1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 /* 144 * This works like sb_bread() except it uses ERR_PTR for error 145 * returns. Currently with sb_bread it's impossible to distinguish 146 * between ENOMEM and EIO situations (since both result in a NULL 147 * return. 148 */ 149 struct buffer_head * 150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 151 { 152 struct buffer_head *bh = sb_getblk(sb, block); 153 154 if (bh == NULL) 155 return ERR_PTR(-ENOMEM); 156 if (buffer_uptodate(bh)) 157 return bh; 158 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 159 wait_on_buffer(bh); 160 if (buffer_uptodate(bh)) 161 return bh; 162 put_bh(bh); 163 return ERR_PTR(-EIO); 164 } 165 166 static int ext4_verify_csum_type(struct super_block *sb, 167 struct ext4_super_block *es) 168 { 169 if (!ext4_has_feature_metadata_csum(sb)) 170 return 1; 171 172 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 173 } 174 175 static __le32 ext4_superblock_csum(struct super_block *sb, 176 struct ext4_super_block *es) 177 { 178 struct ext4_sb_info *sbi = EXT4_SB(sb); 179 int offset = offsetof(struct ext4_super_block, s_checksum); 180 __u32 csum; 181 182 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 183 184 return cpu_to_le32(csum); 185 } 186 187 static int ext4_superblock_csum_verify(struct super_block *sb, 188 struct ext4_super_block *es) 189 { 190 if (!ext4_has_metadata_csum(sb)) 191 return 1; 192 193 return es->s_checksum == ext4_superblock_csum(sb, es); 194 } 195 196 void ext4_superblock_csum_set(struct super_block *sb) 197 { 198 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 199 200 if (!ext4_has_metadata_csum(sb)) 201 return; 202 203 es->s_checksum = ext4_superblock_csum(sb, es); 204 } 205 206 void *ext4_kvmalloc(size_t size, gfp_t flags) 207 { 208 void *ret; 209 210 ret = kmalloc(size, flags | __GFP_NOWARN); 211 if (!ret) 212 ret = __vmalloc(size, flags, PAGE_KERNEL); 213 return ret; 214 } 215 216 void *ext4_kvzalloc(size_t size, gfp_t flags) 217 { 218 void *ret; 219 220 ret = kzalloc(size, flags | __GFP_NOWARN); 221 if (!ret) 222 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 223 return ret; 224 } 225 226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le32_to_cpu(bg->bg_block_bitmap_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 232 } 233 234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 235 struct ext4_group_desc *bg) 236 { 237 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 240 } 241 242 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 243 struct ext4_group_desc *bg) 244 { 245 return le32_to_cpu(bg->bg_inode_table_lo) | 246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 247 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 248 } 249 250 __u32 ext4_free_group_clusters(struct super_block *sb, 251 struct ext4_group_desc *bg) 252 { 253 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 255 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 256 } 257 258 __u32 ext4_free_inodes_count(struct super_block *sb, 259 struct ext4_group_desc *bg) 260 { 261 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 262 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 263 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 264 } 265 266 __u32 ext4_used_dirs_count(struct super_block *sb, 267 struct ext4_group_desc *bg) 268 { 269 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 270 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 271 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 272 } 273 274 __u32 ext4_itable_unused_count(struct super_block *sb, 275 struct ext4_group_desc *bg) 276 { 277 return le16_to_cpu(bg->bg_itable_unused_lo) | 278 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 279 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 280 } 281 282 void ext4_block_bitmap_set(struct super_block *sb, 283 struct ext4_group_desc *bg, ext4_fsblk_t blk) 284 { 285 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 288 } 289 290 void ext4_inode_bitmap_set(struct super_block *sb, 291 struct ext4_group_desc *bg, ext4_fsblk_t blk) 292 { 293 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 296 } 297 298 void ext4_inode_table_set(struct super_block *sb, 299 struct ext4_group_desc *bg, ext4_fsblk_t blk) 300 { 301 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 303 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 304 } 305 306 void ext4_free_group_clusters_set(struct super_block *sb, 307 struct ext4_group_desc *bg, __u32 count) 308 { 309 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 311 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 312 } 313 314 void ext4_free_inodes_set(struct super_block *sb, 315 struct ext4_group_desc *bg, __u32 count) 316 { 317 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 318 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 319 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 320 } 321 322 void ext4_used_dirs_set(struct super_block *sb, 323 struct ext4_group_desc *bg, __u32 count) 324 { 325 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 326 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 327 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 328 } 329 330 void ext4_itable_unused_set(struct super_block *sb, 331 struct ext4_group_desc *bg, __u32 count) 332 { 333 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 334 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 335 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 336 } 337 338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 339 { 340 time64_t now = ktime_get_real_seconds(); 341 342 now = clamp_val(now, 0, (1ull << 40) - 1); 343 344 *lo = cpu_to_le32(lower_32_bits(now)); 345 *hi = upper_32_bits(now); 346 } 347 348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 349 { 350 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 351 } 352 #define ext4_update_tstamp(es, tstamp) \ 353 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 354 #define ext4_get_tstamp(es, tstamp) \ 355 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 356 357 static void __save_error_info(struct super_block *sb, const char *func, 358 unsigned int line) 359 { 360 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 361 362 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 363 if (bdev_read_only(sb->s_bdev)) 364 return; 365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 366 ext4_update_tstamp(es, s_last_error_time); 367 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 368 es->s_last_error_line = cpu_to_le32(line); 369 if (!es->s_first_error_time) { 370 es->s_first_error_time = es->s_last_error_time; 371 es->s_first_error_time_hi = es->s_last_error_time_hi; 372 strncpy(es->s_first_error_func, func, 373 sizeof(es->s_first_error_func)); 374 es->s_first_error_line = cpu_to_le32(line); 375 es->s_first_error_ino = es->s_last_error_ino; 376 es->s_first_error_block = es->s_last_error_block; 377 } 378 /* 379 * Start the daily error reporting function if it hasn't been 380 * started already 381 */ 382 if (!es->s_error_count) 383 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 384 le32_add_cpu(&es->s_error_count, 1); 385 } 386 387 static void save_error_info(struct super_block *sb, const char *func, 388 unsigned int line) 389 { 390 __save_error_info(sb, func, line); 391 ext4_commit_super(sb, 1); 392 } 393 394 /* 395 * The del_gendisk() function uninitializes the disk-specific data 396 * structures, including the bdi structure, without telling anyone 397 * else. Once this happens, any attempt to call mark_buffer_dirty() 398 * (for example, by ext4_commit_super), will cause a kernel OOPS. 399 * This is a kludge to prevent these oops until we can put in a proper 400 * hook in del_gendisk() to inform the VFS and file system layers. 401 */ 402 static int block_device_ejected(struct super_block *sb) 403 { 404 struct inode *bd_inode = sb->s_bdev->bd_inode; 405 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 406 407 return bdi->dev == NULL; 408 } 409 410 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 411 { 412 struct super_block *sb = journal->j_private; 413 struct ext4_sb_info *sbi = EXT4_SB(sb); 414 int error = is_journal_aborted(journal); 415 struct ext4_journal_cb_entry *jce; 416 417 BUG_ON(txn->t_state == T_FINISHED); 418 419 ext4_process_freed_data(sb, txn->t_tid); 420 421 spin_lock(&sbi->s_md_lock); 422 while (!list_empty(&txn->t_private_list)) { 423 jce = list_entry(txn->t_private_list.next, 424 struct ext4_journal_cb_entry, jce_list); 425 list_del_init(&jce->jce_list); 426 spin_unlock(&sbi->s_md_lock); 427 jce->jce_func(sb, jce, error); 428 spin_lock(&sbi->s_md_lock); 429 } 430 spin_unlock(&sbi->s_md_lock); 431 } 432 433 static bool system_going_down(void) 434 { 435 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 436 || system_state == SYSTEM_RESTART; 437 } 438 439 /* Deal with the reporting of failure conditions on a filesystem such as 440 * inconsistencies detected or read IO failures. 441 * 442 * On ext2, we can store the error state of the filesystem in the 443 * superblock. That is not possible on ext4, because we may have other 444 * write ordering constraints on the superblock which prevent us from 445 * writing it out straight away; and given that the journal is about to 446 * be aborted, we can't rely on the current, or future, transactions to 447 * write out the superblock safely. 448 * 449 * We'll just use the jbd2_journal_abort() error code to record an error in 450 * the journal instead. On recovery, the journal will complain about 451 * that error until we've noted it down and cleared it. 452 */ 453 454 static void ext4_handle_error(struct super_block *sb) 455 { 456 if (test_opt(sb, WARN_ON_ERROR)) 457 WARN_ON_ONCE(1); 458 459 if (sb_rdonly(sb)) 460 return; 461 462 if (!test_opt(sb, ERRORS_CONT)) { 463 journal_t *journal = EXT4_SB(sb)->s_journal; 464 465 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 466 if (journal) 467 jbd2_journal_abort(journal, -EIO); 468 } 469 /* 470 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 471 * could panic during 'reboot -f' as the underlying device got already 472 * disabled. 473 */ 474 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 475 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 476 /* 477 * Make sure updated value of ->s_mount_flags will be visible 478 * before ->s_flags update 479 */ 480 smp_wmb(); 481 sb->s_flags |= SB_RDONLY; 482 } else if (test_opt(sb, ERRORS_PANIC)) { 483 if (EXT4_SB(sb)->s_journal && 484 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 485 return; 486 panic("EXT4-fs (device %s): panic forced after error\n", 487 sb->s_id); 488 } 489 } 490 491 #define ext4_error_ratelimit(sb) \ 492 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 493 "EXT4-fs error") 494 495 void __ext4_error(struct super_block *sb, const char *function, 496 unsigned int line, const char *fmt, ...) 497 { 498 struct va_format vaf; 499 va_list args; 500 501 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 502 return; 503 504 trace_ext4_error(sb, function, line); 505 if (ext4_error_ratelimit(sb)) { 506 va_start(args, fmt); 507 vaf.fmt = fmt; 508 vaf.va = &args; 509 printk(KERN_CRIT 510 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 511 sb->s_id, function, line, current->comm, &vaf); 512 va_end(args); 513 } 514 save_error_info(sb, function, line); 515 ext4_handle_error(sb); 516 } 517 518 void __ext4_error_inode(struct inode *inode, const char *function, 519 unsigned int line, ext4_fsblk_t block, 520 const char *fmt, ...) 521 { 522 va_list args; 523 struct va_format vaf; 524 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 525 526 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 527 return; 528 529 trace_ext4_error(inode->i_sb, function, line); 530 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 531 es->s_last_error_block = cpu_to_le64(block); 532 if (ext4_error_ratelimit(inode->i_sb)) { 533 va_start(args, fmt); 534 vaf.fmt = fmt; 535 vaf.va = &args; 536 if (block) 537 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 538 "inode #%lu: block %llu: comm %s: %pV\n", 539 inode->i_sb->s_id, function, line, inode->i_ino, 540 block, current->comm, &vaf); 541 else 542 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 543 "inode #%lu: comm %s: %pV\n", 544 inode->i_sb->s_id, function, line, inode->i_ino, 545 current->comm, &vaf); 546 va_end(args); 547 } 548 save_error_info(inode->i_sb, function, line); 549 ext4_handle_error(inode->i_sb); 550 } 551 552 void __ext4_error_file(struct file *file, const char *function, 553 unsigned int line, ext4_fsblk_t block, 554 const char *fmt, ...) 555 { 556 va_list args; 557 struct va_format vaf; 558 struct ext4_super_block *es; 559 struct inode *inode = file_inode(file); 560 char pathname[80], *path; 561 562 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 563 return; 564 565 trace_ext4_error(inode->i_sb, function, line); 566 es = EXT4_SB(inode->i_sb)->s_es; 567 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 568 if (ext4_error_ratelimit(inode->i_sb)) { 569 path = file_path(file, pathname, sizeof(pathname)); 570 if (IS_ERR(path)) 571 path = "(unknown)"; 572 va_start(args, fmt); 573 vaf.fmt = fmt; 574 vaf.va = &args; 575 if (block) 576 printk(KERN_CRIT 577 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 578 "block %llu: comm %s: path %s: %pV\n", 579 inode->i_sb->s_id, function, line, inode->i_ino, 580 block, current->comm, path, &vaf); 581 else 582 printk(KERN_CRIT 583 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 584 "comm %s: path %s: %pV\n", 585 inode->i_sb->s_id, function, line, inode->i_ino, 586 current->comm, path, &vaf); 587 va_end(args); 588 } 589 save_error_info(inode->i_sb, function, line); 590 ext4_handle_error(inode->i_sb); 591 } 592 593 const char *ext4_decode_error(struct super_block *sb, int errno, 594 char nbuf[16]) 595 { 596 char *errstr = NULL; 597 598 switch (errno) { 599 case -EFSCORRUPTED: 600 errstr = "Corrupt filesystem"; 601 break; 602 case -EFSBADCRC: 603 errstr = "Filesystem failed CRC"; 604 break; 605 case -EIO: 606 errstr = "IO failure"; 607 break; 608 case -ENOMEM: 609 errstr = "Out of memory"; 610 break; 611 case -EROFS: 612 if (!sb || (EXT4_SB(sb)->s_journal && 613 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 614 errstr = "Journal has aborted"; 615 else 616 errstr = "Readonly filesystem"; 617 break; 618 default: 619 /* If the caller passed in an extra buffer for unknown 620 * errors, textualise them now. Else we just return 621 * NULL. */ 622 if (nbuf) { 623 /* Check for truncated error codes... */ 624 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 625 errstr = nbuf; 626 } 627 break; 628 } 629 630 return errstr; 631 } 632 633 /* __ext4_std_error decodes expected errors from journaling functions 634 * automatically and invokes the appropriate error response. */ 635 636 void __ext4_std_error(struct super_block *sb, const char *function, 637 unsigned int line, int errno) 638 { 639 char nbuf[16]; 640 const char *errstr; 641 642 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 643 return; 644 645 /* Special case: if the error is EROFS, and we're not already 646 * inside a transaction, then there's really no point in logging 647 * an error. */ 648 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 649 return; 650 651 if (ext4_error_ratelimit(sb)) { 652 errstr = ext4_decode_error(sb, errno, nbuf); 653 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 654 sb->s_id, function, line, errstr); 655 } 656 657 save_error_info(sb, function, line); 658 ext4_handle_error(sb); 659 } 660 661 /* 662 * ext4_abort is a much stronger failure handler than ext4_error. The 663 * abort function may be used to deal with unrecoverable failures such 664 * as journal IO errors or ENOMEM at a critical moment in log management. 665 * 666 * We unconditionally force the filesystem into an ABORT|READONLY state, 667 * unless the error response on the fs has been set to panic in which 668 * case we take the easy way out and panic immediately. 669 */ 670 671 void __ext4_abort(struct super_block *sb, const char *function, 672 unsigned int line, const char *fmt, ...) 673 { 674 struct va_format vaf; 675 va_list args; 676 677 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 678 return; 679 680 save_error_info(sb, function, line); 681 va_start(args, fmt); 682 vaf.fmt = fmt; 683 vaf.va = &args; 684 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 685 sb->s_id, function, line, &vaf); 686 va_end(args); 687 688 if (sb_rdonly(sb) == 0) { 689 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 690 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 691 /* 692 * Make sure updated value of ->s_mount_flags will be visible 693 * before ->s_flags update 694 */ 695 smp_wmb(); 696 sb->s_flags |= SB_RDONLY; 697 if (EXT4_SB(sb)->s_journal) 698 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 699 save_error_info(sb, function, line); 700 } 701 if (test_opt(sb, ERRORS_PANIC)) { 702 if (EXT4_SB(sb)->s_journal && 703 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 704 return; 705 panic("EXT4-fs panic from previous error\n"); 706 } 707 } 708 709 void __ext4_msg(struct super_block *sb, 710 const char *prefix, const char *fmt, ...) 711 { 712 struct va_format vaf; 713 va_list args; 714 715 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 716 return; 717 718 va_start(args, fmt); 719 vaf.fmt = fmt; 720 vaf.va = &args; 721 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 722 va_end(args); 723 } 724 725 #define ext4_warning_ratelimit(sb) \ 726 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 727 "EXT4-fs warning") 728 729 void __ext4_warning(struct super_block *sb, const char *function, 730 unsigned int line, const char *fmt, ...) 731 { 732 struct va_format vaf; 733 va_list args; 734 735 if (!ext4_warning_ratelimit(sb)) 736 return; 737 738 va_start(args, fmt); 739 vaf.fmt = fmt; 740 vaf.va = &args; 741 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 742 sb->s_id, function, line, &vaf); 743 va_end(args); 744 } 745 746 void __ext4_warning_inode(const struct inode *inode, const char *function, 747 unsigned int line, const char *fmt, ...) 748 { 749 struct va_format vaf; 750 va_list args; 751 752 if (!ext4_warning_ratelimit(inode->i_sb)) 753 return; 754 755 va_start(args, fmt); 756 vaf.fmt = fmt; 757 vaf.va = &args; 758 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 759 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 760 function, line, inode->i_ino, current->comm, &vaf); 761 va_end(args); 762 } 763 764 void __ext4_grp_locked_error(const char *function, unsigned int line, 765 struct super_block *sb, ext4_group_t grp, 766 unsigned long ino, ext4_fsblk_t block, 767 const char *fmt, ...) 768 __releases(bitlock) 769 __acquires(bitlock) 770 { 771 struct va_format vaf; 772 va_list args; 773 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 774 775 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 776 return; 777 778 trace_ext4_error(sb, function, line); 779 es->s_last_error_ino = cpu_to_le32(ino); 780 es->s_last_error_block = cpu_to_le64(block); 781 __save_error_info(sb, function, line); 782 783 if (ext4_error_ratelimit(sb)) { 784 va_start(args, fmt); 785 vaf.fmt = fmt; 786 vaf.va = &args; 787 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 788 sb->s_id, function, line, grp); 789 if (ino) 790 printk(KERN_CONT "inode %lu: ", ino); 791 if (block) 792 printk(KERN_CONT "block %llu:", 793 (unsigned long long) block); 794 printk(KERN_CONT "%pV\n", &vaf); 795 va_end(args); 796 } 797 798 if (test_opt(sb, WARN_ON_ERROR)) 799 WARN_ON_ONCE(1); 800 801 if (test_opt(sb, ERRORS_CONT)) { 802 ext4_commit_super(sb, 0); 803 return; 804 } 805 806 ext4_unlock_group(sb, grp); 807 ext4_commit_super(sb, 1); 808 ext4_handle_error(sb); 809 /* 810 * We only get here in the ERRORS_RO case; relocking the group 811 * may be dangerous, but nothing bad will happen since the 812 * filesystem will have already been marked read/only and the 813 * journal has been aborted. We return 1 as a hint to callers 814 * who might what to use the return value from 815 * ext4_grp_locked_error() to distinguish between the 816 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 817 * aggressively from the ext4 function in question, with a 818 * more appropriate error code. 819 */ 820 ext4_lock_group(sb, grp); 821 return; 822 } 823 824 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 825 ext4_group_t group, 826 unsigned int flags) 827 { 828 struct ext4_sb_info *sbi = EXT4_SB(sb); 829 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 830 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 831 int ret; 832 833 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 834 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 835 &grp->bb_state); 836 if (!ret) 837 percpu_counter_sub(&sbi->s_freeclusters_counter, 838 grp->bb_free); 839 } 840 841 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 842 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 843 &grp->bb_state); 844 if (!ret && gdp) { 845 int count; 846 847 count = ext4_free_inodes_count(sb, gdp); 848 percpu_counter_sub(&sbi->s_freeinodes_counter, 849 count); 850 } 851 } 852 } 853 854 void ext4_update_dynamic_rev(struct super_block *sb) 855 { 856 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 857 858 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 859 return; 860 861 ext4_warning(sb, 862 "updating to rev %d because of new feature flag, " 863 "running e2fsck is recommended", 864 EXT4_DYNAMIC_REV); 865 866 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 867 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 868 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 869 /* leave es->s_feature_*compat flags alone */ 870 /* es->s_uuid will be set by e2fsck if empty */ 871 872 /* 873 * The rest of the superblock fields should be zero, and if not it 874 * means they are likely already in use, so leave them alone. We 875 * can leave it up to e2fsck to clean up any inconsistencies there. 