want_extra_isize) { 2231 if ((arg & 1) || 2232 (arg < 4) || 2233 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2234 ext4_msg(sb, KERN_ERR, 2235 "Invalid want_extra_isize %d", arg); 2236 return -1; 2237 } 2238 sbi->s_want_extra_isize = arg; 2239 } else if (token == Opt_max_batch_time) { 2240 sbi->s_max_batch_time = arg; 2241 } else if (token == Opt_min_batch_time) { 2242 sbi->s_min_batch_time = arg; 2243 } else if (token == Opt_inode_readahead_blks) { 2244 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2245 ext4_msg(sb, KERN_ERR, 2246 "EXT4-fs: inode_readahead_blks must be " 2247 "0 or a power of 2 smaller than 2^31"); 2248 return -1; 2249 } 2250 sbi->s_inode_readahead_blks = arg; 2251 } else if (token == Opt_init_itable) { 2252 set_opt(sb, INIT_INODE_TABLE); 2253 if (!args->from) 2254 arg = EXT4_DEF_LI_WAIT_MULT; 2255 sbi->s_li_wait_mult = arg; 2256 } else if (token == Opt_max_dir_size_kb) { 2257 sbi->s_max_dir_size_kb = arg; 2258 #ifdef CONFIG_EXT4_DEBUG 2259 } else if (token == Opt_fc_debug_max_replay) { 2260 sbi->s_fc_debug_max_replay = arg; 2261 #endif 2262 } else if (token == Opt_stripe) { 2263 sbi->s_stripe = arg; 2264 } else if (token == Opt_resuid) { 2265 uid = make_kuid(current_user_ns(), arg); 2266 if (!uid_valid(uid)) { 2267 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2268 return -1; 2269 } 2270 sbi->s_resuid = uid; 2271 } else if (token == Opt_resgid) { 2272 gid = make_kgid(current_user_ns(), arg); 2273 if (!gid_valid(gid)) { 2274 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2275 return -1; 2276 } 2277 sbi->s_resgid = gid; 2278 } else if (token == Opt_journal_dev) { 2279 if (is_remount) { 2280 ext4_msg(sb, KERN_ERR, 2281 "Cannot specify journal on remount"); 2282 return -1; 2283 } 2284 *journal_devnum = arg; 2285 } else if (token == Opt_journal_path) { 2286 char *journal_path; 2287 struct inode *journal_inode; 2288 struct path path; 2289 int error; 2290 2291 if (is_remount) { 2292 ext4_msg(sb, KERN_ERR, 2293 "Cannot specify journal on remount"); 2294 return -1; 2295 } 2296 journal_path = match_strdup(&args[0]); 2297 if (!journal_path) { 2298 ext4_msg(sb, KERN_ERR, "error: could not dup " 2299 "journal device string"); 2300 return -1; 2301 } 2302 2303 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2304 if (error) { 2305 ext4_msg(sb, KERN_ERR, "error: could not find " 2306 "journal device path: error %d", error); 2307 kfree(journal_path); 2308 return -1; 2309 } 2310 2311 journal_inode = d_inode(path.dentry); 2312 if (!S_ISBLK(journal_inode->i_mode)) { 2313 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2314 "is not a block device", journal_path); 2315 path_put(&path); 2316 kfree(journal_path); 2317 return -1; 2318 } 2319 2320 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2321 path_put(&path); 2322 kfree(journal_path); 2323 } else if (token == Opt_journal_ioprio) { 2324 if (arg > 7) { 2325 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2326 " (must be 0-7)"); 2327 return -1; 2328 } 2329 *journal_ioprio = 2330 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2331 } else if (token == Opt_test_dummy_encryption) { 2332 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2333 is_remount); 2334 } else if (m->flags & MOPT_DATAJ) { 2335 if (is_remount) { 2336 if (!sbi->s_journal) 2337 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2338 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2339 ext4_msg(sb, KERN_ERR, 2340 "Cannot change data mode on remount"); 2341 return -1; 2342 } 2343 } else { 2344 clear_opt(sb, DATA_FLAGS); 2345 sbi->s_mount_opt |= m->mount_opt; 2346 } 2347 #ifdef CONFIG_QUOTA 2348 } else if (m->flags & MOPT_QFMT) { 2349 if (sb_any_quota_loaded(sb) && 2350 sbi->s_jquota_fmt != m->mount_opt) { 2351 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2352 "quota options when quota turned on"); 2353 return -1; 2354 } 2355 if (ext4_has_feature_quota(sb)) { 2356 ext4_msg(sb, KERN_INFO, 2357 "Quota format mount options ignored " 2358 "when QUOTA feature is enabled"); 2359 return 1; 2360 } 2361 sbi->s_jquota_fmt = m->mount_opt; 2362 #endif 2363 } else if (token == Opt_dax || token == Opt_dax_always || 2364 token == Opt_dax_inode || token == Opt_dax_never) { 2365 #ifdef CONFIG_FS_DAX 2366 switch (token) { 2367 case Opt_dax: 2368 case Opt_dax_always: 2369 if (is_remount && 2370 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2371 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2372 fail_dax_change_remount: 2373 ext4_msg(sb, KERN_ERR, "can't change " 2374 "dax mount option while remounting"); 2375 return -1; 2376 } 2377 if (is_remount && 2378 (test_opt(sb, DATA_FLAGS) == 2379 EXT4_MOUNT_JOURNAL_DATA)) { 2380 ext4_msg(sb, KERN_ERR, "can't mount with " 2381 "both data=journal and dax"); 2382 return -1; 2383 } 2384 ext4_msg(sb, KERN_WARNING, 2385 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2386 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2387 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2388 break; 2389 case Opt_dax_never: 2390 if (is_remount && 2391 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2392 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2393 goto fail_dax_change_remount; 2394 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2395 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2396 break; 2397 case Opt_dax_inode: 2398 if (is_remount && 2399 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2400 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2401 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2402 goto fail_dax_change_remount; 2403 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2404 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2405 /* Strictly for printing options */ 2406 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2407 break; 2408 } 2409 #else 2410 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2411 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2412 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2413 return -1; 2414 #endif 2415 } else if (token == Opt_data_err_abort) { 2416 sbi->s_mount_opt |= m->mount_opt; 2417 } else if (token == Opt_data_err_ignore) { 2418 sbi->s_mount_opt &= ~m->mount_opt; 2419 } else { 2420 if (!args->from) 2421 arg = 1; 2422 if (m->flags & MOPT_CLEAR) 2423 arg = !arg; 2424 else if (unlikely(!(m->flags & MOPT_SET))) { 2425 ext4_msg(sb, KERN_WARNING, 2426 "buggy handling of option %s", opt); 2427 WARN_ON(1); 2428 return -1; 2429 } 2430 if (m->flags & MOPT_2) { 2431 if (arg != 0) 2432 sbi->s_mount_opt2 |= m->mount_opt; 2433 else 2434 sbi->s_mount_opt2 &= ~m->mount_opt; 2435 } else { 2436 if (arg != 0) 2437 sbi->s_mount_opt |= m->mount_opt; 2438 else 2439 sbi->s_mount_opt &= ~m->mount_opt; 2440 } 2441 } 2442 return 1; 2443 } 2444 2445 static int parse_options(char *options, struct super_block *sb, 2446 unsigned long *journal_devnum, 2447 unsigned int *journal_ioprio, 2448 int is_remount) 2449 { 2450 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2451 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2452 substring_t args[MAX_OPT_ARGS]; 2453 int token; 2454 2455 if (!options) 2456 return 1; 2457 2458 while ((p = strsep(&options, ",")) != NULL) { 2459 if (!*p) 2460 continue; 2461 /* 2462 * Initialize args struct so we know whether arg was 2463 * found; some options take optional arguments. 2464 */ 2465 args[0].to = args[0].from = NULL; 2466 token = match_token(p, tokens, args); 2467 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2468 journal_ioprio, is_remount) < 0) 2469 return 0; 2470 } 2471 #ifdef CONFIG_QUOTA 2472 /* 2473 * We do the test below only for project quotas. 'usrquota' and 2474 * 'grpquota' mount options are allowed even without quota feature 2475 * to support legacy quotas in quota files. 2476 */ 2477 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2478 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2479 "Cannot enable project quota enforcement."); 2480 return 0; 2481 } 2482 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2483 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2484 if (usr_qf_name || grp_qf_name) { 2485 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2486 clear_opt(sb, USRQUOTA); 2487 2488 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2489 clear_opt(sb, GRPQUOTA); 2490 2491 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2492 ext4_msg(sb, KERN_ERR, "old and new quota " 2493 "format mixing"); 2494 return 0; 2495 } 2496 2497 if (!sbi->s_jquota_fmt) { 2498 ext4_msg(sb, KERN_ERR, "journaled quota format " 2499 "not specified"); 2500 return 0; 2501 } 2502 } 2503 #endif 2504 if (test_opt(sb, DIOREAD_NOLOCK)) { 2505 int blocksize = 2506 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2507 if (blocksize < PAGE_SIZE) 2508 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2509 "experimental mount option 'dioread_nolock' " 2510 "for blocksize < PAGE_SIZE"); 2511 } 2512 return 1; 2513 } 2514 2515 static inline void ext4_show_quota_options(struct seq_file *seq, 2516 struct super_block *sb) 2517 { 2518 #if defined(CONFIG_QUOTA) 2519 struct ext4_sb_info *sbi = EXT4_SB(sb); 2520 char *usr_qf_name, *grp_qf_name; 2521 2522 if (sbi->s_jquota_fmt) { 2523 char *fmtname = ""; 2524 2525 switch (sbi->s_jquota_fmt) { 2526 case QFMT_VFS_OLD: 2527 fmtname = "vfsold"; 2528 break; 2529 case QFMT_VFS_V0: 2530 fmtname = "vfsv0"; 2531 break; 2532 case QFMT_VFS_V1: 2533 fmtname = "vfsv1"; 2534 break; 2535 } 2536 seq_printf(seq, ",jqfmt=%s", fmtname); 2537 } 2538 2539 rcu_read_lock(); 2540 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2541 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2542 if (usr_qf_name) 2543 seq_show_option(seq, "usrjquota", usr_qf_name); 2544 if (grp_qf_name) 2545 seq_show_option(seq, "grpjquota", grp_qf_name); 2546 rcu_read_unlock(); 2547 #endif 2548 } 2549 2550 static const char *token2str(int token) 2551 { 2552 const struct match_token *t; 2553 2554 for (t = tokens; t->token != Opt_err; t++) 2555 if (t->token == token && !strchr(t->pattern, '=')) 2556 break; 2557 return t->pattern; 2558 } 2559 2560 /* 2561 * Show an option if 2562 * - it's set to a non-default value OR 2563 * - if the per-sb default is different from the global default 2564 */ 2565 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2566 int nodefs) 2567 { 2568 struct ext4_sb_info *sbi = EXT4_SB(sb); 2569 struct ext4_super_block *es = sbi->s_es; 2570 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2571 const struct mount_opts *m; 2572 char sep = nodefs ? '\n' : ','; 2573 2574 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2575 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2576 2577 if (sbi->s_sb_block != 1) 2578 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2579 2580 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2581 int want_set = m->flags & MOPT_SET; 2582 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2583 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2584 continue; 2585 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2586 continue; /* skip if same as the default */ 2587 if ((want_set && 2588 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2589 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2590 continue; /* select Opt_noFoo vs Opt_Foo */ 2591 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2592 } 2593 2594 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2595 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2596 SEQ_OPTS_PRINT("resuid=%u", 2597 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2598 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2599 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2600 SEQ_OPTS_PRINT("resgid=%u", 2601 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2602 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2603 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2604 SEQ_OPTS_PUTS("errors=remount-ro"); 2605 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2606 SEQ_OPTS_PUTS("errors=continue"); 2607 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2608 SEQ_OPTS_PUTS("errors=panic"); 2609 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2610 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2611 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2612 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2613 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2614 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2615 if (sb->s_flags & SB_I_VERSION) 2616 SEQ_OPTS_PUTS("i_version"); 2617 if (nodefs || sbi->s_stripe) 2618 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2619 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2620 (sbi->s_mount_opt ^ def_mount_opt)) { 2621 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2622 SEQ_OPTS_PUTS("data=journal"); 2623 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2624 SEQ_OPTS_PUTS("data=ordered"); 2625 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2626 SEQ_OPTS_PUTS("data=writeback"); 2627 } 2628 if (nodefs || 2629 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2630 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2631 sbi->s_inode_readahead_blks); 2632 2633 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2634 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2635 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2636 if (nodefs || sbi->s_max_dir_size_kb) 2637 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2638 if (test_opt(sb, DATA_ERR_ABORT)) 2639 SEQ_OPTS_PUTS("data_err=abort"); 2640 2641 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2642 2643 if (sb->s_flags & SB_INLINECRYPT) 2644 SEQ_OPTS_PUTS("inlinecrypt"); 2645 2646 if (test_opt(sb, DAX_ALWAYS)) { 2647 if (IS_EXT2_SB(sb)) 2648 SEQ_OPTS_PUTS("dax"); 2649 else 2650 SEQ_OPTS_PUTS("dax=always"); 2651 } else if (test_opt2(sb, DAX_NEVER)) { 2652 SEQ_OPTS_PUTS("dax=never"); 2653 } else if (test_opt2(sb, DAX_INODE)) { 2654 SEQ_OPTS_PUTS("dax=inode"); 2655 } 2656 2657 if (test_opt2(sb, JOURNAL_FAST_COMMIT)) 2658 SEQ_OPTS_PUTS("fast_commit"); 2659 2660 ext4_show_quota_options(seq, sb); 2661 return 0; 2662 } 2663 2664 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2665 { 2666 return _ext4_show_options(seq, root->d_sb, 0); 2667 } 2668 2669 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2670 { 2671 struct super_block *sb = seq->private; 2672 int rc; 2673 2674 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2675 rc = _ext4_show_options(seq, sb, 1); 2676 seq_puts(seq, "\n"); 2677 return rc; 2678 } 2679 2680 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2681 int read_only) 2682 { 2683 struct ext4_sb_info *sbi = EXT4_SB(sb); 2684 int err = 0; 2685 2686 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2687 ext4_msg(sb, KERN_ERR, "revision level too high, " 2688 "forcing read-only mode"); 2689 err = -EROFS; 2690 goto done; 2691 } 2692 if (read_only) 2693 goto done; 2694 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2695 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2696 "running e2fsck is recommended"); 2697 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2698 ext4_msg(sb, KERN_WARNING, 2699 "warning: mounting fs with errors, " 2700 "running e2fsck is recommended"); 2701 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2702 le16_to_cpu(es->s_mnt_count) >= 2703 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2704 ext4_msg(sb, KERN_WARNING, 2705 "warning: maximal mount count reached, " 2706 "running e2fsck is recommended"); 2707 else if (le32_to_cpu(es->s_checkinterval) && 2708 (ext4_get_tstamp(es, s_lastcheck) + 2709 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2710 ext4_msg(sb, KERN_WARNING, 2711 "warning: checktime reached, " 2712 "running e2fsck is recommended"); 2713 if (!sbi->s_journal) 2714 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2715 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2716 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2717 le16_add_cpu(&es->s_mnt_count, 1); 2718 ext4_update_tstamp(es, s_mtime); 2719 if (sbi->s_journal) 2720 ext4_set_feature_journal_needs_recovery(sb); 2721 2722 err = ext4_commit_super(sb, 1); 2723 done: 2724 if (test_opt(sb, DEBUG)) 2725 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2726 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2727 sb->s_blocksize, 2728 sbi->s_groups_count, 2729 EXT4_BLOCKS_PER_GROUP(sb), 2730 EXT4_INODES_PER_GROUP(sb), 2731 sbi->s_mount_opt, sbi->s_mount_opt2); 2732 2733 cleancache_init_fs(sb); 2734 return err; 2735 } 2736 2737 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2738 { 2739 struct ext4_sb_info *sbi = EXT4_SB(sb); 2740 struct flex_groups **old_groups, **new_groups; 2741 int size, i, j; 2742 2743 if (!sbi->s_log_groups_per_flex) 2744 return 0; 2745 2746 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2747 if (size <= sbi->s_flex_groups_allocated) 2748 return 0; 2749 2750 new_groups = kvzalloc(roundup_pow_of_two(size * 2751 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2752 if (!new_groups) { 2753 ext4_msg(sb, KERN_ERR, 2754 "not enough memory for %d flex group pointers", size); 2755 return -ENOMEM; 2756 } 2757 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2758 new_groups[i] = kvzalloc(roundup_pow_of_two( 2759 sizeof(struct flex_groups)), 2760 GFP_KERNEL); 2761 if (!new_groups[i]) { 2762 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2763 kvfree(new_groups[j]); 2764 kvfree(new_groups); 2765 ext4_msg(sb, KERN_ERR, 2766 "not enough memory for %d flex groups", size); 2767 return -ENOMEM; 2768 } 2769 } 2770 rcu_read_lock(); 2771 old_groups = rcu_dereference(sbi->s_flex_groups); 2772 if (old_groups) 2773 memcpy(new_groups, old_groups, 2774 (sbi->s_flex_groups_allocated * 2775 sizeof(struct flex_groups *))); 2776 rcu_read_unlock(); 2777 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2778 sbi->s_flex_groups_allocated = size; 2779 if (old_groups) 2780 ext4_kvfree_array_rcu(old_groups); 2781 return 0; 2782 } 2783 2784 static int ext4_fill_flex_info(struct super_block *sb) 2785 { 2786 struct ext4_sb_info *sbi = EXT4_SB(sb); 2787 struct ext4_group_desc *gdp = NULL; 2788 struct flex_groups *fg; 2789 ext4_group_t flex_group; 2790 int i, err; 2791 2792 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2793 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2794 sbi->s_log_groups_per_flex = 0; 2795 return 1; 2796 } 2797 2798 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2799 if (err) 2800 goto failed; 2801 2802 for (i = 0; i < sbi->s_groups_count; i++) { 2803 gdp = ext4_get_group_desc(sb, i, NULL); 2804 2805 flex_group = ext4_flex_group(sbi, i); 2806 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2807 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2808 atomic64_add(ext4_free_group_clusters(sb, gdp), 2809 &fg->free_clusters); 2810 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2811 } 2812 2813 return 1; 2814 failed: 2815 return 0; 2816 } 2817 2818 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2819 struct ext4_group_desc *gdp) 2820 { 2821 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2822 __u16 crc = 0; 2823 __le32 le_group = cpu_to_le32(block_group); 2824 struct ext4_sb_info *sbi = EXT4_SB(sb); 2825 2826 if (ext4_has_metadata_csum(sbi->s_sb)) { 2827 /* Use new metadata_csum algorithm */ 2828 __u32 csum32; 2829 __u16 dummy_csum = 0; 2830 2831 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2832 sizeof(le_group)); 2833 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2834 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2835 sizeof(dummy_csum)); 2836 offset += sizeof(dummy_csum); 2837 if (offset < sbi->s_desc_size) 2838 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2839 sbi->s_desc_size - offset); 2840 2841 crc = csum32 & 0xFFFF; 2842 goto out; 2843 } 2844 2845 /* old crc16 code */ 2846 if (!ext4_has_feature_gdt_csum(sb)) 2847 return 0; 2848 2849 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2850 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2851 crc = crc16(crc, (__u8 *)gdp, offset); 2852 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2853 /* for checksum of struct ext4_group_desc do the rest...