1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_sem 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_sem 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, const char *func, 339 unsigned int line) 340 { 341 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 342 343 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 344 if (bdev_read_only(sb->s_bdev)) 345 return; 346 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 347 ext4_update_tstamp(es, s_last_error_time); 348 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 349 es->s_last_error_line = cpu_to_le32(line); 350 if (es->s_last_error_errcode == 0) 351 es->s_last_error_errcode = EXT4_ERR_EFSCORRUPTED; 352 if (!es->s_first_error_time) { 353 es->s_first_error_time = es->s_last_error_time; 354 es->s_first_error_time_hi = es->s_last_error_time_hi; 355 strncpy(es->s_first_error_func, func, 356 sizeof(es->s_first_error_func)); 357 es->s_first_error_line = cpu_to_le32(line); 358 es->s_first_error_ino = es->s_last_error_ino; 359 es->s_first_error_block = es->s_last_error_block; 360 es->s_first_error_errcode = es->s_last_error_errcode; 361 } 362 /* 363 * Start the daily error reporting function if it hasn't been 364 * started already 365 */ 366 if (!es->s_error_count) 367 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 368 le32_add_cpu(&es->s_error_count, 1); 369 } 370 371 static void save_error_info(struct super_block *sb, const char *func, 372 unsigned int line) 373 { 374 __save_error_info(sb, func, line); 375 ext4_commit_super(sb, 1); 376 } 377 378 /* 379 * The del_gendisk() function uninitializes the disk-specific data 380 * structures, including the bdi structure, without telling anyone 381 * else. Once this happens, any attempt to call mark_buffer_dirty() 382 * (for example, by ext4_commit_super), will cause a kernel OOPS. 383 * This is a kludge to prevent these oops until we can put in a proper 384 * hook in del_gendisk() to inform the VFS and file system layers. 385 */ 386 static int block_device_ejected(struct super_block *sb) 387 { 388 struct inode *bd_inode = sb->s_bdev->bd_inode; 389 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 390 391 return bdi->dev == NULL; 392 } 393 394 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 395 { 396 struct super_block *sb = journal->j_private; 397 struct ext4_sb_info *sbi = EXT4_SB(sb); 398 int error = is_journal_aborted(journal); 399 struct ext4_journal_cb_entry *jce; 400 401 BUG_ON(txn->t_state == T_FINISHED); 402 403 ext4_process_freed_data(sb, txn->t_tid); 404 405 spin_lock(&sbi->s_md_lock); 406 while (!list_empty(&txn->t_private_list)) { 407 jce = list_entry(txn->t_private_list.next, 408 struct ext4_journal_cb_entry, jce_list); 409 list_del_init(&jce->jce_list); 410 spin_unlock(&sbi->s_md_lock); 411 jce->jce_func(sb, jce, error); 412 spin_lock(&sbi->s_md_lock); 413 } 414 spin_unlock(&sbi->s_md_lock); 415 } 416 417 static bool system_going_down(void) 418 { 419 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 420 || system_state == SYSTEM_RESTART; 421 } 422 423 /* Deal with the reporting of failure conditions on a filesystem such as 424 * inconsistencies detected or read IO failures. 425 * 426 * On ext2, we can store the error state of the filesystem in the 427 * superblock. That is not possible on ext4, because we may have other 428 * write ordering constraints on the superblock which prevent us from 429 * writing it out straight away; and given that the journal is about to 430 * be aborted, we can't rely on the current, or future, transactions to 431 * write out the superblock safely. 432 * 433 * We'll just use the jbd2_journal_abort() error code to record an error in 434 * the journal instead. On recovery, the journal will complain about 435 * that error until we've noted it down and cleared it. 436 */ 437 438 static void ext4_handle_error(struct super_block *sb) 439 { 440 if (test_opt(sb, WARN_ON_ERROR)) 441 WARN_ON_ONCE(1); 442 443 if (sb_rdonly(sb)) 444 return; 445 446 if (!test_opt(sb, ERRORS_CONT)) { 447 journal_t *journal = EXT4_SB(sb)->s_journal; 448 449 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 450 if (journal) 451 jbd2_journal_abort(journal, -EIO); 452 } 453 /* 454 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 455 * could panic during 'reboot -f' as the underlying device got already 456 * disabled. 457 */ 458 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 459 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 460 /* 461 * Make sure updated value of ->s_mount_flags will be visible 462 * before ->s_flags update 463 */ 464 smp_wmb(); 465 sb->s_flags |= SB_RDONLY; 466 } else if (test_opt(sb, ERRORS_PANIC)) { 467 if (EXT4_SB(sb)->s_journal && 468 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 469 return; 470 panic("EXT4-fs (device %s): panic forced after error\n", 471 sb->s_id); 472 } 473 } 474 475 #define ext4_error_ratelimit(sb) \ 476 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 477 "EXT4-fs error") 478 479 void __ext4_error(struct super_block *sb, const char *function, 480 unsigned int line, const char *fmt, ...) 481 { 482 struct va_format vaf; 483 va_list args; 484 485 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 486 return; 487 488 trace_ext4_error(sb, function, line); 489 if (ext4_error_ratelimit(sb)) { 490 va_start(args, fmt); 491 vaf.fmt = fmt; 492 vaf.va = &args; 493 printk(KERN_CRIT 494 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 495 sb->s_id, function, line, current->comm, &vaf); 496 va_end(args); 497 } 498 save_error_info(sb, function, line); 499 ext4_handle_error(sb); 500 } 501 502 void __ext4_error_inode(struct inode *inode, const char *function, 503 unsigned int line, ext4_fsblk_t block, 504 const char *fmt, ...) 505 { 506 va_list args; 507 struct va_format vaf; 508 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 509 510 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 511 return; 512 513 trace_ext4_error(inode->i_sb, function, line); 514 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 515 es->s_last_error_block = cpu_to_le64(block); 516 if (ext4_error_ratelimit(inode->i_sb)) { 517 va_start(args, fmt); 518 vaf.fmt = fmt; 519 vaf.va = &args; 520 if (block) 521 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 522 "inode #%lu: block %llu: comm %s: %pV\n", 523 inode->i_sb->s_id, function, line, inode->i_ino, 524 block, current->comm, &vaf); 525 else 526 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 527 "inode #%lu: comm %s: %pV\n", 528 inode->i_sb->s_id, function, line, inode->i_ino, 529 current->comm, &vaf); 530 va_end(args); 531 } 532 save_error_info(inode->i_sb, function, line); 533 ext4_handle_error(inode->i_sb); 534 } 535 536 void __ext4_error_file(struct file *file, const char *function, 537 unsigned int line, ext4_fsblk_t block, 538 const char *fmt, ...) 539 { 540 va_list args; 541 struct va_format vaf; 542 struct ext4_super_block *es; 543 struct inode *inode = file_inode(file); 544 char pathname[80], *path; 545 546 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 547 return; 548 549 trace_ext4_error(inode->i_sb, function, line); 550 es = EXT4_SB(inode->i_sb)->s_es; 551 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 552 if (ext4_error_ratelimit(inode->i_sb)) { 553 path = file_path(file, pathname, sizeof(pathname)); 554 if (IS_ERR(path)) 555 path = "(unknown)"; 556 va_start(args, fmt); 557 vaf.fmt = fmt; 558 vaf.va = &args; 559 if (block) 560 printk(KERN_CRIT 561 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 562 "block %llu: comm %s: path %s: %pV\n", 563 inode->i_sb->s_id, function, line, inode->i_ino, 564 block, current->comm, path, &vaf); 565 else 566 printk(KERN_CRIT 567 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 568 "comm %s: path %s: %pV\n", 569 inode->i_sb->s_id, function, line, inode->i_ino, 570 current->comm, path, &vaf); 571 va_end(args); 572 } 573 save_error_info(inode->i_sb, function, line); 574 ext4_handle_error(inode->i_sb); 575 } 576 577 const char *ext4_decode_error(struct super_block *sb, int errno, 578 char nbuf[16]) 579 { 580 char *errstr = NULL; 581 582 switch (errno) { 583 case -EFSCORRUPTED: 584 errstr = "Corrupt filesystem"; 585 break; 586 case -EFSBADCRC: 587 errstr = "Filesystem failed CRC"; 588 break; 589 case -EIO: 590 errstr = "IO failure"; 591 break; 592 case -ENOMEM: 593 errstr = "Out of memory"; 594 break; 595 case -EROFS: 596 if (!sb || (EXT4_SB(sb)->s_journal && 597 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 598 errstr = "Journal has aborted"; 599 else 600 errstr = "Readonly filesystem"; 601 break; 602 default: 603 /* If the caller passed in an extra buffer for unknown 604 * errors, textualise them now. Else we just return 605 * NULL. */ 606 if (nbuf) { 607 /* Check for truncated error codes... */ 608 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 609 errstr = nbuf; 610 } 611 break; 612 } 613 614 return errstr; 615 } 616 617 void ext4_set_errno(struct super_block *sb, int err) 618 { 619 if (err < 0) 620 err = -err; 621 622 switch (err) { 623 case EIO: 624 err = EXT4_ERR_EIO; 625 break; 626 case ENOMEM: 627 err = EXT4_ERR_ENOMEM; 628 break; 629 case EFSBADCRC: 630 err = EXT4_ERR_EFSBADCRC; 631 break; 632 case EFSCORRUPTED: 633 err = EXT4_ERR_EFSCORRUPTED; 634 break; 635 case ENOSPC: 636 err = EXT4_ERR_ENOSPC; 637 break; 638 case ENOKEY: 639 err = EXT4_ERR_ENOKEY; 640 break; 641 case EROFS: 642 err = EXT4_ERR_EROFS; 643 break; 644 case EFBIG: 645 err = EXT4_ERR_EFBIG; 646 break; 647 case EEXIST: 648 err = EXT4_ERR_EEXIST; 649 break; 650 case ERANGE: 651 err = EXT4_ERR_ERANGE; 652 break; 653 case EOVERFLOW: 654 err = EXT4_ERR_EOVERFLOW; 655 break; 656 case EBUSY: 657 err = EXT4_ERR_EBUSY; 658 break; 659 case ENOTDIR: 660 err = EXT4_ERR_ENOTDIR; 661 break; 662 case ENOTEMPTY: 663 err = EXT4_ERR_ENOTEMPTY; 664 break; 665 case ESHUTDOWN: 666 err = EXT4_ERR_ESHUTDOWN; 667 break; 668 case EFAULT: 669 err = EXT4_ERR_EFAULT; 670 break; 671 default: 672 err = EXT4_ERR_UNKNOWN; 673 } 674 EXT4_SB(sb)->s_es->s_last_error_errcode = err; 675 } 676 677 /* __ext4_std_error decodes expected errors from journaling functions 678 * automatically and invokes the appropriate error response. */ 679 680 void __ext4_std_error(struct super_block *sb, const char *function, 681 unsigned int line, int errno) 682 { 683 char nbuf[16]; 684 const char *errstr; 685 686 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 687 return; 688 689 /* Special case: if the error is EROFS, and we're not already 690 * inside a transaction, then there's really no point in logging 691 * an error. */ 692 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 693 return; 694 695 if (ext4_error_ratelimit(sb)) { 696 errstr = ext4_decode_error(sb, errno, nbuf); 697 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 698 sb->s_id, function, line, errstr); 699 } 700 701 ext4_set_errno(sb, -errno); 702 save_error_info(sb, function, line); 703 ext4_handle_error(sb); 704 } 705 706 /* 707 * ext4_abort is a much stronger failure handler than ext4_error. The 708 * abort function may be used to deal with unrecoverable failures such 709 * as journal IO errors or ENOMEM at a critical moment in log management. 