876 */ 877 } 878 879 /* 880 * Open the external journal device 881 */ 882 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 883 { 884 struct block_device *bdev; 885 char b[BDEVNAME_SIZE]; 886 887 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 888 if (IS_ERR(bdev)) 889 goto fail; 890 return bdev; 891 892 fail: 893 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 894 __bdevname(dev, b), PTR_ERR(bdev)); 895 return NULL; 896 } 897 898 /* 899 * Release the journal device 900 */ 901 static void ext4_blkdev_put(struct block_device *bdev) 902 { 903 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 904 } 905 906 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 907 { 908 struct block_device *bdev; 909 bdev = sbi->journal_bdev; 910 if (bdev) { 911 ext4_blkdev_put(bdev); 912 sbi->journal_bdev = NULL; 913 } 914 } 915 916 static inline struct inode *orphan_list_entry(struct list_head *l) 917 { 918 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 919 } 920 921 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 922 { 923 struct list_head *l; 924 925 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 926 le32_to_cpu(sbi->s_es->s_last_orphan)); 927 928 printk(KERN_ERR "sb_info orphan list:\n"); 929 list_for_each(l, &sbi->s_orphan) { 930 struct inode *inode = orphan_list_entry(l); 931 printk(KERN_ERR " " 932 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 933 inode->i_sb->s_id, inode->i_ino, inode, 934 inode->i_mode, inode->i_nlink, 935 NEXT_ORPHAN(inode)); 936 } 937 } 938 939 #ifdef CONFIG_QUOTA 940 static int ext4_quota_off(struct super_block *sb, int type); 941 942 static inline void ext4_quota_off_umount(struct super_block *sb) 943 { 944 int type; 945 946 /* Use our quota_off function to clear inode flags etc. */ 947 for (type = 0; type < EXT4_MAXQUOTAS; type++) 948 ext4_quota_off(sb, type); 949 } 950 951 /* 952 * This is a helper function which is used in the mount/remount 953 * codepaths (which holds s_umount) to fetch the quota file name. 954 */ 955 static inline char *get_qf_name(struct super_block *sb, 956 struct ext4_sb_info *sbi, 957 int type) 958 { 959 return rcu_dereference_protected(sbi->s_qf_names[type], 960 lockdep_is_held(&sb->s_umount)); 961 } 962 #else 963 static inline void ext4_quota_off_umount(struct super_block *sb) 964 { 965 } 966 #endif 967 968 static void ext4_put_super(struct super_block *sb) 969 { 970 struct ext4_sb_info *sbi = EXT4_SB(sb); 971 struct ext4_super_block *es = sbi->s_es; 972 int aborted = 0; 973 int i, err; 974 975 ext4_unregister_li_request(sb); 976 ext4_quota_off_umount(sb); 977 978 destroy_workqueue(sbi->rsv_conversion_wq); 979 980 if (sbi->s_journal) { 981 aborted = is_journal_aborted(sbi->s_journal); 982 err = jbd2_journal_destroy(sbi->s_journal); 983 sbi->s_journal = NULL; 984 if ((err < 0) && !aborted) 985 ext4_abort(sb, "Couldn't clean up the journal"); 986 } 987 988 ext4_unregister_sysfs(sb); 989 ext4_es_unregister_shrinker(sbi); 990 del_timer_sync(&sbi->s_err_report); 991 ext4_release_system_zone(sb); 992 ext4_mb_release(sb); 993 ext4_ext_release(sb); 994 995 if (!sb_rdonly(sb) && !aborted) { 996 ext4_clear_feature_journal_needs_recovery(sb); 997 es->s_state = cpu_to_le16(sbi->s_mount_state); 998 } 999 if (!sb_rdonly(sb)) 1000 ext4_commit_super(sb, 1); 1001 1002 for (i = 0; i < sbi->s_gdb_count; i++) 1003 brelse(sbi->s_group_desc[i]); 1004 kvfree(sbi->s_group_desc); 1005 kvfree(sbi->s_flex_groups); 1006 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1007 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1008 percpu_counter_destroy(&sbi->s_dirs_counter); 1009 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1010 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 1011 #ifdef CONFIG_QUOTA 1012 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1013 kfree(get_qf_name(sb, sbi, i)); 1014 #endif 1015 1016 /* Debugging code just in case the in-memory inode orphan list 1017 * isn't empty. The on-disk one can be non-empty if we've 1018 * detected an error and taken the fs readonly, but the 1019 * in-memory list had better be clean by this point. */ 1020 if (!list_empty(&sbi->s_orphan)) 1021 dump_orphan_list(sb, sbi); 1022 J_ASSERT(list_empty(&sbi->s_orphan)); 1023 1024 sync_blockdev(sb->s_bdev); 1025 invalidate_bdev(sb->s_bdev); 1026 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1027 /* 1028 * Invalidate the journal device's buffers. We don't want them 1029 * floating about in memory - the physical journal device may 1030 * hotswapped, and it breaks the `ro-after' testing code. 1031 */ 1032 sync_blockdev(sbi->journal_bdev); 1033 invalidate_bdev(sbi->journal_bdev); 1034 ext4_blkdev_remove(sbi); 1035 } 1036 1037 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1038 sbi->s_ea_inode_cache = NULL; 1039 1040 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1041 sbi->s_ea_block_cache = NULL; 1042 1043 if (sbi->s_mmp_tsk) 1044 kthread_stop(sbi->s_mmp_tsk); 1045 brelse(sbi->s_sbh); 1046 sb->s_fs_info = NULL; 1047 /* 1048 * Now that we are completely done shutting down the 1049 * superblock, we need to actually destroy the kobject. 1050 */ 1051 kobject_put(&sbi->s_kobj); 1052 wait_for_completion(&sbi->s_kobj_unregister); 1053 if (sbi->s_chksum_driver) 1054 crypto_free_shash(sbi->s_chksum_driver); 1055 kfree(sbi->s_blockgroup_lock); 1056 fs_put_dax(sbi->s_daxdev); 1057 kfree(sbi); 1058 } 1059 1060 static struct kmem_cache *ext4_inode_cachep; 1061 1062 /* 1063 * Called inside transaction, so use GFP_NOFS 1064 */ 1065 static struct inode *ext4_alloc_inode(struct super_block *sb) 1066 { 1067 struct ext4_inode_info *ei; 1068 1069 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1070 if (!ei) 1071 return NULL; 1072 1073 inode_set_iversion(&ei->vfs_inode, 1); 1074 spin_lock_init(&ei->i_raw_lock); 1075 INIT_LIST_HEAD(&ei->i_prealloc_list); 1076 spin_lock_init(&ei->i_prealloc_lock); 1077 ext4_es_init_tree(&ei->i_es_tree); 1078 rwlock_init(&ei->i_es_lock); 1079 INIT_LIST_HEAD(&ei->i_es_list); 1080 ei->i_es_all_nr = 0; 1081 ei->i_es_shk_nr = 0; 1082 ei->i_es_shrink_lblk = 0; 1083 ei->i_reserved_data_blocks = 0; 1084 ei->i_da_metadata_calc_len = 0; 1085 ei->i_da_metadata_calc_last_lblock = 0; 1086 spin_lock_init(&(ei->i_block_reservation_lock)); 1087 ext4_init_pending_tree(&ei->i_pending_tree); 1088 #ifdef CONFIG_QUOTA 1089 ei->i_reserved_quota = 0; 1090 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1091 #endif 1092 ei->jinode = NULL; 1093 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1094 spin_lock_init(&ei->i_completed_io_lock); 1095 ei->i_sync_tid = 0; 1096 ei->i_datasync_tid = 0; 1097 atomic_set(&ei->i_unwritten, 0); 1098 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1099 return &ei->vfs_inode; 1100 } 1101 1102 static int ext4_drop_inode(struct inode *inode) 1103 { 1104 int drop = generic_drop_inode(inode); 1105 1106 trace_ext4_drop_inode(inode, drop); 1107 return drop; 1108 } 1109 1110 static void ext4_i_callback(struct rcu_head *head) 1111 { 1112 struct inode *inode = container_of(head, struct inode, i_rcu); 1113 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1114 } 1115 1116 static void ext4_destroy_inode(struct inode *inode) 1117 { 1118 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1119 ext4_msg(inode->i_sb, KERN_ERR, 1120 "Inode %lu (%p): orphan list check failed!", 1121 inode->i_ino, EXT4_I(inode)); 1122 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1123 EXT4_I(inode), sizeof(struct ext4_inode_info), 1124 true); 1125 dump_stack(); 1126 } 1127 call_rcu(&inode->i_rcu, ext4_i_callback); 1128 } 1129 1130 static void init_once(void *foo) 1131 { 1132 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1133 1134 INIT_LIST_HEAD(&ei->i_orphan); 1135 init_rwsem(&ei->xattr_sem); 1136 init_rwsem(&ei->i_data_sem); 1137 init_rwsem(&ei->i_mmap_sem); 1138 inode_init_once(&ei->vfs_inode); 1139 } 1140 1141 static int __init init_inodecache(void) 1142 { 1143 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1144 sizeof(struct ext4_inode_info), 0, 1145 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1146 SLAB_ACCOUNT), 1147 offsetof(struct ext4_inode_info, i_data), 1148 sizeof_field(struct ext4_inode_info, i_data), 1149 init_once); 1150 if (ext4_inode_cachep == NULL) 1151 return -ENOMEM; 1152 return 0; 1153 } 1154 1155 static void destroy_inodecache(void) 1156 { 1157 /* 1158 * Make sure all delayed rcu free inodes are flushed before we 1159 * destroy cache. 1160 */ 1161 rcu_barrier(); 1162 kmem_cache_destroy(ext4_inode_cachep); 1163 } 1164 1165 void ext4_clear_inode(struct inode *inode) 1166 { 1167 invalidate_inode_buffers(inode); 1168 clear_inode(inode); 1169 dquot_drop(inode); 1170 ext4_discard_preallocations(inode); 1171 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1172 if (EXT4_I(inode)->jinode) { 1173 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1174 EXT4_I(inode)->jinode); 1175 jbd2_free_inode(EXT4_I(inode)->jinode); 1176 EXT4_I(inode)->jinode = NULL; 1177 } 1178 fscrypt_put_encryption_info(inode); 1179 } 1180 1181 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1182 u64 ino, u32 generation) 1183 { 1184 struct inode *inode; 1185 1186 /* 1187 * Currently we don't know the generation for parent directory, so 1188 * a generation of 0 means "accept any" 1189 */ 1190 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1191 if (IS_ERR(inode)) 1192 return ERR_CAST(inode); 1193 if (generation && inode->i_generation != generation) { 1194 iput(inode); 1195 return ERR_PTR(-ESTALE); 1196 } 1197 1198 return inode; 1199 } 1200 1201 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1202 int fh_len, int fh_type) 1203 { 1204 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1205 ext4_nfs_get_inode); 1206 } 1207 1208 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1209 int fh_len, int fh_type) 1210 { 1211 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1212 ext4_nfs_get_inode); 1213 } 1214 1215 static int ext4_nfs_commit_metadata(struct inode *inode) 1216 { 1217 struct writeback_control wbc = { 1218 .sync_mode = WB_SYNC_ALL 1219 }; 1220 1221 trace_ext4_nfs_commit_metadata(inode); 1222 return ext4_write_inode(inode, &wbc); 1223 } 1224 1225 /* 1226 * Try to release metadata pages (indirect blocks, directories) which are 1227 * mapped via the block device. Since these pages could have journal heads 1228 * which would prevent try_to_free_buffers() from freeing them, we must use 1229 * jbd2 layer's try_to_free_buffers() function to release them. 1230 */ 1231 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1232 gfp_t wait) 1233 { 1234 journal_t *journal = EXT4_SB(sb)->s_journal; 1235 1236 WARN_ON(PageChecked(page)); 1237 if (!page_has_buffers(page)) 1238 return 0; 1239 if (journal) 1240 return jbd2_journal_try_to_free_buffers(journal, page, 1241 wait & ~__GFP_DIRECT_RECLAIM); 1242 return try_to_free_buffers(page); 1243 } 1244 1245 #ifdef CONFIG_FS_ENCRYPTION 1246 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1247 { 1248 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1249 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1250 } 1251 1252 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1253 void *fs_data) 1254 { 1255 handle_t *handle = fs_data; 1256 int res, res2, credits, retries = 0; 1257 1258 /* 1259 * Encrypting the root directory is not allowed because e2fsck expects 1260 * lost+found to exist and be unencrypted, and encrypting the root 1261 * directory would imply encrypting the lost+found directory as well as 1262 * the filename "lost+found" itself. 1263 */ 1264 if (inode->i_ino == EXT4_ROOT_INO) 1265 return -EPERM; 1266 1267 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1268 return -EINVAL; 1269 1270 res = ext4_convert_inline_data(inode); 1271 if (res) 1272 return res; 1273 1274 /* 1275 * If a journal handle was specified, then the encryption context is 1276 * being set on a new inode via inheritance and is part of a larger 1277 * transaction to create the inode. Otherwise the encryption context is 1278 * being set on an existing inode in its own transaction. Only in the 1279 * latter case should the "retry on ENOSPC" logic be used. 1280 */ 1281 1282 if (handle) { 1283 res = ext4_xattr_set_handle(handle, inode, 1284 EXT4_XATTR_INDEX_ENCRYPTION, 1285 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1286 ctx, len, 0); 1287 if (!res) { 1288 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1289 ext4_clear_inode_state(inode, 1290 EXT4_STATE_MAY_INLINE_DATA); 1291 /* 1292 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1293 * S_DAX may be disabled 1294 */ 1295 ext4_set_inode_flags(inode); 1296 } 1297 return res; 1298 } 1299 1300 res = dquot_initialize(inode); 1301 if (res) 1302 return res; 1303 retry: 1304 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1305 &credits); 1306 if (res) 1307 return res; 1308 1309 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1310 if (IS_ERR(handle)) 1311 return PTR_ERR(handle); 1312 1313 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1314 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1315 ctx, len, 0); 1316 if (!res) { 1317 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1318 /* 1319 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1320 * S_DAX may be disabled 1321 */ 1322 ext4_set_inode_flags(inode); 1323 res = ext4_mark_inode_dirty(handle, inode); 1324 if (res) 1325 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1326 } 1327 res2 = ext4_journal_stop(handle); 1328 1329 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1330 goto retry; 1331 if (!res) 1332 res = res2; 1333 return res; 1334 } 1335 1336 static bool ext4_dummy_context(struct inode *inode) 1337 { 1338 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1339 } 1340 1341 static const struct fscrypt_operations ext4_cryptops = { 1342 .key_prefix = "ext4:", 1343 .get_context = ext4_get_context, 1344 .set_context = ext4_set_context, 1345 .dummy_context = ext4_dummy_context, 1346 .empty_dir = ext4_empty_dir, 1347 .max_namelen = EXT4_NAME_LEN, 1348 }; 1349 #endif 1350 1351 #ifdef CONFIG_QUOTA 1352 static const char * const quotatypes[] = INITQFNAMES; 1353 #define QTYPE2NAME(t) (quotatypes[t]) 1354 1355 static int ext4_write_dquot(struct dquot *dquot); 1356 static int ext4_acquire_dquot(struct dquot *dquot); 1357 static int ext4_release_dquot(struct dquot *dquot); 1358 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1359 static int ext4_write_info(struct super_block *sb, int type); 1360 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1361 const struct path *path); 1362 static int ext4_quota_on_mount(struct super_block *sb, int type); 1363 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1364 size_t len, loff_t off); 1365 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1366 const char *data, size_t len, loff_t off); 1367 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1368 unsigned int flags); 1369 static int ext4_enable_quotas(struct super_block *sb); 1370 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1371 1372 static struct dquot **ext4_get_dquots(struct inode *inode) 1373 { 1374 return EXT4_I(inode)->i_dquot; 1375 } 1376 1377 static const struct dquot_operations ext4_quota_operations = { 1378 .get_reserved_space = ext4_get_reserved_space, 1379 .write_dquot = ext4_write_dquot, 1380 .acquire_dquot = ext4_acquire_dquot, 1381 .release_dquot = ext4_release_dquot, 1382 .mark_dirty = ext4_mark_dquot_dirty, 1383 .write_info = ext4_write_info, 1384 .alloc_dquot = dquot_alloc, 1385 .destroy_dquot = dquot_destroy, 1386 .get_projid = ext4_get_projid, 1387 .get_inode_usage = ext4_get_inode_usage, 1388 .get_next_id = ext4_get_next_id, 1389 }; 1390 1391 static const struct quotactl_ops ext4_qctl_operations = { 1392 .quota_on = ext4_quota_on, 1393 .quota_off = ext4_quota_off, 1394 .quota_sync = dquot_quota_sync, 1395 .get_state = dquot_get_state, 1396 .set_info = dquot_set_dqinfo, 1397 .get_dqblk = dquot_get_dqblk, 1398 .set_dqblk = dquot_set_dqblk, 1399 .get_nextdqblk = dquot_get_next_dqblk, 1400 }; 1401 #endif 1402 1403 static const struct super_operations ext4_sops = { 1404 .alloc_inode = ext4_alloc_inode, 1405 .destroy_inode = ext4_destroy_inode, 1406 .write_inode = ext4_write_inode, 1407 .dirty_inode = ext4_dirty_inode, 1408 .drop_inode = ext4_drop_inode, 1409 .evict_inode = ext4_evict_inode, 1410 .put_super = ext4_put_super, 1411 .sync_fs = ext4_sync_fs, 1412 .freeze_fs = ext4_freeze, 1413 .unfreeze_fs = ext4_unfreeze, 1414 .statfs = ext4_statfs, 1415 .remount_fs = ext4_remount, 1416 .show_options = ext4_show_options, 1417 #ifdef CONFIG_QUOTA 1418 .quota_read = ext4_quota_read, 1419 .quota_write = ext4_quota_write, 1420 .get_dquots = ext4_get_dquots, 1421 #endif 1422 .bdev_try_to_free_page = bdev_try_to_free_page, 1423 }; 1424 1425 static const struct export_operations ext4_export_ops = { 1426 .fh_to_dentry = ext4_fh_to_dentry, 1427 .fh_to_parent = ext4_fh_to_parent, 1428 .get_parent = ext4_get_parent, 1429 .commit_metadata = ext4_nfs_commit_metadata, 1430 }; 1431 1432 enum { 1433 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1434 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1435 Opt_nouid32, Opt_debug, Opt_removed, 1436 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1437 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1438 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1439 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1440 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1441 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1442 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1443 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1444 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1445 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1446 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1447 Opt_nowarn_on_error, Opt_mblk_io_submit, 1448 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1449 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1450 Opt_inode_readahead_blks, Opt_journal_ioprio, 1451 Opt_dioread_nolock, Opt_dioread_lock, 1452 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1453 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1454 }; 1455 1456 static const match_table_t tokens = { 1457 {Opt_bsd_df, "bsddf"}, 1458 {Opt_minix_df, "minixdf"}, 1459 {Opt_grpid, "grpid"}, 1460 {Opt_grpid, "bsdgroups"}, 1461 {Opt_nogrpid, "nogrpid"}, 1462 {Opt_nogrpid, "sysvgroups"}, 1463 {Opt_resgid, "resgid=%u"}, 1464 {Opt_resuid, "resuid=%u"}, 1465 {Opt_sb, "sb=%u"}, 1466 {Opt_err_cont, "errors=continue"}, 1467 {Opt_err_panic, "errors=panic"}, 1468 {Opt_err_ro, "errors=remount-ro"}, 1469 {Opt_nouid32, "nouid32"}, 1470 {Opt_debug, "debug"}, 1471 {Opt_removed, "oldalloc"}, 1472 {Opt_removed, "orlov"}, 1473 {Opt_user_xattr, "user_xattr"}, 1474 {Opt_nouser_xattr, "nouser_xattr"}, 1475 {Opt_acl, "acl"}, 1476 {Opt_noacl, "noacl"}, 1477 {Opt_noload, "norecovery"}, 1478 {Opt_noload, "noload"}, 1479 {Opt_removed, "nobh"}, 1480 {Opt_removed, "bh"}, 1481 {Opt_commit, "commit=%u"}, 1482 {Opt_min_batch_time, "min_batch_time=%u"}, 1483 {Opt_max_batch_time, "max_batch_time=%u"}, 1484 {Opt_journal_dev, "journal_dev=%u"}, 1485 {Opt_journal_path, "journal_path=%s"}, 1486 {Opt_journal_checksum, "journal_checksum"}, 1487 {Opt_nojournal_checksum, "nojournal_checksum"}, 1488 {Opt_journal_async_commit, "journal_async_commit"}, 1489 {Opt_abort, "abort"}, 1490 {Opt_data_journal, "data=journal"}, 1491 {Opt_data_ordered, "data=ordered"}, 1492 {Opt_data_writeback, "data=writeback"}, 1493 {Opt_data_err_abort, "data_err=abort"}, 1494 {Opt_data_err_ignore, "data_err=ignore"}, 1495 {Opt_offusrjquota, "usrjquota="}, 1496 {Opt_usrjquota, "usrjquota=%s"}, 1497 {Opt_offgrpjquota, "grpjquota="}, 1498 {Opt_grpjquota, "grpjquota=%s"}, 1499 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1500 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1501 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1502 {Opt_grpquota, "grpquota"}, 1503 {Opt_noquota, "noquota"}, 1504 {Opt_quota, "quota"}, 1505 {Opt_usrquota, "usrquota"}, 1506 {Opt_prjquota, "prjquota"}, 1507 {Opt_barrier, "barrier=%u"}, 1508 {Opt_barrier, "barrier"}, 1509 {Opt_nobarrier, "nobarrier"}, 1510 {Opt_i_version, "i_version"}, 1511 {Opt_dax, "dax"}, 1512 {Opt_stripe, "stripe=%u"}, 1513 {Opt_delalloc, "delalloc"}, 1514 {Opt_warn_on_error, "warn_on_error"}, 1515 {Opt_nowarn_on_error, "nowarn_on_error"}, 1516 {Opt_lazytime, "lazytime"}, 1517 {Opt_nolazytime, "nolazytime"}, 1518 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1519 {Opt_nodelalloc, "nodelalloc"}, 1520 {Opt_removed, "mblk_io_submit"}, 1521 {Opt_removed, "nomblk_io_submit"}, 1522 {Opt_block_validity, "block_validity"}, 1523 {Opt_noblock_validity, "noblock_validity"}, 1524 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1525 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1526 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1527 {Opt_auto_da_alloc, "auto_da_alloc"}, 1528 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1529 {Opt_dioread_nolock, "dioread_nolock"}, 1530 {Opt_dioread_lock, "dioread_lock"}, 1531 {Opt_discard, "discard"}, 1532 {Opt_nodiscard, "nodiscard"}, 1533 {Opt_init_itable, "init_itable=%u"}, 1534 {Opt_init_itable, "init_itable"}, 1535 {Opt_noinit_itable, "noinit_itable"}, 1536 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1537 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1538 {Opt_nombcache, "nombcache"}, 1539 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1540 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1541 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1542 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1543 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1544 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1545 {Opt_err, NULL}, 1546 }; 1547 1548 static ext4_fsblk_t get_sb_block(void **data) 1549 { 1550 ext4_fsblk_t sb_block; 1551 char *options = (char *) *data; 1552 1553 if (!options || strncmp(options, "sb=", 3) != 0) 1554 return 1; /* Default location */ 1555 1556 options += 3; 1557 /* TODO: use simple_strtoll with >32bit ext4 */ 1558 sb_block = simple_strtoul(options, &options, 0); 1559 if (*options && *options != ',') { 1560 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1561 (char *) *data); 1562 return 1; 1563 } 1564 if (*options == ',') 1565 options++; 1566 *data = (void *) options; 1567 1568 return sb_block; 1569 } 1570 1571 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1572 static const char deprecated_msg[] = 1573 "Mount option \"%s\" will be removed by %s\n" 1574 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1575 1576 #ifdef CONFIG_QUOTA 1577 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1578 { 1579 struct ext4_sb_info *sbi = EXT4_SB(sb); 1580 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1581 int ret = -1; 1582 1583 if (sb_any_quota_loaded(sb) && !old_qname) { 1584 ext4_msg(sb, KERN_ERR, 1585 "Cannot change journaled " 1586 "quota options when quota turned on"); 1587 return -1; 1588 } 1589 if (ext4_has_feature_quota(sb)) { 1590 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1591 "ignored when QUOTA feature is enabled"); 1592 return 1; 1593 } 1594 qname = match_strdup(args); 1595 if (!qname) { 1596 ext4_msg(sb, KERN_ERR, 1597 "Not enough memory for storing quotafile name"); 1598 return -1; 1599 } 1600 if (old_qname) { 1601 if (strcmp(old_qname, qname) == 0) 1602 ret = 1; 1603 else 1604 ext4_msg(sb, KERN_ERR, 1605 "%s quota file already specified", 1606 QTYPE2NAME(qtype)); 1607 goto errout; 1608 } 1609 if (strchr(qname, '/')) { 1610 ext4_msg(sb, KERN_ERR, 1611 "quotafile must be on filesystem root"); 1612 goto errout; 1613 } 1614 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1615 set_opt(sb, QUOTA); 1616 return 1; 1617 errout: 1618 kfree(qname); 1619 return ret; 1620 } 1621 1622 static int clear_qf_name(struct super_block *sb, int qtype) 1623 { 1624 1625 struct ext4_sb_info *sbi = EXT4_SB(sb); 1626 char *old_qname = get_qf_name(sb, sbi, qtype); 1627 1628 if (sb_any_quota_loaded(sb) && old_qname) { 1629 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1630 " when quota turned on"); 1631 return -1; 1632 } 1633 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1634 synchronize_rcu(); 1635 kfree(old_qname); 1636 return 1; 1637 } 1638 #endif 1639 1640 #define MOPT_SET 0x0001 1641 #define MOPT_CLEAR 0x0002 1642 #define MOPT_NOSUPPORT 0x0004 1643 #define MOPT_EXPLICIT 0x0008 1644 #define MOPT_CLEAR_ERR 0x0010 1645 #define MOPT_GTE0 0x0020 1646 #ifdef CONFIG_QUOTA 1647 #define MOPT_Q 0 1648 #define MOPT_QFMT 0x0040 1649 #else 1650 #define MOPT_Q