*/ 2854 if (ext4_has_feature_64bit(sb) && 2855 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2856 crc = crc16(crc, (__u8 *)gdp + offset, 2857 le16_to_cpu(sbi->s_es->s_desc_size) - 2858 offset); 2859 2860 out: 2861 return cpu_to_le16(crc); 2862 } 2863 2864 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2865 struct ext4_group_desc *gdp) 2866 { 2867 if (ext4_has_group_desc_csum(sb) && 2868 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2869 return 0; 2870 2871 return 1; 2872 } 2873 2874 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2875 struct ext4_group_desc *gdp) 2876 { 2877 if (!ext4_has_group_desc_csum(sb)) 2878 return; 2879 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2880 } 2881 2882 /* Called at mount-time, super-block is locked */ 2883 static int ext4_check_descriptors(struct super_block *sb, 2884 ext4_fsblk_t sb_block, 2885 ext4_group_t *first_not_zeroed) 2886 { 2887 struct ext4_sb_info *sbi = EXT4_SB(sb); 2888 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2889 ext4_fsblk_t last_block; 2890 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2891 ext4_fsblk_t block_bitmap; 2892 ext4_fsblk_t inode_bitmap; 2893 ext4_fsblk_t inode_table; 2894 int flexbg_flag = 0; 2895 ext4_group_t i, grp = sbi->s_groups_count; 2896 2897 if (ext4_has_feature_flex_bg(sb)) 2898 flexbg_flag = 1; 2899 2900 ext4_debug("Checking group descriptors"); 2901 2902 for (i = 0; i < sbi->s_groups_count; i++) { 2903 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2904 2905 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2906 last_block = ext4_blocks_count(sbi->s_es) - 1; 2907 else 2908 last_block = first_block + 2909 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2910 2911 if ((grp == sbi->s_groups_count) && 2912 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2913 grp = i; 2914 2915 block_bitmap = ext4_block_bitmap(sb, gdp); 2916 if (block_bitmap == sb_block) { 2917 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2918 "Block bitmap for group %u overlaps " 2919 "superblock", i); 2920 if (!sb_rdonly(sb)) 2921 return 0; 2922 } 2923 if (block_bitmap >= sb_block + 1 && 2924 block_bitmap <= last_bg_block) { 2925 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2926 "Block bitmap for group %u overlaps " 2927 "block group descriptors", i); 2928 if (!sb_rdonly(sb)) 2929 return 0; 2930 } 2931 if (block_bitmap < first_block || block_bitmap > last_block) { 2932 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2933 "Block bitmap for group %u not in group " 2934 "(block %llu)!", i, block_bitmap); 2935 return 0; 2936 } 2937 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2938 if (inode_bitmap == sb_block) { 2939 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2940 "Inode bitmap for group %u overlaps " 2941 "superblock", i); 2942 if (!sb_rdonly(sb)) 2943 return 0; 2944 } 2945 if (inode_bitmap >= sb_block + 1 && 2946 inode_bitmap <= last_bg_block) { 2947 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2948 "Inode bitmap for group %u overlaps " 2949 "block group descriptors", i); 2950 if (!sb_rdonly(sb)) 2951 return 0; 2952 } 2953 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2954 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2955 "Inode bitmap for group %u not in group " 2956 "(block %llu)!", i, inode_bitmap); 2957 return 0; 2958 } 2959 inode_table = ext4_inode_table(sb, gdp); 2960 if (inode_table == sb_block) { 2961 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2962 "Inode table for group %u overlaps " 2963 "superblock", i); 2964 if (!sb_rdonly(sb)) 2965 return 0; 2966 } 2967 if (inode_table >= sb_block + 1 && 2968 inode_table <= last_bg_block) { 2969 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2970 "Inode table for group %u overlaps " 2971 "block group descriptors", i); 2972 if (!sb_rdonly(sb)) 2973 return 0; 2974 } 2975 if (inode_table < first_block || 2976 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2977 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2978 "Inode table for group %u not in group " 2979 "(block %llu)!", i, inode_table); 2980 return 0; 2981 } 2982 ext4_lock_group(sb, i); 2983 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2984 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2985 "Checksum for group %u failed (%u!=%u)", 2986 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2987 gdp)), le16_to_cpu(gdp->bg_checksum)); 2988 if (!sb_rdonly(sb)) { 2989 ext4_unlock_group(sb, i); 2990 return 0; 2991 } 2992 } 2993 ext4_unlock_group(sb, i); 2994 if (!flexbg_flag) 2995 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2996 } 2997 if (NULL != first_not_zeroed) 2998 *first_not_zeroed = grp; 2999 return 1; 3000 } 3001 3002 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 3003 * the superblock) which were deleted from all directories, but held open by 3004 * a process at the time of a crash. We walk the list and try to delete these 3005 * inodes at recovery time (only with a read-write filesystem). 3006 * 3007 * In order to keep the orphan inode chain consistent during traversal (in 3008 * case of crash during recovery), we link each inode into the superblock 3009 * orphan list_head and handle it the same way as an inode deletion during 3010 * normal operation (which journals the operations for us). 3011 * 3012 * We only do an iget() and an iput() on each inode, which is very safe if we 3013 * accidentally point at an in-use or already deleted inode. The worst that 3014 * can happen in this case is that we get a "bit already cleared" message from 3015 * ext4_free_inode(). The only reason we would point at a wrong inode is if 3016 * e2fsck was run on this filesystem, and it must have already done the orphan 3017 * inode cleanup for us, so we can safely abort without any further action. 3018 */ 3019 static void ext4_orphan_cleanup(struct super_block *sb, 3020 struct ext4_super_block *es) 3021 { 3022 unsigned int s_flags = sb->s_flags; 3023 int ret, nr_orphans = 0, nr_truncates = 0; 3024 #ifdef CONFIG_QUOTA 3025 int quota_update = 0; 3026 int i; 3027 #endif 3028 if (!es->s_last_orphan) { 3029 jbd_debug(4, "no orphan inodes to clean up\n"); 3030 return; 3031 } 3032 3033 if (bdev_read_only(sb->s_bdev)) { 3034 ext4_msg(sb, KERN_ERR, "write access " 3035 "unavailable, skipping orphan cleanup"); 3036 return; 3037 } 3038 3039 /* Check if feature set would not allow a r/w mount */ 3040 if (!ext4_feature_set_ok(sb, 0)) { 3041 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 3042 "unknown ROCOMPAT features"); 3043 return; 3044 } 3045 3046 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3047 /* don't clear list on RO mount w/ errors */ 3048 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 3049 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 3050 "clearing orphan list.\n"); 3051 es->s_last_orphan = 0; 3052 } 3053 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3054 return; 3055 } 3056 3057 if (s_flags & SB_RDONLY) { 3058 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 3059 sb->s_flags &= ~SB_RDONLY; 3060 } 3061 #ifdef CONFIG_QUOTA 3062 /* Needed for iput() to work correctly and not trash data */ 3063 sb->s_flags |= SB_ACTIVE; 3064 3065 /* 3066 * Turn on quotas which were not enabled for read-only mounts if 3067 * filesystem has quota feature, so that they are updated correctly. 3068 */ 3069 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 3070 int ret = ext4_enable_quotas(sb); 3071 3072 if (!ret) 3073 quota_update = 1; 3074 else 3075 ext4_msg(sb, KERN_ERR, 3076 "Cannot turn on quotas: error %d", ret); 3077 } 3078 3079 /* Turn on journaled quotas used for old sytle */ 3080 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3081 if (EXT4_SB(sb)->s_qf_names[i]) { 3082 int ret = ext4_quota_on_mount(sb, i); 3083 3084 if (!ret) 3085 quota_update = 1; 3086 else 3087 ext4_msg(sb, KERN_ERR, 3088 "Cannot turn on journaled " 3089 "quota: type %d: error %d", i, ret); 3090 } 3091 } 3092 #endif 3093 3094 while (es->s_last_orphan) { 3095 struct inode *inode; 3096 3097 /* 3098 * We may have encountered an error during cleanup; if 3099 * so, skip the rest. 3100 */ 3101 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3102 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3103 es->s_last_orphan = 0; 3104 break; 3105 } 3106 3107 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 3108 if (IS_ERR(inode)) { 3109 es->s_last_orphan = 0; 3110 break; 3111 } 3112 3113 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 3114 dquot_initialize(inode); 3115 if (inode->i_nlink) { 3116 if (test_opt(sb, DEBUG)) 3117 ext4_msg(sb, KERN_DEBUG, 3118 "%s: truncating inode %lu to %lld bytes", 3119 __func__, inode->i_ino, inode->i_size); 3120 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 3121 inode->i_ino, inode->i_size); 3122 inode_lock(inode); 3123 truncate_inode_pages(inode->i_mapping, inode->i_size); 3124 ret = ext4_truncate(inode); 3125 if (ret) 3126 ext4_std_error(inode->i_sb, ret); 3127 inode_unlock(inode); 3128 nr_truncates++; 3129 } else { 3130 if (test_opt(sb, DEBUG)) 3131 ext4_msg(sb, KERN_DEBUG, 3132 "%s: deleting unreferenced inode %lu", 3133 __func__, inode->i_ino); 3134 jbd_debug(2, "deleting unreferenced inode %lu\n", 3135 inode->i_ino); 3136 nr_orphans++; 3137 } 3138 iput(inode); /* The delete magic happens here! */ 3139 } 3140 3141 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 3142 3143 if (nr_orphans) 3144 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 3145 PLURAL(nr_orphans)); 3146 if (nr_truncates) 3147 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 3148 PLURAL(nr_truncates)); 3149 #ifdef CONFIG_QUOTA 3150 /* Turn off quotas if they were enabled for orphan cleanup */ 3151 if (quota_update) { 3152 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3153 if (sb_dqopt(sb)->files[i]) 3154 dquot_quota_off(sb, i); 3155 } 3156 } 3157 #endif 3158 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 3159 } 3160 3161 /* 3162 * Maximal extent format file size. 3163 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3164 * extent format containers, within a sector_t, and within i_blocks 3165 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3166 * so that won't be a limiting factor. 3167 * 3168 * However there is other limiting factor. We do store extents in the form 3169 * of starting block and length, hence the resulting length of the extent 3170 * covering maximum file size must fit into on-disk format containers as 3171 * well. Given that length is always by 1 unit bigger than max unit (because 3172 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3173 * 3174 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3175 */ 3176 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3177 { 3178 loff_t res; 3179 loff_t upper_limit = MAX_LFS_FILESIZE; 3180 3181 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3182 3183 if (!has_huge_files) { 3184 upper_limit = (1LL << 32) - 1; 3185 3186 /* total blocks in file system block size */ 3187 upper_limit >>= (blkbits - 9); 3188 upper_limit <<= blkbits; 3189 } 3190 3191 /* 3192 * 32-bit extent-start container, ee_block. We lower the maxbytes 3193 * by one fs block, so ee_len can cover the extent of maximum file 3194 * size 3195 */ 3196 res = (1LL << 32) - 1; 3197 res <<= blkbits; 3198 3199 /* Sanity check against vm- & vfs- imposed limits */ 3200 if (res > upper_limit) 3201 res = upper_limit; 3202 3203 return res; 3204 } 3205 3206 /* 3207 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3208 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3209 * We need to be 1 filesystem block less than the 2^48 sector limit. 3210 */ 3211 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3212 { 3213 loff_t res = EXT4_NDIR_BLOCKS; 3214 int meta_blocks; 3215 loff_t upper_limit; 3216 /* This is calculated to be the largest file size for a dense, block 3217 * mapped file such that the file's total number of 512-byte sectors, 3218 * including data and all indirect blocks, does not exceed (2^48 - 1). 3219 * 3220 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3221 * number of 512-byte sectors of the file. 3222 */ 3223 3224 if (!has_huge_files) { 3225 /* 3226 * !has_huge_files or implies that the inode i_block field 3227 * represents total file blocks in 2^32 512-byte sectors == 3228 * size of vfs inode i_blocks * 8 3229 */ 3230 upper_limit = (1LL << 32) - 1; 3231 3232 /* total blocks in file system block size */ 3233 upper_limit >>= (bits - 9); 3234 3235 } else { 3236 /* 3237 * We use 48 bit ext4_inode i_blocks 3238 * With EXT4_HUGE_FILE_FL set the i_blocks 3239 * represent total number of blocks in 3240 * file system block size 3241 */ 3242 upper_limit = (1LL << 48) - 1; 3243 3244 } 3245 3246 /* indirect blocks */ 3247 meta_blocks = 1; 3248 /* double indirect blocks */ 3249 meta_blocks += 1 + (1LL << (bits-2)); 3250 /* tripple indirect blocks */ 3251 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3252 3253 upper_limit -= meta_blocks; 3254 upper_limit <<= bits; 3255 3256 res += 1LL << (bits-2); 3257 res += 1LL << (2*(bits-2)); 3258 res += 1LL << (3*(bits-2)); 3259 res <<= bits; 3260 if (res > upper_limit) 3261 res = upper_limit; 3262 3263 if (res > MAX_LFS_FILESIZE) 3264 res = MAX_LFS_FILESIZE; 3265 3266 return res; 3267 } 3268 3269 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3270 ext4_fsblk_t logical_sb_block, int nr) 3271 { 3272 struct ext4_sb_info *sbi = EXT4_SB(sb); 3273 ext4_group_t bg, first_meta_bg; 3274 int has_super = 0; 3275 3276 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3277 3278 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3279 return logical_sb_block + nr + 1; 3280 bg = sbi->s_desc_per_block * nr; 3281 if (ext4_bg_has_super(sb, bg)) 3282 has_super = 1; 3283 3284 /* 3285 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3286 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3287 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3288 * compensate. 3289 */ 3290 if (sb->s_blocksize == 1024 && nr == 0 && 3291 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3292 has_super++; 3293 3294 return (has_super + ext4_group_first_block_no(sb, bg)); 3295 } 3296 3297 /** 3298 * ext4_get_stripe_size: Get the stripe size. 3299 * @sbi: In memory super block info 3300 * 3301 * If we have specified it via mount option, then 3302 * use the mount option value. If the value specified at mount time is 3303 * greater than the blocks per group use the super block value. 3304 * If the super block value is greater than blocks per group return 0. 3305 * Allocator needs it be less than blocks per group. 3306 * 3307 */ 3308 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3309 { 3310 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3311 unsigned long stripe_width = 3312 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3313 int ret; 3314 3315 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3316 ret = sbi->s_stripe; 3317 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3318 ret = stripe_width; 3319 else if (stride && stride <= sbi->s_blocks_per_group) 3320 ret = stride; 3321 else 3322 ret = 0; 3323 3324 /* 3325 * If the stripe width is 1, this makes no sense and 3326 * we set it to 0 to turn off stripe handling code. 3327 */ 3328 if (ret <= 1) 3329 ret = 0; 3330 3331 return ret; 3332 } 3333 3334 /* 3335 * Check whether this filesystem can be mounted based on 3336 * the features present and the RDONLY/RDWR mount requested. 