710 * 711 * We unconditionally force the filesystem into an ABORT|READONLY state, 712 * unless the error response on the fs has been set to panic in which 713 * case we take the easy way out and panic immediately. 714 */ 715 716 void __ext4_abort(struct super_block *sb, const char *function, 717 unsigned int line, const char *fmt, ...) 718 { 719 struct va_format vaf; 720 va_list args; 721 722 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 723 return; 724 725 save_error_info(sb, function, line); 726 va_start(args, fmt); 727 vaf.fmt = fmt; 728 vaf.va = &args; 729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 730 sb->s_id, function, line, &vaf); 731 va_end(args); 732 733 if (sb_rdonly(sb) == 0) { 734 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 735 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 736 /* 737 * Make sure updated value of ->s_mount_flags will be visible 738 * before ->s_flags update 739 */ 740 smp_wmb(); 741 sb->s_flags |= SB_RDONLY; 742 if (EXT4_SB(sb)->s_journal) 743 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 744 save_error_info(sb, function, line); 745 } 746 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 747 if (EXT4_SB(sb)->s_journal && 748 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 749 return; 750 panic("EXT4-fs panic from previous error\n"); 751 } 752 } 753 754 void __ext4_msg(struct super_block *sb, 755 const char *prefix, const char *fmt, ...) 756 { 757 struct va_format vaf; 758 va_list args; 759 760 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 761 return; 762 763 va_start(args, fmt); 764 vaf.fmt = fmt; 765 vaf.va = &args; 766 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 767 va_end(args); 768 } 769 770 #define ext4_warning_ratelimit(sb) \ 771 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 772 "EXT4-fs warning") 773 774 void __ext4_warning(struct super_block *sb, const char *function, 775 unsigned int line, const char *fmt, ...) 776 { 777 struct va_format vaf; 778 va_list args; 779 780 if (!ext4_warning_ratelimit(sb)) 781 return; 782 783 va_start(args, fmt); 784 vaf.fmt = fmt; 785 vaf.va = &args; 786 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 787 sb->s_id, function, line, &vaf); 788 va_end(args); 789 } 790 791 void __ext4_warning_inode(const struct inode *inode, const char *function, 792 unsigned int line, const char *fmt, ...) 793 { 794 struct va_format vaf; 795 va_list args; 796 797 if (!ext4_warning_ratelimit(inode->i_sb)) 798 return; 799 800 va_start(args, fmt); 801 vaf.fmt = fmt; 802 vaf.va = &args; 803 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 804 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 805 function, line, inode->i_ino, current->comm, &vaf); 806 va_end(args); 807 } 808 809 void __ext4_grp_locked_error(const char *function, unsigned int line, 810 struct super_block *sb, ext4_group_t grp, 811 unsigned long ino, ext4_fsblk_t block, 812 const char *fmt, ...) 813 __releases(bitlock) 814 __acquires(bitlock) 815 { 816 struct va_format vaf; 817 va_list args; 818 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 819 820 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 821 return; 822 823 trace_ext4_error(sb, function, line); 824 es->s_last_error_ino = cpu_to_le32(ino); 825 es->s_last_error_block = cpu_to_le64(block); 826 __save_error_info(sb, function, line); 827 828 if (ext4_error_ratelimit(sb)) { 829 va_start(args, fmt); 830 vaf.fmt = fmt; 831 vaf.va = &args; 832 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 833 sb->s_id, function, line, grp); 834 if (ino) 835 printk(KERN_CONT "inode %lu: ", ino); 836 if (block) 837 printk(KERN_CONT "block %llu:", 838 (unsigned long long) block); 839 printk(KERN_CONT "%pV\n", &vaf); 840 va_end(args); 841 } 842 843 if (test_opt(sb, WARN_ON_ERROR)) 844 WARN_ON_ONCE(1); 845 846 if (test_opt(sb, ERRORS_CONT)) { 847 ext4_commit_super(sb, 0); 848 return; 849 } 850 851 ext4_unlock_group(sb, grp); 852 ext4_commit_super(sb, 1); 853 ext4_handle_error(sb); 854 /* 855 * We only get here in the ERRORS_RO case; relocking the group 856 * may be dangerous, but nothing bad will happen since the 857 * filesystem will have already been marked read/only and the 858 * journal has been aborted. We return 1 as a hint to callers 859 * who might what to use the return value from 860 * ext4_grp_locked_error() to distinguish between the 861 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 862 * aggressively from the ext4 function in question, with a 863 * more appropriate error code. 864 */ 865 ext4_lock_group(sb, grp); 866 return; 867 } 868 869 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 870 ext4_group_t group, 871 unsigned int flags) 872 { 873 struct ext4_sb_info *sbi = EXT4_SB(sb); 874 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 875 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 876 int ret; 877 878 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 879 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 880 &grp->bb_state); 881 if (!ret) 882 percpu_counter_sub(&sbi->s_freeclusters_counter, 883 grp->bb_free); 884 } 885 886 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 887 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 888 &grp->bb_state); 889 if (!ret && gdp) { 890 int count; 891 892 count = ext4_free_inodes_count(sb, gdp); 893 percpu_counter_sub(&sbi->s_freeinodes_counter, 894 count); 895 } 896 } 897 } 898 899 void ext4_update_dynamic_rev(struct super_block *sb) 900 { 901 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 902 903 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 904 return; 905 906 ext4_warning(sb, 907 "updating to rev %d because of new feature flag, " 908 "running e2fsck is recommended", 909 EXT4_DYNAMIC_REV); 910 911 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 912 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 913 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 914 /* leave es->s_feature_*compat flags alone */ 915 /* es->s_uuid will be set by e2fsck if empty */ 916 917 /* 918 * The rest of the superblock fields should be zero, and if not it 919 * means they are likely already in use, so leave them alone. We 920 * can leave it up to e2fsck to clean up any inconsistencies there. 921 */ 922 } 923 924 /* 925 * Open the external journal device 926 */ 927 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 928 { 929 struct block_device *bdev; 930 char b[BDEVNAME_SIZE]; 931 932 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 933 if (IS_ERR(bdev)) 934 goto fail; 935 return bdev; 936 937 fail: 938 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 939 __bdevname(dev, b), PTR_ERR(bdev)); 940 return NULL; 941 } 942 943 /* 944 * Release the journal device 945 */ 946 static void ext4_blkdev_put(struct block_device *bdev) 947 { 948 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 949 } 950 951 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 952 { 953 struct block_device *bdev; 954 bdev = sbi->journal_bdev; 955 if (bdev) { 956 ext4_blkdev_put(bdev); 957 sbi->journal_bdev = NULL; 958 } 959 } 960 961 static inline struct inode *orphan_list_entry(struct list_head *l) 962 { 963 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 964 } 965 966 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 967 { 968 struct list_head *l; 969 970 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 971 le32_to_cpu(sbi->s_es->s_last_orphan)); 972 973 printk(KERN_ERR "sb_info orphan list:\n"); 974 list_for_each(l, &sbi->s_orphan) { 975 struct inode *inode = orphan_list_entry(l); 976 printk(KERN_ERR " " 977 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 978 inode->i_sb->s_id, inode->i_ino, inode, 979 inode->i_mode, inode->i_nlink, 980 NEXT_ORPHAN(inode)); 981 } 982 } 983 984 #ifdef CONFIG_QUOTA 985 static int ext4_quota_off(struct super_block *sb, int type); 986 987 static inline void ext4_quota_off_umount(struct super_block *sb) 988 { 989 int type; 990 991 /* Use our quota_off function to clear inode flags etc. */ 992 for (type = 0; type < EXT4_MAXQUOTAS; type++) 993 ext4_quota_off(sb, type); 994 } 995 996 /* 997 * This is a helper function which is used in the mount/remount 998 * codepaths (which holds s_umount) to fetch the quota file name. 999 */ 1000 static inline char *get_qf_name(struct super_block *sb, 1001 struct ext4_sb_info *sbi, 1002 int type) 1003 { 1004 return rcu_dereference_protected(sbi->s_qf_names[type], 1005 lockdep_is_held(&sb->s_umount)); 1006 } 1007 #else 1008 static inline void