MOPT_NOSUPPORT 1651 #define MOPT_QFMT MOPT_NOSUPPORT 1652 #endif 1653 #define MOPT_DATAJ 0x0080 1654 #define MOPT_NO_EXT2 0x0100 1655 #define MOPT_NO_EXT3 0x0200 1656 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1657 #define MOPT_STRING 0x0400 1658 1659 static const struct mount_opts { 1660 int token; 1661 int mount_opt; 1662 int flags; 1663 } ext4_mount_opts[] = { 1664 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1665 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1666 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1667 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1668 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1669 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1670 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1671 MOPT_EXT4_ONLY | MOPT_SET}, 1672 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1673 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1674 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1675 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1676 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1677 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1678 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1679 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1680 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1681 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1682 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1683 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1684 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1685 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1686 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1687 EXT4_MOUNT_JOURNAL_CHECKSUM), 1688 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1689 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1690 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1691 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1692 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1693 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1694 MOPT_NO_EXT2}, 1695 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1696 MOPT_NO_EXT2}, 1697 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1698 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1699 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1700 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1701 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1702 {Opt_commit, 0, MOPT_GTE0}, 1703 {Opt_max_batch_time, 0, MOPT_GTE0}, 1704 {Opt_min_batch_time, 0, MOPT_GTE0}, 1705 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1706 {Opt_init_itable, 0, MOPT_GTE0}, 1707 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1708 {Opt_stripe, 0, MOPT_GTE0}, 1709 {Opt_resuid, 0, MOPT_GTE0}, 1710 {Opt_resgid, 0, MOPT_GTE0}, 1711 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1712 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1713 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1714 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1715 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1716 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1717 MOPT_NO_EXT2 | MOPT_DATAJ}, 1718 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1719 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1720 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1721 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1722 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1723 #else 1724 {Opt_acl, 0, MOPT_NOSUPPORT}, 1725 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1726 #endif 1727 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1728 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1729 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1730 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1731 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1732 MOPT_SET | MOPT_Q}, 1733 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1734 MOPT_SET | MOPT_Q}, 1735 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1736 MOPT_SET | MOPT_Q}, 1737 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1738 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1739 MOPT_CLEAR | MOPT_Q}, 1740 {Opt_usrjquota, 0, MOPT_Q}, 1741 {Opt_grpjquota, 0, MOPT_Q}, 1742 {Opt_offusrjquota, 0, MOPT_Q}, 1743 {Opt_offgrpjquota, 0, MOPT_Q}, 1744 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1745 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1746 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1747 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1748 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1749 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1750 {Opt_err, 0, 0} 1751 }; 1752 1753 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1754 substring_t *args, unsigned long *journal_devnum, 1755 unsigned int *journal_ioprio, int is_remount) 1756 { 1757 struct ext4_sb_info *sbi = EXT4_SB(sb); 1758 const struct mount_opts *m; 1759 kuid_t uid; 1760 kgid_t gid; 1761 int arg = 0; 1762 1763 #ifdef CONFIG_QUOTA 1764 if (token == Opt_usrjquota) 1765 return set_qf_name(sb, USRQUOTA, &args[0]); 1766 else if (token == Opt_grpjquota) 1767 return set_qf_name(sb, GRPQUOTA, &args[0]); 1768 else if (token == Opt_offusrjquota) 1769 return clear_qf_name(sb, USRQUOTA); 1770 else if (token == Opt_offgrpjquota) 1771 return clear_qf_name(sb, GRPQUOTA); 1772 #endif 1773 switch (token) { 1774 case Opt_noacl: 1775 case Opt_nouser_xattr: 1776 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1777 break; 1778 case Opt_sb: 1779 return 1; /* handled by get_sb_block() */ 1780 case Opt_removed: 1781 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1782 return 1; 1783 case Opt_abort: 1784 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1785 return 1; 1786 case Opt_i_version: 1787 sb->s_flags |= SB_I_VERSION; 1788 return 1; 1789 case Opt_lazytime: 1790 sb->s_flags |= SB_LAZYTIME; 1791 return 1; 1792 case Opt_nolazytime: 1793 sb->s_flags &= ~SB_LAZYTIME; 1794 return 1; 1795 } 1796 1797 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1798 if (token == m->token) 1799 break; 1800 1801 if (m->token == Opt_err) { 1802 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1803 "or missing value", opt); 1804 return -1; 1805 } 1806 1807 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1808 ext4_msg(sb, KERN_ERR, 1809 "Mount option \"%s\" incompatible with ext2", opt); 1810 return -1; 1811 } 1812 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1813 ext4_msg(sb, KERN_ERR, 1814 "Mount option \"%s\" incompatible with ext3", opt); 1815 return -1; 1816 } 1817 1818 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1819 return -1; 1820 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1821 return -1; 1822 if (m->flags & MOPT_EXPLICIT) { 1823 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1824 set_opt2(sb, EXPLICIT_DELALLOC); 1825 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1826 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1827 } else 1828 return -1; 1829 } 1830 if (m->flags & MOPT_CLEAR_ERR) 1831 clear_opt(sb, ERRORS_MASK); 1832 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1833 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1834 "options when quota turned on"); 1835 return -1; 1836 } 1837 1838 if (m->flags & MOPT_NOSUPPORT) { 1839 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1840 } else if (token == Opt_commit) { 1841 if (arg == 0) 1842 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1843 sbi->s_commit_interval = HZ * arg; 1844 } else if (token == Opt_debug_want_extra_isize) { 1845 sbi->s_want_extra_isize = arg; 1846 } else if (token == Opt_max_batch_time) { 1847 sbi->s_max_batch_time = arg; 1848 } else if (token == Opt_min_batch_time) { 1849 sbi->s_min_batch_time = arg; 1850 } else if (token == Opt_inode_readahead_blks) { 1851 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1852 ext4_msg(sb, KERN_ERR, 1853 "EXT4-fs: inode_readahead_blks must be " 1854 "0 or a power of 2 smaller than 2^31"); 1855 return -1; 1856 } 1857 sbi->s_inode_readahead_blks = arg; 1858 } else if (token == Opt_init_itable) { 1859 set_opt(sb, INIT_INODE_TABLE); 1860 if (!args->from) 1861 arg = EXT4_DEF_LI_WAIT_MULT; 1862 sbi->s_li_wait_mult = arg; 1863 } else if (token == Opt_max_dir_size_kb) { 1864 sbi->s_max_dir_size_kb = arg; 1865 } else if (token == Opt_stripe) { 1866 sbi->s_stripe = arg; 1867 } else if (token == Opt_resuid) { 1868 uid = make_kuid(current_user_ns(), arg); 1869 if (!uid_valid(uid)) { 1870 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1871 return -1; 1872 } 1873 sbi->s_resuid = uid; 1874 } else if (token == Opt_resgid) { 1875 gid = make_kgid(current_user_ns(), arg); 1876 if (!gid_valid(gid)) { 1877 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1878 return -1; 1879 } 1880 sbi->s_resgid = gid; 1881 } else if (token == Opt_journal_dev) { 1882 if (is_remount) { 1883 ext4_msg(sb, KERN_ERR, 1884 "Cannot specify journal on remount"); 1885 return -1; 1886 } 1887 *journal_devnum = arg; 1888 } else if (token == Opt_journal_path) { 1889 char *journal_path; 1890 struct inode *journal_inode; 1891 struct path path; 1892 int error; 1893 1894 if (is_remount) { 1895 ext4_msg(sb, KERN_ERR, 1896 "Cannot specify journal on remount"); 1897 return -1; 1898 } 1899 journal_path = match_strdup(&args[0]); 1900 if (!journal_path) { 1901 ext4_msg(sb, KERN_ERR, "error: could not dup " 1902 "journal device string"); 1903 return -1; 1904 } 1905 1906 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1907 if (error) { 1908 ext4_msg(sb, KERN_ERR, "error: could not find " 1909 "journal device path: error %d", error); 1910 kfree(journal_path); 1911 return -1; 1912 } 1913 1914 journal_inode = d_inode(path.dentry); 1915 if (!S_ISBLK(journal_inode->i_mode)) { 1916 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1917 "is not a block device", journal_path); 1918 path_put(&path); 1919 kfree(journal_path); 1920 return -1; 1921 } 1922 1923 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1924 path_put(&path); 1925 kfree(journal_path); 1926 } else if (token == Opt_journal_ioprio) { 1927 if (arg > 7) { 1928 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1929 " (must be 0-7)"); 1930 return -1; 1931 } 1932 *journal_ioprio = 1933 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1934 } else if (token == Opt_test_dummy_encryption) { 1935 #ifdef CONFIG_FS_ENCRYPTION 1936 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1937 ext4_msg(sb, KERN_WARNING, 1938 "Test dummy encryption mode enabled"); 1939 #else 1940 ext4_msg(sb, KERN_WARNING, 1941 "Test dummy encryption mount option ignored"); 1942 #endif 1943 } else if (m->flags & MOPT_DATAJ) { 1944 if (is_remount) { 1945 if (!sbi->s_journal) 1946 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1947 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1948 ext4_msg(sb, KERN_ERR, 1949 "Cannot change data mode on remount"); 1950 return -1; 1951 } 1952 } else { 1953 clear_opt(sb, DATA_FLAGS); 1954 sbi->s_mount_opt |= m->mount_opt; 1955 } 1956 #ifdef CONFIG_QUOTA 1957 } else if (m->flags & MOPT_QFMT) { 1958 if (sb_any_quota_loaded(sb) && 1959 sbi->s_jquota_fmt != m->mount_opt) { 1960 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1961 "quota options when quota turned on"); 1962 return -1; 1963 } 1964 if (ext4_has_feature_quota(sb)) { 1965 ext4_msg(sb, KERN_INFO, 1966 "Quota format mount options ignored " 1967 "when QUOTA feature is enabled"); 1968 return 1; 1969 } 1970 sbi->s_jquota_fmt = m->mount_opt; 1971 #endif 1972 } else if (token == Opt_dax) { 1973 #ifdef CONFIG_FS_DAX 1974 ext4_msg(sb, KERN_WARNING, 1975 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1976 sbi->s_mount_opt |= m->mount_opt; 1977 #else 1978 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1979 return -1; 1980 #endif 1981 } else if (token == Opt_data_err_abort) { 1982 sbi->s_mount_opt |= m->mount_opt; 1983 } else if (token == Opt_data_err_ignore) { 1984 sbi->s_mount_opt &= ~m->mount_opt; 1985 } else { 1986 if (!args->from) 1987 arg = 1; 1988 if (m->flags & MOPT_CLEAR) 1989 arg = !arg; 1990 else if (unlikely(!(m->flags & MOPT_SET))) { 1991 ext4_msg(sb, KERN_WARNING, 1992 "buggy handling of option %s", opt); 1993 WARN_ON(1); 1994 return -1; 1995 } 1996 if (arg != 0) 1997 sbi->s_mount_opt |= m->mount_opt; 1998 else 1999 sbi->s_mount_opt &= ~m->mount_opt; 2000 } 2001 return 1; 2002 } 2003 2004 static int parse_options(char *options, struct super_block *sb, 2005 unsigned long *journal_devnum, 2006 unsigned int *journal_ioprio, 2007 int is_remount) 2008 { 2009 struct ext4_sb_info *sbi = EXT4_SB(sb); 2010 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2011 substring_t args[MAX_OPT_ARGS]; 2012 int token; 2013 2014 if (!options) 2015 return 1; 2016 2017 while ((p = strsep(&options, ",")) != NULL) { 2018 if (!*p) 2019 continue; 2020 /* 2021 * Initialize args struct so we know whether arg was 2022 * found; some options take optional arguments. 2023 */ 2024 args[0].to = args[0].from = NULL; 2025 token = match_token(p, tokens, args); 2026 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2027 journal_ioprio, is_remount) < 0) 2028 return 0; 2029 } 2030 #ifdef CONFIG_QUOTA 2031 /* 2032 * We do the test below only for project quotas. 'usrquota' and 2033 * 'grpquota' mount options are allowed even without quota feature 2034 * to support legacy quotas in quota files. 2035 */ 2036 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2037 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2038 "Cannot enable project quota enforcement."); 2039 return 0; 2040 } 2041 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2042 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2043 if (usr_qf_name || grp_qf_name) { 2044 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2045 clear_opt(sb, USRQUOTA); 2046 2047 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2048 clear_opt(sb, GRPQUOTA); 2049 2050 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2051 ext4_msg(sb, KERN_ERR, "old and new quota " 2052 "format mixing"); 2053 return 0; 2054 } 2055 2056 if (!sbi->s_jquota_fmt) { 2057 ext4_msg(sb, KERN_ERR, "journaled quota format " 2058 "not specified"); 2059 return 0; 2060 } 2061 } 2062 #endif 2063 if (test_opt(sb, DIOREAD_NOLOCK)) { 2064 int blocksize = 2065 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2066 2067 if (blocksize < PAGE_SIZE) { 2068 ext4_msg(sb, KERN_ERR, "can't mount with " 2069 "dioread_nolock if block size != PAGE_SIZE"); 2070 return 0; 2071 } 2072 } 2073 return 1; 2074 } 2075 2076 static inline void ext4_show_quota_options(struct seq_file *seq, 2077 struct super_block *sb) 2078 { 2079 #if defined(CONFIG_QUOTA) 2080 struct ext4_sb_info *sbi = EXT4_SB(sb); 2081 char *usr_qf_name, *grp_qf_name; 2082 2083 if (sbi->s_jquota_fmt) { 2084 char *fmtname = ""; 2085 2086 switch (sbi->s_jquota_fmt) { 2087 case QFMT_VFS_OLD: 2088 fmtname = "vfsold"; 2089 break; 2090 case QFMT_VFS_V0: 2091 fmtname = "vfsv0"; 2092 break; 2093 case QFMT_VFS_V1: 2094 fmtname = "vfsv1"; 2095 break; 2096 } 2097 seq_printf(seq, ",jqfmt=%s", fmtname); 2098 } 2099 2100 rcu_read_lock(); 2101 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2102 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2103 if (usr_qf_name) 2104 seq_show_option(seq, "usrjquota", usr_qf_name); 2105 if (grp_qf_name) 2106 seq_show_option(seq, "grpjquota", grp_qf_name); 2107 rcu_read_unlock(); 2108 #endif 2109 } 2110 2111 static const char *token2str(int token) 2112 { 2113 const struct match_token *t; 2114 2115 for (t = tokens; t->token != Opt_err; t++) 2116 if (t->token == token && !strchr(t->pattern, '=')) 2117 break; 2118 return t->pattern; 2119 } 2120 2121 /* 2122 * Show an option if 2123 * - it's set to a non-default value OR 2124 * - if the per-sb default is different from the global default 2125 */ 2126 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2127 int nodefs) 2128 { 2129 struct ext4_sb_info *sbi = EXT4_SB(sb); 2130 struct ext4_super_block *es = sbi->s_es; 2131 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2132 const struct mount_opts *m; 2133 char sep = nodefs ? '\n' : ','; 2134 2135 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2136 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2137 2138 if (sbi->s_sb_block != 1) 2139 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2140 2141 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2142 int want_set = m->flags & MOPT_SET; 2143 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2144 (m->flags & MOPT_CLEAR_ERR)) 2145 continue; 2146 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2147 continue; /* skip if same as the default */ 2148 if ((want_set && 2149 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2150 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2151 continue; /* select Opt_noFoo vs Opt_Foo */ 2152 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2153 } 2154 2155 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2156 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2157 SEQ_OPTS_PRINT("resuid=%u", 2158 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2159 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2160 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2161 SEQ_OPTS_PRINT("resgid=%u", 2162 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2163 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2164 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2165 SEQ_OPTS_PUTS("errors=remount-ro"); 2166 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2167 SEQ_OPTS_PUTS("errors=continue"); 2168 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2169 SEQ_OPTS_PUTS("errors=panic"); 2170 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2171 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2172 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2173 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2174 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2175 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2176 if (sb->s_flags & SB_I_VERSION) 2177 SEQ_OPTS_PUTS("i_version"); 2178 if (nodefs || sbi->s_stripe) 2179 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2180 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2181 (sbi->s_mount_opt ^ def_mount_opt)) { 2182 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2183 SEQ_OPTS_PUTS("data=journal"); 2184 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2185 SEQ_OPTS_PUTS("data=ordered"); 2186 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2187 SEQ_OPTS_PUTS("data=writeback"); 2188 } 2189 if (nodefs || 2190 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2191 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2192 sbi->s_inode_readahead_blks); 2193 2194 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2195 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2196 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2197 if (nodefs || sbi->s_max_dir_size_kb) 2198 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2199 if (test_opt(sb, DATA_ERR_ABORT)) 2200 SEQ_OPTS_PUTS("data_err=abort"); 2201 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2202 SEQ_OPTS_PUTS("test_dummy_encryption"); 2203 2204 ext4_show_quota_options(seq, sb); 2205 return 0; 2206 } 2207 2208 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2209 { 2210 return _ext4_show_options(seq, root->d_sb, 0); 2211 } 2212 2213 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2214 { 2215 struct super_block *sb = seq->private; 2216 int rc; 2217 2218 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2219 rc = _ext4_show_options(seq, sb, 1); 2220 seq_puts(seq, "\n"); 2221 return rc; 2222 } 2223 2224 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2225 int read_only) 2226 { 2227 struct ext4_sb_info *sbi = EXT4_SB(sb); 2228 int err = 0; 2229 2230 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2231 ext4_msg(sb, KERN_ERR, "revision level too high, " 2232 "forcing read-only mode"); 2233 err = -EROFS; 2234 } 2235 if (read_only) 2236 goto done; 2237 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2238 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2239 "running e2fsck is recommended"); 2240 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2241 ext4_msg(sb, KERN_WARNING, 2242 "warning: mounting fs with errors, " 2243 "running e2fsck is recommended"); 2244 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2245 le16_to_cpu(es->s_mnt_count) >= 2246 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2247 ext4_msg(sb, KERN_WARNING, 2248 "warning: maximal mount count reached, " 2249 "running e2fsck is recommended"); 2250 else if (le32_to_cpu(es->s_checkinterval) && 2251 (ext4_get_tstamp(es, s_lastcheck) + 2252 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2253 ext4_msg(sb, KERN_WARNING, 2254 "warning: checktime reached, " 2255 "running e2fsck is recommended"); 2256 if (!sbi->s_journal) 2257 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2258 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2259 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2260 le16_add_cpu(&es->s_mnt_count, 1); 2261 ext4_update_tstamp(es, s_mtime); 2262 if (sbi->s_journal) 2263 ext4_set_feature_journal_needs_recovery(sb); 2264 2265 err = ext4_commit_super(sb, 1); 2266 done: 2267 if (test_opt(sb, DEBUG)) 2268 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2269 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2270 sb->s_blocksize, 2271 sbi->s_groups_count, 2272 EXT4_BLOCKS_PER_GROUP(sb), 2273 EXT4_INODES_PER_GROUP(sb), 2274 sbi->s_mount_opt, sbi->s_mount_opt2); 2275 2276 cleancache_init_fs(sb); 2277 return err; 2278 } 2279 2280 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2281 { 2282 struct ext4_sb_info *sbi = EXT4_SB(sb); 2283 struct flex_groups *new_groups; 2284 int size; 2285 2286 if (!sbi->s_log_groups_per_flex) 2287 return 0; 2288 2289 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2290 if (size <= sbi->s_flex_groups_allocated) 2291 return 0; 2292 2293 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2294 new_groups = kvzalloc(size, GFP_KERNEL); 2295 if (!new_groups) { 2296 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2297 size / (int) sizeof(struct flex_groups)); 2298 return -ENOMEM; 2299 } 2300 2301 if (sbi->s_flex_groups) { 2302 memcpy(new_groups, sbi->s_flex_groups, 2303 (sbi->s_flex_groups_allocated * 2304 sizeof(struct flex_groups))); 2305 kvfree(sbi->s_flex_groups); 2306 } 2307 sbi->s_flex_groups = new_groups; 2308 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2309 return 0; 2310 } 2311 2312 static int ext4_fill_flex_info(struct super_block *sb) 2313 { 2314 struct ext4_sb_info *sbi = EXT4_SB(sb); 2315 struct ext4_group_desc *gdp = NULL; 2316 ext4_group_t flex_group; 2317 int i, err; 2318 2319 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2320 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2321 sbi->s_log_groups_per_flex = 0; 2322 return 1; 2323 } 2324 2325 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2326 if (err) 2327 goto failed; 2328 2329 for (i = 0; i < sbi->s_groups_count; i++) { 2330 gdp = ext4_get_group_desc(sb, i, NULL); 2331 2332 flex_group = ext4_flex_group(sbi, i); 2333 atomic_add(ext4_free_inodes_count(sb, gdp), 2334 &sbi->s_flex_groups[flex_group].free_inodes); 2335 atomic64_add(ext4_free_group_clusters(sb, gdp), 2336 &sbi->s_flex_groups[flex_group].free_clusters); 2337 atomic_add(ext4_used_dirs_count(sb, gdp), 2338 &sbi->s_flex_groups[flex_group].used_dirs); 2339 } 2340 2341 return 1; 2342 failed: 2343 return 0; 2344 } 2345 2346 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2347 struct ext4_group_desc *gdp) 2348 { 2349 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2350 __u16 crc = 0; 2351 __le32 le_group = cpu_to_le32(block_group); 2352 struct ext4_sb_info *sbi = EXT4_SB(sb); 2353 2354 if (ext4_has_metadata_csum(sbi->s_sb)) { 2355 /* Use new metadata_csum algorithm */ 2356 __u32 csum32; 2357 __u16 dummy_csum = 0; 2358 2359 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2360 sizeof(le_group)); 2361 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2362 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2363 sizeof(dummy_csum)); 2364 offset += sizeof(dummy_csum); 2365 if (offset < sbi->s_desc_size) 2366 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2367 sbi->s_desc_size - offset); 2368 2369 crc = csum32 & 0xFFFF; 2370 goto out; 2371 } 2372 2373 /* old crc16 code */ 2374 if (!ext4_has_feature_gdt_csum(sb)) 2375 return 0; 2376 2377 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2378 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2379 crc = crc16(crc, (__u8 *)gdp, offset); 2380 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2381 /* for checksum of struct ext4_group_desc do the rest...