3337 * Returns 1 if this filesystem can be mounted as requested, 3338 * 0 if it cannot be. 3339 */ 3340 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3341 { 3342 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3343 ext4_msg(sb, KERN_ERR, 3344 "Couldn't mount because of " 3345 "unsupported optional features (%x)", 3346 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3347 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3348 return 0; 3349 } 3350 3351 #ifndef CONFIG_UNICODE 3352 if (ext4_has_feature_casefold(sb)) { 3353 ext4_msg(sb, KERN_ERR, 3354 "Filesystem with casefold feature cannot be " 3355 "mounted without CONFIG_UNICODE"); 3356 return 0; 3357 } 3358 #endif 3359 3360 if (readonly) 3361 return 1; 3362 3363 if (ext4_has_feature_readonly(sb)) { 3364 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3365 sb->s_flags |= SB_RDONLY; 3366 return 1; 3367 } 3368 3369 /* Check that feature set is OK for a read-write mount */ 3370 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3371 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3372 "unsupported optional features (%x)", 3373 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3374 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3375 return 0; 3376 } 3377 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3378 ext4_msg(sb, KERN_ERR, 3379 "Can't support bigalloc feature without " 3380 "extents feature\n"); 3381 return 0; 3382 } 3383 3384 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3385 if (!readonly && (ext4_has_feature_quota(sb) || 3386 ext4_has_feature_project(sb))) { 3387 ext4_msg(sb, KERN_ERR, 3388 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3389 return 0; 3390 } 3391 #endif /* CONFIG_QUOTA */ 3392 return 1; 3393 } 3394 3395 /* 3396 * This function is called once a day if we have errors logged 3397 * on the file system 3398 */ 3399 static void print_daily_error_info(struct timer_list *t) 3400 { 3401 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3402 struct super_block *sb = sbi->s_sb; 3403 struct ext4_super_block *es = sbi->s_es; 3404 3405 if (es->s_error_count) 3406 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3407 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3408 le32_to_cpu(es->s_error_count)); 3409 if (es->s_first_error_time) { 3410 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3411 sb->s_id, 3412 ext4_get_tstamp(es, s_first_error_time), 3413 (int) sizeof(es->s_first_error_func), 3414 es->s_first_error_func, 3415 le32_to_cpu(es->s_first_error_line)); 3416 if (es->s_first_error_ino) 3417 printk(KERN_CONT ": inode %u", 3418 le32_to_cpu(es->s_first_error_ino)); 3419 if (es->s_first_error_block) 3420 printk(KERN_CONT ": block %llu", (unsigned long long) 3421 le64_to_cpu(es->s_first_error_block)); 3422 printk(KERN_CONT "\n"); 3423 } 3424 if (es->s_last_error_time) { 3425 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3426 sb->s_id, 3427 ext4_get_tstamp(es, s_last_error_time), 3428 (int) sizeof(es->s_last_error_func), 3429 es->s_last_error_func, 3430 le32_to_cpu(es->s_last_error_line)); 3431 if (es->s_last_error_ino) 3432 printk(KERN_CONT ": inode %u", 3433 le32_to_cpu(es->s_last_error_ino)); 3434 if (es->s_last_error_block) 3435 printk(KERN_CONT ": block %llu", (unsigned long long) 3436 le64_to_cpu(es->s_last_error_block)); 3437 printk(KERN_CONT "\n"); 3438 } 3439 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3440 } 3441 3442 /* Find next suitable group and run ext4_init_inode_table */ 3443 static int ext4_run_li_request(struct ext4_li_request *elr) 3444 { 3445 struct ext4_group_desc *gdp = NULL; 3446 struct super_block *sb = elr->lr_super; 3447 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3448 ext4_group_t group = elr->lr_next_group; 3449 unsigned long timeout = 0; 3450 unsigned int prefetch_ios = 0; 3451 int ret = 0; 3452 3453 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3454 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3455 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3456 if (prefetch_ios) 3457 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3458 prefetch_ios); 3459 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3460 prefetch_ios); 3461 if (group >= elr->lr_next_group) { 3462 ret = 1; 3463 if (elr->lr_first_not_zeroed != ngroups && 3464 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3465 elr->lr_next_group = elr->lr_first_not_zeroed; 3466 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3467 ret = 0; 3468 } 3469 } 3470 return ret; 3471 } 3472 3473 for (; group < ngroups; group++) { 3474 gdp = ext4_get_group_desc(sb, group, NULL); 3475 if (!gdp) { 3476 ret = 1; 3477 break; 3478 } 3479 3480 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3481 break; 3482 } 3483 3484 if (group >= ngroups) 3485 ret = 1; 3486 3487 if (!ret) { 3488 timeout = jiffies; 3489 ret = ext4_init_inode_table(sb, group, 3490 elr->lr_timeout ? 0 : 1); 3491 trace_ext4_lazy_itable_init(sb, group); 3492 if (elr->lr_timeout == 0) { 3493 timeout = (jiffies - timeout) * 3494 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3495 elr->lr_timeout = timeout; 3496 } 3497 elr->lr_next_sched = jiffies + elr->lr_timeout; 3498 elr->lr_next_group = group + 1; 3499 } 3500 return ret; 3501 } 3502 3503 /* 3504 * Remove lr_request from the list_request and free the 3505 * request structure. Should be called with li_list_mtx held 3506 */ 3507 static void ext4_remove_li_request(struct ext4_li_request *elr) 3508 { 3509 if (!elr) 3510 return; 3511 3512 list_del(&elr->lr_request); 3513 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3514 kfree(elr); 3515 } 3516 3517 static void ext4_unregister_li_request(struct super_block *sb) 3518 { 3519 mutex_lock(&ext4_li_mtx); 3520 if (!ext4_li_info) { 3521 mutex_unlock(&ext4_li_mtx); 3522 return; 3523 } 3524 3525 mutex_lock(&ext4_li_info->li_list_mtx); 3526 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3527 mutex_unlock(&ext4_li_info->li_list_mtx); 3528 mutex_unlock(&ext4_li_mtx); 3529 } 3530 3531 static struct task_struct *ext4_lazyinit_task; 3532 3533 /* 3534 * This is the function where ext4lazyinit thread lives. It walks 3535 * through the request list searching for next scheduled filesystem. 3536 * When such a fs is found, run the lazy initialization request 3537 * (ext4_rn_li_request) and keep track of the time spend in this 3538 * function. Based on that time we compute next schedule time of 3539 * the request. When walking through the list is complete, compute 3540 * next waking time and put itself into sleep. 3541 */ 3542 static int ext4_lazyinit_thread(void *arg) 3543 { 3544 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3545 struct list_head *pos, *n; 3546 struct ext4_li_request *elr; 3547 unsigned long next_wakeup, cur; 3548 3549 BUG_ON(NULL == eli); 3550 3551 cont_thread: 3552 while (true) { 3553 next_wakeup = MAX_JIFFY_OFFSET; 3554 3555 mutex_lock(&eli->li_list_mtx); 3556 if (list_empty(&eli->li_request_list)) { 3557 mutex_unlock(&eli->li_list_mtx); 3558 goto exit_thread; 3559 } 3560 list_for_each_safe(pos, n, &eli->li_request_list) { 3561 int err = 0; 3562 int progress = 0; 3563 elr = list_entry(pos, struct ext4_li_request, 3564 lr_request); 3565 3566 if (time_before(jiffies, elr->lr_next_sched)) { 3567 if (time_before(elr->lr_next_sched, next_wakeup)) 3568 next_wakeup = elr->lr_next_sched; 3569 continue; 3570 } 3571 if (down_read_trylock(&elr->lr_super->s_umount)) { 3572 if (sb_start_write_trylock(elr->lr_super)) { 3573 progress = 1; 3574 /* 3575 * We hold sb->s_umount, sb can not 3576 * be removed from the list, it is 3577 * now safe to drop li_list_mtx 3578 */ 3579 mutex_unlock(&eli->li_list_mtx); 3580 err = ext4_run_li_request(elr); 3581 sb_end_write(elr->lr_super); 3582 mutex_lock(&eli->li_list_mtx); 3583 n = pos->next; 3584 } 3585 up_read((&elr->lr_super->s_umount)); 3586 } 3587 /* error, remove the lazy_init job */ 3588 if (err) { 3589 ext4_remove_li_request(elr); 3590 continue; 3591 } 3592 if (!progress) { 3593 elr->lr_next_sched = jiffies + 3594 (prandom_u32() 3595 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3596 } 3597 if (time_before(elr->lr_next_sched, next_wakeup)) 3598 next_wakeup = elr->lr_next_sched; 3599 } 3600 mutex_unlock(&eli->li_list_mtx); 3601 3602 try_to_freeze(); 3603 3604 cur = jiffies; 3605 if ((time_after_eq(cur, next_wakeup)) || 3606 (MAX_JIFFY_OFFSET == next_wakeup)) { 3607 cond_resched(); 3608 continue; 3609 } 3610 3611 schedule_timeout_interruptible(next_wakeup - cur); 3612 3613 if (kthread_should_stop()) { 3614 ext4_clear_request_list(); 3615 goto exit_thread; 3616 } 3617 } 3618 3619 exit_thread: 3620 /* 3621 * It looks like the request list is empty, but we need 3622 * to check it under the li_list_mtx lock, to prevent any 3623 * additions into it, and of course we should lock ext4_li_mtx 3624 * to atomically free the list and ext4_li_info, because at 3625 * this point another ext4 filesystem could be registering 3626 * new one. 3627 */ 3628 mutex_lock(&ext4_li_mtx); 3629 mutex_lock(&eli->li_list_mtx); 3630 if (!list_empty(&eli->li_request_list)) { 3631 mutex_unlock(&eli->li_list_mtx); 3632 mutex_unlock(&ext4_li_mtx); 3633 goto cont_thread; 3634 } 3635 mutex_unlock(&eli->li_list_mtx); 3636 kfree(ext4_li_info); 3637 ext4_li_info = NULL; 3638 mutex_unlock(&ext4_li_mtx); 3639 3640 return 0; 3641 } 3642 3643 static void ext4_clear_request_list(void) 3644 { 3645 struct list_head *pos, *n; 3646 struct ext4_li_request *elr; 3647 3648 mutex_lock(&ext4_li_info->li_list_mtx); 3649 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3650 elr = list_entry(pos, struct ext4_li_request, 3651 lr_request); 3652 ext4_remove_li_request(elr); 3653 } 3654 mutex_unlock(&ext4_li_info->li_list_mtx); 3655 } 3656 3657 static int ext4_run_lazyinit_thread(void) 3658 { 3659 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3660 ext4_li_info, "ext4lazyinit"); 3661 if (IS_ERR(ext4_lazyinit_task)) { 3662 int err = PTR_ERR(ext4_lazyinit_task); 3663 ext4_clear_request_list(); 3664 kfree(ext4_li_info); 3665 ext4_li_info = NULL; 3666 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3667 "initialization thread\n", 3668 err); 3669 return err; 3670 } 3671 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3672 return 0; 3673 } 3674 3675 /* 3676 * Check whether it make sense to run itable init. thread or not. 3677 * If there is at least one uninitialized inode table, return 3678 * corresponding group number, else the loop goes through all 3679 * groups and return total number of groups. 3680 */ 3681 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3682 { 3683 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3684 struct ext4_group_desc *gdp = NULL; 3685 3686 if (!ext4_has_group_desc_csum(sb)) 3687 return ngroups; 3688 3689 for (group = 0; group < ngroups; group++) { 3690 gdp = ext4_get_group_desc(sb, group, NULL); 3691 if (!gdp) 3692 continue; 3693 3694 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3695 break; 3696 } 3697 3698 return group; 3699 } 3700 3701 static int ext4_li_info_new(void) 3702 { 3703 struct ext4_lazy_init *eli = NULL; 3704 3705 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3706 if (!eli) 3707 return -ENOMEM; 3708 3709 INIT_LIST_HEAD(&eli->li_request_list); 3710 mutex_init(&eli->li_list_mtx); 3711 3712 eli->li_state |= EXT4_LAZYINIT_QUIT; 3713 3714 ext4_li_info = eli; 3715 3716 return 0; 3717 } 3718 3719 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3720 ext4_group_t start) 3721 { 3722 struct ext4_li_request *elr; 3723 3724 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3725 if (!elr) 3726 return NULL; 3727 3728 elr->lr_super = sb; 3729 elr->lr_first_not_zeroed = start; 3730 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS)) 3731 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3732 else { 3733 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3734 elr->lr_next_group = start; 3735 } 3736 3737 /* 3738 * Randomize first schedule time of the request to 3739 * spread the inode table initialization requests 3740 * better. 3741 */ 3742 elr->lr_next_sched = jiffies + (prandom_u32() % 3743 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3744 return elr; 3745 } 3746 3747 int ext4_register_li_request(struct super_block *sb, 3748 ext4_group_t first_not_zeroed) 3749 { 3750 struct ext4_sb_info *sbi = EXT4_SB(sb); 3751 struct ext4_li_request *elr = NULL; 3752 ext4_group_t ngroups = sbi->s_groups_count; 3753 int ret = 0; 3754 3755 mutex_lock(&ext4_li_mtx); 3756 if (sbi->s_li_request != NULL) { 3757 /* 3758 * Reset timeout so it can be computed again, because 3759 * s_li_wait_mult might have changed. 3760 */ 3761 sbi->s_li_request->lr_timeout = 0; 3762 goto out; 3763 } 3764 3765 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) && 3766 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3767 !test_opt(sb, INIT_INODE_TABLE))) 3768 goto out; 3769 3770 elr = ext4_li_request_new(sb, first_not_zeroed); 3771 if (!elr) { 3772 ret = -ENOMEM; 3773 goto out; 3774 } 3775 3776 if (NULL == ext4_li_info) { 3777 ret = ext4_li_info_new(); 3778 if (ret) 3779 goto out; 3780 } 3781 3782 mutex_lock(&ext4_li_info->li_list_mtx); 3783 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3784 mutex_unlock(&ext4_li_info->li_list_mtx); 3785 3786 sbi->s_li_request = elr; 3787 /* 3788 * set elr to NULL here since it has been inserted to 3789 * the request_list and the removal and free of it is 3790 * handled by ext4_clear_request_list from now on. 3791 */ 3792 elr = NULL; 3793 3794 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3795 ret = ext4_run_lazyinit_thread(); 3796 if (ret) 3797 goto out; 3798 } 3799 out: 3800 mutex_unlock(&ext4_li_mtx); 3801 if (ret) 3802 kfree(elr); 3803 return ret; 3804 } 3805 3806 /* 3807 * We do not need to lock anything since this is called on 3808 * module unload. 3809 */ 3810 static void ext4_destroy_lazyinit_thread(void) 3811 { 3812 /* 3813 * If thread exited earlier 3814 * there's nothing to be done. 3815 */ 3816 if (!ext4_li_info || !ext4_lazyinit_task) 3817 return; 3818 3819 kthread_stop(ext4_lazyinit_task); 3820 } 3821 3822 static int set_journal_csum_feature_set(struct super_block *sb) 3823 { 3824 int ret = 1; 3825 int compat, incompat; 3826 struct ext4_sb_info *sbi = EXT4_SB(sb); 3827 3828 if (ext4_has_metadata_csum(sb)) { 3829 /* journal checksum v3 */ 3830 compat = 0; 3831 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3832 } else { 3833 /* journal checksum v1 */ 3834 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3835 incompat = 0; 3836 } 3837 3838 jbd2_journal_clear_features(sbi->s_journal, 3839 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3840 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3841 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3842 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3843 ret = jbd2_journal_set_features(sbi->s_journal, 3844 compat, 0, 3845 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3846 incompat); 3847 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3848 ret = jbd2_journal_set_features(sbi->s_journal, 3849 compat, 0, 3850 incompat); 3851 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3852 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3853 } else { 3854 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3855 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3856 } 3857 3858 return ret; 3859 } 3860 3861 /* 3862 * Note: calculating the overhead so we can be compatible with 3863 * historical BSD practice is quite difficult in the face of 3864 * clusters/bigalloc. This is because multiple metadata blocks from 3865 * different block group can end up in the same allocation cluster. 