ext4_quota_off_umount(struct super_block *sb) 1009 { 1010 } 1011 #endif 1012 1013 static void ext4_put_super(struct super_block *sb) 1014 { 1015 struct ext4_sb_info *sbi = EXT4_SB(sb); 1016 struct ext4_super_block *es = sbi->s_es; 1017 struct buffer_head **group_desc; 1018 struct flex_groups **flex_groups; 1019 int aborted = 0; 1020 int i, err; 1021 1022 ext4_unregister_li_request(sb); 1023 ext4_quota_off_umount(sb); 1024 1025 destroy_workqueue(sbi->rsv_conversion_wq); 1026 1027 if (sbi->s_journal) { 1028 aborted = is_journal_aborted(sbi->s_journal); 1029 err = jbd2_journal_destroy(sbi->s_journal); 1030 sbi->s_journal = NULL; 1031 if ((err < 0) && !aborted) { 1032 ext4_set_errno(sb, -err); 1033 ext4_abort(sb, "Couldn't clean up the journal"); 1034 } 1035 } 1036 1037 ext4_unregister_sysfs(sb); 1038 ext4_es_unregister_shrinker(sbi); 1039 del_timer_sync(&sbi->s_err_report); 1040 ext4_release_system_zone(sb); 1041 ext4_mb_release(sb); 1042 ext4_ext_release(sb); 1043 1044 if (!sb_rdonly(sb) && !aborted) { 1045 ext4_clear_feature_journal_needs_recovery(sb); 1046 es->s_state = cpu_to_le16(sbi->s_mount_state); 1047 } 1048 if (!sb_rdonly(sb)) 1049 ext4_commit_super(sb, 1); 1050 1051 rcu_read_lock(); 1052 group_desc = rcu_dereference(sbi->s_group_desc); 1053 for (i = 0; i < sbi->s_gdb_count; i++) 1054 brelse(group_desc[i]); 1055 kvfree(group_desc); 1056 flex_groups = rcu_dereference(sbi->s_flex_groups); 1057 if (flex_groups) { 1058 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1059 kvfree(flex_groups[i]); 1060 kvfree(flex_groups); 1061 } 1062 rcu_read_unlock(); 1063 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1064 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1065 percpu_counter_destroy(&sbi->s_dirs_counter); 1066 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1067 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1068 #ifdef CONFIG_QUOTA 1069 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1070 kfree(get_qf_name(sb, sbi, i)); 1071 #endif 1072 1073 /* Debugging code just in case the in-memory inode orphan list 1074 * isn't empty. The on-disk one can be non-empty if we've 1075 * detected an error and taken the fs readonly, but the 1076 * in-memory list had better be clean by this point. */ 1077 if (!list_empty(&sbi->s_orphan)) 1078 dump_orphan_list(sb, sbi); 1079 J_ASSERT(list_empty(&sbi->s_orphan)); 1080 1081 sync_blockdev(sb->s_bdev); 1082 invalidate_bdev(sb->s_bdev); 1083 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1084 /* 1085 * Invalidate the journal device's buffers. We don't want them 1086 * floating about in memory - the physical journal device may 1087 * hotswapped, and it breaks the `ro-after' testing code. 1088 */ 1089 sync_blockdev(sbi->journal_bdev); 1090 invalidate_bdev(sbi->journal_bdev); 1091 ext4_blkdev_remove(sbi); 1092 } 1093 1094 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1095 sbi->s_ea_inode_cache = NULL; 1096 1097 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1098 sbi->s_ea_block_cache = NULL; 1099 1100 if (sbi->s_mmp_tsk) 1101 kthread_stop(sbi->s_mmp_tsk); 1102 brelse(sbi->s_sbh); 1103 sb->s_fs_info = NULL; 1104 /* 1105 * Now that we are completely done shutting down the 1106 * superblock, we need to actually destroy the kobject. 1107 */ 1108 kobject_put(&sbi->s_kobj); 1109 wait_for_completion(&sbi->s_kobj_unregister); 1110 if (sbi->s_chksum_driver) 1111 crypto_free_shash(sbi->s_chksum_driver); 1112 kfree(sbi->s_blockgroup_lock); 1113 fs_put_dax(sbi->s_daxdev); 1114 #ifdef CONFIG_UNICODE 1115 utf8_unload(sbi->s_encoding); 1116 #endif 1117 kfree(sbi); 1118 } 1119 1120 static struct kmem_cache *ext4_inode_cachep; 1121 1122 /* 1123 * Called inside transaction, so use GFP_NOFS 1124 */ 1125 static struct inode *ext4_alloc_inode(struct super_block *sb) 1126 { 1127 struct ext4_inode_info *ei; 1128 1129 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1130 if (!ei) 1131 return NULL; 1132 1133 inode_set_iversion(&ei->vfs_inode, 1); 1134 spin_lock_init(&ei->i_raw_lock); 1135 INIT_LIST_HEAD(&ei->i_prealloc_list); 1136 spin_lock_init(&ei->i_prealloc_lock); 1137 ext4_es_init_tree(&ei->i_es_tree); 1138 rwlock_init(&ei->i_es_lock); 1139 INIT_LIST_HEAD(&ei->i_es_list); 1140 ei->i_es_all_nr = 0; 1141 ei->i_es_shk_nr = 0; 1142 ei->i_es_shrink_lblk = 0; 1143 ei->i_reserved_data_blocks = 0; 1144 spin_lock_init(&(ei->i_block_reservation_lock)); 1145 ext4_init_pending_tree(&ei->i_pending_tree); 1146 #ifdef CONFIG_QUOTA 1147 ei->i_reserved_quota = 0; 1148 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1149 #endif 1150 ei->jinode = NULL; 1151 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1152 spin_lock_init(&ei->i_completed_io_lock); 1153 ei->i_sync_tid = 0; 1154 ei->i_datasync_tid = 0; 1155 atomic_set(&ei->i_unwritten, 0); 1156 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1157 return &ei->vfs_inode; 1158 } 1159 1160 static int ext4_drop_inode(struct inode *inode) 1161 { 1162 int drop = generic_drop_inode(inode); 1163 1164 if (!drop) 1165 drop = fscrypt_drop_inode(inode); 1166 1167 trace_ext4_drop_inode(inode, drop); 1168 return drop; 1169 } 1170 1171 static void ext4_free_in_core_inode(struct inode *inode) 1172 { 1173 fscrypt_free_inode(inode); 1174 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1175 } 1176 1177 static void ext4_destroy_inode(struct inode *inode) 1178 { 1179 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1180 ext4_msg(inode->i_sb, KERN_ERR, 1181 "Inode %lu (%p): orphan list check failed!", 1182 inode->i_ino, EXT4_I(inode)); 1183 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1184 EXT4_I(inode), sizeof(struct ext4_inode_info), 1185 true); 1186 dump_stack(); 1187 } 1188 } 1189 1190 static void init_once(void *foo) 1191 { 1192 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1193 1194 INIT_LIST_HEAD(&ei->i_orphan); 1195 init_rwsem(&ei->xattr_sem); 1196 init_rwsem(&ei->i_data_sem); 1197 init_rwsem(&ei->i_mmap_sem); 1198 inode_init_once(&ei->vfs_inode); 1199 } 1200 1201 static int __init init_inodecache(void) 1202 { 1203 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1204 sizeof(struct ext4_inode_info), 0, 1205 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1206 SLAB_ACCOUNT), 1207 offsetof(struct ext4_inode_info, i_data), 1208 sizeof_field(struct ext4_inode_info, i_data), 1209 init_once); 1210 if (ext4_inode_cachep == NULL) 1211 return -ENOMEM; 1212 return 0; 1213 } 1214 1215 static void destroy_inodecache(void) 1216 { 1217 /* 1218 * Make sure all delayed rcu free inodes are flushed before we 1219 * destroy cache. 1220 */ 1221 rcu_barrier(); 1222 kmem_cache_destroy(ext4_inode_cachep); 1223 } 1224 1225 void ext4_clear_inode(struct inode *inode) 1226 { 1227 invalidate_inode_buffers(inode); 1228 clear_inode(inode); 1229 ext4_discard_preallocations(inode); 1230 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1231 dquot_drop(inode); 1232 if (EXT4_I(inode)->jinode) { 1233 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1234 EXT4_I(inode)->jinode); 1235 jbd2_free_inode(EXT4_I(inode)->jinode); 1236 EXT4_I(inode)->jinode = NULL; 1237 } 1238 fscrypt_put_encryption_info(inode); 1239 fsverity_cleanup_inode(inode); 1240 } 1241 1242 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1243 u64 ino, u32 generation) 1244 { 1245 struct inode *inode; 1246 1247 /* 1248 * Currently we don't know the generation for parent directory, so 1249 * a generation of 0 means "accept any" 1250 */ 1251 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1252 if (IS_ERR(inode)) 1253 return ERR_CAST(inode); 1254 if (generation && inode->i_generation != generation) { 1255 iput(inode); 1256 return ERR_PTR(-ESTALE); 1257 } 1258 1259 return inode; 1260 } 1261 1262 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1263 int fh_len, int fh_type) 1264 { 1265 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1266 ext4_nfs_get_inode); 1267 } 1268 1269 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1270 int fh_len, int fh_type) 1271 { 1272 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1273 ext4_nfs_get_inode); 1274 } 1275 1276 static int ext4_nfs_commit_metadata(struct inode *inode) 1277 { 1278 struct writeback_control wbc = { 1279 .sync_mode = WB_SYNC_ALL 1280 }; 1281 1282 trace_ext4_nfs_commit_metadata(inode); 1283 return ext4_write_inode(inode, &wbc); 1284 } 1285 1286 /* 1287 * Try to release metadata pages (indirect blocks, directories) which are 1288 * mapped via the block device. Since these pages could have journal heads 1289 * which would prevent try_to_free_buffers() from freeing them, we must use 1290 * jbd2 layer's try_to_free_buffers() function to release them. 1291 */ 1292 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1293 gfp_t wait) 1294 { 1295 journal_t *journal = EXT4_SB(sb)->s_journal; 1296 1297 WARN_ON(PageChecked(page)); 1298 if (!page_has_buffers(page)) 1299 return 0; 1300 if (journal) 1301 return jbd2_journal_try_to_free_buffers(journal, page, 1302 wait & ~__GFP_DIRECT_RECLAIM); 1303 return try_to_free_buffers(page); 1304 } 1305 1306 #ifdef CONFIG_FS_ENCRYPTION 1307 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1308 { 1309 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1310 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1311 } 1312 1313 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1314 void *fs_data) 1315 { 1316 handle_t *handle = fs_data; 1317 int res, res2, credits, retries = 0; 1318 1319 /* 1320 * Encrypting the root directory is not allowed because e2fsck expects 1321 * lost+found to exist and be unencrypted, and encrypting the root 1322 * directory would imply encrypting the lost+found directory as well as 1323 * the filename "lost+found" itself. 