*/ 2382 if (ext4_has_feature_64bit(sb) && 2383 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2384 crc = crc16(crc, (__u8 *)gdp + offset, 2385 le16_to_cpu(sbi->s_es->s_desc_size) - 2386 offset); 2387 2388 out: 2389 return cpu_to_le16(crc); 2390 } 2391 2392 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2393 struct ext4_group_desc *gdp) 2394 { 2395 if (ext4_has_group_desc_csum(sb) && 2396 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2397 return 0; 2398 2399 return 1; 2400 } 2401 2402 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2403 struct ext4_group_desc *gdp) 2404 { 2405 if (!ext4_has_group_desc_csum(sb)) 2406 return; 2407 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2408 } 2409 2410 /* Called at mount-time, super-block is locked */ 2411 static int ext4_check_descriptors(struct super_block *sb, 2412 ext4_fsblk_t sb_block, 2413 ext4_group_t *first_not_zeroed) 2414 { 2415 struct ext4_sb_info *sbi = EXT4_SB(sb); 2416 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2417 ext4_fsblk_t last_block; 2418 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2419 ext4_fsblk_t block_bitmap; 2420 ext4_fsblk_t inode_bitmap; 2421 ext4_fsblk_t inode_table; 2422 int flexbg_flag = 0; 2423 ext4_group_t i, grp = sbi->s_groups_count; 2424 2425 if (ext4_has_feature_flex_bg(sb)) 2426 flexbg_flag = 1; 2427 2428 ext4_debug("Checking group descriptors"); 2429 2430 for (i = 0; i < sbi->s_groups_count; i++) { 2431 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2432 2433 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2434 last_block = ext4_blocks_count(sbi->s_es) - 1; 2435 else 2436 last_block = first_block + 2437 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2438 2439 if ((grp == sbi->s_groups_count) && 2440 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2441 grp = i; 2442 2443 block_bitmap = ext4_block_bitmap(sb, gdp); 2444 if (block_bitmap == sb_block) { 2445 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2446 "Block bitmap for group %u overlaps " 2447 "superblock", i); 2448 if (!sb_rdonly(sb)) 2449 return 0; 2450 } 2451 if (block_bitmap >= sb_block + 1 && 2452 block_bitmap <= last_bg_block) { 2453 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2454 "Block bitmap for group %u overlaps " 2455 "block group descriptors", i); 2456 if (!sb_rdonly(sb)) 2457 return 0; 2458 } 2459 if (block_bitmap < first_block || block_bitmap > last_block) { 2460 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2461 "Block bitmap for group %u not in group " 2462 "(block %llu)!", i, block_bitmap); 2463 return 0; 2464 } 2465 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2466 if (inode_bitmap == sb_block) { 2467 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2468 "Inode bitmap for group %u overlaps " 2469 "superblock", i); 2470 if (!sb_rdonly(sb)) 2471 return 0; 2472 } 2473 if (inode_bitmap >= sb_block + 1 && 2474 inode_bitmap <= last_bg_block) { 2475 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2476 "Inode bitmap for group %u overlaps " 2477 "block group descriptors", i); 2478 if (!sb_rdonly(sb)) 2479 return 0; 2480 } 2481 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2482 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2483 "Inode bitmap for group %u not in group " 2484 "(block %llu)!", i, inode_bitmap); 2485 return 0; 2486 } 2487 inode_table = ext4_inode_table(sb, gdp); 2488 if (inode_table == sb_block) { 2489 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2490 "Inode table for group %u overlaps " 2491 "superblock", i); 2492 if (!sb_rdonly(sb)) 2493 return 0; 2494 } 2495 if (inode_table >= sb_block + 1 && 2496 inode_table <= last_bg_block) { 2497 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2498 "Inode table for group %u overlaps " 2499 "block group descriptors", i); 2500 if (!sb_rdonly(sb)) 2501 return 0; 2502 } 2503 if (inode_table < first_block || 2504 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2505 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2506 "Inode table for group %u not in group " 2507 "(block %llu)!", i, inode_table); 2508 return 0; 2509 } 2510 ext4_lock_group(sb, i); 2511 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2512 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2513 "Checksum for group %u failed (%u!=%u)", 2514 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2515 gdp)), le16_to_cpu(gdp->bg_checksum)); 2516 if (!sb_rdonly(sb)) { 2517 ext4_unlock_group(sb, i); 2518 return 0; 2519 } 2520 } 2521 ext4_unlock_group(sb, i); 2522 if (!flexbg_flag) 2523 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2524 } 2525 if (NULL != first_not_zeroed) 2526 *first_not_zeroed = grp; 2527 return 1; 2528 } 2529 2530 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2531 * the superblock) which were deleted from all directories, but held open by 2532 * a process at the time of a crash. We walk the list and try to delete these 2533 * inodes at recovery time (only with a read-write filesystem). 2534 * 2535 * In order to keep the orphan inode chain consistent during traversal (in 2536 * case of crash during recovery), we link each inode into the superblock 2537 * orphan list_head and handle it the same way as an inode deletion during 2538 * normal operation (which journals the operations for us). 2539 * 2540 * We only do an iget() and an iput() on each inode, which is very safe if we 2541 * accidentally point at an in-use or already deleted inode. The worst that 2542 * can happen in this case is that we get a "bit already cleared" message from 2543 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2544 * e2fsck was run on this filesystem, and it must have already done the orphan 2545 * inode cleanup for us, so we can safely abort without any further action. 2546 */ 2547 static void ext4_orphan_cleanup(struct super_block *sb, 2548 struct ext4_super_block *es) 2549 { 2550 unsigned int s_flags = sb->s_flags; 2551 int ret, nr_orphans = 0, nr_truncates = 0; 2552 #ifdef CONFIG_QUOTA 2553 int quota_update = 0; 2554 int i; 2555 #endif 2556 if (!es->s_last_orphan) { 2557 jbd_debug(4, "no orphan inodes to clean up\n"); 2558 return; 2559 } 2560 2561 if (bdev_read_only(sb->s_bdev)) { 2562 ext4_msg(sb, KERN_ERR, "write access " 2563 "unavailable, skipping orphan cleanup"); 2564 return; 2565 } 2566 2567 /* Check if feature set would not allow a r/w mount */ 2568 if (!ext4_feature_set_ok(sb, 0)) { 2569 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2570 "unknown ROCOMPAT features"); 2571 return; 2572 } 2573 2574 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2575 /* don't clear list on RO mount w/ errors */ 2576 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2577 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2578 "clearing orphan list.\n"); 2579 es->s_last_orphan = 0; 2580 } 2581 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2582 return; 2583 } 2584 2585 if (s_flags & SB_RDONLY) { 2586 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2587 sb->s_flags &= ~SB_RDONLY; 2588 } 2589 #ifdef CONFIG_QUOTA 2590 /* Needed for iput() to work correctly and not trash data */ 2591 sb->s_flags |= SB_ACTIVE; 2592 2593 /* 2594 * Turn on quotas which were not enabled for read-only mounts if 2595 * filesystem has quota feature, so that they are updated correctly. 2596 */ 2597 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2598 int ret = ext4_enable_quotas(sb); 2599 2600 if (!ret) 2601 quota_update = 1; 2602 else 2603 ext4_msg(sb, KERN_ERR, 2604 "Cannot turn on quotas: error %d", ret); 2605 } 2606 2607 /* Turn on journaled quotas used for old sytle */ 2608 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2609 if (EXT4_SB(sb)->s_qf_names[i]) { 2610 int ret = ext4_quota_on_mount(sb, i); 2611 2612 if (!ret) 2613 quota_update = 1; 2614 else 2615 ext4_msg(sb, KERN_ERR, 2616 "Cannot turn on journaled " 2617 "quota: type %d: error %d", i, ret); 2618 } 2619 } 2620 #endif 2621 2622 while (es->s_last_orphan) { 2623 struct inode *inode; 2624 2625 /* 2626 * We may have encountered an error during cleanup; if 2627 * so, skip the rest. 2628 */ 2629 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2630 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2631 es->s_last_orphan = 0; 2632 break; 2633 } 2634 2635 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2636 if (IS_ERR(inode)) { 2637 es->s_last_orphan = 0; 2638 break; 2639 } 2640 2641 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2642 dquot_initialize(inode); 2643 if (inode->i_nlink) { 2644 if (test_opt(sb, DEBUG)) 2645 ext4_msg(sb, KERN_DEBUG, 2646 "%s: truncating inode %lu to %lld bytes", 2647 __func__, inode->i_ino, inode->i_size); 2648 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2649 inode->i_ino, inode->i_size); 2650 inode_lock(inode); 2651 truncate_inode_pages(inode->i_mapping, inode->i_size); 2652 ret = ext4_truncate(inode); 2653 if (ret) 2654 ext4_std_error(inode->i_sb, ret); 2655 inode_unlock(inode); 2656 nr_truncates++; 2657 } else { 2658 if (test_opt(sb, DEBUG)) 2659 ext4_msg(sb, KERN_DEBUG, 2660 "%s: deleting unreferenced inode %lu", 2661 __func__, inode->i_ino); 2662 jbd_debug(2, "deleting unreferenced inode %lu\n", 2663 inode->i_ino); 2664 nr_orphans++; 2665 } 2666 iput(inode); /* The delete magic happens here! */ 2667 } 2668 2669 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2670 2671 if (nr_orphans) 2672 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2673 PLURAL(nr_orphans)); 2674 if (nr_truncates) 2675 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2676 PLURAL(nr_truncates)); 2677 #ifdef CONFIG_QUOTA 2678 /* Turn off quotas if they were enabled for orphan cleanup */ 2679 if (quota_update) { 2680 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2681 if (sb_dqopt(sb)->files[i]) 2682 dquot_quota_off(sb, i); 2683 } 2684 } 2685 #endif 2686 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2687 } 2688 2689 /* 2690 * Maximal extent format file size. 2691 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2692 * extent format containers, within a sector_t, and within i_blocks 2693 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2694 * so that won't be a limiting factor. 2695 * 2696 * However there is other limiting factor. We do store extents in the form 2697 * of starting block and length, hence the resulting length of the extent 2698 * covering maximum file size must fit into on-disk format containers as 2699 * well. Given that length is always by 1 unit bigger than max unit (because 2700 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2701 * 2702 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2703 */ 2704 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2705 { 2706 loff_t res; 2707 loff_t upper_limit = MAX_LFS_FILESIZE; 2708 2709 /* small i_blocks in vfs inode? */ 2710 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2711 /* 2712 * CONFIG_LBDAF is not enabled implies the inode 2713 * i_block represent total blocks in 512 bytes 2714 * 32 == size of vfs inode i_blocks * 8 2715 */ 2716 upper_limit = (1LL << 32) - 1; 2717 2718 /* total blocks in file system block size */ 2719 upper_limit >>= (blkbits - 9); 2720 upper_limit <<= blkbits; 2721 } 2722 2723 /* 2724 * 32-bit extent-start container, ee_block. We lower the maxbytes 2725 * by one fs block, so ee_len can cover the extent of maximum file 2726 * size 2727 */ 2728 res = (1LL << 32) - 1; 2729 res <<= blkbits; 2730 2731 /* Sanity check against vm- & vfs- imposed limits */ 2732 if (res > upper_limit) 2733 res = upper_limit; 2734 2735 return res; 2736 } 2737 2738 /* 2739 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2740 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2741 * We need to be 1 filesystem block less than the 2^48 sector limit. 2742 */ 2743 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2744 { 2745 loff_t res = EXT4_NDIR_BLOCKS; 2746 int meta_blocks; 2747 loff_t upper_limit; 2748 /* This is calculated to be the largest file size for a dense, block 2749 * mapped file such that the file's total number of 512-byte sectors, 2750 * including data and all indirect blocks, does not exceed (2^48 - 1). 2751 * 2752 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2753 * number of 512-byte sectors of the file. 2754 */ 2755 2756 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2757 /* 2758 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2759 * the inode i_block field represents total file blocks in 2760 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2761 */ 2762 upper_limit = (1LL << 32) - 1; 2763 2764 /* total blocks in file system block size */ 2765 upper_limit >>= (bits - 9); 2766 2767 } else { 2768 /* 2769 * We use 48 bit ext4_inode i_blocks 2770 * With EXT4_HUGE_FILE_FL set the i_blocks 2771 * represent total number of blocks in 2772 * file system block size 2773 */ 2774 upper_limit = (1LL << 48) - 1; 2775 2776 } 2777 2778 /* indirect blocks */ 2779 meta_blocks = 1; 2780 /* double indirect blocks */ 2781 meta_blocks += 1 + (1LL << (bits-2)); 2782 /* tripple indirect blocks */ 2783 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2784 2785 upper_limit -= meta_blocks; 2786 upper_limit <<= bits; 2787 2788 res += 1LL << (bits-2); 2789 res += 1LL << (2*(bits-2)); 2790 res += 1LL << (3*(bits-2)); 2791 res <<= bits; 2792 if (res > upper_limit) 2793 res = upper_limit; 2794 2795 if (res > MAX_LFS_FILESIZE) 2796 res = MAX_LFS_FILESIZE; 2797 2798 return res; 2799 } 2800 2801 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2802 ext4_fsblk_t logical_sb_block, int nr) 2803 { 2804 struct ext4_sb_info *sbi = EXT4_SB(sb); 2805 ext4_group_t bg, first_meta_bg; 2806 int has_super = 0; 2807 2808 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2809 2810 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2811 return logical_sb_block + nr + 1; 2812 bg = sbi->s_desc_per_block * nr; 2813 if (ext4_bg_has_super(sb, bg)) 2814 has_super = 1; 2815 2816 /* 2817 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2818 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2819 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2820 * compensate. 2821 */ 2822 if (sb->s_blocksize == 1024 && nr == 0 && 2823 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2824 has_super++; 2825 2826 return (has_super + ext4_group_first_block_no(sb, bg)); 2827 } 2828 2829 /** 2830 * ext4_get_stripe_size: Get the stripe size. 2831 * @sbi: In memory super block info 2832 * 2833 * If we have specified it via mount option, then 2834 * use the mount option value. If the value specified at mount time is 2835 * greater than the blocks per group use the super block value. 2836 * If the super block value is greater than blocks per group return 0. 2837 * Allocator needs it be less than blocks per group. 2838 * 2839 */ 2840 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2841 { 2842 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2843 unsigned long stripe_width = 2844 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2845 int ret; 2846 2847 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2848 ret = sbi->s_stripe; 2849 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2850 ret = stripe_width; 2851 else if (stride && stride <= sbi->s_blocks_per_group) 2852 ret = stride; 2853 else 2854 ret = 0; 2855 2856 /* 2857 * If the stripe width is 1, this makes no sense and 2858 * we set it to 0 to turn off stripe handling code. 2859 */ 2860 if (ret <= 1) 2861 ret = 0; 2862 2863 return ret; 2864 } 2865 2866 /* 2867 * Check whether this filesystem can be mounted based on 2868 * the features present and the RDONLY/RDWR mount requested. 2869 * Returns 1 if this filesystem can be mounted as requested, 2870 * 0 if it cannot be. 2871 */ 2872 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2873 { 2874 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2875 ext4_msg(sb, KERN_ERR, 2876 "Couldn't mount because of " 2877 "unsupported optional features (%x)", 2878 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2879 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2880 return 0; 2881 } 2882 2883 if (readonly) 2884 return 1; 2885 2886 if (ext4_has_feature_readonly(sb)) { 2887 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2888 sb->s_flags |= SB_RDONLY; 2889 return 1; 2890 } 2891 2892 /* Check that feature set is OK for a read-write mount */ 2893 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2894 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2895 "unsupported optional features (%x)", 2896 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2897 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2898 return 0; 2899 } 2900 /* 2901 * Large file size enabled file system can only be mounted 2902 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2903 */ 2904 if (ext4_has_feature_huge_file(sb)) { 2905 if (sizeof(blkcnt_t) < sizeof(u64)) { 2906 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2907 "cannot be mounted RDWR without " 2908 "CONFIG_LBDAF"); 2909 return 0; 2910 } 2911 } 2912 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2913 ext4_msg(sb, KERN_ERR, 2914 "Can't support bigalloc feature without " 2915 "extents feature\n"); 2916 return 0; 2917 } 2918 2919 #ifndef CONFIG_QUOTA 2920 if (ext4_has_feature_quota(sb) && !readonly) { 2921 ext4_msg(sb, KERN_ERR, 2922 "Filesystem with quota feature cannot be mounted RDWR " 2923 "without CONFIG_QUOTA"); 2924 return 0; 2925 } 2926 if (ext4_has_feature_project(sb) && !readonly) { 2927 ext4_msg(sb, KERN_ERR, 2928 "Filesystem with project quota feature cannot be mounted RDWR " 2929 "without CONFIG_QUOTA"); 2930 return 0; 2931 } 2932 #endif /* CONFIG_QUOTA */ 2933 return 1; 2934 } 2935 2936 /* 2937 * This function is called once a day if we have errors logged 2938 * on the file system 2939 */ 2940 static void print_daily_error_info(struct timer_list *t) 2941 { 2942 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2943 struct super_block *sb = sbi->s_sb; 2944 struct ext4_super_block *es = sbi->s_es; 2945 2946 if (es->s_error_count) 2947 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2948 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2949 le32_to_cpu(es->s_error_count)); 2950 if (es->s_first_error_time) { 2951 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 2952 sb->s_id, 2953 ext4_get_tstamp(es, s_first_error_time), 2954 (int) sizeof(es->s_first_error_func), 2955 es->s_first_error_func, 2956 le32_to_cpu(es->s_first_error_line)); 2957 if (es->s_first_error_ino) 2958 printk(KERN_CONT ": inode %u", 2959 le32_to_cpu(es->s_first_error_ino)); 2960 if (es->s_first_error_block) 2961 printk(KERN_CONT ": block %llu", (unsigned long long) 2962 le64_to_cpu(es->s_first_error_block)); 2963 printk(KERN_CONT "\n"); 2964 } 2965 if (es->s_last_error_time) { 2966 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 2967 sb->s_id, 2968 ext4_get_tstamp(es, s_last_error_time), 2969 (int) sizeof(es->s_last_error_func), 2970 es->s_last_error_func, 2971 le32_to_cpu(es->s_last_error_line)); 2972 if (es->s_last_error_ino) 2973 printk(KERN_CONT ": inode %u", 2974 le32_to_cpu(es->s_last_error_ino)); 2975 if (es->s_last_error_block) 2976 printk(KERN_CONT ": block %llu", (unsigned long long) 2977 le64_to_cpu(es->s_last_error_block)); 2978 printk(KERN_CONT "\n"); 2979 } 2980 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2981 } 2982 2983 /* Find next suitable group and run ext4_init_inode_table */ 2984 static int ext4_run_li_request(struct ext4_li_request *elr) 2985 { 2986 struct ext4_group_desc *gdp = NULL; 2987 ext4_group_t group, ngroups; 2988 struct super_block *sb; 2989 unsigned long timeout = 0; 2990 int ret = 0; 2991 2992 sb = elr->lr_super; 2993 ngroups = EXT4_SB(sb)->s_groups_count; 2994 2995 for (group = elr->lr_next_group; group < ngroups; group++) { 2996 gdp = ext4_get_group_desc(sb, group, NULL); 2997 if (!gdp) { 2998 ret = 1; 2999 break; 3000 } 3001 3002 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3003 break; 3004 } 3005 3006 if (group >= ngroups) 3007 ret = 1; 3008 3009 if (!ret) { 3010 timeout = jiffies; 3011 ret = ext4_init_inode_table(sb, group, 3012 elr->lr_timeout ? 0 : 1); 3013 if (elr->lr_timeout == 0) { 3014 timeout = (jiffies - timeout) * 3015 elr->lr_sbi->s_li_wait_mult; 3016 elr->lr_timeout = timeout; 3017 } 3018 elr->lr_next_sched = jiffies + elr->lr_timeout; 3019 elr->lr_next_group = group + 1; 3020 } 3021 return ret; 3022 } 3023 3024 /* 3025 * Remove lr_request from the list_request and free the 3026 * request structure. Should be called with li_list_mtx held 3027 */ 3028 static void ext4_remove_li_request(struct ext4_li_request *elr) 3029 { 3030 struct ext4_sb_info *sbi; 3031 3032 if (!elr) 3033 return; 3034 3035 sbi = elr->lr_sbi; 3036 3037 list_del(&elr->lr_request); 3038 sbi->s_li_request = NULL; 3039 kfree(elr); 3040 } 3041 3042 static void ext4_unregister_li_request(struct super_block *sb) 3043 { 3044 mutex_lock(&ext4_li_mtx); 3045 if (!ext4_li_info) { 3046 mutex_unlock(&ext4_li_mtx); 3047 return; 3048 } 3049 3050 mutex_lock(&ext4_li_info->li_list_mtx); 3051 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3052 mutex_unlock(&ext4_li_info->li_list_mtx); 3053 mutex_unlock(&ext4_li_mtx); 3054 } 3055 3056 static struct task_struct *ext4_lazyinit_task; 3057 3058 /* 3059 * This is the function where ext4lazyinit thread lives. It walks 3060 * through the request list searching for next scheduled filesystem. 3061 * When such a fs is found, run the lazy initialization request 3062 * (ext4_rn_li_request) and keep track of the time spend in this 3063 * function. Based on that time we compute next schedule time of 3064 * the request. When walking through the list is complete, compute 3065 * next waking time and put itself into sleep. 