3866 * Calculating the exact overhead in the face of clustered allocation 3867 * requires either O(all block bitmaps) in memory or O(number of block 3868 * groups**2) in time. We will still calculate the superblock for 3869 * older file systems --- and if we come across with a bigalloc file 3870 * system with zero in s_overhead_clusters the estimate will be close to 3871 * correct especially for very large cluster sizes --- but for newer 3872 * file systems, it's better to calculate this figure once at mkfs 3873 * time, and store it in the superblock. If the superblock value is 3874 * present (even for non-bigalloc file systems), we will use it. 3875 */ 3876 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3877 char *buf) 3878 { 3879 struct ext4_sb_info *sbi = EXT4_SB(sb); 3880 struct ext4_group_desc *gdp; 3881 ext4_fsblk_t first_block, last_block, b; 3882 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3883 int s, j, count = 0; 3884 3885 if (!ext4_has_feature_bigalloc(sb)) 3886 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3887 sbi->s_itb_per_group + 2); 3888 3889 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3890 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3891 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3892 for (i = 0; i < ngroups; i++) { 3893 gdp = ext4_get_group_desc(sb, i, NULL); 3894 b = ext4_block_bitmap(sb, gdp); 3895 if (b >= first_block && b <= last_block) { 3896 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3897 count++; 3898 } 3899 b = ext4_inode_bitmap(sb, gdp); 3900 if (b >= first_block && b <= last_block) { 3901 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3902 count++; 3903 } 3904 b = ext4_inode_table(sb, gdp); 3905 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3906 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3907 int c = EXT4_B2C(sbi, b - first_block); 3908 ext4_set_bit(c, buf); 3909 count++; 3910 } 3911 if (i != grp) 3912 continue; 3913 s = 0; 3914 if (ext4_bg_has_super(sb, grp)) { 3915 ext4_set_bit(s++, buf); 3916 count++; 3917 } 3918 j = ext4_bg_num_gdb(sb, grp); 3919 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3920 ext4_error(sb, "Invalid number of block group " 3921 "descriptor blocks: %d", j); 3922 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3923 } 3924 count += j; 3925 for (; j > 0; j--) 3926 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3927 } 3928 if (!count) 3929 return 0; 3930 return EXT4_CLUSTERS_PER_GROUP(sb) - 3931 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3932 } 3933 3934 /* 3935 * Compute the overhead and stash it in sbi->s_overhead 3936 */ 3937 int ext4_calculate_overhead(struct super_block *sb) 3938 { 3939 struct ext4_sb_info *sbi = EXT4_SB(sb); 3940 struct ext4_super_block *es = sbi->s_es; 3941 struct inode *j_inode; 3942 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3943 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3944 ext4_fsblk_t overhead = 0; 3945 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3946 3947 if (!buf) 3948 return -ENOMEM; 3949 3950 /* 3951 * Compute the overhead (FS structures). This is constant 3952 * for a given filesystem unless the number of block groups 3953 * changes so we cache the previous value until it does. 3954 */ 3955 3956 /* 3957 * All of the blocks before first_data_block are overhead 3958 */ 3959 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3960 3961 /* 3962 * Add the overhead found in each block group 3963 */ 3964 for (i = 0; i < ngroups; i++) { 3965 int blks; 3966 3967 blks = count_overhead(sb, i, buf); 3968 overhead += blks; 3969 if (blks) 3970 memset(buf, 0, PAGE_SIZE); 3971 cond_resched(); 3972 } 3973 3974 /* 3975 * Add the internal journal blocks whether the journal has been 3976 * loaded or not 3977 */ 3978 if (sbi->s_journal && !sbi->s_journal_bdev) 3979 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3980 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3981 /* j_inum for internal journal is non-zero */ 3982 j_inode = ext4_get_journal_inode(sb, j_inum); 3983 if (j_inode) { 3984 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3985 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3986 iput(j_inode); 3987 } else { 3988 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3989 } 3990 } 3991 sbi->s_overhead = overhead; 3992 smp_wmb(); 3993 free_page((unsigned long) buf); 3994 return 0; 3995 } 3996 3997 static void ext4_set_resv_clusters(struct super_block *sb) 3998 { 3999 ext4_fsblk_t resv_clusters; 4000 struct ext4_sb_info *sbi = EXT4_SB(sb); 4001 4002 /* 4003 * There's no need to reserve anything when we aren't using extents. 4004 * The space estimates are exact, there are no unwritten extents, 4005 * hole punching doesn't need new metadata... This is needed especially 4006 * to keep ext2/3 backward compatibility. 4007 */ 4008 if (!ext4_has_feature_extents(sb)) 4009 return; 4010 /* 4011 * By default we reserve 2% or 4096 clusters, whichever is smaller. 4012 * This should cover the situations where we can not afford to run 4013 * out of space like for example punch hole, or converting 4014 * unwritten extents in delalloc path. In most cases such 4015 * allocation would require 1, or 2 blocks, higher numbers are 4016 * very rare. 4017 */ 4018 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 4019 sbi->s_cluster_bits); 4020 4021 do_div(resv_clusters, 50); 4022 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 4023 4024 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 4025 } 4026 4027 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 4028 { 4029 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 4030 char *orig_data = kstrdup(data, GFP_KERNEL); 4031 struct buffer_head *bh, **group_desc; 4032 struct ext4_super_block *es = NULL; 4033 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4034 struct flex_groups **flex_groups; 4035 ext4_fsblk_t block; 4036 ext4_fsblk_t sb_block = get_sb_block(&data); 4037 ext4_fsblk_t logical_sb_block; 4038 unsigned long offset = 0; 4039 unsigned long journal_devnum = 0; 4040 unsigned long def_mount_opts; 4041 struct inode *root; 4042 const char *descr; 4043 int ret = -ENOMEM; 4044 int blocksize, clustersize; 4045 unsigned int db_count; 4046 unsigned int i; 4047 int needs_recovery, has_huge_files; 4048 __u64 blocks_count; 4049 int err = 0; 4050 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4051 ext4_group_t first_not_zeroed; 4052 4053 if ((data && !orig_data) || !sbi) 4054 goto out_free_base; 4055 4056 sbi->s_daxdev = dax_dev; 4057 sbi->s_blockgroup_lock = 4058 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4059 if (!sbi->s_blockgroup_lock) 4060 goto out_free_base; 4061 4062 sb->s_fs_info = sbi; 4063 sbi->s_sb = sb; 4064 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4065 sbi->s_sb_block = sb_block; 4066 if (sb->s_bdev->bd_part) 4067 sbi->s_sectors_written_start = 4068 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 4069 4070 /* Cleanup superblock name */ 4071 strreplace(sb->s_id, '/', '!'); 4072 4073 /* -EINVAL is default */ 4074 ret = -EINVAL; 4075 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4076 if (!blocksize) { 4077 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4078 goto out_fail; 4079 } 4080 4081 /* 4082 * The ext4 superblock will not be buffer aligned for other than 1kB 4083 * block sizes. We need to calculate the offset from buffer start. 4084 */ 4085 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4086 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4087 offset = do_div(logical_sb_block, blocksize); 4088 } else { 4089 logical_sb_block = sb_block; 4090 } 4091 4092 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4093 if (IS_ERR(bh)) { 4094 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4095 ret = PTR_ERR(bh); 4096 bh = NULL; 4097 goto out_fail; 4098 } 4099 /* 4100 * Note: s_es must be initialized as soon as possible because 4101 * some ext4 macro-instructions depend on its value 4102 */ 4103 es = (struct ext4_super_block *) (bh->b_data + offset); 4104 sbi->s_es = es; 4105 sb->s_magic = le16_to_cpu(es->s_magic); 4106 if (sb->s_magic != EXT4_SUPER_MAGIC) 4107 goto cantfind_ext4; 4108 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4109 4110 /* Warn if metadata_csum and gdt_csum are both set. */ 4111 if (ext4_has_feature_metadata_csum(sb) && 4112 ext4_has_feature_gdt_csum(sb)) 4113 ext4_warning(sb, "metadata_csum and uninit_bg are " 4114 "redundant flags; please run fsck."); 4115 4116 /* Check for a known checksum algorithm */ 4117 if (!ext4_verify_csum_type(sb, es)) { 4118 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4119 "unknown checksum algorithm."); 4120 silent = 1; 4121 goto cantfind_ext4; 4122 } 4123 4124 /* Load the checksum driver */ 4125 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4126 if (IS_ERR(sbi->s_chksum_driver)) { 4127 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4128 ret = PTR_ERR(sbi->s_chksum_driver); 4129 sbi->s_chksum_driver = NULL; 4130 goto failed_mount; 4131 } 4132 4133 /* Check superblock checksum */ 4134 if (!ext4_superblock_csum_verify(sb, es)) { 4135 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4136 "invalid superblock checksum. Run e2fsck?"); 4137 silent = 1; 4138 ret = -EFSBADCRC; 4139 goto cantfind_ext4; 4140 } 4141 4142 /* Precompute checksum seed for all metadata */ 4143 if (ext4_has_feature_csum_seed(sb)) 4144 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4145 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4146 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4147 sizeof(es->s_uuid)); 4148 4149 /* Set defaults before we parse the mount options */ 4150 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4151 set_opt(sb, INIT_INODE_TABLE); 4152 if (def_mount_opts & EXT4_DEFM_DEBUG) 4153 set_opt(sb, DEBUG); 4154 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4155 set_opt(sb, GRPID); 4156 if (def_mount_opts & EXT4_DEFM_UID16) 4157 set_opt(sb, NO_UID32); 4158 /* xattr user namespace & acls are now defaulted on */ 4159 set_opt(sb, XATTR_USER); 4160 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4161 set_opt(sb, POSIX_ACL); 4162 #endif 4163 if (ext4_has_feature_fast_commit(sb)) 4164 set_opt2(sb, JOURNAL_FAST_COMMIT); 4165 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4166 if (ext4_has_metadata_csum(sb)) 4167 set_opt(sb, JOURNAL_CHECKSUM); 4168 4169 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4170 set_opt(sb, JOURNAL_DATA); 4171 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4172 set_opt(sb, ORDERED_DATA); 4173 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4174 set_opt(sb, WRITEBACK_DATA); 4175 4176 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4177 set_opt(sb, ERRORS_PANIC); 4178 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4179 set_opt(sb, ERRORS_CONT); 4180 else 4181 set_opt(sb, ERRORS_RO); 4182 /* block_validity enabled by default; disable with noblock_validity */ 4183 set_opt(sb, BLOCK_VALIDITY); 4184 if (def_mount_opts & EXT4_DEFM_DISCARD) 4185 set_opt(sb, DISCARD); 4186 4187 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4188 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4189 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4190 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4191 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4192 4193 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4194 set_opt(sb, BARRIER); 4195 4196 /* 4197 * enable delayed allocation by default 4198 * Use -o nodelalloc to turn it off 4199 */ 4200 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4201 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4202 set_opt(sb, DELALLOC); 4203 4204 /* 4205 * set default s_li_wait_mult for lazyinit, for the case there is 4206 * no mount option specified. 4207 */ 4208 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4209 4210 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4211 4212 if (blocksize == PAGE_SIZE) 4213 set_opt(sb, DIOREAD_NOLOCK); 4214 4215 if (blocksize < EXT4_MIN_BLOCK_SIZE || 4216 blocksize > EXT4_MAX_BLOCK_SIZE) { 4217 ext4_msg(sb, KERN_ERR, 4218 "Unsupported filesystem blocksize %d (%d log_block_size)", 4219 blocksize, le32_to_cpu(es->s_log_block_size)); 4220 goto failed_mount; 4221 } 4222 4223 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4224 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4225 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4226 } else { 4227 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4228 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4229 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4230 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4231 sbi->s_first_ino); 4232 goto failed_mount; 4233 } 4234 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4235 (!is_power_of_2(sbi->s_inode_size)) || 4236 (sbi->s_inode_size > blocksize)) { 4237 ext4_msg(sb, KERN_ERR, 4238 "unsupported inode size: %d", 4239 sbi->s_inode_size); 4240 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4241 goto failed_mount; 4242 } 4243 /* 4244 * i_atime_extra is the last extra field available for 4245 * [acm]times in struct ext4_inode. Checking for that 4246 * field should suffice to ensure we have extra space 4247 * for all three. 4248 */ 4249 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4250 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4251 sb->s_time_gran = 1; 4252 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4253 } else { 4254 sb->s_time_gran = NSEC_PER_SEC; 4255 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4256 } 4257 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4258 } 4259 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4260 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4261 EXT4_GOOD_OLD_INODE_SIZE; 4262 if (ext4_has_feature_extra_isize(sb)) { 4263 unsigned v, max = (sbi->s_inode_size - 4264 EXT4_GOOD_OLD_INODE_SIZE); 4265 4266 v = le16_to_cpu(es->s_want_extra_isize); 4267 if (v > max) { 4268 ext4_msg(sb, KERN_ERR, 4269 "bad s_want_extra_isize: %d", v); 4270 goto failed_mount; 4271 } 4272 if (sbi->s_want_extra_isize < v) 4273 sbi->s_want_extra_isize = v; 4274 4275 v = le16_to_cpu(es->s_min_extra_isize); 4276 if (v > max) { 4277 ext4_msg(sb, KERN_ERR, 4278 "bad s_min_extra_isize: %d", v); 4279 goto failed_mount; 4280 } 4281 if (sbi->s_want_extra_isize < v) 4282 sbi->s_want_extra_isize = v; 4283 } 4284 } 4285 4286 if (sbi->s_es->s_mount_opts[0]) { 4287 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4288 sizeof(sbi->s_es->s_mount_opts), 4289 GFP_KERNEL); 4290 if (!s_mount_opts) 4291 goto failed_mount; 4292 if (!parse_options(s_mount_opts, sb, &journal_devnum, 4293 &journal_ioprio, 0)) { 4294 ext4_msg(sb, KERN_WARNING, 4295 "failed to parse options in superblock: %s", 4296 s_mount_opts); 4297 } 4298 kfree(s_mount_opts); 4299 } 4300 sbi->s_def_mount_opt = sbi->s_mount_opt; 4301 if (!parse_options((char *) data, sb, &journal_devnum, 4302 &journal_ioprio, 0)) 4303 goto failed_mount; 4304 4305 #ifdef CONFIG_UNICODE 4306 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4307 const struct ext4_sb_encodings *encoding_info; 4308 struct unicode_map *encoding; 4309 __u16 encoding_flags; 4310 4311 if (ext4_has_feature_encrypt(sb)) { 4312 ext4_msg(sb, KERN_ERR, 4313 "Can't mount with encoding and encryption"); 4314 goto failed_mount; 4315 } 4316 4317 if (ext4_sb_read_encoding(es, &encoding_info, 4318 &encoding_flags)) { 4319 ext4_msg(sb, KERN_ERR, 4320 "Encoding requested by superblock is unknown"); 4321 goto failed_mount; 4322 } 4323 4324 encoding = utf8_load(encoding_info->version); 4325 if (IS_ERR(encoding)) { 4326 ext4_msg(sb, KERN_ERR, 4327 "can't mount with superblock charset: %s-%s " 4328 "not supported by the kernel. flags: 0x%x.", 4329 encoding_info->name, encoding_info->version, 4330 encoding_flags); 4331 goto failed_mount; 4332 } 4333 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4334 "%s-%s with flags 0x%hx", encoding_info->name, 4335 encoding_info->version?:"\b", encoding_flags); 4336 4337 sb->s_encoding = encoding; 4338 sb->s_encoding_flags = encoding_flags; 4339 } 4340 #endif 4341 4342 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4343 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 4344 /* can't mount with both data=journal and dioread_nolock. */ 4345 clear_opt(sb, DIOREAD_NOLOCK); 4346 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4347 ext4_msg(sb, KERN_ERR, "can't mount with " 4348 "both data=journal and delalloc"); 4349 goto failed_mount; 4350 } 4351 if (test_opt(sb, DAX_ALWAYS)) { 4352 ext4_msg(sb, KERN_ERR, "can't mount with " 4353 "both data=journal and dax"); 4354 goto failed_mount; 4355 } 4356 if (ext4_has_feature_encrypt(sb)) { 4357 ext4_msg(sb, KERN_WARNING, 4358 "encrypted files will use data=ordered " 4359 "instead of data journaling mode"); 4360 } 4361 if (test_opt(sb, DELALLOC)) 4362 clear_opt(sb, DELALLOC); 4363 } else { 4364 sb->s_iflags |= SB_I_CGROUPWB; 4365 } 4366 4367 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4368 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4369 4370 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4371 (ext4_has_compat_features(sb) || 4372 ext4_has_ro_compat_features(sb) || 4373 ext4_has_incompat_features(sb))) 4374 ext4_msg(sb, KERN_WARNING, 4375 "feature flags set on rev 0 fs, " 4376 "running e2fsck is recommended"); 4377 4378 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4379 set_opt2(sb, HURD_COMPAT); 4380 if (ext4_has_feature_64bit(sb)) { 4381 ext4_msg(sb, KERN_ERR, 4382 "The Hurd can't support 64-bit file systems"); 4383 goto failed_mount; 4384 } 4385 4386 /* 4387 * ea_inode feature uses l_i_version field which is not 4388 * available in HURD_COMPAT mode. 4389 */ 4390 if (ext4_has_feature_ea_inode(sb)) { 4391 ext4_msg(sb, KERN_ERR, 4392 "ea_inode feature is not supported for Hurd"); 4393 goto failed_mount; 4394 } 4395 } 4396 4397 if (IS_EXT2_SB(sb)) { 4398 if (ext2_feature_set_ok(sb)) 4399 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4400 "using the ext4 subsystem"); 4401 else { 4402 /* 4403 * If we're probing be silent, if this looks like 4404 * it's actually an ext[34] filesystem. 4405 */ 4406 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4407 goto failed_mount; 4408 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4409 "to feature incompatibilities"); 4410 goto failed_mount; 4411 } 4412 } 4413 4414 if (IS_EXT3_SB(sb)) { 4415 if (ext3_feature_set_ok(sb)) 4416 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4417 "using the ext4 subsystem"); 4418 else { 4419 /* 4420 * If we're probing be silent, if this looks like 4421 * it's actually an ext4 filesystem. 4422 */ 4423 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4424 goto failed_mount; 4425 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4426 "to feature incompatibilities"); 4427 goto failed_mount; 4428 } 4429 } 4430 4431 /* 4432 * Check feature flags regardless of the revision level, since we 4433 * previously didn't change the revision level when setting the flags, 4434 * so there is a chance incompat flags are set on a rev 0 filesystem. 