1324 */ 1325 if (inode->i_ino == EXT4_ROOT_INO) 1326 return -EPERM; 1327 1328 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1329 return -EINVAL; 1330 1331 res = ext4_convert_inline_data(inode); 1332 if (res) 1333 return res; 1334 1335 /* 1336 * If a journal handle was specified, then the encryption context is 1337 * being set on a new inode via inheritance and is part of a larger 1338 * transaction to create the inode. Otherwise the encryption context is 1339 * being set on an existing inode in its own transaction. Only in the 1340 * latter case should the "retry on ENOSPC" logic be used. 1341 */ 1342 1343 if (handle) { 1344 res = ext4_xattr_set_handle(handle, inode, 1345 EXT4_XATTR_INDEX_ENCRYPTION, 1346 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1347 ctx, len, 0); 1348 if (!res) { 1349 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1350 ext4_clear_inode_state(inode, 1351 EXT4_STATE_MAY_INLINE_DATA); 1352 /* 1353 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1354 * S_DAX may be disabled 1355 */ 1356 ext4_set_inode_flags(inode); 1357 } 1358 return res; 1359 } 1360 1361 res = dquot_initialize(inode); 1362 if (res) 1363 return res; 1364 retry: 1365 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1366 &credits); 1367 if (res) 1368 return res; 1369 1370 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1371 if (IS_ERR(handle)) 1372 return PTR_ERR(handle); 1373 1374 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1375 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1376 ctx, len, 0); 1377 if (!res) { 1378 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1379 /* 1380 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1381 * S_DAX may be disabled 1382 */ 1383 ext4_set_inode_flags(inode); 1384 res = ext4_mark_inode_dirty(handle, inode); 1385 if (res) 1386 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1387 } 1388 res2 = ext4_journal_stop(handle); 1389 1390 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1391 goto retry; 1392 if (!res) 1393 res = res2; 1394 return res; 1395 } 1396 1397 static bool ext4_dummy_context(struct inode *inode) 1398 { 1399 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1400 } 1401 1402 static bool ext4_has_stable_inodes(struct super_block *sb) 1403 { 1404 return ext4_has_feature_stable_inodes(sb); 1405 } 1406 1407 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1408 int *ino_bits_ret, int *lblk_bits_ret) 1409 { 1410 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1411 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1412 } 1413 1414 static const struct fscrypt_operations ext4_cryptops = { 1415 .key_prefix = "ext4:", 1416 .get_context = ext4_get_context, 1417 .set_context = ext4_set_context, 1418 .dummy_context = ext4_dummy_context, 1419 .empty_dir = ext4_empty_dir, 1420 .max_namelen = EXT4_NAME_LEN, 1421 .has_stable_inodes = ext4_has_stable_inodes, 1422 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1423 }; 1424 #endif 1425 1426 #ifdef CONFIG_QUOTA 1427 static const char * const quotatypes[] = INITQFNAMES; 1428 #define QTYPE2NAME(t) (quotatypes[t]) 1429 1430 static int ext4_write_dquot(struct dquot *dquot); 1431 static int ext4_acquire_dquot(struct dquot *dquot); 1432 static int ext4_release_dquot(struct dquot *dquot); 1433 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1434 static int ext4_write_info(struct super_block *sb, int type); 1435 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1436 const struct path *path); 1437 static int ext4_quota_on_mount(struct super_block *sb, int type); 1438 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1439 size_t len, loff_t off); 1440 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1441 const char *data, size_t len, loff_t off); 1442 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1443 unsigned int flags); 1444 static int ext4_enable_quotas(struct super_block *sb); 1445 1446 static struct dquot **ext4_get_dquots(struct inode *inode) 1447 { 1448 return EXT4_I(inode)->i_dquot; 1449 } 1450 1451 static const struct dquot_operations ext4_quota_operations = { 1452 .get_reserved_space = ext4_get_reserved_space, 1453 .write_dquot = ext4_write_dquot, 1454 .acquire_dquot = ext4_acquire_dquot, 1455 .release_dquot = ext4_release_dquot, 1456 .mark_dirty = ext4_mark_dquot_dirty, 1457 .write_info = ext4_write_info, 1458 .alloc_dquot = dquot_alloc, 1459 .destroy_dquot = dquot_destroy, 1460 .get_projid = ext4_get_projid, 1461 .get_inode_usage = ext4_get_inode_usage, 1462 .get_next_id = dquot_get_next_id, 1463 }; 1464 1465 static const struct quotactl_ops ext4_qctl_operations = { 1466 .quota_on = ext4_quota_on, 1467 .quota_off = ext4_quota_off, 1468 .quota_sync = dquot_quota_sync, 1469 .get_state = dquot_get_state, 1470 .set_info = dquot_set_dqinfo, 1471 .get_dqblk = dquot_get_dqblk, 1472 .set_dqblk = dquot_set_dqblk, 1473 .get_nextdqblk = dquot_get_next_dqblk, 1474 }; 1475 #endif 1476 1477 static const struct super_operations ext4_sops = { 1478 .alloc_inode = ext4_alloc_inode, 1479 .free_inode = ext4_free_in_core_inode, 1480 .destroy_inode = ext4_destroy_inode, 1481 .write_inode = ext4_write_inode, 1482 .dirty_inode = ext4_dirty_inode, 1483 .drop_inode = ext4_drop_inode, 1484 .evict_inode = ext4_evict_inode, 1485 .put_super = ext4_put_super, 1486 .sync_fs = ext4_sync_fs, 1487 .freeze_fs = ext4_freeze, 1488 .unfreeze_fs = ext4_unfreeze, 1489 .statfs = ext4_statfs, 1490 .remount_fs = ext4_remount, 1491 .show_options = ext4_show_options, 1492 #ifdef CONFIG_QUOTA 1493 .quota_read = ext4_quota_read, 1494 .quota_write = ext4_quota_write, 1495 .get_dquots = ext4_get_dquots, 1496 #endif 1497 .bdev_try_to_free_page = bdev_try_to_free_page, 1498 }; 1499 1500 static const struct export_operations ext4_export_ops = { 1501 .fh_to_dentry = ext4_fh_to_dentry, 1502 .fh_to_parent = ext4_fh_to_parent, 1503 .get_parent = ext4_get_parent, 1504 .commit_metadata = ext4_nfs_commit_metadata, 1505 }; 1506 1507 enum { 1508 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1509 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1510 Opt_nouid32, Opt_debug, Opt_removed, 1511 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1512 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1513 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1514 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1515 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1516 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1517 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1518 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1519 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1520 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1521 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1522 Opt_nowarn_on_error, Opt_mblk_io_submit, 1523 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1524 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1525 Opt_inode_readahead_blks, Opt_journal_ioprio, 1526 Opt_dioread_nolock, Opt_dioread_lock, 1527 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1528 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1529 }; 1530 1531 static const match_table_t tokens = { 1532 {Opt_bsd_df, "bsddf"}, 1533 {Opt_minix_df, "minixdf"}, 1534 {Opt_grpid, "grpid"}, 1535 {Opt_grpid, "bsdgroups"}, 1536 {Opt_nogrpid, "nogrpid"}, 1537 {Opt_nogrpid, "sysvgroups"}, 1538 {Opt_resgid, "resgid=%u"}, 1539 {Opt_resuid, "resuid=%u"}, 1540 {Opt_sb, "sb=%u"}, 1541 {Opt_err_cont, "errors=continue"}, 1542 {Opt_err_panic, "errors=panic"}, 1543 {Opt_err_ro, "errors=remount-ro"}, 1544 {Opt_nouid32, "nouid32"}, 1545 {Opt_debug, "debug"}, 1546 {Opt_removed, "oldalloc"}, 1547 {Opt_removed, "orlov"}, 1548 {Opt_user_xattr, "user_xattr"}, 1549 {Opt_nouser_xattr, "nouser_xattr"}, 1550 {Opt_acl, "acl"}, 1551 {Opt_noacl, "noacl"}, 1552 {Opt_noload, "norecovery"}, 1553 {Opt_noload, "noload"}, 1554 {Opt_removed, "nobh"}, 1555 {Opt_removed, "bh"}, 1556 {Opt_commit, "commit=%u"}, 1557 {Opt_min_batch_time, "min_batch_time=%u"}, 1558 {Opt_max_batch_time, "max_batch_time=%u"}, 1559 {Opt_journal_dev, "journal_dev=%u"}, 1560 {Opt_journal_path, "journal_path=%s"}, 1561 {Opt_journal_checksum, "journal_checksum"}, 1562 {Opt_nojournal_checksum, "nojournal_checksum"}, 1563 {Opt_journal_async_commit, "journal_async_commit"}, 1564 {Opt_abort, "abort"}, 1565 {Opt_data_journal, "data=journal"}, 1566 {Opt_data_ordered, "data=ordered"}, 1567 {Opt_data_writeback, "data=writeback"}, 1568 {Opt_data_err_abort, "data_err=abort"}, 1569 {Opt_data_err_ignore, "data_err=ignore"}, 1570 {Opt_offusrjquota, "usrjquota="}, 1571 {Opt_usrjquota, "usrjquota=%s"}, 1572 {Opt_offgrpjquota, "grpjquota="}, 1573 {Opt_grpjquota, "grpjquota=%s"}, 1574 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1575 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1576 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1577 {Opt_grpquota, "grpquota"}, 1578 {Opt_noquota, "noquota"}, 1579 {Opt_quota, "quota"}, 1580 {Opt_usrquota, "usrquota"}, 1581 {Opt_prjquota, "prjquota"}, 1582 {Opt_barrier, "barrier=%u"}, 1583 {Opt_barrier, "barrier"}, 1584 {Opt_nobarrier, "nobarrier"}, 1585 {Opt_i_version, "i_version"}, 1586 {Opt_dax, "dax"}, 1587 {Opt_stripe, "stripe=%u"}, 1588 {Opt_delalloc, "delalloc"}, 1589 {Opt_warn_on_error, "warn_on_error"}, 1590 {Opt_nowarn_on_error, "nowarn_on_error"}, 1591 {Opt_lazytime, "lazytime"}, 1592 {Opt_nolazytime, "nolazytime"}, 1593 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1594 {Opt_nodelalloc, "nodelalloc"}, 1595 {Opt_removed, "mblk_io_submit"}, 1596 {Opt_removed, "nomblk_io_submit"}, 1597 {Opt_block_validity, "block_validity"}, 1598 {Opt_noblock_validity, "noblock_validity"}, 1599 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1600 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1601 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1602 {Opt_auto_da_alloc, "auto_da_alloc"}, 1603 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1604 {Opt_dioread_nolock, "dioread_nolock"}, 1605 {Opt_dioread_lock, "nodioread_nolock"}, 