3066 */ 3067 static int ext4_lazyinit_thread(void *arg) 3068 { 3069 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3070 struct list_head *pos, *n; 3071 struct ext4_li_request *elr; 3072 unsigned long next_wakeup, cur; 3073 3074 BUG_ON(NULL == eli); 3075 3076 cont_thread: 3077 while (true) { 3078 next_wakeup = MAX_JIFFY_OFFSET; 3079 3080 mutex_lock(&eli->li_list_mtx); 3081 if (list_empty(&eli->li_request_list)) { 3082 mutex_unlock(&eli->li_list_mtx); 3083 goto exit_thread; 3084 } 3085 list_for_each_safe(pos, n, &eli->li_request_list) { 3086 int err = 0; 3087 int progress = 0; 3088 elr = list_entry(pos, struct ext4_li_request, 3089 lr_request); 3090 3091 if (time_before(jiffies, elr->lr_next_sched)) { 3092 if (time_before(elr->lr_next_sched, next_wakeup)) 3093 next_wakeup = elr->lr_next_sched; 3094 continue; 3095 } 3096 if (down_read_trylock(&elr->lr_super->s_umount)) { 3097 if (sb_start_write_trylock(elr->lr_super)) { 3098 progress = 1; 3099 /* 3100 * We hold sb->s_umount, sb can not 3101 * be removed from the list, it is 3102 * now safe to drop li_list_mtx 3103 */ 3104 mutex_unlock(&eli->li_list_mtx); 3105 err = ext4_run_li_request(elr); 3106 sb_end_write(elr->lr_super); 3107 mutex_lock(&eli->li_list_mtx); 3108 n = pos->next; 3109 } 3110 up_read((&elr->lr_super->s_umount)); 3111 } 3112 /* error, remove the lazy_init job */ 3113 if (err) { 3114 ext4_remove_li_request(elr); 3115 continue; 3116 } 3117 if (!progress) { 3118 elr->lr_next_sched = jiffies + 3119 (prandom_u32() 3120 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3121 } 3122 if (time_before(elr->lr_next_sched, next_wakeup)) 3123 next_wakeup = elr->lr_next_sched; 3124 } 3125 mutex_unlock(&eli->li_list_mtx); 3126 3127 try_to_freeze(); 3128 3129 cur = jiffies; 3130 if ((time_after_eq(cur, next_wakeup)) || 3131 (MAX_JIFFY_OFFSET == next_wakeup)) { 3132 cond_resched(); 3133 continue; 3134 } 3135 3136 schedule_timeout_interruptible(next_wakeup - cur); 3137 3138 if (kthread_should_stop()) { 3139 ext4_clear_request_list(); 3140 goto exit_thread; 3141 } 3142 } 3143 3144 exit_thread: 3145 /* 3146 * It looks like the request list is empty, but we need 3147 * to check it under the li_list_mtx lock, to prevent any 3148 * additions into it, and of course we should lock ext4_li_mtx 3149 * to atomically free the list and ext4_li_info, because at 3150 * this point another ext4 filesystem could be registering 3151 * new one. 3152 */ 3153 mutex_lock(&ext4_li_mtx); 3154 mutex_lock(&eli->li_list_mtx); 3155 if (!list_empty(&eli->li_request_list)) { 3156 mutex_unlock(&eli->li_list_mtx); 3157 mutex_unlock(&ext4_li_mtx); 3158 goto cont_thread; 3159 } 3160 mutex_unlock(&eli->li_list_mtx); 3161 kfree(ext4_li_info); 3162 ext4_li_info = NULL; 3163 mutex_unlock(&ext4_li_mtx); 3164 3165 return 0; 3166 } 3167 3168 static void ext4_clear_request_list(void) 3169 { 3170 struct list_head *pos, *n; 3171 struct ext4_li_request *elr; 3172 3173 mutex_lock(&ext4_li_info->li_list_mtx); 3174 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3175 elr = list_entry(pos, struct ext4_li_request, 3176 lr_request); 3177 ext4_remove_li_request(elr); 3178 } 3179 mutex_unlock(&ext4_li_info->li_list_mtx); 3180 } 3181 3182 static int ext4_run_lazyinit_thread(void) 3183 { 3184 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3185 ext4_li_info, "ext4lazyinit"); 3186 if (IS_ERR(ext4_lazyinit_task)) { 3187 int err = PTR_ERR(ext4_lazyinit_task); 3188 ext4_clear_request_list(); 3189 kfree(ext4_li_info); 3190 ext4_li_info = NULL; 3191 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3192 "initialization thread\n", 3193 err); 3194 return err; 3195 } 3196 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3197 return 0; 3198 } 3199 3200 /* 3201 * Check whether it make sense to run itable init. thread or not. 3202 * If there is at least one uninitialized inode table, return 3203 * corresponding group number, else the loop goes through all 3204 * groups and return total number of groups. 3205 */ 3206 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3207 { 3208 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3209 struct ext4_group_desc *gdp = NULL; 3210 3211 if (!ext4_has_group_desc_csum(sb)) 3212 return ngroups; 3213 3214 for (group = 0; group < ngroups; group++) { 3215 gdp = ext4_get_group_desc(sb, group, NULL); 3216 if (!gdp) 3217 continue; 3218 3219 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3220 break; 3221 } 3222 3223 return group; 3224 } 3225 3226 static int ext4_li_info_new(void) 3227 { 3228 struct ext4_lazy_init *eli = NULL; 3229 3230 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3231 if (!eli) 3232 return -ENOMEM; 3233 3234 INIT_LIST_HEAD(&eli->li_request_list); 3235 mutex_init(&eli->li_list_mtx); 3236 3237 eli->li_state |= EXT4_LAZYINIT_QUIT; 3238 3239 ext4_li_info = eli; 3240 3241 return 0; 3242 } 3243 3244 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3245 ext4_group_t start) 3246 { 3247 struct ext4_sb_info *sbi = EXT4_SB(sb); 3248 struct ext4_li_request *elr; 3249 3250 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3251 if (!elr) 3252 return NULL; 3253 3254 elr->lr_super = sb; 3255 elr->lr_sbi = sbi; 3256 elr->lr_next_group = start; 3257 3258 /* 3259 * Randomize first schedule time of the request to 3260 * spread the inode table initialization requests 3261 * better. 3262 */ 3263 elr->lr_next_sched = jiffies + (prandom_u32() % 3264 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3265 return elr; 3266 } 3267 3268 int ext4_register_li_request(struct super_block *sb, 3269 ext4_group_t first_not_zeroed) 3270 { 3271 struct ext4_sb_info *sbi = EXT4_SB(sb); 3272 struct ext4_li_request *elr = NULL; 3273 ext4_group_t ngroups = sbi->s_groups_count; 3274 int ret = 0; 3275 3276 mutex_lock(&ext4_li_mtx); 3277 if (sbi->s_li_request != NULL) { 3278 /* 3279 * Reset timeout so it can be computed again, because 3280 * s_li_wait_mult might have changed. 3281 */ 3282 sbi->s_li_request->lr_timeout = 0; 3283 goto out; 3284 } 3285 3286 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3287 !test_opt(sb, INIT_INODE_TABLE)) 3288 goto out; 3289 3290 elr = ext4_li_request_new(sb, first_not_zeroed); 3291 if (!elr) { 3292 ret = -ENOMEM; 3293 goto out; 3294 } 3295 3296 if (NULL == ext4_li_info) { 3297 ret = ext4_li_info_new(); 3298 if (ret) 3299 goto out; 3300 } 3301 3302 mutex_lock(&ext4_li_info->li_list_mtx); 3303 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3304 mutex_unlock(&ext4_li_info->li_list_mtx); 3305 3306 sbi->s_li_request = elr; 3307 /* 3308 * set elr to NULL here since it has been inserted to 3309 * the request_list and the removal and free of it is 3310 * handled by ext4_clear_request_list from now on. 3311 */ 3312 elr = NULL; 3313 3314 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3315 ret = ext4_run_lazyinit_thread(); 3316 if (ret) 3317 goto out; 3318 } 3319 out: 3320 mutex_unlock(&ext4_li_mtx); 3321 if (ret) 3322 kfree(elr); 3323 return ret; 3324 } 3325 3326 /* 3327 * We do not need to lock anything since this is called on 3328 * module unload. 3329 */ 3330 static void ext4_destroy_lazyinit_thread(void) 3331 { 3332 /* 3333 * If thread exited earlier 3334 * there's nothing to be done. 3335 */ 3336 if (!ext4_li_info || !ext4_lazyinit_task) 3337 return; 3338 3339 kthread_stop(ext4_lazyinit_task); 3340 } 3341 3342 static int set_journal_csum_feature_set(struct super_block *sb) 3343 { 3344 int ret = 1; 3345 int compat, incompat; 3346 struct ext4_sb_info *sbi = EXT4_SB(sb); 3347 3348 if (ext4_has_metadata_csum(sb)) { 3349 /* journal checksum v3 */ 3350 compat = 0; 3351 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3352 } else { 3353 /* journal checksum v1 */ 3354 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3355 incompat = 0; 3356 } 3357 3358 jbd2_journal_clear_features(sbi->s_journal, 3359 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3360 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3361 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3362 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3363 ret = jbd2_journal_set_features(sbi->s_journal, 3364 compat, 0, 3365 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3366 incompat); 3367 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3368 ret = jbd2_journal_set_features(sbi->s_journal, 3369 compat, 0, 3370 incompat); 3371 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3372 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3373 } else { 3374 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3375 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3376 } 3377 3378 return ret; 3379 } 3380 3381 /* 3382 * Note: calculating the overhead so we can be compatible with 3383 * historical BSD practice is quite difficult in the face of 3384 * clusters/bigalloc. This is because multiple metadata blocks from 3385 * different block group can end up in the same allocation cluster. 3386 * Calculating the exact overhead in the face of clustered allocation 3387 * requires either O(all block bitmaps) in memory or O(number of block 3388 * groups**2) in time. We will still calculate the superblock for 3389 * older file systems --- and if we come across with a bigalloc file 3390 * system with zero in s_overhead_clusters the estimate will be close to 3391 * correct especially for very large cluster sizes --- but for newer 3392 * file systems, it's better to calculate this figure once at mkfs 3393 * time, and store it in the superblock. If the superblock value is 3394 * present (even for non-bigalloc file systems), we will use it. 3395 */ 3396 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3397 char *buf) 3398 { 3399 struct ext4_sb_info *sbi = EXT4_SB(sb); 3400 struct ext4_group_desc *gdp; 3401 ext4_fsblk_t first_block, last_block, b; 3402 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3403 int s, j, count = 0; 3404 3405 if (!ext4_has_feature_bigalloc(sb)) 3406 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3407 sbi->s_itb_per_group + 2); 3408 3409 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3410 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3411 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3412 for (i = 0; i < ngroups; i++) { 3413 gdp = ext4_get_group_desc(sb, i, NULL); 3414 b = ext4_block_bitmap(sb, gdp); 3415 if (b >= first_block && b <= last_block) { 3416 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3417 count++; 3418 } 3419 b = ext4_inode_bitmap(sb, gdp); 3420 if (b >= first_block && b <= last_block) { 3421 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3422 count++; 3423 } 3424 b = ext4_inode_table(sb, gdp); 3425 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3426 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3427 int c = EXT4_B2C(sbi, b - first_block); 3428 ext4_set_bit(c, buf); 3429 count++; 3430 } 3431 if (i != grp) 3432 continue; 3433 s = 0; 3434 if (ext4_bg_has_super(sb, grp)) { 3435 ext4_set_bit(s++, buf); 3436 count++; 3437 } 3438 j = ext4_bg_num_gdb(sb, grp); 3439 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3440 ext4_error(sb, "Invalid number of block group " 3441 "descriptor blocks: %d", j); 3442 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3443 } 3444 count += j; 3445 for (; j > 0; j--) 3446 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3447 } 3448 if (!count) 3449 return 0; 3450 return EXT4_CLUSTERS_PER_GROUP(sb) - 3451 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3452 } 3453 3454 /* 3455 * Compute the overhead and stash it in sbi->s_overhead 3456 */ 3457 int ext4_calculate_overhead(struct super_block *sb) 3458 { 3459 struct ext4_sb_info *sbi = EXT4_SB(sb); 3460 struct ext4_super_block *es = sbi->s_es; 3461 struct inode *j_inode; 3462 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3463 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3464 ext4_fsblk_t overhead = 0; 3465 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3466 3467 if (!buf) 3468 return -ENOMEM; 3469 3470 /* 3471 * Compute the overhead (FS structures). This is constant 3472 * for a given filesystem unless the number of block groups 3473 * changes so we cache the previous value until it does. 3474 */ 3475 3476 /* 3477 * All of the blocks before first_data_block are overhead 3478 */ 3479 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3480 3481 /* 3482 * Add the overhead found in each block group 3483 */ 3484 for (i = 0; i < ngroups; i++) { 3485 int blks; 3486 3487 blks = count_overhead(sb, i, buf); 3488 overhead += blks; 3489 if (blks) 3490 memset(buf, 0, PAGE_SIZE); 3491 cond_resched(); 3492 } 3493 3494 /* 3495 * Add the internal journal blocks whether the journal has been 3496 * loaded or not 3497 */ 3498 if (sbi->s_journal && !sbi->journal_bdev) 3499 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3500 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3501 j_inode = ext4_get_journal_inode(sb, j_inum); 3502 if (j_inode) { 3503 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3504 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3505 iput(j_inode); 3506 } else { 3507 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3508 } 3509 } 3510 sbi->s_overhead = overhead; 3511 smp_wmb(); 3512 free_page((unsigned long) buf); 3513 return 0; 3514 } 3515 3516 static void ext4_set_resv_clusters(struct super_block *sb) 3517 { 3518 ext4_fsblk_t resv_clusters; 3519 struct ext4_sb_info *sbi = EXT4_SB(sb); 3520 3521 /* 3522 * There's no need to reserve anything when we aren't using extents. 3523 * The space estimates are exact, there are no unwritten extents, 3524 * hole punching doesn't need new metadata... This is needed especially 3525 * to keep ext2/3 backward compatibility. 3526 */ 3527 if (!ext4_has_feature_extents(sb)) 3528 return; 3529 /* 3530 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3531 * This should cover the situations where we can not afford to run 3532 * out of space like for example punch hole, or converting 3533 * unwritten extents in delalloc path. In most cases such 3534 * allocation would require 1, or 2 blocks, higher numbers are 3535 * very rare. 3536 */ 3537 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3538 sbi->s_cluster_bits); 3539 3540 do_div(resv_clusters, 50); 3541 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3542 3543 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3544 } 3545 3546 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3547 { 3548 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3549 char *orig_data = kstrdup(data, GFP_KERNEL); 3550 struct buffer_head *bh; 3551 struct ext4_super_block *es = NULL; 3552 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3553 ext4_fsblk_t block; 3554 ext4_fsblk_t sb_block = get_sb_block(&data); 3555 ext4_fsblk_t logical_sb_block; 3556 unsigned long offset = 0; 3557 unsigned long journal_devnum = 0; 3558 unsigned long def_mount_opts; 3559 struct inode *root; 3560 const char *descr; 3561 int ret = -ENOMEM; 3562 int blocksize, clustersize; 3563 unsigned int db_count; 3564 unsigned int i; 3565 int needs_recovery, has_huge_files, has_bigalloc; 3566 __u64 blocks_count; 3567 int err = 0; 3568 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3569 ext4_group_t first_not_zeroed; 3570 3571 if ((data && !orig_data) || !sbi) 3572 goto out_free_base; 3573 3574 sbi->s_daxdev = dax_dev; 3575 sbi->s_blockgroup_lock = 3576 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3577 if (!sbi->s_blockgroup_lock) 3578 goto out_free_base; 3579 3580 sb->s_fs_info = sbi; 3581 sbi->s_sb = sb; 3582 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3583 sbi->s_sb_block = sb_block; 3584 if (sb->s_bdev->bd_part) 3585 sbi->s_sectors_written_start = 3586 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3587 3588 /* Cleanup superblock name */ 3589 strreplace(sb->s_id, '/', '!'); 3590 3591 /* -EINVAL is default */ 3592 ret = -EINVAL; 3593 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3594 if (!blocksize) { 3595 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3596 goto out_fail; 3597 } 3598 3599 /* 3600 * The ext4 superblock will not be buffer aligned for other than 1kB 3601 * block sizes. We need to calculate the offset from buffer start. 3602 */ 3603 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3604 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3605 offset = do_div(logical_sb_block, blocksize); 3606 } else { 3607 logical_sb_block = sb_block; 3608 } 3609 3610 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3611 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3612 goto out_fail; 3613 } 3614 /* 3615 * Note: s_es must be initialized as soon as possible because 3616 * some ext4 macro-instructions depend on its value 3617 */ 3618 es = (struct ext4_super_block *) (bh->b_data + offset); 3619 sbi->s_es = es; 3620 sb->s_magic = le16_to_cpu(es->s_magic); 3621 if (sb->s_magic != EXT4_SUPER_MAGIC) 3622 goto cantfind_ext4; 3623 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3624 3625 /* Warn if metadata_csum and gdt_csum are both set. */ 3626 if (ext4_has_feature_metadata_csum(sb) && 3627 ext4_has_feature_gdt_csum(sb)) 3628 ext4_warning(sb, "metadata_csum and uninit_bg are " 3629 "redundant flags; please run fsck."); 3630 3631 /* Check for a known checksum algorithm */ 3632 if (!ext4_verify_csum_type(sb, es)) { 3633 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3634 "unknown checksum algorithm."); 3635 silent = 1; 3636 goto cantfind_ext4; 3637 } 3638 3639 /* Load the checksum driver */ 3640 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3641 if (IS_ERR(sbi->s_chksum_driver)) { 3642 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3643 ret = PTR_ERR(sbi->s_chksum_driver); 3644 sbi->s_chksum_driver = NULL; 3645 goto failed_mount; 3646 } 3647 3648 /* Check superblock checksum */ 3649 if (!ext4_superblock_csum_verify(sb, es)) { 3650 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3651 "invalid superblock checksum. Run e2fsck?"); 3652 silent = 1; 3653 ret = -EFSBADCRC; 3654 goto cantfind_ext4; 3655 } 3656 3657 /* Precompute checksum seed for all metadata */ 3658 if (ext4_has_feature_csum_seed(sb)) 3659 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3660 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3661 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3662 sizeof(es->s_uuid)); 3663 3664 /* Set defaults before we parse the mount options */ 3665 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3666 set_opt(sb, INIT_INODE_TABLE); 3667 if (def_mount_opts & EXT4_DEFM_DEBUG) 3668 set_opt(sb, DEBUG); 3669 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3670 set_opt(sb, GRPID); 3671 if (def_mount_opts & EXT4_DEFM_UID16) 3672 set_opt(sb, NO_UID32); 3673 /* xattr user namespace & acls are now defaulted on */ 3674 set_opt(sb, XATTR_USER); 3675 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3676 set_opt(sb, POSIX_ACL); 3677 #endif 3678 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3679 if (ext4_has_metadata_csum(sb)) 3680 set_opt(sb, JOURNAL_CHECKSUM); 3681 3682 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3683 set_opt(sb, JOURNAL_DATA); 3684 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3685 set_opt(sb, ORDERED_DATA); 3686 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3687 set_opt(sb, WRITEBACK_DATA); 3688 3689 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3690 set_opt(sb, ERRORS_PANIC); 3691 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3692 set_opt(sb, ERRORS_CONT); 3693 else 3694 set_opt(sb, ERRORS_RO); 3695 /* block_validity enabled by default; disable with noblock_validity */ 3696 set_opt(sb, BLOCK_VALIDITY); 3697 if (def_mount_opts & EXT4_DEFM_DISCARD) 3698 set_opt(sb, DISCARD); 3699 3700 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3701 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3702 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3703 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3704 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3705 3706 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3707 set_opt(sb, BARRIER); 3708 3709 /* 3710 * enable delayed allocation by default 3711 * Use -o nodelalloc to turn it off 3712 */ 3713 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3714 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3715 set_opt(sb, DELALLOC); 3716 3717 /* 3718 * set default s_li_wait_mult for lazyinit, for the case there is 3719 * no mount option specified. 3720 */ 3721 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3722 3723 if (sbi->s_es->s_mount_opts[0]) { 3724 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3725 sizeof(sbi->s_es->s_mount_opts), 3726 GFP_KERNEL); 3727 if (!s_mount_opts) 3728 goto failed_mount; 3729 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3730 &journal_ioprio, 0)) { 3731 ext4_msg(sb, KERN_WARNING, 3732 "failed to parse options in superblock: %s", 3733 s_mount_opts); 3734 } 3735 kfree(s_mount_opts); 3736 } 3737 sbi->s_def_mount_opt = sbi->s_mount_opt; 3738 if (!parse_options((char *) data, sb, &journal_devnum, 3739 &journal_ioprio, 0)) 3740 goto failed_mount; 3741 3742 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3743 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3744 "with data=journal disables delayed " 3745 "allocation and O_DIRECT support!\n"); 3746 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3747 ext4_msg(sb, KERN_ERR, "can't mount with " 3748 "both data=journal and delalloc"); 3749 goto failed_mount; 3750 } 3751 if (test_opt(sb, DIOREAD_NOLOCK)) { 3752 ext4_msg(sb, KERN_ERR, "can't mount with " 3753 "both data=journal and dioread_nolock"); 3754 goto failed_mount; 3755 } 3756 if (test_opt(sb, DAX)) { 3757 ext4_msg(sb, KERN_ERR, "can't mount with " 3758 "both data=journal and dax"); 3759 goto failed_mount; 3760 } 3761 if (ext4_has_feature_encrypt(sb)) { 3762 ext4_msg(sb, KERN_WARNING, 3763 "encrypted files will use data=ordered " 3764 "instead of data journaling mode"); 3765 } 3766 if (test_opt(sb, DELALLOC)) 3767 clear_opt(sb, DELALLOC); 3768 } else { 3769 sb->s_iflags |= SB_I_CGROUPWB; 3770 } 3771 3772 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3773 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3774 3775 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3776 (ext4_has_compat_features(sb) || 3777 ext4_has_ro_compat_features(sb) || 3778 ext4_has_incompat_features(sb))) 3779 ext4_msg(sb, KERN_WARNING, 3780 "feature flags set on rev 0 fs, " 3781 "running e2fsck is recommended"); 3782 3783 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3784 set_opt2(sb, HURD_COMPAT); 3785 if (ext4_has_feature_64bit(sb)) { 3786 ext4_msg(sb, KERN_ERR, 3787 "The Hurd can't support 64-bit file systems"); 3788 goto failed_mount; 3789 } 3790 3791 /* 3792 * ea_inode feature uses l_i_version field which is not 3793 * available in HURD_COMPAT mode. 3794 */ 3795 if (ext4_has_feature_ea_inode(sb)) { 3796 ext4_msg(sb, KERN_ERR, 3797 "ea_inode feature is not supported for Hurd"); 3798 goto failed_mount; 3799 } 3800 } 3801 3802 if (IS_EXT2_SB(sb)) { 3803 if (ext2_feature_set_ok(sb)) 3804 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3805 "using the ext4 subsystem"); 3806 else { 3807 /* 3808 * If we're probing be silent, if this looks like 3809 * it's actually an ext[34] filesystem. 