4435 */ 4436 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4437 goto failed_mount; 4438 4439 if (le32_to_cpu(es->s_log_block_size) > 4440 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4441 ext4_msg(sb, KERN_ERR, 4442 "Invalid log block size: %u", 4443 le32_to_cpu(es->s_log_block_size)); 4444 goto failed_mount; 4445 } 4446 if (le32_to_cpu(es->s_log_cluster_size) > 4447 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4448 ext4_msg(sb, KERN_ERR, 4449 "Invalid log cluster size: %u", 4450 le32_to_cpu(es->s_log_cluster_size)); 4451 goto failed_mount; 4452 } 4453 4454 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4455 ext4_msg(sb, KERN_ERR, 4456 "Number of reserved GDT blocks insanely large: %d", 4457 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4458 goto failed_mount; 4459 } 4460 4461 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4462 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4463 4464 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4465 if (ext4_has_feature_inline_data(sb)) { 4466 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4467 " that may contain inline data"); 4468 goto failed_mount; 4469 } 4470 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4471 ext4_msg(sb, KERN_ERR, 4472 "DAX unsupported by block device."); 4473 goto failed_mount; 4474 } 4475 } 4476 4477 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4478 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4479 es->s_encryption_level); 4480 goto failed_mount; 4481 } 4482 4483 if (sb->s_blocksize != blocksize) { 4484 /* Validate the filesystem blocksize */ 4485 if (!sb_set_blocksize(sb, blocksize)) { 4486 ext4_msg(sb, KERN_ERR, "bad block size %d", 4487 blocksize); 4488 goto failed_mount; 4489 } 4490 4491 brelse(bh); 4492 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4493 offset = do_div(logical_sb_block, blocksize); 4494 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4495 if (IS_ERR(bh)) { 4496 ext4_msg(sb, KERN_ERR, 4497 "Can't read superblock on 2nd try"); 4498 ret = PTR_ERR(bh); 4499 bh = NULL; 4500 goto failed_mount; 4501 } 4502 es = (struct ext4_super_block *)(bh->b_data + offset); 4503 sbi->s_es = es; 4504 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4505 ext4_msg(sb, KERN_ERR, 4506 "Magic mismatch, very weird!"); 4507 goto failed_mount; 4508 } 4509 } 4510 4511 has_huge_files = ext4_has_feature_huge_file(sb); 4512 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4513 has_huge_files); 4514 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4515 4516 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4517 if (ext4_has_feature_64bit(sb)) { 4518 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4519 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4520 !is_power_of_2(sbi->s_desc_size)) { 4521 ext4_msg(sb, KERN_ERR, 4522 "unsupported descriptor size %lu", 4523 sbi->s_desc_size); 4524 goto failed_mount; 4525 } 4526 } else 4527 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4528 4529 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4530 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4531 4532 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4533 if (sbi->s_inodes_per_block == 0) 4534 goto cantfind_ext4; 4535 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4536 sbi->s_inodes_per_group > blocksize * 8) { 4537 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4538 sbi->s_inodes_per_group); 4539 goto failed_mount; 4540 } 4541 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4542 sbi->s_inodes_per_block; 4543 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4544 sbi->s_sbh = bh; 4545 sbi->s_mount_state = le16_to_cpu(es->s_state); 4546 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4547 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4548 4549 for (i = 0; i < 4; i++) 4550 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4551 sbi->s_def_hash_version = es->s_def_hash_version; 4552 if (ext4_has_feature_dir_index(sb)) { 4553 i = le32_to_cpu(es->s_flags); 4554 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4555 sbi->s_hash_unsigned = 3; 4556 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4557 #ifdef __CHAR_UNSIGNED__ 4558 if (!sb_rdonly(sb)) 4559 es->s_flags |= 4560 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4561 sbi->s_hash_unsigned = 3; 4562 #else 4563 if (!sb_rdonly(sb)) 4564 es->s_flags |= 4565 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4566 #endif 4567 } 4568 } 4569 4570 /* Handle clustersize */ 4571 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4572 if (ext4_has_feature_bigalloc(sb)) { 4573 if (clustersize < blocksize) { 4574 ext4_msg(sb, KERN_ERR, 4575 "cluster size (%d) smaller than " 4576 "block size (%d)", clustersize, blocksize); 4577 goto failed_mount; 4578 } 4579 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4580 le32_to_cpu(es->s_log_block_size); 4581 sbi->s_clusters_per_group = 4582 le32_to_cpu(es->s_clusters_per_group); 4583 if (sbi->s_clusters_per_group > blocksize * 8) { 4584 ext4_msg(sb, KERN_ERR, 4585 "#clusters per group too big: %lu", 4586 sbi->s_clusters_per_group); 4587 goto failed_mount; 4588 } 4589 if (sbi->s_blocks_per_group != 4590 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4591 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4592 "clusters per group (%lu) inconsistent", 4593 sbi->s_blocks_per_group, 4594 sbi->s_clusters_per_group); 4595 goto failed_mount; 4596 } 4597 } else { 4598 if (clustersize != blocksize) { 4599 ext4_msg(sb, KERN_ERR, 4600 "fragment/cluster size (%d) != " 4601 "block size (%d)", clustersize, blocksize); 4602 goto failed_mount; 4603 } 4604 if (sbi->s_blocks_per_group > blocksize * 8) { 4605 ext4_msg(sb, KERN_ERR, 4606 "#blocks per group too big: %lu", 4607 sbi->s_blocks_per_group); 4608 goto failed_mount; 4609 } 4610 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4611 sbi->s_cluster_bits = 0; 4612 } 4613 sbi->s_cluster_ratio = clustersize / blocksize; 4614 4615 /* Do we have standard group size of clustersize * 8 blocks ? */ 4616 if (sbi->s_blocks_per_group == clustersize << 3) 4617 set_opt2(sb, STD_GROUP_SIZE); 4618 4619 /* 4620 * Test whether we have more sectors than will fit in sector_t, 4621 * and whether the max offset is addressable by the page cache. 4622 */ 4623 err = generic_check_addressable(sb->s_blocksize_bits, 4624 ext4_blocks_count(es)); 4625 if (err) { 4626 ext4_msg(sb, KERN_ERR, "filesystem" 4627 " too large to mount safely on this system"); 4628 goto failed_mount; 4629 } 4630 4631 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4632 goto cantfind_ext4; 4633 4634 /* check blocks count against device size */ 4635 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4636 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4637 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4638 "exceeds size of device (%llu blocks)", 4639 ext4_blocks_count(es), blocks_count); 4640 goto failed_mount; 4641 } 4642 4643 /* 4644 * It makes no sense for the first data block to be beyond the end 4645 * of the filesystem. 4646 */ 4647 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4648 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4649 "block %u is beyond end of filesystem (%llu)", 4650 le32_to_cpu(es->s_first_data_block), 4651 ext4_blocks_count(es)); 4652 goto failed_mount; 4653 } 4654 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4655 (sbi->s_cluster_ratio == 1)) { 4656 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4657 "block is 0 with a 1k block and cluster size"); 4658 goto failed_mount; 4659 } 4660 4661 blocks_count = (ext4_blocks_count(es) - 4662 le32_to_cpu(es->s_first_data_block) + 4663 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4664 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4665 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4666 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4667 "(block count %llu, first data block %u, " 4668 "blocks per group %lu)", blocks_count, 4669 ext4_blocks_count(es), 4670 le32_to_cpu(es->s_first_data_block), 4671 EXT4_BLOCKS_PER_GROUP(sb)); 4672 goto failed_mount; 4673 } 4674 sbi->s_groups_count = blocks_count; 4675 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4676 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4677 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4678 le32_to_cpu(es->s_inodes_count)) { 4679 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4680 le32_to_cpu(es->s_inodes_count), 4681 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4682 ret = -EINVAL; 4683 goto failed_mount; 4684 } 4685 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4686 EXT4_DESC_PER_BLOCK(sb); 4687 if (ext4_has_feature_meta_bg(sb)) { 4688 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4689 ext4_msg(sb, KERN_WARNING, 4690 "first meta block group too large: %u " 4691 "(group descriptor block count %u)", 4692 le32_to_cpu(es->s_first_meta_bg), db_count); 4693 goto failed_mount; 4694 } 4695 } 4696 rcu_assign_pointer(sbi->s_group_desc, 4697 kvmalloc_array(db_count, 4698 sizeof(struct buffer_head *), 4699 GFP_KERNEL)); 4700 if (sbi->s_group_desc == NULL) { 4701 ext4_msg(sb, KERN_ERR, "not enough memory"); 4702 ret = -ENOMEM; 4703 goto failed_mount; 4704 } 4705 4706 bgl_lock_init(sbi->s_blockgroup_lock); 4707 4708 /* Pre-read the descriptors into the buffer cache */ 4709 for (i = 0; i < db_count; i++) { 4710 block = descriptor_loc(sb, logical_sb_block, i); 4711 ext4_sb_breadahead_unmovable(sb, block); 4712 } 4713 4714 for (i = 0; i < db_count; i++) { 4715 struct buffer_head *bh; 4716 4717 block = descriptor_loc(sb, logical_sb_block, i); 4718 bh = ext4_sb_bread_unmovable(sb, block); 4719 if (IS_ERR(bh)) { 4720 ext4_msg(sb, KERN_ERR, 4721 "can't read group descriptor %d", i); 4722 db_count = i; 4723 ret = PTR_ERR(bh); 4724 bh = NULL; 4725 goto failed_mount2; 4726 } 4727 rcu_read_lock(); 4728 rcu_dereference(sbi->s_group_desc)[i] = bh; 4729 rcu_read_unlock(); 4730 } 4731 sbi->s_gdb_count = db_count; 4732 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4733 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4734 ret = -EFSCORRUPTED; 4735 goto failed_mount2; 4736 } 4737 4738 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4739 4740 /* Register extent status tree shrinker */ 4741 if (ext4_es_register_shrinker(sbi)) 4742 goto failed_mount3; 4743 4744 sbi->s_stripe = ext4_get_stripe_size(sbi); 4745 sbi->s_extent_max_zeroout_kb = 32; 4746 4747 /* 4748 * set up enough so that it can read an inode 4749 */ 4750 sb->s_op = &ext4_sops; 4751 sb->s_export_op = &ext4_export_ops; 4752 sb->s_xattr = ext4_xattr_handlers; 4753 #ifdef CONFIG_FS_ENCRYPTION 4754 sb->s_cop = &ext4_cryptops; 4755 #endif 4756 #ifdef CONFIG_FS_VERITY 4757 sb->s_vop = &ext4_verityops; 4758 #endif 4759 #ifdef CONFIG_QUOTA 4760 sb->dq_op = &ext4_quota_operations; 4761 if (ext4_has_feature_quota(sb)) 4762 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4763 else 4764 sb->s_qcop = &ext4_qctl_operations; 4765 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4766 #endif 4767 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4768 4769 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4770 mutex_init(&sbi->s_orphan_lock); 4771 4772 /* Initialize fast commit stuff */ 4773 atomic_set(&sbi->s_fc_subtid, 0); 4774 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4775 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4776 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4777 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4778 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4779 sbi->s_fc_bytes = 0; 4780 sbi->s_mount_flags &= ~EXT4_MF_FC_INELIGIBLE; 4781 sbi->s_mount_flags &= ~EXT4_MF_FC_COMMITTING; 4782 spin_lock_init(&sbi->s_fc_lock); 4783 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4784 sbi->s_fc_replay_state.fc_regions = NULL; 4785 sbi->s_fc_replay_state.fc_regions_size = 0; 4786 sbi->s_fc_replay_state.fc_regions_used = 0; 4787 sbi->s_fc_replay_state.fc_regions_valid = 0; 4788 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4789 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4790 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4791 4792 sb->s_root = NULL; 4793 4794 needs_recovery = (es->s_last_orphan != 0 || 4795 ext4_has_feature_journal_needs_recovery(sb)); 4796 4797 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4798 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4799 goto failed_mount3a; 4800 4801 /* 4802 * The first inode we look at is the journal inode. Don't try 4803 * root first: it may be modified in the journal! 4804 */ 4805 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4806 err = ext4_load_journal(sb, es, journal_devnum); 4807 if (err) 4808 goto failed_mount3a; 4809 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4810 ext4_has_feature_journal_needs_recovery(sb)) { 4811 ext4_msg(sb, KERN_ERR, "required journal recovery " 4812 "suppressed and not mounted read-only"); 4813 goto failed_mount_wq; 4814 } else { 4815 /* Nojournal mode, all journal mount options are illegal */ 4816 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4817 ext4_msg(sb, KERN_ERR, "can't mount with " 4818 "journal_checksum, fs mounted w/o journal"); 4819 goto failed_mount_wq; 4820 } 4821 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4822 ext4_msg(sb, KERN_ERR, "can't mount with " 4823 "journal_async_commit, fs mounted w/o journal"); 4824 goto failed_mount_wq; 4825 } 4826 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4827 ext4_msg(sb, KERN_ERR, "can't mount with " 4828 "commit=%lu, fs mounted w/o journal", 4829 sbi->s_commit_interval / HZ); 4830 goto failed_mount_wq; 4831 } 4832 if (EXT4_MOUNT_DATA_FLAGS & 4833 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4834 ext4_msg(sb, KERN_ERR, "can't mount with " 4835 "data=, fs mounted w/o journal"); 4836 goto failed_mount_wq; 4837 } 4838 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4839 clear_opt(sb, JOURNAL_CHECKSUM); 4840 clear_opt(sb, DATA_FLAGS); 4841 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4842 sbi->s_journal = NULL; 4843 needs_recovery = 0; 4844 goto no_journal; 4845 } 4846 4847 if (ext4_has_feature_64bit(sb) && 4848 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4849 JBD2_FEATURE_INCOMPAT_64BIT)) { 4850 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4851 goto failed_mount_wq; 4852 } 4853 4854 if (!set_journal_csum_feature_set(sb)) { 4855 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4856 "feature set"); 4857 goto failed_mount_wq; 4858 } 4859 4860 /* We have now updated the journal if required, so we can 4861 * validate the data journaling mode. */ 4862 switch (test_opt(sb, DATA_FLAGS)) { 4863 case 0: 4864 /* No mode set, assume a default based on the journal 4865 * capabilities: ORDERED_DATA if the journal can 4866 * cope, else JOURNAL_DATA 4867 */ 4868 if (jbd2_journal_check_available_features 4869 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4870 set_opt(sb, ORDERED_DATA); 4871 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4872 } else { 4873 set_opt(sb, JOURNAL_DATA); 4874 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4875 } 4876 break; 4877 4878 case EXT4_MOUNT_ORDERED_DATA: 4879 case EXT4_MOUNT_WRITEBACK_DATA: 4880 if (!jbd2_journal_check_available_features 4881 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4882 ext4_msg(sb, KERN_ERR, "Journal does not support " 4883 "requested data journaling mode"); 4884 goto failed_mount_wq; 4885 } 4886 default: 4887 break; 4888 } 4889 4890 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4891 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4892 ext4_msg(sb, KERN_ERR, "can't mount with " 4893 "journal_async_commit in data=ordered mode"); 4894 goto failed_mount_wq; 4895 } 4896 4897 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4898 4899 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4900 sbi->s_journal->j_submit_inode_data_buffers = 4901 ext4_journal_submit_inode_data_buffers; 4902 sbi->s_journal->j_finish_inode_data_buffers = 4903 ext4_journal_finish_inode_data_buffers; 4904 4905 no_journal: 4906 if (!test_opt(sb, NO_MBCACHE)) { 4907 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4908 if (!sbi->s_ea_block_cache) { 4909 ext4_msg(sb, KERN_ERR, 4910 "Failed to create ea_block_cache"); 4911 goto failed_mount_wq; 4912 } 4913 4914 if (ext4_has_feature_ea_inode(sb)) { 4915 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4916 if (!sbi->s_ea_inode_cache) { 4917 ext4_msg(sb, KERN_ERR, 4918 "Failed to create ea_inode_cache"); 4919 goto failed_mount_wq; 4920 } 4921 } 4922 } 4923 4924 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4925 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4926 goto failed_mount_wq; 4927 } 4928 4929 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4930 !ext4_has_feature_encrypt(sb)) { 4931 ext4_set_feature_encrypt(sb); 4932 ext4_commit_super(sb, 1); 4933 } 4934 4935 /* 4936 * Get the # of file system overhead blocks from the 4937 * superblock if present. 4938 */ 4939 if (es->s_overhead_clusters) 4940 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4941 else { 4942 err = ext4_calculate_overhead(sb); 4943 if (err) 4944 goto failed_mount_wq; 4945 } 4946 4947 /* 4948 * The maximum number of concurrent works can be high and 4949 * concurrency isn't really necessary. Limit it to 1. 