1606 {Opt_dioread_lock, "dioread_lock"}, 1607 {Opt_discard, "discard"}, 1608 {Opt_nodiscard, "nodiscard"}, 1609 {Opt_init_itable, "init_itable=%u"}, 1610 {Opt_init_itable, "init_itable"}, 1611 {Opt_noinit_itable, "noinit_itable"}, 1612 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1613 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1614 {Opt_nombcache, "nombcache"}, 1615 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1616 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1617 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1618 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1619 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1620 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1621 {Opt_err, NULL}, 1622 }; 1623 1624 static ext4_fsblk_t get_sb_block(void **data) 1625 { 1626 ext4_fsblk_t sb_block; 1627 char *options = (char *) *data; 1628 1629 if (!options || strncmp(options, "sb=", 3) != 0) 1630 return 1; /* Default location */ 1631 1632 options += 3; 1633 /* TODO: use simple_strtoll with >32bit ext4 */ 1634 sb_block = simple_strtoul(options, &options, 0); 1635 if (*options && *options != ',') { 1636 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1637 (char *) *data); 1638 return 1; 1639 } 1640 if (*options == ',') 1641 options++; 1642 *data = (void *) options; 1643 1644 return sb_block; 1645 } 1646 1647 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1648 static const char deprecated_msg[] = 1649 "Mount option \"%s\" will be removed by %s\n" 1650 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1651 1652 #ifdef CONFIG_QUOTA 1653 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1654 { 1655 struct ext4_sb_info *sbi = EXT4_SB(sb); 1656 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1657 int ret = -1; 1658 1659 if (sb_any_quota_loaded(sb) && !old_qname) { 1660 ext4_msg(sb, KERN_ERR, 1661 "Cannot change journaled " 1662 "quota options when quota turned on"); 1663 return -1; 1664 } 1665 if (ext4_has_feature_quota(sb)) { 1666 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1667 "ignored when QUOTA feature is enabled"); 1668 return 1; 1669 } 1670 qname = match_strdup(args); 1671 if (!qname) { 1672 ext4_msg(sb, KERN_ERR, 1673 "Not enough memory for storing quotafile name"); 1674 return -1; 1675 } 1676 if (old_qname) { 1677 if (strcmp(old_qname, qname) == 0) 1678 ret = 1; 1679 else 1680 ext4_msg(sb, KERN_ERR, 1681 "%s quota file already specified", 1682 QTYPE2NAME(qtype)); 1683 goto errout; 1684 } 1685 if (strchr(qname, '/')) { 1686 ext4_msg(sb, KERN_ERR, 1687 "quotafile must be on filesystem root"); 1688 goto errout; 1689 } 1690 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1691 set_opt(sb, QUOTA); 1692 return 1; 1693 errout: 1694 kfree(qname); 1695 return ret; 1696 } 1697 1698 static int clear_qf_name(struct super_block *sb, int qtype) 1699 { 1700 1701 struct ext4_sb_info *sbi = EXT4_SB(sb); 1702 char *old_qname = get_qf_name(sb, sbi, qtype); 1703 1704 if (sb_any_quota_loaded(sb) && old_qname) { 1705 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1706 " when quota turned on"); 1707 return -1; 1708 } 1709 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1710 synchronize_rcu(); 1711 kfree(old_qname); 1712 return 1; 1713 } 1714 #endif 1715 1716 #define MOPT_SET 0x0001 1717 #define MOPT_CLEAR 0x0002 1718 #define MOPT_NOSUPPORT 0x0004 1719 #define MOPT_EXPLICIT 0x0008 1720 #define MOPT_CLEAR_ERR 0x0010 1721 #define MOPT_GTE0 0x0020 1722 #ifdef CONFIG_QUOTA 1723 #define MOPT_Q 0 1724 #define MOPT_QFMT 0x0040 1725 #else 1726 #define MOPT_Q MOPT_NOSUPPORT 1727 #define MOPT_QFMT MOPT_NOSUPPORT 1728 #endif 1729 #define MOPT_DATAJ 0x0080 1730 #define MOPT_NO_EXT2 0x0100 1731 #define MOPT_NO_EXT3 0x0200 1732 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1733 #define MOPT_STRING 0x0400 1734 1735 static const struct mount_opts { 1736 int token; 1737 int mount_opt; 1738 int flags; 1739 } ext4_mount_opts[] = { 1740 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1741 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1742 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1743 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1744 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1745 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1746 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1747 MOPT_EXT4_ONLY | MOPT_SET}, 1748 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1749 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1750 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1751 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1752 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1753 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1754 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1755 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1756 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1757 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1758 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1759 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1760 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1761 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1762 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1763 EXT4_MOUNT_JOURNAL_CHECKSUM), 1764 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1765 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1766 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1767 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1768 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1769 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1770 MOPT_NO_EXT2}, 1771 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1772 MOPT_NO_EXT2}, 1773 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1774 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1775 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1776 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1777 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1778 {Opt_commit, 0, MOPT_GTE0}, 1779 {Opt_max_batch_time, 0, MOPT_GTE0}, 1780 {Opt_min_batch_time, 0, MOPT_GTE0}, 1781 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1782 {Opt_init_itable, 0, MOPT_GTE0}, 1783 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1784 {Opt_stripe, 0, MOPT_GTE0}, 1785 {Opt_resuid, 0, MOPT_GTE0}, 1786 {Opt_resgid, 0, MOPT_GTE0}, 1787 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1788 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1789 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1790 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1791 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1792 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1793 MOPT_NO_EXT2 | MOPT_DATAJ}, 1794 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1795 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1796 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1797 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1798 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1799 #else 1800 {Opt_acl, 0, MOPT_NOSUPPORT}, 1801 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1802 #endif 1803 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1804 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1805 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1806 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1807 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1808 MOPT_SET | MOPT_Q}, 1809 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1810 MOPT_SET | MOPT_Q}, 1811 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1812 MOPT_SET | MOPT_Q}, 1813 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1814 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1815 MOPT_CLEAR | MOPT_Q}, 1816 {Opt_usrjquota, 0, MOPT_Q}, 1817 {Opt_grpjquota, 0, MOPT_Q}, 1818 {Opt_offusrjquota, 0, MOPT_Q}, 1819 {Opt_offgrpjquota, 0, MOPT_Q}, 1820 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1821 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1822 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1823 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1824 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1825 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1826 {Opt_err, 0, 0} 1827 }; 1828 1829 #ifdef CONFIG_UNICODE 1830 static const struct ext4_sb_encodings { 1831 __u16 magic; 1832 char *name; 1833 char *version; 1834 } ext4_sb_encoding_map[] = { 1835 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1836 }; 1837 1838 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1839 const struct ext4_sb_encodings **encoding, 1840 __u16 *flags) 1841 { 1842 __u16 magic = le16_to_cpu(es->s_encoding); 1843 int i; 1844 1845 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1846 if (magic == ext4_sb_encoding_map[i].magic) 1847 break; 1848 1849 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1850 return -EINVAL; 1851 1852 *encoding = &ext4_sb_encoding_map[i]; 1853 *flags = le16_to_cpu(es->s_encoding_flags); 1854 1855 return 0; 1856 } 1857 #endif 1858 1859 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1860 substring_t *args, unsigned long *journal_devnum, 1861 unsigned int *journal_ioprio, int is_remount) 1862 { 1863 struct ext4_sb_info *sbi = EXT4_SB(sb); 1864 const struct mount_opts *m; 1865 kuid_t uid; 1866 kgid_t gid; 1867 int arg = 0; 1868 1869 #ifdef CONFIG_QUOTA 1870 if (token == Opt_usrjquota) 1871 return set_qf_name(sb, USRQUOTA, &args[0]); 1872 else if (token == Opt_grpjquota) 1873 return set_qf_name(sb, GRPQUOTA, &args[0]); 1874 else if (token == Opt_offusrjquota) 1875 return clear_qf_name(sb, USRQUOTA); 1876 else if (token == Opt_offgrpjquota) 1877 return clear_qf_name(sb, GRPQUOTA); 1878 #endif 1879 switch (token) { 1880 case Opt_noacl: 1881 case Opt_nouser_xattr: 