3810 */ 3811 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3812 goto failed_mount; 3813 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3814 "to feature incompatibilities"); 3815 goto failed_mount; 3816 } 3817 } 3818 3819 if (IS_EXT3_SB(sb)) { 3820 if (ext3_feature_set_ok(sb)) 3821 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3822 "using the ext4 subsystem"); 3823 else { 3824 /* 3825 * If we're probing be silent, if this looks like 3826 * it's actually an ext4 filesystem. 3827 */ 3828 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3829 goto failed_mount; 3830 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3831 "to feature incompatibilities"); 3832 goto failed_mount; 3833 } 3834 } 3835 3836 /* 3837 * Check feature flags regardless of the revision level, since we 3838 * previously didn't change the revision level when setting the flags, 3839 * so there is a chance incompat flags are set on a rev 0 filesystem. 3840 */ 3841 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3842 goto failed_mount; 3843 3844 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3845 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3846 blocksize > EXT4_MAX_BLOCK_SIZE) { 3847 ext4_msg(sb, KERN_ERR, 3848 "Unsupported filesystem blocksize %d (%d log_block_size)", 3849 blocksize, le32_to_cpu(es->s_log_block_size)); 3850 goto failed_mount; 3851 } 3852 if (le32_to_cpu(es->s_log_block_size) > 3853 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3854 ext4_msg(sb, KERN_ERR, 3855 "Invalid log block size: %u", 3856 le32_to_cpu(es->s_log_block_size)); 3857 goto failed_mount; 3858 } 3859 if (le32_to_cpu(es->s_log_cluster_size) > 3860 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3861 ext4_msg(sb, KERN_ERR, 3862 "Invalid log cluster size: %u", 3863 le32_to_cpu(es->s_log_cluster_size)); 3864 goto failed_mount; 3865 } 3866 3867 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3868 ext4_msg(sb, KERN_ERR, 3869 "Number of reserved GDT blocks insanely large: %d", 3870 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3871 goto failed_mount; 3872 } 3873 3874 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3875 if (ext4_has_feature_inline_data(sb)) { 3876 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3877 " that may contain inline data"); 3878 goto failed_mount; 3879 } 3880 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3881 ext4_msg(sb, KERN_ERR, 3882 "DAX unsupported by block device."); 3883 goto failed_mount; 3884 } 3885 } 3886 3887 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3888 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3889 es->s_encryption_level); 3890 goto failed_mount; 3891 } 3892 3893 if (sb->s_blocksize != blocksize) { 3894 /* Validate the filesystem blocksize */ 3895 if (!sb_set_blocksize(sb, blocksize)) { 3896 ext4_msg(sb, KERN_ERR, "bad block size %d", 3897 blocksize); 3898 goto failed_mount; 3899 } 3900 3901 brelse(bh); 3902 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3903 offset = do_div(logical_sb_block, blocksize); 3904 bh = sb_bread_unmovable(sb, logical_sb_block); 3905 if (!bh) { 3906 ext4_msg(sb, KERN_ERR, 3907 "Can't read superblock on 2nd try"); 3908 goto failed_mount; 3909 } 3910 es = (struct ext4_super_block *)(bh->b_data + offset); 3911 sbi->s_es = es; 3912 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3913 ext4_msg(sb, KERN_ERR, 3914 "Magic mismatch, very weird!"); 3915 goto failed_mount; 3916 } 3917 } 3918 3919 has_huge_files = ext4_has_feature_huge_file(sb); 3920 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3921 has_huge_files); 3922 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3923 3924 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3925 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3926 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3927 } else { 3928 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3929 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3930 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3931 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3932 sbi->s_first_ino); 3933 goto failed_mount; 3934 } 3935 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3936 (!is_power_of_2(sbi->s_inode_size)) || 3937 (sbi->s_inode_size > blocksize)) { 3938 ext4_msg(sb, KERN_ERR, 3939 "unsupported inode size: %d", 3940 sbi->s_inode_size); 3941 goto failed_mount; 3942 } 3943 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3944 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3945 } 3946 3947 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3948 if (ext4_has_feature_64bit(sb)) { 3949 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3950 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3951 !is_power_of_2(sbi->s_desc_size)) { 3952 ext4_msg(sb, KERN_ERR, 3953 "unsupported descriptor size %lu", 3954 sbi->s_desc_size); 3955 goto failed_mount; 3956 } 3957 } else 3958 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3959 3960 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3961 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3962 3963 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3964 if (sbi->s_inodes_per_block == 0) 3965 goto cantfind_ext4; 3966 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3967 sbi->s_inodes_per_group > blocksize * 8) { 3968 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3969 sbi->s_blocks_per_group); 3970 goto failed_mount; 3971 } 3972 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3973 sbi->s_inodes_per_block; 3974 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3975 sbi->s_sbh = bh; 3976 sbi->s_mount_state = le16_to_cpu(es->s_state); 3977 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3978 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3979 3980 for (i = 0; i < 4; i++) 3981 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3982 sbi->s_def_hash_version = es->s_def_hash_version; 3983 if (ext4_has_feature_dir_index(sb)) { 3984 i = le32_to_cpu(es->s_flags); 3985 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3986 sbi->s_hash_unsigned = 3; 3987 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3988 #ifdef __CHAR_UNSIGNED__ 3989 if (!sb_rdonly(sb)) 3990 es->s_flags |= 3991 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3992 sbi->s_hash_unsigned = 3; 3993 #else 3994 if (!sb_rdonly(sb)) 3995 es->s_flags |= 3996 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3997 #endif 3998 } 3999 } 4000 4001 /* Handle clustersize */ 4002 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4003 has_bigalloc = ext4_has_feature_bigalloc(sb); 4004 if (has_bigalloc) { 4005 if (clustersize < blocksize) { 4006 ext4_msg(sb, KERN_ERR, 4007 "cluster size (%d) smaller than " 4008 "block size (%d)", clustersize, blocksize); 4009 goto failed_mount; 4010 } 4011 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4012 le32_to_cpu(es->s_log_block_size); 4013 sbi->s_clusters_per_group = 4014 le32_to_cpu(es->s_clusters_per_group); 4015 if (sbi->s_clusters_per_group > blocksize * 8) { 4016 ext4_msg(sb, KERN_ERR, 4017 "#clusters per group too big: %lu", 4018 sbi->s_clusters_per_group); 4019 goto failed_mount; 4020 } 4021 if (sbi->s_blocks_per_group != 4022 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4023 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4024 "clusters per group (%lu) inconsistent", 4025 sbi->s_blocks_per_group, 4026 sbi->s_clusters_per_group); 4027 goto failed_mount; 4028 } 4029 } else { 4030 if (clustersize != blocksize) { 4031 ext4_msg(sb, KERN_ERR, 4032 "fragment/cluster size (%d) != " 4033 "block size (%d)", clustersize, blocksize); 4034 goto failed_mount; 4035 } 4036 if (sbi->s_blocks_per_group > blocksize * 8) { 4037 ext4_msg(sb, KERN_ERR, 4038 "#blocks per group too big: %lu", 4039 sbi->s_blocks_per_group); 4040 goto failed_mount; 4041 } 4042 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4043 sbi->s_cluster_bits = 0; 4044 } 4045 sbi->s_cluster_ratio = clustersize / blocksize; 4046 4047 /* Do we have standard group size of clustersize * 8 blocks ? */ 4048 if (sbi->s_blocks_per_group == clustersize << 3) 4049 set_opt2(sb, STD_GROUP_SIZE); 4050 4051 /* 4052 * Test whether we have more sectors than will fit in sector_t, 4053 * and whether the max offset is addressable by the page cache. 4054 */ 4055 err = generic_check_addressable(sb->s_blocksize_bits, 4056 ext4_blocks_count(es)); 4057 if (err) { 4058 ext4_msg(sb, KERN_ERR, "filesystem" 4059 " too large to mount safely on this system"); 4060 if (sizeof(sector_t) < 8) 4061 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 4062 goto failed_mount; 4063 } 4064 4065 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4066 goto cantfind_ext4; 4067 4068 /* check blocks count against device size */ 4069 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4070 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4071 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4072 "exceeds size of device (%llu blocks)", 4073 ext4_blocks_count(es), blocks_count); 4074 goto failed_mount; 4075 } 4076 4077 /* 4078 * It makes no sense for the first data block to be beyond the end 4079 * of the filesystem. 4080 */ 4081 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4082 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4083 "block %u is beyond end of filesystem (%llu)", 4084 le32_to_cpu(es->s_first_data_block), 4085 ext4_blocks_count(es)); 4086 goto failed_mount; 4087 } 4088 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4089 (sbi->s_cluster_ratio == 1)) { 4090 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4091 "block is 0 with a 1k block and cluster size"); 4092 goto failed_mount; 4093 } 4094 4095 blocks_count = (ext4_blocks_count(es) - 4096 le32_to_cpu(es->s_first_data_block) + 4097 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4098 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4099 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4100 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4101 "(block count %llu, first data block %u, " 4102 "blocks per group %lu)", sbi->s_groups_count, 4103 ext4_blocks_count(es), 4104 le32_to_cpu(es->s_first_data_block), 4105 EXT4_BLOCKS_PER_GROUP(sb)); 4106 goto failed_mount; 4107 } 4108 sbi->s_groups_count = blocks_count; 4109 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4110 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4111 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4112 le32_to_cpu(es->s_inodes_count)) { 4113 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4114 le32_to_cpu(es->s_inodes_count), 4115 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4116 ret = -EINVAL; 4117 goto failed_mount; 4118 } 4119 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4120 EXT4_DESC_PER_BLOCK(sb); 4121 if (ext4_has_feature_meta_bg(sb)) { 4122 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4123 ext4_msg(sb, KERN_WARNING, 4124 "first meta block group too large: %u " 4125 "(group descriptor block count %u)", 4126 le32_to_cpu(es->s_first_meta_bg), db_count); 4127 goto failed_mount; 4128 } 4129 } 4130 sbi->s_group_desc = kvmalloc_array(db_count, 4131 sizeof(struct buffer_head *), 4132 GFP_KERNEL); 4133 if (sbi->s_group_desc == NULL) { 4134 ext4_msg(sb, KERN_ERR, "not enough memory"); 4135 ret = -ENOMEM; 4136 goto failed_mount; 4137 } 4138 4139 bgl_lock_init(sbi->s_blockgroup_lock); 4140 4141 /* Pre-read the descriptors into the buffer cache */ 4142 for (i = 0; i < db_count; i++) { 4143 block = descriptor_loc(sb, logical_sb_block, i); 4144 sb_breadahead(sb, block); 4145 } 4146 4147 for (i = 0; i < db_count; i++) { 4148 block = descriptor_loc(sb, logical_sb_block, i); 4149 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4150 if (!sbi->s_group_desc[i]) { 4151 ext4_msg(sb, KERN_ERR, 4152 "can't read group descriptor %d", i); 4153 db_count = i; 4154 goto failed_mount2; 4155 } 4156 } 4157 sbi->s_gdb_count = db_count; 4158 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4159 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4160 ret = -EFSCORRUPTED; 4161 goto failed_mount2; 4162 } 4163 4164 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4165 4166 /* Register extent status tree shrinker */ 4167 if (ext4_es_register_shrinker(sbi)) 4168 goto failed_mount3; 4169 4170 sbi->s_stripe = ext4_get_stripe_size(sbi); 4171 sbi->s_extent_max_zeroout_kb = 32; 4172 4173 /* 4174 * set up enough so that it can read an inode 4175 */ 4176 sb->s_op = &ext4_sops; 4177 sb->s_export_op = &ext4_export_ops; 4178 sb->s_xattr = ext4_xattr_handlers; 4179 #ifdef CONFIG_FS_ENCRYPTION 4180 sb->s_cop = &ext4_cryptops; 4181 #endif 4182 #ifdef CONFIG_QUOTA 4183 sb->dq_op = &ext4_quota_operations; 4184 if (ext4_has_feature_quota(sb)) 4185 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4186 else 4187 sb->s_qcop = &ext4_qctl_operations; 4188 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4189 #endif 4190 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4191 4192 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4193 mutex_init(&sbi->s_orphan_lock); 4194 4195 sb->s_root = NULL; 4196 4197 needs_recovery = (es->s_last_orphan != 0 || 4198 ext4_has_feature_journal_needs_recovery(sb)); 4199 4200 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4201 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4202 goto failed_mount3a; 4203 4204 /* 4205 * The first inode we look at is the journal inode. Don't try 4206 * root first: it may be modified in the journal! 4207 */ 4208 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4209 err = ext4_load_journal(sb, es, journal_devnum); 4210 if (err) 4211 goto failed_mount3a; 4212 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4213 ext4_has_feature_journal_needs_recovery(sb)) { 4214 ext4_msg(sb, KERN_ERR, "required journal recovery " 4215 "suppressed and not mounted read-only"); 4216 goto failed_mount_wq; 4217 } else { 4218 /* Nojournal mode, all journal mount options are illegal */ 4219 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4220 ext4_msg(sb, KERN_ERR, "can't mount with " 4221 "journal_checksum, fs mounted w/o journal"); 4222 goto failed_mount_wq; 4223 } 4224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4225 ext4_msg(sb, KERN_ERR, "can't mount with " 4226 "journal_async_commit, fs mounted w/o journal"); 4227 goto failed_mount_wq; 4228 } 4229 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4230 ext4_msg(sb, KERN_ERR, "can't mount with " 4231 "commit=%lu, fs mounted w/o journal", 4232 sbi->s_commit_interval / HZ); 4233 goto failed_mount_wq; 4234 } 4235 if (EXT4_MOUNT_DATA_FLAGS & 4236 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4237 ext4_msg(sb, KERN_ERR, "can't mount with " 4238 "data=, fs mounted w/o journal"); 4239 goto failed_mount_wq; 4240 } 4241 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4242 clear_opt(sb, JOURNAL_CHECKSUM); 4243 clear_opt(sb, DATA_FLAGS); 4244 sbi->s_journal = NULL; 4245 needs_recovery = 0; 4246 goto no_journal; 4247 } 4248 4249 if (ext4_has_feature_64bit(sb) && 4250 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4251 JBD2_FEATURE_INCOMPAT_64BIT)) { 4252 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4253 goto failed_mount_wq; 4254 } 4255 4256 if (!set_journal_csum_feature_set(sb)) { 4257 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4258 "feature set"); 4259 goto failed_mount_wq; 4260 } 4261 4262 /* We have now updated the journal if required, so we can 4263 * validate the data journaling mode. */ 4264 switch (test_opt(sb, DATA_FLAGS)) { 4265 case 0: 4266 /* No mode set, assume a default based on the journal 4267 * capabilities: ORDERED_DATA if the journal can 4268 * cope, else JOURNAL_DATA 4269 */ 4270 if (jbd2_journal_check_available_features 4271 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4272 set_opt(sb, ORDERED_DATA); 4273 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4274 } else { 4275 set_opt(sb, JOURNAL_DATA); 4276 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4277 } 4278 break; 4279 4280 case EXT4_MOUNT_ORDERED_DATA: 4281 case EXT4_MOUNT_WRITEBACK_DATA: 4282 if (!jbd2_journal_check_available_features 4283 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4284 ext4_msg(sb, KERN_ERR, "Journal does not support " 4285 "requested data journaling mode"); 4286 goto failed_mount_wq; 4287 } 4288 default: 4289 break; 4290 } 4291 4292 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4293 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4294 ext4_msg(sb, KERN_ERR, "can't mount with " 4295 "journal_async_commit in data=ordered mode"); 4296 goto failed_mount_wq; 4297 } 4298 4299 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4300 4301 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4302 4303 no_journal: 4304 if (!test_opt(sb, NO_MBCACHE)) { 4305 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4306 if (!sbi->s_ea_block_cache) { 4307 ext4_msg(sb, KERN_ERR, 4308 "Failed to create ea_block_cache"); 4309 goto failed_mount_wq; 4310 } 4311 4312 if (ext4_has_feature_ea_inode(sb)) { 4313 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4314 if (!sbi->s_ea_inode_cache) { 4315 ext4_msg(sb, KERN_ERR, 4316 "Failed to create ea_inode_cache"); 4317 goto failed_mount_wq; 4318 } 4319 } 4320 } 4321 4322 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4323 (blocksize != PAGE_SIZE)) { 4324 ext4_msg(sb, KERN_ERR, 4325 "Unsupported blocksize for fs encryption"); 4326 goto failed_mount_wq; 4327 } 4328 4329 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4330 !ext4_has_feature_encrypt(sb)) { 4331 ext4_set_feature_encrypt(sb); 4332 ext4_commit_super(sb, 1); 4333 } 4334 4335 /* 4336 * Get the # of file system overhead blocks from the 4337 * superblock if present. 4338 */ 4339 if (es->s_overhead_clusters) 4340 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4341 else { 4342 err = ext4_calculate_overhead(sb); 4343 if (err) 4344 goto failed_mount_wq; 4345 } 4346 4347 /* 4348 * The maximum number of concurrent works can be high and 4349 * concurrency isn't really necessary. Limit it to 1. 4350 */ 4351 EXT4_SB(sb)->rsv_conversion_wq = 4352 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4353 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4354 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4355 ret = -ENOMEM; 4356 goto failed_mount4; 4357 } 4358 4359 /* 4360 * The jbd2_journal_load will have done any necessary log recovery, 4361 * so we can safely mount the rest of the filesystem now. 4362 */ 4363 4364 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4365 if (IS_ERR(root)) { 4366 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4367 ret = PTR_ERR(root); 4368 root = NULL; 4369 goto failed_mount4; 4370 } 4371 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4372 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4373 iput(root); 4374 goto failed_mount4; 4375 } 4376 sb->s_root = d_make_root(root); 4377 if (!sb->s_root) { 4378 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4379 ret = -ENOMEM; 4380 goto failed_mount4; 4381 } 4382 4383 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4384 if (ret == -EROFS) { 4385 sb->s_flags |= SB_RDONLY; 4386 ret = 0; 4387 } else if (ret) 4388 goto failed_mount4a; 4389 4390 /* determine the minimum size of new large inodes, if present */ 4391 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4392 sbi->s_want_extra_isize == 0) { 4393 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4394 EXT4_GOOD_OLD_INODE_SIZE; 4395 if (ext4_has_feature_extra_isize(sb)) { 4396 if (sbi->s_want_extra_isize < 4397 le16_to_cpu(es->s_want_extra_isize)) 4398 sbi->s_want_extra_isize = 4399 le16_to_cpu(es->s_want_extra_isize); 4400 if (sbi->s_want_extra_isize < 4401 le16_to_cpu(es->s_min_extra_isize)) 4402 sbi->s_want_extra_isize = 4403 le16_to_cpu(es->s_min_extra_isize); 4404 } 4405 } 4406 /* Check if enough inode space is available */ 4407 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4408 sbi->s_inode_size) { 4409 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4410 EXT4_GOOD_OLD_INODE_SIZE; 4411 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4412 "available"); 4413 } 4414 4415 ext4_set_resv_clusters(sb); 4416 4417 err = ext4_setup_system_zone(sb); 4418 if (err) { 4419 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4420 "zone (%d)", err); 4421 goto failed_mount4a; 4422 } 4423 4424 ext4_ext_init(sb); 4425 err = ext4_mb_init(sb); 4426 if (err) { 4427 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4428 err); 4429 goto failed_mount5; 4430 } 4431 4432 block = ext4_count_free_clusters(sb); 4433 ext4_free_blocks_count_set(sbi->s_es, 4434 EXT4_C2B(sbi, block)); 4435 ext4_superblock_csum_set(sb); 4436 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4437 GFP_KERNEL); 4438 if (!err) { 4439 unsigned long freei = ext4_count_free_inodes(sb); 4440 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4441 ext4_superblock_csum_set(sb); 4442 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4443 GFP_KERNEL); 4444 } 4445 if (!err) 4446 err = percpu_counter_init(&sbi->s_dirs_counter, 4447 ext4_count_dirs(sb), GFP_KERNEL); 4448 if (!err) 4449 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4450 GFP_KERNEL); 4451 if (!err) 4452 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4453 4454 if (err) { 4455 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4456 goto failed_mount6; 4457 } 4458 4459 if (ext4_has_feature_flex_bg(sb)) 4460 if (!ext4_fill_flex_info(sb)) { 4461 ext4_msg(sb, KERN_ERR, 4462 "unable to initialize " 4463 "flex_bg meta info!"); 4464 goto failed_mount6; 4465 } 4466 4467 err = ext4_register_li_request(sb, first_not_zeroed); 4468 if (err) 4469 goto failed_mount6; 4470 4471 err = ext4_register_sysfs(sb); 4472 if (err) 4473 goto failed_mount7; 4474 4475 #ifdef CONFIG_QUOTA 4476 /* Enable quota usage during mount. */ 4477 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4478 err = ext4_enable_quotas(sb); 4479 if (err) 4480 goto failed_mount8; 4481 } 4482 #endif /* CONFIG_QUOTA */ 4483 4484 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4485 ext4_orphan_cleanup(sb, es); 4486 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4487 if (needs_recovery) { 4488 ext4_msg(sb, KERN_INFO, "recovery complete"); 4489 ext4_mark_recovery_complete(sb, es); 4490 } 4491 if (EXT4_SB(sb)->s_journal) { 4492 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4493 descr = " journalled data mode"; 4494 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4495 descr = " ordered data mode"; 4496 else 4497 descr = " writeback data mode"; 4498 } else 4499 descr = "out journal"; 4500 4501 if (test_opt(sb, DISCARD)) { 4502 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4503 if (!blk_queue_discard(q)) 4504 ext4_msg(sb, KERN_WARNING, 4505 "mounting with \"discard\" option, but " 4506 "the device does not support discard"); 4507 } 4508 4509 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4510 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4511 "Opts: %.