4950 */ 4951 EXT4_SB(sb)->rsv_conversion_wq = 4952 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4953 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4954 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4955 ret = -ENOMEM; 4956 goto failed_mount4; 4957 } 4958 4959 /* 4960 * The jbd2_journal_load will have done any necessary log recovery, 4961 * so we can safely mount the rest of the filesystem now. 4962 */ 4963 4964 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4965 if (IS_ERR(root)) { 4966 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4967 ret = PTR_ERR(root); 4968 root = NULL; 4969 goto failed_mount4; 4970 } 4971 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4972 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4973 iput(root); 4974 goto failed_mount4; 4975 } 4976 4977 #ifdef CONFIG_UNICODE 4978 if (sb->s_encoding) 4979 sb->s_d_op = &ext4_dentry_ops; 4980 #endif 4981 4982 sb->s_root = d_make_root(root); 4983 if (!sb->s_root) { 4984 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4985 ret = -ENOMEM; 4986 goto failed_mount4; 4987 } 4988 4989 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4990 if (ret == -EROFS) { 4991 sb->s_flags |= SB_RDONLY; 4992 ret = 0; 4993 } else if (ret) 4994 goto failed_mount4a; 4995 4996 ext4_set_resv_clusters(sb); 4997 4998 if (test_opt(sb, BLOCK_VALIDITY)) { 4999 err = ext4_setup_system_zone(sb); 5000 if (err) { 5001 ext4_msg(sb, KERN_ERR, "failed to initialize system " 5002 "zone (%d)", err); 5003 goto failed_mount4a; 5004 } 5005 } 5006 ext4_fc_replay_cleanup(sb); 5007 5008 ext4_ext_init(sb); 5009 err = ext4_mb_init(sb); 5010 if (err) { 5011 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5012 err); 5013 goto failed_mount5; 5014 } 5015 5016 block = ext4_count_free_clusters(sb); 5017 ext4_free_blocks_count_set(sbi->s_es, 5018 EXT4_C2B(sbi, block)); 5019 ext4_superblock_csum_set(sb); 5020 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5021 GFP_KERNEL); 5022 if (!err) { 5023 unsigned long freei = ext4_count_free_inodes(sb); 5024 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5025 ext4_superblock_csum_set(sb); 5026 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5027 GFP_KERNEL); 5028 } 5029 if (!err) 5030 err = percpu_counter_init(&sbi->s_dirs_counter, 5031 ext4_count_dirs(sb), GFP_KERNEL); 5032 if (!err) 5033 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5034 GFP_KERNEL); 5035 if (!err) 5036 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5037 5038 if (err) { 5039 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5040 goto failed_mount6; 5041 } 5042 5043 if (ext4_has_feature_flex_bg(sb)) 5044 if (!ext4_fill_flex_info(sb)) { 5045 ext4_msg(sb, KERN_ERR, 5046 "unable to initialize " 5047 "flex_bg meta info!"); 5048 goto failed_mount6; 5049 } 5050 5051 err = ext4_register_li_request(sb, first_not_zeroed); 5052 if (err) 5053 goto failed_mount6; 5054 5055 err = ext4_register_sysfs(sb); 5056 if (err) 5057 goto failed_mount7; 5058 5059 #ifdef CONFIG_QUOTA 5060 /* Enable quota usage during mount. */ 5061 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5062 err = ext4_enable_quotas(sb); 5063 if (err) 5064 goto failed_mount8; 5065 } 5066 #endif /* CONFIG_QUOTA */ 5067 5068 /* 5069 * Save the original bdev mapping's wb_err value which could be 5070 * used to detect the metadata async write error. 5071 */ 5072 spin_lock_init(&sbi->s_bdev_wb_lock); 5073 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5074 &sbi->s_bdev_wb_err); 5075 sb->s_bdev->bd_super = sb; 5076 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5077 ext4_orphan_cleanup(sb, es); 5078 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5079 if (needs_recovery) { 5080 ext4_msg(sb, KERN_INFO, "recovery complete"); 5081 err = ext4_mark_recovery_complete(sb, es); 5082 if (err) 5083 goto failed_mount8; 5084 } 5085 if (EXT4_SB(sb)->s_journal) { 5086 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5087 descr = " journalled data mode"; 5088 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5089 descr = " ordered data mode"; 5090 else 5091 descr = " writeback data mode"; 5092 } else 5093 descr = "out journal"; 5094 5095 if (test_opt(sb, DISCARD)) { 5096 struct request_queue *q = bdev_get_queue(sb->s_bdev); 5097 if (!blk_queue_discard(q)) 5098 ext4_msg(sb, KERN_WARNING, 5099 "mounting with \"discard\" option, but " 5100 "the device does not support discard"); 5101 } 5102 5103 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5104 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5105 "Opts: %.*s%s%s", descr, 5106 (int) sizeof(sbi->s_es->s_mount_opts), 5107 sbi->s_es->s_mount_opts, 5108 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 5109 5110 if (es->s_error_count) 5111 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5112 5113 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5114 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5115 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5116 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5117 atomic_set(&sbi->s_warning_count, 0); 5118 atomic_set(&sbi->s_msg_count, 0); 5119 5120 kfree(orig_data); 5121 return 0; 5122 5123 cantfind_ext4: 5124 if (!silent) 5125 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5126 goto failed_mount; 5127 5128 failed_mount8: 5129 ext4_unregister_sysfs(sb); 5130 kobject_put(&sbi->s_kobj); 5131 failed_mount7: 5132 ext4_unregister_li_request(sb); 5133 failed_mount6: 5134 ext4_mb_release(sb); 5135 rcu_read_lock(); 5136 flex_groups = rcu_dereference(sbi->s_flex_groups); 5137 if (flex_groups) { 5138 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5139 kvfree(flex_groups[i]); 5140 kvfree(flex_groups); 5141 } 5142 rcu_read_unlock(); 5143 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5144 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5145 percpu_counter_destroy(&sbi->s_dirs_counter); 5146 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5147 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5148 failed_mount5: 5149 ext4_ext_release(sb); 5150 ext4_release_system_zone(sb); 5151 failed_mount4a: 5152 dput(sb->s_root); 5153 sb->s_root = NULL; 5154 failed_mount4: 5155 ext4_msg(sb, KERN_ERR, "mount failed"); 5156 if (EXT4_SB(sb)->rsv_conversion_wq) 5157 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5158 failed_mount_wq: 5159 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5160 sbi->s_ea_inode_cache = NULL; 5161 5162 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5163 sbi->s_ea_block_cache = NULL; 5164 5165 if (sbi->s_journal) { 5166 jbd2_journal_destroy(sbi->s_journal); 5167 sbi->s_journal = NULL; 5168 } 5169 failed_mount3a: 5170 ext4_es_unregister_shrinker(sbi); 5171 failed_mount3: 5172 del_timer_sync(&sbi->s_err_report); 5173 if (sbi->s_mmp_tsk) 5174 kthread_stop(sbi->s_mmp_tsk); 5175 failed_mount2: 5176 rcu_read_lock(); 5177 group_desc = rcu_dereference(sbi->s_group_desc); 5178 for (i = 0; i < db_count; i++) 5179 brelse(group_desc[i]); 5180 kvfree(group_desc); 5181 rcu_read_unlock(); 5182 failed_mount: 5183 if (sbi->s_chksum_driver) 5184 crypto_free_shash(sbi->s_chksum_driver); 5185 5186 #ifdef CONFIG_UNICODE 5187 utf8_unload(sb->s_encoding); 5188 #endif 5189 5190 #ifdef CONFIG_QUOTA 5191 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5192 kfree(get_qf_name(sb, sbi, i)); 5193 #endif 5194 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5195 ext4_blkdev_remove(sbi); 5196 brelse(bh); 5197 out_fail: 5198 sb->s_fs_info = NULL; 5199 kfree(sbi->s_blockgroup_lock); 5200 out_free_base: 5201 kfree(sbi); 5202 kfree(orig_data); 5203 fs_put_dax(dax_dev); 5204 return err ? err : ret; 5205 } 5206 5207 /* 5208 * Setup any per-fs journal parameters now. We'll do this both on 5209 * initial mount, once the journal has been initialised but before we've 5210 * done any recovery; and again on any subsequent remount. 5211 */ 5212 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5213 { 5214 struct ext4_sb_info *sbi = EXT4_SB(sb); 5215 5216 journal->j_commit_interval = sbi->s_commit_interval; 5217 journal->j_min_batch_time = sbi->s_min_batch_time; 5218 journal->j_max_batch_time = sbi->s_max_batch_time; 5219 ext4_fc_init(sb, journal); 5220 5221 write_lock(&journal->j_state_lock); 5222 if (test_opt(sb, BARRIER)) 5223 journal->j_flags |= JBD2_BARRIER; 5224 else 5225 journal->j_flags &= ~JBD2_BARRIER; 5226 if (test_opt(sb, DATA_ERR_ABORT)) 5227 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5228 else 5229 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5230 write_unlock(&journal->j_state_lock); 5231 } 5232 5233 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5234 unsigned int journal_inum) 5235 { 5236 struct inode *journal_inode; 5237 5238 /* 5239 * Test for the existence of a valid inode on disk. Bad things 5240 * happen if we iget() an unused inode, as the subsequent iput() 5241 * will try to delete it. 5242 */ 5243 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5244 if (IS_ERR(journal_inode)) { 5245 ext4_msg(sb, KERN_ERR, "no journal found"); 5246 return NULL; 5247 } 5248 if (!journal_inode->i_nlink) { 5249 make_bad_inode(journal_inode); 5250 iput(journal_inode); 5251 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5252 return NULL; 5253 } 5254 5255 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5256 journal_inode, journal_inode->i_size); 5257 if (!S_ISREG(journal_inode->i_mode)) { 5258 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5259 iput(journal_inode); 5260 return NULL; 5261 } 5262 return journal_inode; 5263 } 5264 5265 static journal_t *ext4_get_journal(struct super_block *sb, 5266 unsigned int journal_inum) 5267 { 5268 struct inode *journal_inode; 5269 journal_t *journal; 5270 5271 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5272 return NULL; 5273 5274 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5275 if (!journal_inode) 5276 return NULL; 5277 5278 journal = jbd2_journal_init_inode(journal_inode); 5279 if (!journal) { 5280 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5281 iput(journal_inode); 5282 return NULL; 5283 } 5284 journal->j_private = sb; 5285 ext4_init_journal_params(sb, journal); 5286 return journal; 5287 } 5288 5289 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5290 dev_t j_dev) 5291 { 5292 struct buffer_head *bh; 5293 journal_t *journal; 5294 ext4_fsblk_t start; 5295 ext4_fsblk_t len; 5296 int hblock, blocksize; 5297 ext4_fsblk_t sb_block; 5298 unsigned long offset; 5299 struct ext4_super_block *es; 5300 struct block_device *bdev; 5301 5302 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5303 return NULL; 5304 5305 bdev = ext4_blkdev_get(j_dev, sb); 5306 if (bdev == NULL) 5307 return NULL; 5308 5309 blocksize = sb->s_blocksize; 5310 hblock = bdev_logical_block_size(bdev); 5311 if (blocksize < hblock) { 5312 ext4_msg(sb, KERN_ERR, 5313 "blocksize too small for journal device"); 5314 goto out_bdev; 5315 } 5316 5317 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5318 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5319 set_blocksize(bdev, blocksize); 5320 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5321 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5322 "external journal"); 5323 goto out_bdev; 5324 } 5325 5326 es = (struct ext4_super_block *) (bh->b_data + offset); 5327 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5328 !(le32_to_cpu(es->s_feature_incompat) & 5329 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5330 ext4_msg(sb, KERN_ERR, "external journal has " 5331 "bad superblock"); 5332 brelse(bh); 5333 goto out_bdev; 5334 } 5335 5336 if ((le32_to_cpu(es->s_feature_ro_compat) & 5337 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5338 es->s_checksum != ext4_superblock_csum(sb, es)) { 5339 ext4_msg(sb, KERN_ERR, "external journal has " 5340 "corrupt superblock"); 5341 brelse(bh); 5342 goto out_bdev; 5343 } 5344 5345 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5346 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5347 brelse(bh); 5348 goto out_bdev; 5349 } 5350 5351 len = ext4_blocks_count(es); 5352 start = sb_block + 1; 5353 brelse(bh); /* we're done with the superblock */ 5354 5355 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5356 start, len, blocksize); 5357 if (!journal) { 5358 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5359 goto out_bdev; 5360 } 5361 journal->j_private = sb; 5362 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5363 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5364 goto out_journal; 5365 } 5366 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5367 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5368 "user (unsupported) - %d", 5369 be32_to_cpu(journal->j_superblock->s_nr_users)); 5370 goto out_journal; 5371 } 5372 EXT4_SB(sb)->s_journal_bdev = bdev; 5373 ext4_init_journal_params(sb, journal); 5374 return journal; 5375 5376 out_journal: 5377 jbd2_journal_destroy(journal); 5378 out_bdev: 5379 ext4_blkdev_put(bdev); 5380 return NULL; 5381 } 5382 5383 static int ext4_load_journal(struct super_block *sb, 5384 struct ext4_super_block *es, 5385 unsigned long journal_devnum) 5386 { 5387 journal_t *journal; 5388 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5389 dev_t journal_dev; 5390 int err = 0; 5391 int really_read_only; 5392 int journal_dev_ro; 5393 5394 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5395 return -EFSCORRUPTED; 5396 5397 if (journal_devnum && 5398 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5399 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5400 "numbers have changed"); 5401 journal_dev = new_decode_dev(journal_devnum); 5402 } else 5403 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5404 5405 if (journal_inum && journal_dev) { 5406 ext4_msg(sb, KERN_ERR, 5407 "filesystem has both journal inode and journal device!"); 5408 return -EINVAL; 5409 } 5410 5411 if (journal_inum) { 5412 journal = ext4_get_journal(sb, journal_inum); 5413 if (!journal) 5414 return -EINVAL; 5415 } else { 5416 journal = ext4_get_dev_journal(sb, journal_dev); 5417 if (!journal) 5418 return -EINVAL; 5419 } 5420 5421 journal_dev_ro = bdev_read_only(journal->j_dev); 5422 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5423 5424 if (journal_dev_ro && !sb_rdonly(sb)) { 5425 ext4_msg(sb, KERN_ERR, 5426 "journal device read-only, try mounting with '-o ro'"); 5427 err = -EROFS; 5428 goto err_out; 5429 } 5430 5431 /* 5432 * Are we loading a blank journal or performing recovery after a 5433 * crash? For recovery, we need to check in advance whether we 5434 * can get read-write access to the device. 5435 */ 5436 if (ext4_has_feature_journal_needs_recovery(sb)) { 5437 if (sb_rdonly(sb)) { 5438 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5439 "required on readonly filesystem"); 5440 if (really_read_only) { 5441 ext4_msg(sb, KERN_ERR, "write access " 5442 "unavailable, cannot proceed " 5443 "(try mounting with noload)"); 5444 err = -EROFS; 5445 goto err_out; 5446 } 5447 ext4_msg(sb, KERN_INFO, "write access will " 5448 "be enabled during recovery"); 5449 } 5450 } 5451 5452 if (!(journal->j_flags & JBD2_BARRIER)) 5453 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5454 5455 if (!ext4_has_feature_journal_needs_recovery(sb)) 5456 err = jbd2_journal_wipe(journal, !really_read_only); 5457 if (!err) { 5458 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5459 if (save) 5460 memcpy(save, ((char *) es) + 5461 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5462 err = jbd2_journal_load(journal); 5463 if (save) 5464 memcpy(((char *) es) + EXT4_S_ERR_START, 5465 save, EXT4_S_ERR_LEN); 5466 kfree(save); 5467 } 5468 5469 if (err) { 5470 ext4_msg(sb, KERN_ERR, "error loading journal"); 5471 goto err_out; 5472 } 5473 5474 EXT4_SB(sb)->s_journal = journal; 5475 err = ext4_clear_journal_err(sb, es); 5476 if (err) { 5477 EXT4_SB(sb)->s_journal = NULL; 5478 jbd2_journal_destroy(journal); 5479 return err; 5480 } 5481 5482 if (!really_read_only && journal_devnum && 5483 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5484 es->s_journal_dev = cpu_to_le32(journal_devnum); 5485 5486 /* Make sure we flush the recovery flag to disk. */ 5487 ext4_commit_super(sb, 1); 5488 } 5489 5490 return 0; 5491 5492 err_out: 5493 jbd2_journal_destroy(journal); 5494 return err; 5495 } 5496 5497 static int ext4_commit_super(struct super_block *sb, int sync) 5498 { 5499 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5500 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5501 int error = 0; 5502 5503 if (!sbh || block_device_ejected(sb)) 5504 return error; 5505 5506 /* 5507 * If the file system is mounted read-only, don't update the 5508 * superblock write time. This avoids updating the superblock 5509 * write time when we are mounting the root file system 5510 * read/only but we need to replay the journal; at that point, 5511 * for people who are east of GMT and who make their clock 5512 * tick in localtime for Windows bug-for-bug compatibility, 5513 * the clock is set in the future, and this will cause e2fsck 5514 * to complain and force a full file system check. 5515 */ 5516 if (!