1882 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1883 break; 1884 case Opt_sb: 1885 return 1; /* handled by get_sb_block() */ 1886 case Opt_removed: 1887 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1888 return 1; 1889 case Opt_abort: 1890 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1891 return 1; 1892 case Opt_i_version: 1893 sb->s_flags |= SB_I_VERSION; 1894 return 1; 1895 case Opt_lazytime: 1896 sb->s_flags |= SB_LAZYTIME; 1897 return 1; 1898 case Opt_nolazytime: 1899 sb->s_flags &= ~SB_LAZYTIME; 1900 return 1; 1901 } 1902 1903 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1904 if (token == m->token) 1905 break; 1906 1907 if (m->token == Opt_err) { 1908 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1909 "or missing value", opt); 1910 return -1; 1911 } 1912 1913 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1914 ext4_msg(sb, KERN_ERR, 1915 "Mount option \"%s\" incompatible with ext2", opt); 1916 return -1; 1917 } 1918 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1919 ext4_msg(sb, KERN_ERR, 1920 "Mount option \"%s\" incompatible with ext3", opt); 1921 return -1; 1922 } 1923 1924 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1925 return -1; 1926 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1927 return -1; 1928 if (m->flags & MOPT_EXPLICIT) { 1929 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1930 set_opt2(sb, EXPLICIT_DELALLOC); 1931 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1932 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1933 } else 1934 return -1; 1935 } 1936 if (m->flags & MOPT_CLEAR_ERR) 1937 clear_opt(sb, ERRORS_MASK); 1938 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1939 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1940 "options when quota turned on"); 1941 return -1; 1942 } 1943 1944 if (m->flags & MOPT_NOSUPPORT) { 1945 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1946 } else if (token == Opt_commit) { 1947 if (arg == 0) 1948 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1949 else if (arg > INT_MAX / HZ) { 1950 ext4_msg(sb, KERN_ERR, 1951 "Invalid commit interval %d, " 1952 "must be smaller than %d", 1953 arg, INT_MAX / HZ); 1954 return -1; 1955 } 1956 sbi->s_commit_interval = HZ * arg; 1957 } else if (token == Opt_debug_want_extra_isize) { 1958 if ((arg & 1) || 1959 (arg < 4) || 1960 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 1961 ext4_msg(sb, KERN_ERR, 1962 "Invalid want_extra_isize %d", arg); 1963 return -1; 1964 } 1965 sbi->s_want_extra_isize = arg; 1966 } else if (token == Opt_max_batch_time) { 1967 sbi->s_max_batch_time = arg; 1968 } else if (token == Opt_min_batch_time) { 1969 sbi->s_min_batch_time = arg; 1970 } else if (token == Opt_inode_readahead_blks) { 1971 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1972 ext4_msg(sb, KERN_ERR, 1973 "EXT4-fs: inode_readahead_blks must be " 1974 "0 or a power of 2 smaller than 2^31"); 1975 return -1; 1976 } 1977 sbi->s_inode_readahead_blks = arg; 1978 } else if (token == Opt_init_itable) { 1979 set_opt(sb, INIT_INODE_TABLE); 1980 if (!args->from) 1981 arg = EXT4_DEF_LI_WAIT_MULT; 1982 sbi->s_li_wait_mult = arg; 1983 } else if (token == Opt_max_dir_size_kb) { 1984 sbi->s_max_dir_size_kb = arg; 1985 } else if (token == Opt_stripe) { 1986 sbi->s_stripe = arg; 1987 } else if (token == Opt_resuid) { 1988 uid = make_kuid(current_user_ns(), arg); 1989 if (!uid_valid(uid)) { 1990 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1991 return -1; 1992 } 1993 sbi->s_resuid = uid; 1994 } else if (token == Opt_resgid) { 1995 gid = make_kgid(current_user_ns(), arg); 1996 if (!gid_valid(gid)) { 1997 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1998 return -1; 1999 } 2000 sbi->s_resgid = gid; 2001 } else if (token == Opt_journal_dev) { 2002 if (is_remount) { 2003 ext4_msg(sb, KERN_ERR, 2004 "Cannot specify journal on remount"); 2005 return -1; 2006 } 2007 *journal_devnum = arg; 2008 } else if (token == Opt_journal_path) { 2009 char *journal_path; 2010 struct inode *journal_inode; 2011 struct path path; 2012 int error; 2013 2014 if (is_remount) { 2015 ext4_msg(sb, KERN_ERR, 2016 "Cannot specify journal on remount"); 2017 return -1; 2018 } 2019 journal_path = match_strdup(&args[0]); 2020 if (!journal_path) { 2021 ext4_msg(sb, KERN_ERR, "error: could not dup " 2022 "journal device string"); 2023 return -1; 2024 } 2025 2026 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2027 if (error) { 2028 ext4_msg(sb, KERN_ERR, "error: could not find " 2029 "journal device path: error %d", error); 2030 kfree(journal_path); 2031 return -1; 2032 } 2033 2034 journal_inode = d_inode(path.dentry); 2035 if (!S_ISBLK(journal_inode->i_mode)) { 2036 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2037 "is not a block device", journal_path); 2038 path_put(&path); 2039 kfree(journal_path); 2040 return -1; 2041 } 2042 2043 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2044 path_put(&path); 2045 kfree(journal_path); 2046 } else if (token == Opt_journal_ioprio) { 2047 if (arg > 7) { 2048 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2049 " (must be 0-7)"); 2050 return -1; 2051 } 2052 *journal_ioprio = 2053 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2054 } else if (token == Opt_test_dummy_encryption) { 2055 #ifdef CONFIG_FS_ENCRYPTION 2056 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 2057 ext4_msg(sb, KERN_WARNING, 2058 "Test dummy encryption mode enabled"); 2059 #else 2060 ext4_msg(sb, KERN_WARNING, 2061 "Test dummy encryption mount option ignored"); 2062 #endif 2063 } else if (m->flags & MOPT_DATAJ) { 2064 if (is_remount) { 2065 if (!sbi->s_journal) 2066 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2067 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2068 ext4_msg(sb, KERN_ERR, 2069 "Cannot change data mode on remount"); 2070 return -1; 2071 } 2072 } else { 2073 clear_opt(sb, DATA_FLAGS); 2074 sbi->s_mount_opt |= m->mount_opt; 2075 } 2076 #ifdef CONFIG_QUOTA 2077 } else if (m->flags & MOPT_QFMT) { 2078 if (sb_any_quota_loaded(sb) && 2079 sbi->s_jquota_fmt != m->mount_opt) { 2080 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2081 "quota options when quota turned on"); 2082 return -1; 2083 } 2084 if (ext4_has_feature_quota(sb)) { 2085 ext4_msg(sb, KERN_INFO, 2086 "Quota format mount options ignored " 2087 "when QUOTA feature is enabled"); 2088 return 1; 2089 } 2090 sbi->s_jquota_fmt = m->mount_opt; 2091 #endif 2092 } else if (token == Opt_dax) { 2093 #ifdef CONFIG_FS_DAX 2094 ext4_msg(sb, KERN_WARNING, 2095 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2096 sbi->s_mount_opt |= m->mount_opt; 2097 #else 2098 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2099 return -1; 2100 #endif 2101 } else if (token == Opt_data_err_abort) { 2102 sbi->s_mount_opt |= m->mount_opt; 2103 } else if (token == Opt_data_err_ignore) { 2104 sbi->s_mount_opt &= ~m->mount_opt; 2105 } else { 2106 if (!args->from) 2107 arg = 1; 2108 if (m->flags & MOPT_CLEAR) 2109 arg = !arg; 2110 else if (unlikely(!(m->flags & MOPT_SET))) { 2111 ext4_msg(sb, KERN_WARNING, 2112 "buggy handling of option %s", opt); 2113 WARN_ON(1); 2114 return -1; 2115 } 2116 if (arg != 0) 2117 sbi->s_mount_opt |= m->mount_opt; 2118 else 2119 sbi->s_mount_opt &= ~m->mount_opt; 2120 } 2121 return 1; 2122 } 2123 2124 static int parse_options(char *options, struct super_block *sb, 2125 unsigned long *journal_devnum, 2126 unsigned int *journal_ioprio, 2127 int is_remount) 2128 { 2129 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2130 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2131 substring_t args[MAX_OPT_ARGS]; 2132 int token; 2133 2134 if (!options) 2135 return 1; 2136 2137 while ((p = strsep(&options, ",")) != NULL) { 2138 if (!*p) 2139 continue; 2140 /* 2141 * Initialize args struct so we know whether arg was 2142 * found; some options take optional arguments. 2143 */ 2144 args[0].to = args[0].from = NULL; 2145 token = match_token(p, tokens, args); 2146 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2147 journal_ioprio, is_remount) < 0) 2148 return 0; 2149 } 2150 #ifdef CONFIG_QUOTA 2151 /* 2152 * We do the test below only for project quotas. 'usrquota' and 2153 * 'grpquota' mount options are allowed even without quota feature 2154 * to support legacy quotas in quota files. 2155 */ 2156 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2157 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2158 "Cannot enable project quota enforcement."); 2159 return 0; 2160 } 2161 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2162 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2163 if (usr_qf_name || grp_qf_name) { 2164 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2165 clear_opt(sb, USRQUOTA); 2166 2167 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2168 clear_opt(sb, GRPQUOTA); 2169 2170 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2171 ext4_msg(sb, KERN_ERR, "old and new quota " 2172 "format mixing"); 2173 return 0; 2174 } 2175 2176 if (!sbi->s_jquota_fmt) { 2177 ext4_msg(sb, KERN_ERR, "journaled quota format " 2178 "not specified"); 2179 return 0; 2180 } 2181 } 2182 #endif 2183 return 1; 2184 } 2185 2186 static inline void ext4_show_quota_options(struct seq_file *seq, 2187 struct super_block *sb) 2188 { 2189 #if defined(CONFIG_QUOTA) 2190 struct ext4_sb_info *sbi = EXT4_SB(sb); 2191 char *usr_qf_name, *grp_qf_name; 2192 2193 if (sbi->s_jquota_fmt) { 2194 char *fmtname = ""; 2195 2196 switch (sbi->s_jquota_fmt) { 2197 case QFMT_VFS_OLD: 2198 fmtname = "vfsold"; 2199 break; 2200 case QFMT_VFS_V0: 2201 fmtname = "vfsv0"; 2202 break; 2203 case QFMT_VFS_V1: 2204 fmtname = "vfsv1"; 2205 break; 2206 } 2207 seq_printf(seq, ",jqfmt=%s", fmtname); 2208 } 2209 2210 rcu_read_lock(); 2211 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2212 