*s%s%s", descr, 4512 (int) sizeof(sbi->s_es->s_mount_opts), 4513 sbi->s_es->s_mount_opts, 4514 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4515 4516 if (es->s_error_count) 4517 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4518 4519 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4520 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4521 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4522 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4523 4524 kfree(orig_data); 4525 return 0; 4526 4527 cantfind_ext4: 4528 if (!silent) 4529 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4530 goto failed_mount; 4531 4532 #ifdef CONFIG_QUOTA 4533 failed_mount8: 4534 ext4_unregister_sysfs(sb); 4535 #endif 4536 failed_mount7: 4537 ext4_unregister_li_request(sb); 4538 failed_mount6: 4539 ext4_mb_release(sb); 4540 if (sbi->s_flex_groups) 4541 kvfree(sbi->s_flex_groups); 4542 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4543 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4544 percpu_counter_destroy(&sbi->s_dirs_counter); 4545 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4546 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 4547 failed_mount5: 4548 ext4_ext_release(sb); 4549 ext4_release_system_zone(sb); 4550 failed_mount4a: 4551 dput(sb->s_root); 4552 sb->s_root = NULL; 4553 failed_mount4: 4554 ext4_msg(sb, KERN_ERR, "mount failed"); 4555 if (EXT4_SB(sb)->rsv_conversion_wq) 4556 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4557 failed_mount_wq: 4558 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4559 sbi->s_ea_inode_cache = NULL; 4560 4561 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4562 sbi->s_ea_block_cache = NULL; 4563 4564 if (sbi->s_journal) { 4565 jbd2_journal_destroy(sbi->s_journal); 4566 sbi->s_journal = NULL; 4567 } 4568 failed_mount3a: 4569 ext4_es_unregister_shrinker(sbi); 4570 failed_mount3: 4571 del_timer_sync(&sbi->s_err_report); 4572 if (sbi->s_mmp_tsk) 4573 kthread_stop(sbi->s_mmp_tsk); 4574 failed_mount2: 4575 for (i = 0; i < db_count; i++) 4576 brelse(sbi->s_group_desc[i]); 4577 kvfree(sbi->s_group_desc); 4578 failed_mount: 4579 if (sbi->s_chksum_driver) 4580 crypto_free_shash(sbi->s_chksum_driver); 4581 #ifdef CONFIG_QUOTA 4582 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4583 kfree(sbi->s_qf_names[i]); 4584 #endif 4585 ext4_blkdev_remove(sbi); 4586 brelse(bh); 4587 out_fail: 4588 sb->s_fs_info = NULL; 4589 kfree(sbi->s_blockgroup_lock); 4590 out_free_base: 4591 kfree(sbi); 4592 kfree(orig_data); 4593 fs_put_dax(dax_dev); 4594 return err ? err : ret; 4595 } 4596 4597 /* 4598 * Setup any per-fs journal parameters now. We'll do this both on 4599 * initial mount, once the journal has been initialised but before we've 4600 * done any recovery; and again on any subsequent remount. 4601 */ 4602 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4603 { 4604 struct ext4_sb_info *sbi = EXT4_SB(sb); 4605 4606 journal->j_commit_interval = sbi->s_commit_interval; 4607 journal->j_min_batch_time = sbi->s_min_batch_time; 4608 journal->j_max_batch_time = sbi->s_max_batch_time; 4609 4610 write_lock(&journal->j_state_lock); 4611 if (test_opt(sb, BARRIER)) 4612 journal->j_flags |= JBD2_BARRIER; 4613 else 4614 journal->j_flags &= ~JBD2_BARRIER; 4615 if (test_opt(sb, DATA_ERR_ABORT)) 4616 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4617 else 4618 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4619 write_unlock(&journal->j_state_lock); 4620 } 4621 4622 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4623 unsigned int journal_inum) 4624 { 4625 struct inode *journal_inode; 4626 4627 /* 4628 * Test for the existence of a valid inode on disk. Bad things 4629 * happen if we iget() an unused inode, as the subsequent iput() 4630 * will try to delete it. 4631 */ 4632 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4633 if (IS_ERR(journal_inode)) { 4634 ext4_msg(sb, KERN_ERR, "no journal found"); 4635 return NULL; 4636 } 4637 if (!journal_inode->i_nlink) { 4638 make_bad_inode(journal_inode); 4639 iput(journal_inode); 4640 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4641 return NULL; 4642 } 4643 4644 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4645 journal_inode, journal_inode->i_size); 4646 if (!S_ISREG(journal_inode->i_mode)) { 4647 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4648 iput(journal_inode); 4649 return NULL; 4650 } 4651 return journal_inode; 4652 } 4653 4654 static journal_t *ext4_get_journal(struct super_block *sb, 4655 unsigned int journal_inum) 4656 { 4657 struct inode *journal_inode; 4658 journal_t *journal; 4659 4660 BUG_ON(!ext4_has_feature_journal(sb)); 4661 4662 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4663 if (!journal_inode) 4664 return NULL; 4665 4666 journal = jbd2_journal_init_inode(journal_inode); 4667 if (!journal) { 4668 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4669 iput(journal_inode); 4670 return NULL; 4671 } 4672 journal->j_private = sb; 4673 ext4_init_journal_params(sb, journal); 4674 return journal; 4675 } 4676 4677 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4678 dev_t j_dev) 4679 { 4680 struct buffer_head *bh; 4681 journal_t *journal; 4682 ext4_fsblk_t start; 4683 ext4_fsblk_t len; 4684 int hblock, blocksize; 4685 ext4_fsblk_t sb_block; 4686 unsigned long offset; 4687 struct ext4_super_block *es; 4688 struct block_device *bdev; 4689 4690 BUG_ON(!ext4_has_feature_journal(sb)); 4691 4692 bdev = ext4_blkdev_get(j_dev, sb); 4693 if (bdev == NULL) 4694 return NULL; 4695 4696 blocksize = sb->s_blocksize; 4697 hblock = bdev_logical_block_size(bdev); 4698 if (blocksize < hblock) { 4699 ext4_msg(sb, KERN_ERR, 4700 "blocksize too small for journal device"); 4701 goto out_bdev; 4702 } 4703 4704 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4705 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4706 set_blocksize(bdev, blocksize); 4707 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4708 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4709 "external journal"); 4710 goto out_bdev; 4711 } 4712 4713 es = (struct ext4_super_block *) (bh->b_data + offset); 4714 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4715 !(le32_to_cpu(es->s_feature_incompat) & 4716 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4717 ext4_msg(sb, KERN_ERR, "external journal has " 4718 "bad superblock"); 4719 brelse(bh); 4720 goto out_bdev; 4721 } 4722 4723 if ((le32_to_cpu(es->s_feature_ro_compat) & 4724 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4725 es->s_checksum != ext4_superblock_csum(sb, es)) { 4726 ext4_msg(sb, KERN_ERR, "external journal has " 4727 "corrupt superblock"); 4728 brelse(bh); 4729 goto out_bdev; 4730 } 4731 4732 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4733 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4734 brelse(bh); 4735 goto out_bdev; 4736 } 4737 4738 len = ext4_blocks_count(es); 4739 start = sb_block + 1; 4740 brelse(bh); /* we're done with the superblock */ 4741 4742 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4743 start, len, blocksize); 4744 if (!journal) { 4745 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4746 goto out_bdev; 4747 } 4748 journal->j_private = sb; 4749 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4750 wait_on_buffer(journal->j_sb_buffer); 4751 if (!buffer_uptodate(journal->j_sb_buffer)) { 4752 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4753 goto out_journal; 4754 } 4755 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4756 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4757 "user (unsupported) - %d", 4758 be32_to_cpu(journal->j_superblock->s_nr_users)); 4759 goto out_journal; 4760 } 4761 EXT4_SB(sb)->journal_bdev = bdev; 4762 ext4_init_journal_params(sb, journal); 4763 return journal; 4764 4765 out_journal: 4766 jbd2_journal_destroy(journal); 4767 out_bdev: 4768 ext4_blkdev_put(bdev); 4769 return NULL; 4770 } 4771 4772 static int ext4_load_journal(struct super_block *sb, 4773 struct ext4_super_block *es, 4774 unsigned long journal_devnum) 4775 { 4776 journal_t *journal; 4777 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4778 dev_t journal_dev; 4779 int err = 0; 4780 int really_read_only; 4781 4782 BUG_ON(!ext4_has_feature_journal(sb)); 4783 4784 if (journal_devnum && 4785 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4786 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4787 "numbers have changed"); 4788 journal_dev = new_decode_dev(journal_devnum); 4789 } else 4790 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4791 4792 really_read_only = bdev_read_only(sb->s_bdev); 4793 4794 /* 4795 * Are we loading a blank journal or performing recovery after a 4796 * crash? For recovery, we need to check in advance whether we 4797 * can get read-write access to the device. 4798 */ 4799 if (ext4_has_feature_journal_needs_recovery(sb)) { 4800 if (sb_rdonly(sb)) { 4801 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4802 "required on readonly filesystem"); 4803 if (really_read_only) { 4804 ext4_msg(sb, KERN_ERR, "write access " 4805 "unavailable, cannot proceed " 4806 "(try mounting with noload)"); 4807 return -EROFS; 4808 } 4809 ext4_msg(sb, KERN_INFO, "write access will " 4810 "be enabled during recovery"); 4811 } 4812 } 4813 4814 if (journal_inum && journal_dev) { 4815 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4816 "and inode journals!"); 4817 return -EINVAL; 4818 } 4819 4820 if (journal_inum) { 4821 if (!(journal = ext4_get_journal(sb, journal_inum))) 4822 return -EINVAL; 4823 } else { 4824 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4825 return -EINVAL; 4826 } 4827 4828 if (!(journal->j_flags & JBD2_BARRIER)) 4829 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4830 4831 if (!ext4_has_feature_journal_needs_recovery(sb)) 4832 err = jbd2_journal_wipe(journal, !really_read_only); 4833 if (!err) { 4834 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4835 if (save) 4836 memcpy(save, ((char *) es) + 4837 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4838 err = jbd2_journal_load(journal); 4839 if (save) 4840 memcpy(((char *) es) + EXT4_S_ERR_START, 4841 save, EXT4_S_ERR_LEN); 4842 kfree(save); 4843 } 4844 4845 if (err) { 4846 ext4_msg(sb, KERN_ERR, "error loading journal"); 4847 jbd2_journal_destroy(journal); 4848 return err; 4849 } 4850 4851 EXT4_SB(sb)->s_journal = journal; 4852 ext4_clear_journal_err(sb, es); 4853 4854 if (!really_read_only && journal_devnum && 4855 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4856 es->s_journal_dev = cpu_to_le32(journal_devnum); 4857 4858 /* Make sure we flush the recovery flag to disk. */ 4859 ext4_commit_super(sb, 1); 4860 } 4861 4862 return 0; 4863 } 4864 4865 static int ext4_commit_super(struct super_block *sb, int sync) 4866 { 4867 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4868 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4869 int error = 0; 4870 4871 if (!sbh || block_device_ejected(sb)) 4872 return error; 4873 4874 /* 4875 * The superblock bh should be mapped, but it might not be if the 4876 * device was hot-removed. Not much we can do but fail the I/O. 4877 */ 4878 if (!buffer_mapped(sbh)) 4879 return error; 4880 4881 /* 4882 * If the file system is mounted read-only, don't update the 4883 * superblock write time. This avoids updating the superblock 4884 * write time when we are mounting the root file system 4885 * read/only but we need to replay the journal; at that point, 4886 * for people who are east of GMT and who make their clock 4887 * tick in localtime for Windows bug-for-bug compatibility, 4888 * the clock is set in the future, and this will cause e2fsck 4889 * to complain and force a full file system check. 4890 */ 4891 if (!(sb->s_flags & SB_RDONLY)) 4892 ext4_update_tstamp(es, s_wtime); 4893 if (sb->s_bdev->bd_part) 4894 es->s_kbytes_written = 4895 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4896 ((part_stat_read(sb->s_bdev->bd_part, 4897 sectors[STAT_WRITE]) - 4898 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4899 else 4900 es->s_kbytes_written = 4901 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4902 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4903 ext4_free_blocks_count_set(es, 4904 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4905 &EXT4_SB(sb)->s_freeclusters_counter))); 4906 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4907 es->s_free_inodes_count = 4908 cpu_to_le32(percpu_counter_sum_positive( 4909 &EXT4_SB(sb)->s_freeinodes_counter)); 4910 BUFFER_TRACE(sbh, "marking dirty"); 4911 ext4_superblock_csum_set(sb); 4912 if (sync) 4913 lock_buffer(sbh); 4914 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 4915 /* 4916 * Oh, dear. A previous attempt to write the 4917 * superblock failed. This could happen because the 4918 * USB device was yanked out. Or it could happen to 4919 * be a transient write error and maybe the block will 4920 * be remapped. Nothing we can do but to retry the 4921 * write and hope for the best. 4922 */ 4923 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4924 "superblock detected"); 4925 clear_buffer_write_io_error(sbh); 4926 set_buffer_uptodate(sbh); 4927 } 4928 mark_buffer_dirty(sbh); 4929 if (sync) { 4930 unlock_buffer(sbh); 4931 error = __sync_dirty_buffer(sbh, 4932 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4933 if (buffer_write_io_error(sbh)) { 4934 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4935 "superblock"); 4936 clear_buffer_write_io_error(sbh); 4937 set_buffer_uptodate(sbh); 4938 } 4939 } 4940 return error; 4941 } 4942 4943 /* 4944 * Have we just finished recovery? If so, and if we are mounting (or 4945 * remounting) the filesystem readonly, then we will end up with a 4946 * consistent fs on disk. Record that fact. 4947 */ 4948 static void ext4_mark_recovery_complete(struct super_block *sb, 4949 struct ext4_super_block *es) 4950 { 4951 journal_t *journal = EXT4_SB(sb)->s_journal; 4952 4953 if (!ext4_has_feature_journal(sb)) { 4954 BUG_ON(journal != NULL); 4955 return; 4956 } 4957 jbd2_journal_lock_updates(journal); 4958 if (jbd2_journal_flush(journal) < 0) 4959 goto out; 4960 4961 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4962 ext4_clear_feature_journal_needs_recovery(sb); 4963 ext4_commit_super(sb, 1); 4964 } 4965 4966 out: 4967 jbd2_journal_unlock_updates(journal); 4968 } 4969 4970 /* 4971 * If we are mounting (or read-write remounting) a filesystem whose journal 4972 * has recorded an error from a previous lifetime, move that error to the 4973 * main filesystem now. 4974 */ 4975 static void ext4_clear_journal_err(struct super_block *sb, 4976 struct ext4_super_block *es) 4977 { 4978 journal_t *journal; 4979 int j_errno; 4980 const char *errstr; 4981 4982 BUG_ON(!ext4_has_feature_journal(sb)); 4983 4984 journal = EXT4_SB(sb)->s_journal; 4985 4986 /* 4987 * Now check for any error status which may have been recorded in the 4988 * journal by a prior ext4_error() or ext4_abort() 4989 */ 4990 4991 j_errno = jbd2_journal_errno(journal); 4992 if (j_errno) { 4993 char nbuf[16]; 4994 4995 errstr = ext4_decode_error(sb, j_errno, nbuf); 4996 ext4_warning(sb, "Filesystem error recorded " 4997 "from previous mount: %s", errstr); 4998 ext4_warning(sb, "Marking fs in need of filesystem check."); 4999 5000 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5001 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5002 ext4_commit_super(sb, 1); 5003 5004 jbd2_journal_clear_err(journal); 5005 jbd2_journal_update_sb_errno(journal); 5006 } 5007 } 5008 5009 /* 5010 * Force the running and committing transactions to commit, 5011 * and wait on the commit. 5012 */ 5013 int ext4_force_commit(struct super_block *sb) 5014 { 5015 journal_t *journal; 5016 5017 if (sb_rdonly(sb)) 5018 return 0; 5019 5020 journal = EXT4_SB(sb)->s_journal; 5021 return ext4_journal_force_commit(journal); 5022 } 5023 5024 static int ext4_sync_fs(struct super_block *sb, int wait) 5025 { 5026 int ret = 0; 5027 tid_t target; 5028 bool needs_barrier = false; 5029 struct ext4_sb_info *sbi = EXT4_SB(sb); 5030 5031 if (unlikely(ext4_forced_shutdown(sbi))) 5032 return 0; 5033 5034 trace_ext4_sync_fs(sb, wait); 5035 flush_workqueue(sbi->rsv_conversion_wq); 5036 /* 5037 * Writeback quota in non-journalled quota case - journalled quota has 5038 * no dirty dquots 5039 */ 5040 dquot_writeback_dquots(sb, -1); 5041 /* 5042 * Data writeback is possible w/o journal transaction, so barrier must 5043 * being sent at the end of the function. But we can skip it if 5044 * transaction_commit will do it for us. 5045 */ 5046 if (sbi->s_journal) { 5047 target = jbd2_get_latest_transaction(sbi->s_journal); 5048 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5049 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5050 needs_barrier = true; 5051 5052 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5053 if (wait) 5054 ret = jbd2_log_wait_commit(sbi->s_journal, 5055 target); 5056 } 5057 } else if (wait && test_opt(sb, BARRIER)) 5058 needs_barrier = true; 5059 if (needs_barrier) { 5060 int err; 5061 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5062 if (!ret) 5063 ret = err; 5064 } 5065 5066 return ret; 5067 } 5068 5069 /* 5070 * LVM calls this function before a (read-only) snapshot is created. This 5071 * gives us a chance to flush the journal completely and mark the fs clean. 5072 * 5073 * Note that only this function cannot bring a filesystem to be in a clean 5074 * state independently. It relies on upper layer to stop all data & metadata 5075 * modifications. 5076 */ 5077 static int ext4_freeze(struct super_block *sb) 5078 { 5079 int error = 0; 5080 journal_t *journal; 5081 5082 if (sb_rdonly(sb)) 5083 return 0; 5084 5085 journal = EXT4_SB(sb)->s_journal; 5086 5087 if (journal) { 5088 /* Now we set up the journal barrier. */ 5089 jbd2_journal_lock_updates(journal); 5090 5091 /* 5092 * Don't clear the needs_recovery flag if we failed to 5093 * flush the journal. 5094 */ 5095 error = jbd2_journal_flush(journal); 5096 if (error < 0) 5097 goto out; 5098 5099 /* Journal blocked and flushed, clear needs_recovery flag. */ 5100 ext4_clear_feature_journal_needs_recovery(sb); 5101 } 5102 5103 error = ext4_commit_super(sb, 1); 5104 out: 5105 if (journal) 5106 /* we rely on upper layer to stop further updates */ 5107 jbd2_journal_unlock_updates(journal); 5108 return error; 5109 } 5110 5111 /* 5112 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5113 * flag here, even though the filesystem is not technically dirty yet. 5114 */ 5115 static int ext4_unfreeze(struct super_block *sb) 5116 { 5117 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5118 return 0; 5119 5120 if (EXT4_SB(sb)->s_journal) { 5121 /* Reset the needs_recovery flag before the fs is unlocked. */ 5122 ext4_set_feature_journal_needs_recovery(sb); 5123 } 5124 5125 ext4_commit_super(sb, 1); 5126 return 0; 5127 } 5128 5129 /* 5130 * Structure to save mount options for ext4_remount's benefit 5131 */ 5132 struct ext4_mount_options { 5133 unsigned long s_mount_opt; 5134 unsigned long s_mount_opt2; 5135 kuid_t s_resuid; 5136 kgid_t s_resgid; 5137 unsigned long s_commit_interval; 5138 u32 s_min_batch_time, s_max_batch_time; 5139 #ifdef CONFIG_QUOTA 5140 int s_jquota_fmt; 5141 char *s_qf_names[EXT4_MAXQUOTAS]; 5142 #endif 5143 }; 5144 5145 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5146 { 5147 struct ext4_super_block *es; 5148 struct ext4_sb_info *sbi = EXT4_SB(sb); 5149 unsigned long old_sb_flags; 5150 struct ext4_mount_options old_opts; 5151 int enable_quota = 0; 5152 ext4_group_t g; 5153 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5154 int err = 0; 5155 #ifdef CONFIG_QUOTA 5156 int i, j; 5157 char *to_free[EXT4_MAXQUOTAS]; 5158 #endif 5159 char *orig_data = kstrdup(data, GFP_KERNEL); 5160 5161 if (data && !orig_data) 5162 return -ENOMEM; 5163 5164 /* Store the original options */ 5165 old_sb_flags = sb->s_flags; 5166 old_opts.s_mount_opt = sbi->s_mount_opt; 5167 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5168 old_opts.s_resuid = sbi->s_resuid; 5169 old_opts.s_resgid = sbi->s_resgid; 5170 old_opts.s_commit_interval = sbi->s_commit_interval; 5171 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5172 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5173 #ifdef CONFIG_QUOTA 5174 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5175 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5176 if (sbi->s_qf_names[i]) { 5177 char *qf_name = get_qf_name(sb, sbi, i); 5178 5179 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5180 if (!old_opts.s_qf_names[i]) { 5181 for (j = 0; j < i; j++) 5182 kfree(old_opts.s_qf_names[j]); 5183 kfree(orig_data); 5184 return -ENOMEM; 5185 } 5186 } else 5187 old_opts.s_qf_names[i] = NULL; 5188 #endif 5189 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5190 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5191 5192 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5193 err = -EINVAL; 5194 goto restore_opts; 5195 } 5196 5197 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5198 test_opt(sb, JOURNAL_CHECKSUM)) { 5199 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5200 "during remount not supported; ignoring"); 5201 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5202 } 5203 5204 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5205 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5206 ext4_msg(sb, KERN_ERR, "can't mount with " 5207 "both data=journal and delalloc"); 5208 err = -EINVAL; 5209 goto restore_opts; 5210 } 5211 if (test_opt(sb, DIOREAD_NOLOCK)) { 5212 ext4_msg(sb, KERN_ERR, "can't mount with " 5213 "both data=journal and dioread_nolock"); 5214 err = -EINVAL; 5215 goto restore_opts; 5216 } 5217 if (test_opt(sb, DAX)) { 5218 ext4_msg(sb, KERN_ERR, "can't mount with " 5219 "both data=journal and dax"); 5220 err = -EINVAL; 5221 goto restore_opts; 5222 } 5223 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5225 ext4_msg(sb, KERN_ERR, "can't mount with " 5226 "journal_async_commit in data=ordered mode"); 5227 err = -EINVAL; 5228 goto restore_opts; 5229 } 5230 } 5231 5232 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5233 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5234 err = -EINVAL; 5235 goto restore_opts; 5236 } 5237 5238 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5239 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5240 "dax flag with busy inodes while remounting"); 5241 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5242 } 5243 5244 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5245 ext4_abort(sb, "Abort forced by user"); 5246 5247 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5248 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5249 5250 es = sbi->s_es; 5251 5252 if (sbi->s_journal) { 5253 ext4_init_journal_params(sb, sbi->s_journal); 5254 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5255 } 5256 5257 if (*flags & SB_LAZYTIME) 5258 sb->s_flags |= SB_LAZYTIME; 5259 5260 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5261 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5262 err = -EROFS; 5263 goto restore_opts; 5264 } 5265 5266 if (*flags & SB_RDONLY) { 5267 err = sync_filesystem(sb); 5268 if (err < 0) 5269 goto restore_opts; 5270 err = dquot_suspend(sb, -1); 5271 if (err < 0) 5272 goto restore_opts; 5273 5274 /* 5275 * First of all, the unconditional stuff we have to do 5276 * to disable replay of the journal when we next remount 5277 */ 5278 sb->s_flags |= SB_RDONLY; 5279 5280 /* 5281 * OK, test if we are remounting a valid rw partition 5282 * readonly, and if so set the rdonly flag and then 5283 * mark the partition as valid again. 