(sb->s_flags & SB_RDONLY)) 5517 ext4_update_tstamp(es, s_wtime); 5518 if (sb->s_bdev->bd_part) 5519 es->s_kbytes_written = 5520 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5521 ((part_stat_read(sb->s_bdev->bd_part, 5522 sectors[STAT_WRITE]) - 5523 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5524 else 5525 es->s_kbytes_written = 5526 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5527 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5528 ext4_free_blocks_count_set(es, 5529 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5530 &EXT4_SB(sb)->s_freeclusters_counter))); 5531 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5532 es->s_free_inodes_count = 5533 cpu_to_le32(percpu_counter_sum_positive( 5534 &EXT4_SB(sb)->s_freeinodes_counter)); 5535 BUFFER_TRACE(sbh, "marking dirty"); 5536 ext4_superblock_csum_set(sb); 5537 if (sync) 5538 lock_buffer(sbh); 5539 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5540 /* 5541 * Oh, dear. A previous attempt to write the 5542 * superblock failed. This could happen because the 5543 * USB device was yanked out. Or it could happen to 5544 * be a transient write error and maybe the block will 5545 * be remapped. Nothing we can do but to retry the 5546 * write and hope for the best. 5547 */ 5548 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5549 "superblock detected"); 5550 clear_buffer_write_io_error(sbh); 5551 set_buffer_uptodate(sbh); 5552 } 5553 mark_buffer_dirty(sbh); 5554 if (sync) { 5555 unlock_buffer(sbh); 5556 error = __sync_dirty_buffer(sbh, 5557 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5558 if (buffer_write_io_error(sbh)) { 5559 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5560 "superblock"); 5561 clear_buffer_write_io_error(sbh); 5562 set_buffer_uptodate(sbh); 5563 } 5564 } 5565 return error; 5566 } 5567 5568 /* 5569 * Have we just finished recovery? If so, and if we are mounting (or 5570 * remounting) the filesystem readonly, then we will end up with a 5571 * consistent fs on disk. Record that fact. 5572 */ 5573 static int ext4_mark_recovery_complete(struct super_block *sb, 5574 struct ext4_super_block *es) 5575 { 5576 int err; 5577 journal_t *journal = EXT4_SB(sb)->s_journal; 5578 5579 if (!ext4_has_feature_journal(sb)) { 5580 if (journal != NULL) { 5581 ext4_error(sb, "Journal got removed while the fs was " 5582 "mounted!"); 5583 return -EFSCORRUPTED; 5584 } 5585 return 0; 5586 } 5587 jbd2_journal_lock_updates(journal); 5588 err = jbd2_journal_flush(journal); 5589 if (err < 0) 5590 goto out; 5591 5592 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5593 ext4_clear_feature_journal_needs_recovery(sb); 5594 ext4_commit_super(sb, 1); 5595 } 5596 out: 5597 jbd2_journal_unlock_updates(journal); 5598 return err; 5599 } 5600 5601 /* 5602 * If we are mounting (or read-write remounting) a filesystem whose journal 5603 * has recorded an error from a previous lifetime, move that error to the 5604 * main filesystem now. 5605 */ 5606 static int ext4_clear_journal_err(struct super_block *sb, 5607 struct ext4_super_block *es) 5608 { 5609 journal_t *journal; 5610 int j_errno; 5611 const char *errstr; 5612 5613 if (!ext4_has_feature_journal(sb)) { 5614 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5615 return -EFSCORRUPTED; 5616 } 5617 5618 journal = EXT4_SB(sb)->s_journal; 5619 5620 /* 5621 * Now check for any error status which may have been recorded in the 5622 * journal by a prior ext4_error() or ext4_abort() 5623 */ 5624 5625 j_errno = jbd2_journal_errno(journal); 5626 if (j_errno) { 5627 char nbuf[16]; 5628 5629 errstr = ext4_decode_error(sb, j_errno, nbuf); 5630 ext4_warning(sb, "Filesystem error recorded " 5631 "from previous mount: %s", errstr); 5632 ext4_warning(sb, "Marking fs in need of filesystem check."); 5633 5634 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5635 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5636 ext4_commit_super(sb, 1); 5637 5638 jbd2_journal_clear_err(journal); 5639 jbd2_journal_update_sb_errno(journal); 5640 } 5641 return 0; 5642 } 5643 5644 /* 5645 * Force the running and committing transactions to commit, 5646 * and wait on the commit. 5647 */ 5648 int ext4_force_commit(struct super_block *sb) 5649 { 5650 journal_t *journal; 5651 5652 if (sb_rdonly(sb)) 5653 return 0; 5654 5655 journal = EXT4_SB(sb)->s_journal; 5656 return ext4_journal_force_commit(journal); 5657 } 5658 5659 static int ext4_sync_fs(struct super_block *sb, int wait) 5660 { 5661 int ret = 0; 5662 tid_t target; 5663 bool needs_barrier = false; 5664 struct ext4_sb_info *sbi = EXT4_SB(sb); 5665 5666 if (unlikely(ext4_forced_shutdown(sbi))) 5667 return 0; 5668 5669 trace_ext4_sync_fs(sb, wait); 5670 flush_workqueue(sbi->rsv_conversion_wq); 5671 /* 5672 * Writeback quota in non-journalled quota case - journalled quota has 5673 * no dirty dquots 5674 */ 5675 dquot_writeback_dquots(sb, -1); 5676 /* 5677 * Data writeback is possible w/o journal transaction, so barrier must 5678 * being sent at the end of the function. But we can skip it if 5679 * transaction_commit will do it for us. 5680 */ 5681 if (sbi->s_journal) { 5682 target = jbd2_get_latest_transaction(sbi->s_journal); 5683 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5684 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5685 needs_barrier = true; 5686 5687 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5688 if (wait) 5689 ret = jbd2_log_wait_commit(sbi->s_journal, 5690 target); 5691 } 5692 } else if (wait && test_opt(sb, BARRIER)) 5693 needs_barrier = true; 5694 if (needs_barrier) { 5695 int err; 5696 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); 5697 if (!ret) 5698 ret = err; 5699 } 5700 5701 return ret; 5702 } 5703 5704 /* 5705 * LVM calls this function before a (read-only) snapshot is created. This 5706 * gives us a chance to flush the journal completely and mark the fs clean. 5707 * 5708 * Note that only this function cannot bring a filesystem to be in a clean 5709 * state independently. It relies on upper layer to stop all data & metadata 5710 * modifications. 5711 */ 5712 static int ext4_freeze(struct super_block *sb) 5713 { 5714 int error = 0; 5715 journal_t *journal; 5716 5717 if (sb_rdonly(sb)) 5718 return 0; 5719 5720 journal = EXT4_SB(sb)->s_journal; 5721 5722 if (journal) { 5723 /* Now we set up the journal barrier. */ 5724 jbd2_journal_lock_updates(journal); 5725 5726 /* 5727 * Don't clear the needs_recovery flag if we failed to 5728 * flush the journal. 5729 */ 5730 error = jbd2_journal_flush(journal); 5731 if (error < 0) 5732 goto out; 5733 5734 /* Journal blocked and flushed, clear needs_recovery flag. */ 5735 ext4_clear_feature_journal_needs_recovery(sb); 5736 } 5737 5738 error = ext4_commit_super(sb, 1); 5739 out: 5740 if (journal) 5741 /* we rely on upper layer to stop further updates */ 5742 jbd2_journal_unlock_updates(journal); 5743 return error; 5744 } 5745 5746 /* 5747 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5748 * flag here, even though the filesystem is not technically dirty yet. 5749 */ 5750 static int ext4_unfreeze(struct super_block *sb) 5751 { 5752 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5753 return 0; 5754 5755 if (EXT4_SB(sb)->s_journal) { 5756 /* Reset the needs_recovery flag before the fs is unlocked. */ 5757 ext4_set_feature_journal_needs_recovery(sb); 5758 } 5759 5760 ext4_commit_super(sb, 1); 5761 return 0; 5762 } 5763 5764 /* 5765 * Structure to save mount options for ext4_remount's benefit 5766 */ 5767 struct ext4_mount_options { 5768 unsigned long s_mount_opt; 5769 unsigned long s_mount_opt2; 5770 kuid_t s_resuid; 5771 kgid_t s_resgid; 5772 unsigned long s_commit_interval; 5773 u32 s_min_batch_time, s_max_batch_time; 5774 #ifdef CONFIG_QUOTA 5775 int s_jquota_fmt; 5776 char *s_qf_names[EXT4_MAXQUOTAS]; 5777 #endif 5778 }; 5779 5780 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5781 { 5782 struct ext4_super_block *es; 5783 struct ext4_sb_info *sbi = EXT4_SB(sb); 5784 unsigned long old_sb_flags, vfs_flags; 5785 struct ext4_mount_options old_opts; 5786 int enable_quota = 0; 5787 ext4_group_t g; 5788 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5789 int err = 0; 5790 #ifdef CONFIG_QUOTA 5791 int i, j; 5792 char *to_free[EXT4_MAXQUOTAS]; 5793 #endif 5794 char *orig_data = kstrdup(data, GFP_KERNEL); 5795 5796 if (data && !orig_data) 5797 return -ENOMEM; 5798 5799 /* Store the original options */ 5800 old_sb_flags = sb->s_flags; 5801 old_opts.s_mount_opt = sbi->s_mount_opt; 5802 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5803 old_opts.s_resuid = sbi->s_resuid; 5804 old_opts.s_resgid = sbi->s_resgid; 5805 old_opts.s_commit_interval = sbi->s_commit_interval; 5806 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5807 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5808 #ifdef CONFIG_QUOTA 5809 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5810 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5811 if (sbi->s_qf_names[i]) { 5812 char *qf_name = get_qf_name(sb, sbi, i); 5813 5814 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5815 if (!old_opts.s_qf_names[i]) { 5816 for (j = 0; j < i; j++) 5817 kfree(old_opts.s_qf_names[j]); 5818 kfree(orig_data); 5819 return -ENOMEM; 5820 } 5821 } else 5822 old_opts.s_qf_names[i] = NULL; 5823 #endif 5824 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5825 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5826 5827 /* 5828 * Some options can be enabled by ext4 and/or by VFS mount flag 5829 * either way we need to make sure it matches in both *flags and 5830 * s_flags. Copy those selected flags from *flags to s_flags 5831 */ 5832 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5833 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5834 5835 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5836 err = -EINVAL; 5837 goto restore_opts; 5838 } 5839 5840 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5841 test_opt(sb, JOURNAL_CHECKSUM)) { 5842 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5843 "during remount not supported; ignoring"); 5844 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5845 } 5846 5847 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5848 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5849 ext4_msg(sb, KERN_ERR, "can't mount with " 5850 "both data=journal and delalloc"); 5851 err = -EINVAL; 5852 goto restore_opts; 5853 } 5854 if (test_opt(sb, DIOREAD_NOLOCK)) { 5855 ext4_msg(sb, KERN_ERR, "can't mount with " 5856 "both data=journal and dioread_nolock"); 5857 err = -EINVAL; 5858 goto restore_opts; 5859 } 5860 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5861 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5862 ext4_msg(sb, KERN_ERR, "can't mount with " 5863 "journal_async_commit in data=ordered mode"); 5864 err = -EINVAL; 5865 goto restore_opts; 5866 } 5867 } 5868 5869 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5870 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5871 err = -EINVAL; 5872 goto restore_opts; 5873 } 5874 5875 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5876 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5877 5878 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5879 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5880 5881 es = sbi->s_es; 5882 5883 if (sbi->s_journal) { 5884 ext4_init_journal_params(sb, sbi->s_journal); 5885 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5886 } 5887 5888 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5889 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5890 err = -EROFS; 5891 goto restore_opts; 5892 } 5893 5894 if (*flags & SB_RDONLY) { 5895 err = sync_filesystem(sb); 5896 if (err < 0) 5897 goto restore_opts; 5898 err = dquot_suspend(sb, -1); 5899 if (err < 0) 5900 goto restore_opts; 5901 5902 /* 5903 * First of all, the unconditional stuff we have to do 5904 * to disable replay of the journal when we next remount 5905 */ 5906 sb->s_flags |= SB_RDONLY; 5907 5908 /* 5909 * OK, test if we are remounting a valid rw partition 5910 * readonly, and if so set the rdonly flag and then 5911 * mark the partition as valid again. 5912 */ 5913 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5914 (sbi->s_mount_state & EXT4_VALID_FS)) 5915 es->s_state = cpu_to_le16(sbi->s_mount_state); 5916 5917 if (sbi->s_journal) { 5918 /* 5919 * We let remount-ro finish even if marking fs 5920 * as clean failed... 5921 */ 5922 ext4_mark_recovery_complete(sb, es); 5923 } 5924 if (sbi->s_mmp_tsk) 5925 kthread_stop(sbi->s_mmp_tsk); 5926 } else { 5927 /* Make sure we can mount this feature set readwrite */ 5928 if (ext4_has_feature_readonly(sb) || 5929 !ext4_feature_set_ok(sb, 0)) { 5930 err = -EROFS; 5931 goto restore_opts; 5932 } 5933 /* 5934 * Make sure the group descriptor checksums 5935 * are sane. If they aren't, refuse to remount r/w. 5936 */ 5937 for (g = 0; g < sbi->s_groups_count; g++) { 5938 struct ext4_group_desc *gdp = 5939 ext4_get_group_desc(sb, g, NULL); 5940 5941 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5942 ext4_msg(sb, KERN_ERR, 5943 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5944 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5945 le16_to_cpu(gdp->bg_checksum)); 5946 err = -EFSBADCRC; 5947 goto restore_opts; 5948 } 5949 } 5950 5951 /* 5952 * If we have an unprocessed orphan list hanging 5953 * around from a previously readonly bdev mount, 5954 * require a full umount/remount for now. 5955 */ 5956 if (es->s_last_orphan) { 5957 ext4_msg(sb, KERN_WARNING, "Couldn't " 5958 "remount RDWR because of unprocessed " 5959 "orphan inode list. Please " 5960 "umount/remount instead"); 5961 err = -EINVAL; 5962 goto restore_opts; 5963 } 5964 5965 /* 5966 * Mounting a RDONLY partition read-write, so reread 5967 * and store the current valid flag. (It may have 5968 * been changed by e2fsck since we originally mounted 5969 * the partition.) 5970 */ 5971 if (sbi->s_journal) { 5972 err = ext4_clear_journal_err(sb, es); 5973 if (err) 5974 goto restore_opts; 5975 } 5976 sbi->s_mount_state = le16_to_cpu(es->s_state); 5977 5978 err = ext4_setup_super(sb, es, 0); 5979 if (err) 5980 goto restore_opts; 5981 5982 sb->s_flags &= ~SB_RDONLY; 5983 if (ext4_has_feature_mmp(sb)) 5984 if (ext4_multi_mount_protect(sb, 5985 le64_to_cpu(es->s_mmp_block))) { 5986 err = -EROFS; 5987 goto restore_opts; 5988 } 5989 enable_quota = 1; 5990 } 5991 } 5992 5993 /* 5994 * Reinitialize lazy itable initialization thread based on 5995 * current settings 5996 */ 5997 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5998 ext4_unregister_li_request(sb); 5999 else { 6000 ext4_group_t first_not_zeroed; 6001 first_not_zeroed = ext4_has_uninit_itable(sb); 6002 ext4_register_li_request(sb, first_not_zeroed); 6003 } 6004 6005 /* 6006 * Handle creation of system zone data early because it can fail. 6007 * Releasing of existing data is done when we are sure remount will 6008 * succeed. 6009 */ 6010 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6011 err = ext4_setup_system_zone(sb); 6012 if (err) 6013 goto restore_opts; 6014 } 6015 6016 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6017 err = ext4_commit_super(sb, 1); 6018 if (err) 6019 goto restore_opts; 6020 } 6021 6022 #ifdef CONFIG_QUOTA 6023 /* Release old quota file names */ 6024 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6025 kfree(old_opts.s_qf_names[i]); 6026 if (enable_quota) { 6027 if (sb_any_quota_suspended(sb)) 6028 dquot_resume(sb, -1); 6029 else if (ext4_has_feature_quota(sb)) { 6030 err = ext4_enable_quotas(sb); 6031 if (err) 6032 goto restore_opts; 6033 } 6034 } 6035 #endif 6036 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6037 ext4_release_system_zone(sb); 6038 6039 /* 6040 * Some options can be enabled by ext4 and/or by VFS mount flag 6041 * either way we need to make sure it matches in both *flags and 6042 * s_flags. Copy those selected flags from s_flags to *flags 6043 */ 6044 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 6045 6046 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 6047 kfree(orig_data); 6048 return 0; 6049 6050 restore_opts: 6051 sb->s_flags = old_sb_flags; 6052 sbi->s_mount_opt = old_opts.s_mount_opt; 6053 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6054 sbi->s_resuid = old_opts.s_resuid; 6055 sbi->s_resgid = old_opts.s_resgid; 6056 sbi->s_commit_interval = old_opts.s_commit_interval; 6057 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6058 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6059 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6060 ext4_release_system_zone(sb); 6061 #ifdef CONFIG_QUOTA 6062 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6063 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6064 to_free[i] = get_qf_name(sb, sbi, i); 6065 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6066 } 6067 synchronize_rcu(); 6068 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6069 kfree(to_free[i]); 6070 #endif 6071 kfree(orig_data); 6072 return err; 6073 } 6074 6075 #ifdef CONFIG_QUOTA 6076 static int ext4_statfs_project(struct super_block *sb, 6077 kprojid_t projid, struct kstatfs *buf) 6078 { 6079 struct kqid qid; 6080 struct dquot *dquot; 6081 u64 limit; 6082 u64 curblock; 6083 6084 qid = make_kqid_projid(projid); 6085 dquot = dqget(sb, qid); 6086 if (IS_ERR(dquot)) 6087 return PTR_ERR(dquot); 6088 spin_lock(&dquot->dq_dqb_lock); 6089 6090 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6091 dquot->dq_dqb.dqb_bhardlimit); 6092 limit >>= sb->s_blocksize_bits; 6093 6094 if (limit && buf->f_blocks > limit) { 6095 curblock = (dquot->dq_dqb.dqb_curspace + 6096 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6097 buf->f_blocks = limit; 6098 buf->f_bfree = buf->f_bavail = 6099 (buf->f_blocks > curblock) ? 