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2213 if (usr_qf_name) 2214 seq_show_option(seq, "usrjquota", usr_qf_name); 2215 if (grp_qf_name) 2216 seq_show_option(seq, "grpjquota", grp_qf_name); 2217 rcu_read_unlock(); 2218 #endif 2219 } 2220 2221 static const char *token2str(int token) 2222 { 2223 const struct match_token *t; 2224 2225 for (t = tokens; t->token != Opt_err; t++) 2226 if (t->token == token && !strchr(t->pattern, '=')) 2227 break; 2228 return t->pattern; 2229 } 2230 2231 /* 2232 * Show an option if 2233 * - it's set to a non-default value OR 2234 * - if the per-sb default is different from the global default 2235 */ 2236 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2237 int nodefs) 2238 { 2239 struct ext4_sb_info *sbi = EXT4_SB(sb); 2240 struct ext4_super_block *es = sbi->s_es; 2241 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2242 const struct mount_opts *m; 2243 char sep = nodefs ? '\n' : ','; 2244 2245 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2246 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2247 2248 if (sbi->s_sb_block != 1) 2249 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2250 2251 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2252 int want_set = m->flags & MOPT_SET; 2253 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2254 (m->flags & MOPT_CLEAR_ERR)) 2255 continue; 2256 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2257 continue; /* skip if same as the default */ 2258 if ((want_set && 2259 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2260 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2261 continue; /* select Opt_noFoo vs Opt_Foo */ 2262 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2263 } 2264 2265 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2266 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2267 SEQ_OPTS_PRINT("resuid=%u", 2268 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2269 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2270 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2271 SEQ_OPTS_PRINT("resgid=%u", 2272 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2273 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2274 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2275 SEQ_OPTS_PUTS("errors=remount-ro"); 2276 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2277 SEQ_OPTS_PUTS("errors=continue"); 2278 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2279 SEQ_OPTS_PUTS("errors=panic"); 2280 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2281 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2282 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2283 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2284 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2285 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2286 if (sb->s_flags & SB_I_VERSION) 2287 SEQ_OPTS_PUTS("i_version"); 2288 if (nodefs || sbi->s_stripe) 2289 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2290 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2291 (sbi->s_mount_opt ^ def_mount_opt)) { 2292 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2293 SEQ_OPTS_PUTS("data=journal"); 2294 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2295 SEQ_OPTS_PUTS("data=ordered"); 2296 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2297 SEQ_OPTS_PUTS("data=writeback"); 2298 } 2299 if (nodefs || 2300 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2301 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2302 sbi->s_inode_readahead_blks); 2303 2304 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2305 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2306 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2307 if (nodefs || sbi->s_max_dir_size_kb) 2308 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2309 if (test_opt(sb, DATA_ERR_ABORT)) 2310 SEQ_OPTS_PUTS("data_err=abort"); 2311 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2312 SEQ_OPTS_PUTS("test_dummy_encryption"); 2313 2314 ext4_show_quota_options(seq, sb); 2315 return 0; 2316 } 2317 2318 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2319 { 2320 return _ext4_show_options(seq, root->d_sb, 0); 2321 } 2322 2323 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2324 { 2325 struct super_block *sb = seq->private; 2326 int rc; 2327 2328 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2329 rc = _ext4_show_options(seq, sb, 1); 2330 seq_puts(seq, "\n"); 2331 return rc; 2332 } 2333 2334 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2335 int read_only) 2336 { 2337 struct ext4_sb_info *sbi = EXT4_SB(sb); 2338 int err = 0; 2339 2340 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2341 ext4_msg(sb, KERN_ERR, "revision level too high, " 2342 "forcing read-only mode"); 2343 err = -EROFS; 2344 } 2345 if (read_only) 2346 goto done; 2347 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2348 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2349 "running e2fsck is recommended"); 2350 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2351 ext4_msg(sb, KERN_WARNING, 2352 "warning: mounting fs with errors, " 2353 "running e2fsck is recommended"); 2354 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2355 le16_to_cpu(es->s_mnt_count) >= 2356 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2357 ext4_msg(sb, KERN_WARNING, 2358 "warning: maximal mount count reached, " 2359 "running e2fsck is recommended"); 2360 else if (le32_to_cpu(es->s_checkinterval) && 2361 (ext4_get_tstamp(es, s_lastcheck) + 2362 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2363 ext4_msg(sb, KERN_WARNING, 2364 "warning: checktime reached, " 2365 "running e2fsck is recommended"); 2366 if (!sbi->s_journal) 2367 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2368 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2369 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2370 le16_add_cpu(&es->s_mnt_count, 1); 2371 ext4_update_tstamp(es, s_mtime); 2372 if (sbi->s_journal) 2373 ext4_set_feature_journal_needs_recovery(sb); 2374 2375 err = ext4_commit_super(sb, 1); 2376 done: 2377 if (test_opt(sb, DEBUG)) 2378 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2379 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2380 sb->s_blocksize, 2381 sbi->s_groups_count, 2382 EXT4_BLOCKS_PER_GROUP(sb), 2383 EXT4_INODES_PER_GROUP(sb), 2384 sbi->s_mount_opt, sbi->s_mount_opt2); 2385 2386 cleancache_init_fs(sb); 2387 return err; 2388 } 2389 2390 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2391 { 2392 struct ext4_sb_info *sbi = EXT4_SB(sb); 2393 struct flex_groups **old_groups, **new_groups; 2394 int size, i, j; 2395 2396 if (!sbi->s_log_groups_per_flex) 2397 return 0; 2398 2399 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2400 if (size <= sbi->s_flex_groups_allocated) 2401 return 0; 2402 2403 new_groups = kvzalloc(roundup_pow_of_two(size * 2404 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2405 if (!new_groups) { 2406 ext4_msg(sb, KERN_ERR, 2407 "not enough memory for %d flex group pointers", size); 2408 return -ENOMEM; 2409 } 2410 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2411 new_groups[i] = kvzalloc(roundup_pow_of_two( 2412 sizeof(struct flex_groups)), 2413 GFP_KERNEL); 2414 if (!new_groups[i]) { 2415 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2416 kvfree(new_groups[j]); 2417 kvfree(new_groups); 2418 ext4_msg(sb, KERN_ERR, 2419 "not enough memory for %d flex groups", size); 2420 return -ENOMEM; 2421 } 2422 } 2423 rcu_read_lock(); 2424 old_groups = rcu_dereference(sbi->s_flex_groups); 2425 if (old_groups) 2426 memcpy(new_groups, old_groups, 2427 (sbi->s_flex_groups_allocated * 2428 sizeof(struct flex_groups *))); 2429 rcu_read_unlock(); 2430 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2431 sbi->s_flex_groups_allocated = size; 2432 if (old_groups) 2433 ext4_kvfree_array_rcu(old_groups); 2434 return 0; 2435 } 2436 2437 static int ext4_fill_flex_info(struct super_block *sb) 2438 { 2439 struct ext4_sb_info *sbi = EXT4_SB(sb); 2440 struct ext4_group_desc *gdp = NULL; 2441 struct flex_groups *fg; 2442 ext4_group_t flex_group; 2443 int i, err; 2444 2445 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2446 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2447 sbi->s_log_groups_per_flex = 0; 2448 return 1; 2449 } 2450 2451 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2452 if (err) 2453 goto failed; 2454 2455 for (i = 0; i < sbi->s_groups_count; i++) { 2456 gdp = ext4_get_group_desc(sb, i, NULL); 2457 2458 flex_group = ext4_flex_group(sbi, i); 2459 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2460 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2461 atomic64_add(ext4_free_group_clusters(sb, gdp), 2462 &fg->free_clusters); 2463 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2464 } 2465 2466 return 1; 2467 failed: 2468 return 0; 2469 } 2470 2471 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2472 struct ext4_group_desc *gdp) 2473 { 2474 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2475 __u16 crc = 0; 2476 __le32 le_group = cpu_to_le32(block_group); 2477 struct ext4_sb_info *sbi = EXT4_SB(sb); 2478 2479 if (ext4_has_metadata_csum(sbi->s_sb)) { 2480 /* Use new metadata_csum algorithm */ 2481 __u32 csum32; 2482 __u16 dummy_csum = 0; 2483 2484 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2485 sizeof(le_group)); 2486 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2487 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2488 sizeof(dummy_csum)); 2489 offset += sizeof(dummy_csum); 2490 if (offset < sbi->s_desc_size) 2491 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2492 sbi->s_desc_size - offset); 2493 2494 crc = csum32 & 0xFFFF; 2495 goto out; 2496 } 2497 2498 /* old crc16 code */ 2499 if (!ext4_has_feature_gdt_csum(sb)) 2500 return 0; 2501 2502 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2503 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2504 crc = crc16(crc, (__u8 *)gdp, offset); 2505 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2506 /* for checksum of struct ext4_group_desc do the rest...