5284 */ 5285 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5286 (sbi->s_mount_state & EXT4_VALID_FS)) 5287 es->s_state = cpu_to_le16(sbi->s_mount_state); 5288 5289 if (sbi->s_journal) 5290 ext4_mark_recovery_complete(sb, es); 5291 if (sbi->s_mmp_tsk) 5292 kthread_stop(sbi->s_mmp_tsk); 5293 } else { 5294 /* Make sure we can mount this feature set readwrite */ 5295 if (ext4_has_feature_readonly(sb) || 5296 !ext4_feature_set_ok(sb, 0)) { 5297 err = -EROFS; 5298 goto restore_opts; 5299 } 5300 /* 5301 * Make sure the group descriptor checksums 5302 * are sane. If they aren't, refuse to remount r/w. 5303 */ 5304 for (g = 0; g < sbi->s_groups_count; g++) { 5305 struct ext4_group_desc *gdp = 5306 ext4_get_group_desc(sb, g, NULL); 5307 5308 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5309 ext4_msg(sb, KERN_ERR, 5310 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5311 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5312 le16_to_cpu(gdp->bg_checksum)); 5313 err = -EFSBADCRC; 5314 goto restore_opts; 5315 } 5316 } 5317 5318 /* 5319 * If we have an unprocessed orphan list hanging 5320 * around from a previously readonly bdev mount, 5321 * require a full umount/remount for now. 5322 */ 5323 if (es->s_last_orphan) { 5324 ext4_msg(sb, KERN_WARNING, "Couldn't " 5325 "remount RDWR because of unprocessed " 5326 "orphan inode list. Please " 5327 "umount/remount instead"); 5328 err = -EINVAL; 5329 goto restore_opts; 5330 } 5331 5332 /* 5333 * Mounting a RDONLY partition read-write, so reread 5334 * and store the current valid flag. (It may have 5335 * been changed by e2fsck since we originally mounted 5336 * the partition.) 5337 */ 5338 if (sbi->s_journal) 5339 ext4_clear_journal_err(sb, es); 5340 sbi->s_mount_state = le16_to_cpu(es->s_state); 5341 5342 err = ext4_setup_super(sb, es, 0); 5343 if (err) 5344 goto restore_opts; 5345 5346 sb->s_flags &= ~SB_RDONLY; 5347 if (ext4_has_feature_mmp(sb)) 5348 if (ext4_multi_mount_protect(sb, 5349 le64_to_cpu(es->s_mmp_block))) { 5350 err = -EROFS; 5351 goto restore_opts; 5352 } 5353 enable_quota = 1; 5354 } 5355 } 5356 5357 /* 5358 * Reinitialize lazy itable initialization thread based on 5359 * current settings 5360 */ 5361 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5362 ext4_unregister_li_request(sb); 5363 else { 5364 ext4_group_t first_not_zeroed; 5365 first_not_zeroed = ext4_has_uninit_itable(sb); 5366 ext4_register_li_request(sb, first_not_zeroed); 5367 } 5368 5369 ext4_setup_system_zone(sb); 5370 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5371 err = ext4_commit_super(sb, 1); 5372 if (err) 5373 goto restore_opts; 5374 } 5375 5376 #ifdef CONFIG_QUOTA 5377 /* Release old quota file names */ 5378 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5379 kfree(old_opts.s_qf_names[i]); 5380 if (enable_quota) { 5381 if (sb_any_quota_suspended(sb)) 5382 dquot_resume(sb, -1); 5383 else if (ext4_has_feature_quota(sb)) { 5384 err = ext4_enable_quotas(sb); 5385 if (err) 5386 goto restore_opts; 5387 } 5388 } 5389 #endif 5390 5391 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5392 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5393 kfree(orig_data); 5394 return 0; 5395 5396 restore_opts: 5397 sb->s_flags = old_sb_flags; 5398 sbi->s_mount_opt = old_opts.s_mount_opt; 5399 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5400 sbi->s_resuid = old_opts.s_resuid; 5401 sbi->s_resgid = old_opts.s_resgid; 5402 sbi->s_commit_interval = old_opts.s_commit_interval; 5403 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5404 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5405 #ifdef CONFIG_QUOTA 5406 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5407 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5408 to_free[i] = get_qf_name(sb, sbi, i); 5409 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5410 } 5411 synchronize_rcu(); 5412 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5413 kfree(to_free[i]); 5414 #endif 5415 kfree(orig_data); 5416 return err; 5417 } 5418 5419 #ifdef CONFIG_QUOTA 5420 static int ext4_statfs_project(struct super_block *sb, 5421 kprojid_t projid, struct kstatfs *buf) 5422 { 5423 struct kqid qid; 5424 struct dquot *dquot; 5425 u64 limit; 5426 u64 curblock; 5427 5428 qid = make_kqid_projid(projid); 5429 dquot = dqget(sb, qid); 5430 if (IS_ERR(dquot)) 5431 return PTR_ERR(dquot); 5432 spin_lock(&dquot->dq_dqb_lock); 5433 5434 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5435 dquot->dq_dqb.dqb_bsoftlimit : 5436 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5437 if (limit && buf->f_blocks > limit) { 5438 curblock = (dquot->dq_dqb.dqb_curspace + 5439 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5440 buf->f_blocks = limit; 5441 buf->f_bfree = buf->f_bavail = 5442 (buf->f_blocks > curblock) ? 5443 (buf->f_blocks - curblock) : 0; 5444 } 5445 5446 limit = dquot->dq_dqb.dqb_isoftlimit ? 5447 dquot->dq_dqb.dqb_isoftlimit : 5448 dquot->dq_dqb.dqb_ihardlimit; 5449 if (limit && buf->f_files > limit) { 5450 buf->f_files = limit; 5451 buf->f_ffree = 5452 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5453 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5454 } 5455 5456 spin_unlock(&dquot->dq_dqb_lock); 5457 dqput(dquot); 5458 return 0; 5459 } 5460 #endif 5461 5462 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5463 { 5464 struct super_block *sb = dentry->d_sb; 5465 struct ext4_sb_info *sbi = EXT4_SB(sb); 5466 struct ext4_super_block *es = sbi->s_es; 5467 ext4_fsblk_t overhead = 0, resv_blocks; 5468 u64 fsid; 5469 s64 bfree; 5470 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5471 5472 if (!test_opt(sb, MINIX_DF)) 5473 overhead = sbi->s_overhead; 5474 5475 buf->f_type = EXT4_SUPER_MAGIC; 5476 buf->f_bsize = sb->s_blocksize; 5477 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5478 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5479 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5480 /* prevent underflow in case that few free space is available */ 5481 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5482 buf->f_bavail = buf->f_bfree - 5483 (ext4_r_blocks_count(es) + resv_blocks); 5484 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5485 buf->f_bavail = 0; 5486 buf->f_files = le32_to_cpu(es->s_inodes_count); 5487 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5488 buf->f_namelen = EXT4_NAME_LEN; 5489 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5490 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5491 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5492 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5493 5494 #ifdef CONFIG_QUOTA 5495 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5496 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5497 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5498 #endif 5499 return 0; 5500 } 5501 5502 5503 #ifdef CONFIG_QUOTA 5504 5505 /* 5506 * Helper functions so that transaction is started before we acquire dqio_sem 5507 * to keep correct lock ordering of transaction > dqio_sem 5508 */ 5509 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5510 { 5511 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5512 } 5513 5514 static int ext4_write_dquot(struct dquot *dquot) 5515 { 5516 int ret, err; 5517 handle_t *handle; 5518 struct inode *inode; 5519 5520 inode = dquot_to_inode(dquot); 5521 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5522 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5523 if (IS_ERR(handle)) 5524 return PTR_ERR(handle); 5525 ret = dquot_commit(dquot); 5526 err = ext4_journal_stop(handle); 5527 if (!ret) 5528 ret = err; 5529 return ret; 5530 } 5531 5532 static int ext4_acquire_dquot(struct dquot *dquot) 5533 { 5534 int ret, err; 5535 handle_t *handle; 5536 5537 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5538 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5539 if (IS_ERR(handle)) 5540 return PTR_ERR(handle); 5541 ret = dquot_acquire(dquot); 5542 err = ext4_journal_stop(handle); 5543 if (!ret) 5544 ret = err; 5545 return ret; 5546 } 5547 5548 static int ext4_release_dquot(struct dquot *dquot) 5549 { 5550 int ret, err; 5551 handle_t *handle; 5552 5553 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5554 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5555 if (IS_ERR(handle)) { 5556 /* Release dquot anyway to avoid endless cycle in dqput() */ 5557 dquot_release(dquot); 5558 return PTR_ERR(handle); 5559 } 5560 ret = dquot_release(dquot); 5561 err = ext4_journal_stop(handle); 5562 if (!ret) 5563 ret = err; 5564 return ret; 5565 } 5566 5567 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5568 { 5569 struct super_block *sb = dquot->dq_sb; 5570 struct ext4_sb_info *sbi = EXT4_SB(sb); 5571 5572 /* Are we journaling quotas? */ 5573 if (ext4_has_feature_quota(sb) || 5574 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5575 dquot_mark_dquot_dirty(dquot); 5576 return ext4_write_dquot(dquot); 5577 } else { 5578 return dquot_mark_dquot_dirty(dquot); 5579 } 5580 } 5581 5582 static int ext4_write_info(struct super_block *sb, int type) 5583 { 5584 int ret, err; 5585 handle_t *handle; 5586 5587 /* Data block + inode block */ 5588 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5589 if (IS_ERR(handle)) 5590 return PTR_ERR(handle); 5591 ret = dquot_commit_info(sb, type); 5592 err = ext4_journal_stop(handle); 5593 if (!ret) 5594 ret = err; 5595 return ret; 5596 } 5597 5598 /* 5599 * Turn on quotas during mount time - we need to find 5600 * the quota file and such... 5601 */ 5602 static int ext4_quota_on_mount(struct super_block *sb, int type) 5603 { 5604 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5605 EXT4_SB(sb)->s_jquota_fmt, type); 5606 } 5607 5608 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5609 { 5610 struct ext4_inode_info *ei = EXT4_I(inode); 5611 5612 /* The first argument of lockdep_set_subclass has to be 5613 * *exactly* the same as the argument to init_rwsem() --- in 5614 * this case, in init_once() --- or lockdep gets unhappy 5615 * because the name of the lock is set using the 5616 * stringification of the argument to init_rwsem(). 5617 */ 5618 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5619 lockdep_set_subclass(&ei->i_data_sem, subclass); 5620 } 5621 5622 /* 5623 * Standard function to be called on quota_on 5624 */ 5625 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5626 const struct path *path) 5627 { 5628 int err; 5629 5630 if (!test_opt(sb, QUOTA)) 5631 return -EINVAL; 5632 5633 /* Quotafile not on the same filesystem? */ 5634 if (path->dentry->d_sb != sb) 5635 return -EXDEV; 5636 /* Journaling quota? */ 5637 if (EXT4_SB(sb)->s_qf_names[type]) { 5638 /* Quotafile not in fs root? */ 5639 if (path->dentry->d_parent != sb->s_root) 5640 ext4_msg(sb, KERN_WARNING, 5641 "Quota file not on filesystem root. " 5642 "Journaled quota will not work"); 5643 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5644 } else { 5645 /* 5646 * Clear the flag just in case mount options changed since 5647 * last time. 5648 */ 5649 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5650 } 5651 5652 /* 5653 * When we journal data on quota file, we have to flush journal to see 5654 * all updates to the file when we bypass pagecache... 5655 */ 5656 if (EXT4_SB(sb)->s_journal && 5657 ext4_should_journal_data(d_inode(path->dentry))) { 5658 /* 5659 * We don't need to lock updates but journal_flush() could 5660 * otherwise be livelocked... 5661 */ 5662 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5663 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5664 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5665 if (err) 5666 return err; 5667 } 5668 5669 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5670 err = dquot_quota_on(sb, type, format_id, path); 5671 if (err) { 5672 lockdep_set_quota_inode(path->dentry->d_inode, 5673 I_DATA_SEM_NORMAL); 5674 } else { 5675 struct inode *inode = d_inode(path->dentry); 5676 handle_t *handle; 5677 5678 /* 5679 * Set inode flags to prevent userspace from messing with quota 5680 * files. If this fails, we return success anyway since quotas 5681 * are already enabled and this is not a hard failure. 5682 */ 5683 inode_lock(inode); 5684 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5685 if (IS_ERR(handle)) 5686 goto unlock_inode; 5687 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5688 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5689 S_NOATIME | S_IMMUTABLE); 5690 ext4_mark_inode_dirty(handle, inode); 5691 ext4_journal_stop(handle); 5692 unlock_inode: 5693 inode_unlock(inode); 5694 } 5695 return err; 5696 } 5697 5698 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5699 unsigned int flags) 5700 { 5701 int err; 5702 struct inode *qf_inode; 5703 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5704 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5705 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5706 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5707 }; 5708 5709 BUG_ON(!ext4_has_feature_quota(sb)); 5710 5711 if (!qf_inums[type]) 5712 return -EPERM; 5713 5714 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5715 if (IS_ERR(qf_inode)) { 5716 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5717 return PTR_ERR(qf_inode); 5718 } 5719 5720 /* Don't account quota for quota files to avoid recursion */ 5721 qf_inode->i_flags |= S_NOQUOTA; 5722 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5723 err = dquot_enable(qf_inode, type, format_id, flags); 5724 if (err) 5725 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5726 iput(qf_inode); 5727 5728 return err; 5729 } 5730 5731 /* Enable usage tracking for all quota types. */ 5732 static int ext4_enable_quotas(struct super_block *sb) 5733 { 5734 int type, err = 0; 5735 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5736 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5737 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5738 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5739 }; 5740 bool quota_mopt[EXT4_MAXQUOTAS] = { 5741 test_opt(sb, USRQUOTA), 5742 test_opt(sb, GRPQUOTA), 5743 test_opt(sb, PRJQUOTA), 5744 }; 5745 5746 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5747 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5748 if (qf_inums[type]) { 5749 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5750 DQUOT_USAGE_ENABLED | 5751 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5752 if (err) { 5753 ext4_warning(sb, 5754 "Failed to enable quota tracking " 5755 "(type=%d, err=%d). Please run " 5756 "e2fsck to fix.", type, err); 5757 for (type--; type >= 0; type--) 5758 dquot_quota_off(sb, type); 5759 5760 return err; 5761 } 5762 } 5763 } 5764 return 0; 5765 } 5766 5767 static int ext4_quota_off(struct super_block *sb, int type) 5768 { 5769 struct inode *inode = sb_dqopt(sb)->files[type]; 5770 handle_t *handle; 5771 int err; 5772 5773 /* Force all delayed allocation blocks to be allocated. 5774 * Caller already holds s_umount sem */ 5775 if (test_opt(sb, DELALLOC)) 5776 sync_filesystem(sb); 5777 5778 if (!inode || !igrab(inode)) 5779 goto out; 5780 5781 err = dquot_quota_off(sb, type); 5782 if (err || ext4_has_feature_quota(sb)) 5783 goto out_put; 5784 5785 inode_lock(inode); 5786 /* 5787 * Update modification times of quota files when userspace can 5788 * start looking at them. If we fail, we return success anyway since 5789 * this is not a hard failure and quotas are already disabled. 5790 */ 5791 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5792 if (IS_ERR(handle)) 5793 goto out_unlock; 5794 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5795 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5796 inode->i_mtime = inode->i_ctime = current_time(inode); 5797 ext4_mark_inode_dirty(handle, inode); 5798 ext4_journal_stop(handle); 5799 out_unlock: 5800 inode_unlock(inode); 5801 out_put: 5802 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5803 iput(inode); 5804 return err; 5805 out: 5806 return dquot_quota_off(sb, type); 5807 } 5808 5809 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5810 * acquiring the locks... As quota files are never truncated and quota code 5811 * itself serializes the operations (and no one else should touch the files) 5812 * we don't have to be afraid of races */ 5813 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5814 size_t len, loff_t off) 5815 { 5816 struct inode *inode = sb_dqopt(sb)->files[type]; 5817 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5818 int offset = off & (sb->s_blocksize - 1); 5819 int tocopy; 5820 size_t toread; 5821 struct buffer_head *bh; 5822 loff_t i_size = i_size_read(inode); 5823 5824 if (off > i_size) 5825 return 0; 5826 if (off+len > i_size) 5827 len = i_size-off; 5828 toread = len; 5829 while (toread > 0) { 5830 tocopy = sb->s_blocksize - offset < toread ? 5831 sb->s_blocksize - offset : toread; 5832 bh = ext4_bread(NULL, inode, blk, 0); 5833 if (IS_ERR(bh)) 5834 return PTR_ERR(bh); 5835 if (!bh) /* A hole? */ 5836 memset(data, 0, tocopy); 5837 else 5838 memcpy(data, bh->b_data+offset, tocopy); 5839 brelse(bh); 5840 offset = 0; 5841 toread -= tocopy; 5842 data += tocopy; 5843 blk++; 5844 } 5845 return len; 5846 } 5847 5848 /* Write to quotafile (we know the transaction is already started and has 5849 * enough credits) */ 5850 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5851 const char *data, size_t len, loff_t off) 5852 { 5853 struct inode *inode = sb_dqopt(sb)->files[type]; 5854 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5855 int err, offset = off & (sb->s_blocksize - 1); 5856 int retries = 0; 5857 struct buffer_head *bh; 5858 handle_t *handle = journal_current_handle(); 5859 5860 if (EXT4_SB(sb)->s_journal && !handle) { 5861 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5862 " cancelled because transaction is not started", 5863 (unsigned long long)off, (unsigned long long)len); 5864 return -EIO; 5865 } 5866 /* 5867 * Since we account only one data block in transaction credits, 5868 * then it is impossible to cross a block boundary. 5869 */ 5870 if (sb->s_blocksize - offset < len) { 5871 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5872 " cancelled because not block aligned", 5873 (unsigned long long)off, (unsigned long long)len); 5874 return -EIO; 5875 } 5876 5877 do { 5878 bh = ext4_bread(handle, inode, blk, 5879 EXT4_GET_BLOCKS_CREATE | 5880 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5881 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5882 ext4_should_retry_alloc(inode->i_sb, &retries)); 5883 if (IS_ERR(bh)) 5884 return PTR_ERR(bh); 5885 if (!bh) 5886 goto out; 5887 BUFFER_TRACE(bh, "get write access"); 5888 err = ext4_journal_get_write_access(handle, bh); 5889 if (err) { 5890 brelse(bh); 5891 return err; 5892 } 5893 lock_buffer(bh); 5894 memcpy(bh->b_data+offset, data, len); 5895 flush_dcache_page(bh->b_page); 5896 unlock_buffer(bh); 5897 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5898 brelse(bh); 5899 out: 5900 if (inode->i_size < off + len) { 5901 i_size_write(inode, off + len); 5902 EXT4_I(inode)->i_disksize = inode->i_size; 5903 ext4_mark_inode_dirty(handle, inode); 5904 } 5905 return len; 5906 } 5907 5908 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5909 { 5910 const struct quota_format_ops *ops; 5911 5912 if (!sb_has_quota_loaded(sb, qid->type)) 5913 return -ESRCH; 5914 ops = sb_dqopt(sb)->ops[qid->type]; 5915 if (!ops || !ops->get_next_id) 5916 return -ENOSYS; 5917 return dquot_get_next_id(sb, qid); 5918 } 5919 #endif 5920 5921 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5922 const char *dev_name, void *data) 5923 { 5924 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5925 } 5926 5927 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5928 static inline void register_as_ext2(void) 5929 { 5930 int err = register_filesystem(&ext2_fs_type); 5931 if (err) 5932 printk(KERN_WARNING 5933 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5934 } 5935 5936 static inline void unregister_as_ext2(void) 5937 { 5938 unregister_filesystem(&ext2_fs_type); 5939 } 5940 5941 static inline int ext2_feature_set_ok(struct super_block *sb) 5942 { 5943 if (ext4_has_unknown_ext2_incompat_features(sb)) 5944 return 0; 5945 if (sb_rdonly(sb)) 5946 return 1; 5947 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5948 return 0; 5949 return 1; 5950 } 5951 #else 5952 static inline void register_as_ext2(void) { } 5953 static inline void unregister_as_ext2(void) { } 5954 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5955 #endif 5956 5957 static inline void register_as_ext3(void) 5958 { 5959 int err = register_filesystem(&ext3_fs_type); 5960 if (err) 5961 printk(KERN_WARNING 5962 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5963 } 5964 5965 static inline void unregister_as_ext3(void) 5966 { 5967 unregister_filesystem(&ext3_fs_type); 5968 } 5969 5970 static inline int ext3_feature_set_ok(struct super_block *sb) 5971 { 5972 if (ext4_has_unknown_ext3_incompat_features(sb)) 5973 return 0; 5974 if (!ext4_has_feature_journal(sb)) 5975 return 0; 5976 if (sb_rdonly(sb)) 5977 return 1; 5978 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5979 return 0; 5980 return 1; 5981 } 5982 5983 static struct file_system_type ext4_fs_type = { 5984 .owner = THIS_MODULE, 5985 .name = "ext4", 5986 .mount = ext4_mount, 5987 .kill_sb = kill_block_super, 5988 .fs_flags = FS_REQUIRES_DEV, 5989 }; 5990 MODULE_ALIAS_FS("ext4"); 5991 5992 /* Shared across all ext4 file systems */ 5993 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5994 5995 static int __init ext4_init_fs(void) 5996 { 5997 int i, err; 5998 5999 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6000 ext4_li_info = NULL; 6001 mutex_init(&ext4_li_mtx); 6002 6003 /* Build-time check for flags consistency */ 6004 ext4_check_flag_values(); 6005 6006 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6007 init_waitqueue_head(&ext4__ioend_wq[i]); 6008 6009 err = ext4_init_es(); 6010 if (err) 6011 return err; 6012 6013 err = ext4_init_pending(); 6014 if (err) 6015 goto out6; 6016 6017 err = ext4_init_pageio(); 6018 if (err) 6019 goto out5; 6020 6021 err = ext4_init_system_zone(); 6022 if (err) 6023 goto out4; 6024 6025 err = ext4_init_sysfs(); 6026 if (err) 6027 goto out3; 6028 6029 err = ext4_init_mballoc(); 6030 if (err) 6031 goto out2; 6032 err = init_inodecache(); 6033 if (err) 6034 goto out1; 6035 register_as_ext3(); 6036 register_as_ext2(); 6037 err = register_filesystem(&ext4_fs_type); 6038 if (err) 6039 goto out; 6040 6041 return 0; 6042 out: 6043 unregister_as_ext2(); 6044 unregister_as_ext3(); 6045 destroy_inodecache(); 6046 out1: 6047 ext4_exit_mballoc(); 6048 out2: 6049 ext4_exit_sysfs(); 6050 out3: 6051 ext4_exit_system_zone(); 6052 out4: 6053 ext4_exit_pageio(); 6054 out5: 6055 ext4_exit_pending(); 6056 out6: 6057 ext4_exit_es(); 6058 6059 return err; 6060 } 6061 6062 static void __exit ext4_exit_fs(void) 6063 { 6064 ext4_destroy_lazyinit_thread(); 6065 unregister_as_ext2(); 6066 unregister_as_ext3(); 6067 unregister_filesystem(&ext4_fs_type); 6068 destroy_inodecache(); 6069 ext4_exit_mballoc(); 6070 ext4_exit_sysfs(); 6071 ext4_exit_system_zone(); 6072 ext4_exit_pageio(); 6073 ext4_exit_es(); 6074 ext4_exit_pending(); 6075 } 6076 6077 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6078 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6079 MODULE_LICENSE("GPL"); 6080 MODULE_SOFTDEP("pre: crc32c"); 6081 module_init(ext4_init_fs) 6082 module_exit(ext4_exit_fs) 6083