6100 (buf->f_blocks - curblock) : 0; 6101 } 6102 6103 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6104 dquot->dq_dqb.dqb_ihardlimit); 6105 if (limit && buf->f_files > limit) { 6106 buf->f_files = limit; 6107 buf->f_ffree = 6108 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6109 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6110 } 6111 6112 spin_unlock(&dquot->dq_dqb_lock); 6113 dqput(dquot); 6114 return 0; 6115 } 6116 #endif 6117 6118 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6119 { 6120 struct super_block *sb = dentry->d_sb; 6121 struct ext4_sb_info *sbi = EXT4_SB(sb); 6122 struct ext4_super_block *es = sbi->s_es; 6123 ext4_fsblk_t overhead = 0, resv_blocks; 6124 u64 fsid; 6125 s64 bfree; 6126 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6127 6128 if (!test_opt(sb, MINIX_DF)) 6129 overhead = sbi->s_overhead; 6130 6131 buf->f_type = EXT4_SUPER_MAGIC; 6132 buf->f_bsize = sb->s_blocksize; 6133 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6134 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6135 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6136 /* prevent underflow in case that few free space is available */ 6137 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6138 buf->f_bavail = buf->f_bfree - 6139 (ext4_r_blocks_count(es) + resv_blocks); 6140 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6141 buf->f_bavail = 0; 6142 buf->f_files = le32_to_cpu(es->s_inodes_count); 6143 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6144 buf->f_namelen = EXT4_NAME_LEN; 6145 fsid = le64_to_cpup((void *)es->s_uuid) ^ 6146 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 6147 buf->f_fsid = u64_to_fsid(fsid); 6148 6149 #ifdef CONFIG_QUOTA 6150 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6151 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6152 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6153 #endif 6154 return 0; 6155 } 6156 6157 6158 #ifdef CONFIG_QUOTA 6159 6160 /* 6161 * Helper functions so that transaction is started before we acquire dqio_sem 6162 * to keep correct lock ordering of transaction > dqio_sem 6163 */ 6164 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6165 { 6166 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6167 } 6168 6169 static int ext4_write_dquot(struct dquot *dquot) 6170 { 6171 int ret, err; 6172 handle_t *handle; 6173 struct inode *inode; 6174 6175 inode = dquot_to_inode(dquot); 6176 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6177 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6178 if (IS_ERR(handle)) 6179 return PTR_ERR(handle); 6180 ret = dquot_commit(dquot); 6181 err = ext4_journal_stop(handle); 6182 if (!ret) 6183 ret = err; 6184 return ret; 6185 } 6186 6187 static int ext4_acquire_dquot(struct dquot *dquot) 6188 { 6189 int ret, err; 6190 handle_t *handle; 6191 6192 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6193 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6194 if (IS_ERR(handle)) 6195 return PTR_ERR(handle); 6196 ret = dquot_acquire(dquot); 6197 err = ext4_journal_stop(handle); 6198 if (!ret) 6199 ret = err; 6200 return ret; 6201 } 6202 6203 static int ext4_release_dquot(struct dquot *dquot) 6204 { 6205 int ret, err; 6206 handle_t *handle; 6207 6208 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6209 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6210 if (IS_ERR(handle)) { 6211 /* Release dquot anyway to avoid endless cycle in dqput() */ 6212 dquot_release(dquot); 6213 return PTR_ERR(handle); 6214 } 6215 ret = dquot_release(dquot); 6216 err = ext4_journal_stop(handle); 6217 if (!ret) 6218 ret = err; 6219 return ret; 6220 } 6221 6222 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6223 { 6224 struct super_block *sb = dquot->dq_sb; 6225 struct ext4_sb_info *sbi = EXT4_SB(sb); 6226 6227 /* Are we journaling quotas? */ 6228 if (ext4_has_feature_quota(sb) || 6229 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 6230 dquot_mark_dquot_dirty(dquot); 6231 return ext4_write_dquot(dquot); 6232 } else { 6233 return dquot_mark_dquot_dirty(dquot); 6234 } 6235 } 6236 6237 static int ext4_write_info(struct super_block *sb, int type) 6238 { 6239 int ret, err; 6240 handle_t *handle; 6241 6242 /* Data block + inode block */ 6243 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6244 if (IS_ERR(handle)) 6245 return PTR_ERR(handle); 6246 ret = dquot_commit_info(sb, type); 6247 err = ext4_journal_stop(handle); 6248 if (!ret) 6249 ret = err; 6250 return ret; 6251 } 6252 6253 /* 6254 * Turn on quotas during mount time - we need to find 6255 * the quota file and such... 6256 */ 6257 static int ext4_quota_on_mount(struct super_block *sb, int type) 6258 { 6259 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 6260 EXT4_SB(sb)->s_jquota_fmt, type); 6261 } 6262 6263 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6264 { 6265 struct ext4_inode_info *ei = EXT4_I(inode); 6266 6267 /* The first argument of lockdep_set_subclass has to be 6268 * *exactly* the same as the argument to init_rwsem() --- in 6269 * this case, in init_once() --- or lockdep gets unhappy 6270 * because the name of the lock is set using the 6271 * stringification of the argument to init_rwsem(). 6272 */ 6273 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6274 lockdep_set_subclass(&ei->i_data_sem, subclass); 6275 } 6276 6277 /* 6278 * Standard function to be called on quota_on 6279 */ 6280 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6281 const struct path *path) 6282 { 6283 int err; 6284 6285 if (!test_opt(sb, QUOTA)) 6286 return -EINVAL; 6287 6288 /* Quotafile not on the same filesystem? */ 6289 if (path->dentry->d_sb != sb) 6290 return -EXDEV; 6291 6292 /* Quota already enabled for this file? */ 6293 if (IS_NOQUOTA(d_inode(path->dentry))) 6294 return -EBUSY; 6295 6296 /* Journaling quota? */ 6297 if (EXT4_SB(sb)->s_qf_names[type]) { 6298 /* Quotafile not in fs root? */ 6299 if (path->dentry->d_parent != sb->s_root) 6300 ext4_msg(sb, KERN_WARNING, 6301 "Quota file not on filesystem root. " 6302 "Journaled quota will not work"); 6303 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6304 } else { 6305 /* 6306 * Clear the flag just in case mount options changed since 6307 * last time. 6308 */ 6309 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6310 } 6311 6312 /* 6313 * When we journal data on quota file, we have to flush journal to see 6314 * all updates to the file when we bypass pagecache... 6315 */ 6316 if (EXT4_SB(sb)->s_journal && 6317 ext4_should_journal_data(d_inode(path->dentry))) { 6318 /* 6319 * We don't need to lock updates but journal_flush() could 6320 * otherwise be livelocked... 6321 */ 6322 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6323 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 6324 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6325 if (err) 6326 return err; 6327 } 6328 6329 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6330 err = dquot_quota_on(sb, type, format_id, path); 6331 if (err) { 6332 lockdep_set_quota_inode(path->dentry->d_inode, 6333 I_DATA_SEM_NORMAL); 6334 } else { 6335 struct inode *inode = d_inode(path->dentry); 6336 handle_t *handle; 6337 6338 /* 6339 * Set inode flags to prevent userspace from messing with quota 6340 * files. If this fails, we return success anyway since quotas 6341 * are already enabled and this is not a hard failure. 6342 */ 6343 inode_lock(inode); 6344 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6345 if (IS_ERR(handle)) 6346 goto unlock_inode; 6347 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6348 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6349 S_NOATIME | S_IMMUTABLE); 6350 err = ext4_mark_inode_dirty(handle, inode); 6351 ext4_journal_stop(handle); 6352 unlock_inode: 6353 inode_unlock(inode); 6354 } 6355 return err; 6356 } 6357 6358 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6359 unsigned int flags) 6360 { 6361 int err; 6362 struct inode *qf_inode; 6363 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6364 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6365 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6366 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6367 }; 6368 6369 BUG_ON(!ext4_has_feature_quota(sb)); 6370 6371 if (!qf_inums[type]) 6372 return -EPERM; 6373 6374 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6375 if (IS_ERR(qf_inode)) { 6376 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6377 return PTR_ERR(qf_inode); 6378 } 6379 6380 /* Don't account quota for quota files to avoid recursion */ 6381 qf_inode->i_flags |= S_NOQUOTA; 6382 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6383 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6384 if (err) 6385 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6386 iput(qf_inode); 6387 6388 return err; 6389 } 6390 6391 /* Enable usage tracking for all quota types. */ 6392 static int ext4_enable_quotas(struct super_block *sb) 6393 { 6394 int type, err = 0; 6395 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6396 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6397 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6398 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6399 }; 6400 bool quota_mopt[EXT4_MAXQUOTAS] = { 6401 test_opt(sb, USRQUOTA), 6402 test_opt(sb, GRPQUOTA), 6403 test_opt(sb, PRJQUOTA), 6404 }; 6405 6406 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6407 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6408 if (qf_inums[type]) { 6409 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6410 DQUOT_USAGE_ENABLED | 6411 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6412 if (err) { 6413 ext4_warning(sb, 6414 "Failed to enable quota tracking " 6415 "(type=%d, err=%d). Please run " 6416 "e2fsck to fix.", type, err); 6417 for (type--; type >= 0; type--) 6418 dquot_quota_off(sb, type); 6419 6420 return err; 6421 } 6422 } 6423 } 6424 return 0; 6425 } 6426 6427 static int ext4_quota_off(struct super_block *sb, int type) 6428 { 6429 struct inode *inode = sb_dqopt(sb)->files[type]; 6430 handle_t *handle; 6431 int err; 6432 6433 /* Force all delayed allocation blocks to be allocated. 6434 * Caller already holds s_umount sem */ 6435 if (test_opt(sb, DELALLOC)) 6436 sync_filesystem(sb); 6437 6438 if (!inode || !igrab(inode)) 6439 goto out; 6440 6441 err = dquot_quota_off(sb, type); 6442 if (err || ext4_has_feature_quota(sb)) 6443 goto out_put; 6444 6445 inode_lock(inode); 6446 /* 6447 * Update modification times of quota files when userspace can 6448 * start looking at them. If we fail, we return success anyway since 6449 * this is not a hard failure and quotas are already disabled. 6450 */ 6451 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6452 if (IS_ERR(handle)) { 6453 err = PTR_ERR(handle); 6454 goto out_unlock; 6455 } 6456 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6457 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6458 inode->i_mtime = inode->i_ctime = current_time(inode); 6459 err = ext4_mark_inode_dirty(handle, inode); 6460 ext4_journal_stop(handle); 6461 out_unlock: 6462 inode_unlock(inode); 6463 out_put: 6464 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6465 iput(inode); 6466 return err; 6467 out: 6468 return dquot_quota_off(sb, type); 6469 } 6470 6471 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6472 * acquiring the locks... As quota files are never truncated and quota code 6473 * itself serializes the operations (and no one else should touch the files) 6474 * we don't have to be afraid of races */ 6475 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6476 size_t len, loff_t off) 6477 { 6478 struct inode *inode = sb_dqopt(sb)->files[type]; 6479 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6480 int offset = off & (sb->s_blocksize - 1); 6481 int tocopy; 6482 size_t toread; 6483 struct buffer_head *bh; 6484 loff_t i_size = i_size_read(inode); 6485 6486 if (off > i_size) 6487 return 0; 6488 if (off+len > i_size) 6489 len = i_size-off; 6490 toread = len; 6491 while (toread > 0) { 6492 tocopy = sb->s_blocksize - offset < toread ? 6493 sb->s_blocksize - offset : toread; 6494 bh = ext4_bread(NULL, inode, blk, 0); 6495 if (IS_ERR(bh)) 6496 return PTR_ERR(bh); 6497 if (!bh) /* A hole? */ 6498 memset(data, 0, tocopy); 6499 else 6500 memcpy(data, bh->b_data+offset, tocopy); 6501 brelse(bh); 6502 offset = 0; 6503 toread -= tocopy; 6504 data += tocopy; 6505 blk++; 6506 } 6507 return len; 6508 } 6509 6510 /* Write to quotafile (we know the transaction is already started and has 6511 * enough credits) */ 6512 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6513 const char *data, size_t len, loff_t off) 6514 { 6515 struct inode *inode = sb_dqopt(sb)->files[type]; 6516 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6517 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6518 int retries = 0; 6519 struct buffer_head *bh; 6520 handle_t *handle = journal_current_handle(); 6521 6522 if (EXT4_SB(sb)->s_journal && !handle) { 6523 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6524 " cancelled because transaction is not started", 6525 (unsigned long long)off, (unsigned long long)len); 6526 return -EIO; 6527 } 6528 /* 6529 * Since we account only one data block in transaction credits, 6530 * then it is impossible to cross a block boundary. 6531 */ 6532 if (sb->s_blocksize - offset < len) { 6533 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6534 " cancelled because not block aligned", 6535 (unsigned long long)off, (unsigned long long)len); 6536 return -EIO; 6537 } 6538 6539 do { 6540 bh = ext4_bread(handle, inode, blk, 6541 EXT4_GET_BLOCKS_CREATE | 6542 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6543 } while (PTR_ERR(bh) == -ENOSPC && 6544 ext4_should_retry_alloc(inode->i_sb, &retries)); 6545 if (IS_ERR(bh)) 6546 return PTR_ERR(bh); 6547 if (!bh) 6548 goto out; 6549 BUFFER_TRACE(bh, "get write access"); 6550 err = ext4_journal_get_write_access(handle, bh); 6551 if (err) { 6552 brelse(bh); 6553 return err; 6554 } 6555 lock_buffer(bh); 6556 memcpy(bh->b_data+offset, data, len); 6557 flush_dcache_page(bh->b_page); 6558 unlock_buffer(bh); 6559 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6560 brelse(bh); 6561 out: 6562 if (inode->i_size < off + len) { 6563 ext4_fc_track_range(inode, 6564 (inode->i_size > 0 ? inode->i_size - 1 : 0) 6565 >> inode->i_sb->s_blocksize_bits, 6566 (off + len) >> inode->i_sb->s_blocksize_bits); 6567 i_size_write(inode, off + len); 6568 EXT4_I(inode)->i_disksize = inode->i_size; 6569 err2 = ext4_mark_inode_dirty(handle, inode); 6570 if (unlikely(err2 && !err)) 6571 err = err2; 6572 } 6573 return err ? err : len; 6574 } 6575 #endif 6576 6577 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6578 const char *dev_name, void *data) 6579 { 6580 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6581 } 6582 6583 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6584 static inline void register_as_ext2(void) 6585 { 6586 int err = register_filesystem(&ext2_fs_type); 6587 if (err) 6588 printk(KERN_WARNING 6589 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6590 } 6591 6592 static inline void unregister_as_ext2(void) 6593 { 6594 unregister_filesystem(&ext2_fs_type); 6595 } 6596 6597 static inline int ext2_feature_set_ok(struct super_block *sb) 6598 { 6599 if (ext4_has_unknown_ext2_incompat_features(sb)) 6600 return 0; 6601 if (sb_rdonly(sb)) 6602 return 1; 6603 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6604 return 0; 6605 return 1; 6606 } 6607 #else 6608 static inline void register_as_ext2(void) { } 6609 static inline void unregister_as_ext2(void) { } 6610 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6611 #endif 6612 6613 static inline void register_as_ext3(void) 6614 { 6615 int err = register_filesystem(&ext3_fs_type); 6616 if (err) 6617 printk(KERN_WARNING 6618 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6619 } 6620 6621 static inline void unregister_as_ext3(void) 6622 { 6623 unregister_filesystem(&ext3_fs_type); 6624 } 6625 6626 static inline int ext3_feature_set_ok(struct super_block *sb) 6627 { 6628 if (ext4_has_unknown_ext3_incompat_features(sb)) 6629 return 0; 6630 if (!ext4_has_feature_journal(sb)) 6631 return 0; 6632 if (sb_rdonly(sb)) 6633 return 1; 6634 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6635 return 0; 6636 return 1; 6637 } 6638 6639 static struct file_system_type ext4_fs_type = { 6640 .owner = THIS_MODULE, 6641 .name = "ext4", 6642 .mount = ext4_mount, 6643 .kill_sb = kill_block_super, 6644 .fs_flags = FS_REQUIRES_DEV, 6645 }; 6646 MODULE_ALIAS_FS("ext4"); 6647 6648 /* Shared across all ext4 file systems */ 6649 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6650 6651 static int __init ext4_init_fs(void) 6652 { 6653 int i, err; 6654 6655 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6656 ext4_li_info = NULL; 6657 mutex_init(&ext4_li_mtx); 6658 6659 /* Build-time check for flags consistency */ 6660 ext4_check_flag_values(); 6661 6662 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6663 init_waitqueue_head(&ext4__ioend_wq[i]); 6664 6665 err = ext4_init_es(); 6666 if (err) 6667 return err; 6668 6669 err = ext4_init_pending(); 6670 if (err) 6671 goto out7; 6672 6673 err = ext4_init_post_read_processing(); 6674 if (err) 6675 goto out6; 6676 6677 err = ext4_init_pageio(); 6678 if (err) 6679 goto out5; 6680 6681 err = ext4_init_system_zone(); 6682 if (err) 6683 goto out4; 6684 6685 err = ext4_init_sysfs(); 6686 if (err) 6687 goto out3; 6688 6689 err = ext4_init_mballoc(); 6690 if (err) 6691 goto out2; 6692 err = init_inodecache(); 6693 if (err) 6694 goto out1; 6695 6696 err = ext4_fc_init_dentry_cache(); 6697 if (err) 6698 goto out05; 6699 6700 register_as_ext3(); 6701 register_as_ext2(); 6702 err = register_filesystem(&ext4_fs_type); 6703 if (err) 6704 goto out; 6705 6706 return 0; 6707 out: 6708 unregister_as_ext2(); 6709 unregister_as_ext3(); 6710 out05: 6711 destroy_inodecache(); 6712 out1: 6713 ext4_exit_mballoc(); 6714 out2: 6715 ext4_exit_sysfs(); 6716 out3: 6717 ext4_exit_system_zone(); 6718 out4: 6719 ext4_exit_pageio(); 6720 out5: 6721 ext4_exit_post_read_processing(); 6722 out6: 6723 ext4_exit_pending(); 6724 out7: 6725 ext4_exit_es(); 6726 6727 return err; 6728 } 6729 6730 static void __exit ext4_exit_fs(void) 6731 { 6732 ext4_destroy_lazyinit_thread(); 6733 unregister_as_ext2(); 6734 unregister_as_ext3(); 6735 unregister_filesystem(&ext4_fs_type); 6736 destroy_inodecache(); 6737 ext4_exit_mballoc(); 6738 ext4_exit_sysfs(); 6739 ext4_exit_system_zone(); 6740 ext4_exit_pageio(); 6741 ext4_exit_post_read_processing(); 6742 ext4_exit_es(); 6743 ext4_exit_pending(); 6744 } 6745 6746 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6747 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6748 MODULE_LICENSE("GPL"); 6749 MODULE_SOFTDEP("pre: crc32c"); 6750 module_init(ext4_init_fs) 6751 module_exit(ext4_exit_fs) 6752