*/ 2507 if (ext4_has_feature_64bit(sb) && 2508 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2509 crc = crc16(crc, (__u8 *)gdp + offset, 2510 le16_to_cpu(sbi->s_es->s_desc_size) - 2511 offset); 2512 2513 out: 2514 return cpu_to_le16(crc); 2515 } 2516 2517 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2518 struct ext4_group_desc *gdp) 2519 { 2520 if (ext4_has_group_desc_csum(sb) && 2521 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2522 return 0; 2523 2524 return 1; 2525 } 2526 2527 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2528 struct ext4_group_desc *gdp) 2529 { 2530 if (!ext4_has_group_desc_csum(sb)) 2531 return; 2532 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2533 } 2534 2535 /* Called at mount-time, super-block is locked */ 2536 static int ext4_check_descriptors(struct super_block *sb, 2537 ext4_fsblk_t sb_block, 2538 ext4_group_t *first_not_zeroed) 2539 { 2540 struct ext4_sb_info *sbi = EXT4_SB(sb); 2541 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2542 ext4_fsblk_t last_block; 2543 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2544 ext4_fsblk_t block_bitmap; 2545 ext4_fsblk_t inode_bitmap; 2546 ext4_fsblk_t inode_table; 2547 int flexbg_flag = 0; 2548 ext4_group_t i, grp = sbi->s_groups_count; 2549 2550 if (ext4_has_feature_flex_bg(sb)) 2551 flexbg_flag = 1; 2552 2553 ext4_debug("Checking group descriptors"); 2554 2555 for (i = 0; i < sbi->s_groups_count; i++) { 2556 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2557 2558 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2559 last_block = ext4_blocks_count(sbi->s_es) - 1; 2560 else 2561 last_block = first_block + 2562 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2563 2564 if ((grp == sbi->s_groups_count) && 2565 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2566 grp = i; 2567 2568 block_bitmap = ext4_block_bitmap(sb, gdp); 2569 if (block_bitmap == sb_block) { 2570 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2571 "Block bitmap for group %u overlaps " 2572 "superblock", i); 2573 if (!sb_rdonly(sb)) 2574 return 0; 2575 } 2576 if (block_bitmap >= sb_block + 1 && 2577 block_bitmap <= last_bg_block) { 2578 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2579 "Block bitmap for group %u overlaps " 2580 "block group descriptors", i); 2581 if (!sb_rdonly(sb)) 2582 return 0; 2583 } 2584 if (block_bitmap < first_block || block_bitmap > last_block) { 2585 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2586 "Block bitmap for group %u not in group " 2587 "(block %llu)!", i, block_bitmap); 2588 return 0; 2589 } 2590 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2591 if (inode_bitmap == sb_block) { 2592 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2593 "Inode bitmap for group %u overlaps " 2594 "superblock", i); 2595 if (!sb_rdonly(sb)) 2596 return 0; 2597 } 2598 if (inode_bitmap >= sb_block + 1 && 2599 inode_bitmap <= last_bg_block) { 2600 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2601 "Inode bitmap for group %u overlaps " 2602 "block group descriptors", i); 2603 if (!sb_rdonly(sb)) 2604 return 0; 2605 } 2606 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2607 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2608 "Inode bitmap for group %u not in group " 2609 "(block %llu)!", i, inode_bitmap); 2610 return 0; 2611 } 2612 inode_table = ext4_inode_table(sb, gdp); 2613 if (inode_table == sb_block) { 2614 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2615 "Inode table for group %u overlaps " 2616 "superblock", i); 2617 if (!sb_rdonly(sb)) 2618 return 0; 2619 } 2620 if (inode_table >= sb_block + 1 && 2621 inode_table <= last_bg_block) { 2622 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2623 "Inode table for group %u overlaps " 2624 "block group descriptors", i); 2625 if (!sb_rdonly(sb)) 2626 return 0; 2627 } 2628 if (inode_table < first_block || 2629 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2630 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2631 "Inode table for group %u not in group " 2632 "(block %llu)!", i, inode_table); 2633 return 0; 2634 } 2635 ext4_lock_group(sb, i); 2636 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2637 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2638 "Checksum for group %u failed (%u!=%u)", 2639 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2640 gdp)), le16_to_cpu(gdp->bg_checksum)); 2641 if (!sb_rdonly(sb)) { 2642 ext4_unlock_group(sb, i); 2643 return 0; 2644 } 2645 } 2646 ext4_unlock_group(sb, i); 2647 if (!flexbg_flag) 2648 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2649 } 2650 if (NULL != first_not_zeroed) 2651 *first_not_zeroed = grp; 2652 return 1; 2653 } 2654 2655 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2656 * the superblock) which were deleted from all directories, but held open by 2657 * a process at the time of a crash. We walk the list and try to delete these 2658 * inodes at recovery time (only with a read-write filesystem). 2659 * 2660 * In order to keep the orphan inode chain consistent during traversal (in 2661 * case of crash during recovery), we link each inode into the superblock 2662 * orphan list_head and handle it the same way as an inode deletion during 2663 * normal operation (which journals the operations for us). 2664 * 2665 * We only do an iget() and an iput() on each inode, which is very safe if we 2666 * accidentally point at an in-use or already deleted inode. The worst that 2667 * can happen in this case is that we get a "bit already cleared" message from 2668 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2669 * e2fsck was run on this filesystem, and it must have already done the orphan 2670 * inode cleanup for us, so we can safely abort without any further action. 2671 */ 2672 static void ext4_orphan_cleanup(struct super_block *sb, 2673 struct ext4_super_block *es) 2674 { 2675 unsigned int s_flags = sb->s_flags; 2676 int ret, nr_orphans = 0, nr_truncates = 0; 2677 #ifdef CONFIG_QUOTA 2678 int quota_update = 0; 2679 int i; 2680 #endif 2681 if (!es->s_last_orphan) { 2682 jbd_debug(4, "no orphan inodes to clean up\n"); 2683 return; 2684 } 2685 2686 if (bdev_read_only(sb->s_bdev)) { 2687 ext4_msg(sb, KERN_ERR, "write access " 2688 "unavailable, skipping orphan cleanup"); 2689 return; 2690 } 2691 2692 /* Check if feature set would not allow a r/w mount */ 2693 if (!ext4_feature_set_ok(sb, 0)) { 2694 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2695 "unknown ROCOMPAT features"); 2696 return; 2697 } 2698 2699 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2700 /* don't clear list on RO mount w/ errors */ 2701 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2702 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2703 "clearing orphan list.\n"); 2704 es->s_last_orphan = 0; 2705 } 2706 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2707 return; 2708 } 2709 2710 if (s_flags & SB_RDONLY) { 2711 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2712 sb->s_flags &= ~SB_RDONLY; 2713 } 2714 #ifdef CONFIG_QUOTA 2715 /* Needed for iput() to work correctly and not trash data */ 2716 sb->s_flags |= SB_ACTIVE; 2717 2718 /* 2719 * Turn on quotas which were not enabled for read-only mounts if 2720 * filesystem has quota feature, so that they are updated correctly. 2721 */ 2722 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2723 int ret = ext4_enable_quotas(sb); 2724 2725 if (!ret) 2726 quota_update = 1; 2727 else 2728 ext4_msg(sb, KERN_ERR, 2729 "Cannot turn on quotas: error %d", ret); 2730 } 2731 2732 /* Turn on journaled quotas used for old sytle */ 2733 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2734 if (EXT4_SB(sb)->s_qf_names[i]) { 2735 int ret = ext4_quota_on_mount(sb, i); 2736 2737 if (!ret) 2738 quota_update = 1; 2739 else 2740 ext4_msg(sb, KERN_ERR, 2741 "Cannot turn on journaled " 2742 "quota: type %d: error %d", i, ret); 2743 } 2744 } 2745 #endif 2746 2747 while (es->s_last_orphan) { 2748 struct inode *inode; 2749 2750 /* 2751 * We may have encountered an error during cleanup; if 2752 * so, skip the rest. 2753 */ 2754 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2755 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2756 es->s_last_orphan = 0; 2757 break; 2758 } 2759 2760 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2761 if (IS_ERR(inode)) { 2762 es->s_last_orphan = 0; 2763 break; 2764 } 2765 2766 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2767 dquot_initialize(inode); 2768 if (inode->i_nlink) { 2769 if (test_opt(sb, DEBUG)) 2770 ext4_msg(sb, KERN_DEBUG, 2771 "%s: truncating inode %lu to %lld bytes", 2772 __func__, inode->i_ino, inode->i_size); 2773 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2774 inode->i_ino, inode->i_size); 2775 inode_lock(inode); 2776 truncate_inode_pages(inode->i_mapping, inode->i_size); 2777 ret = ext4_truncate(inode); 2778 if (ret) 2779 ext4_std_error(inode->i_sb, ret); 2780 inode_unlock(inode); 2781 nr_truncates++; 2782 } else { 2783 if (test_opt(sb, DEBUG)) 2784 ext4_msg(sb, KERN_DEBUG, 2785 "%s: deleting unreferenced inode %lu", 2786 __func__, inode->i_ino); 2787 jbd_debug(2, "deleting unreferenced inode %lu\n", 2788 inode->i_ino); 2789 nr_orphans++; 2790 } 2791 iput(inode); /* The delete magic happens here! */ 2792 } 2793 2794 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2795 2796 if (nr_orphans) 2797 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2798 PLURAL(nr_orphans)); 2799 if (nr_truncates) 2800 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2801 PLURAL(nr_truncates)); 2802 #ifdef CONFIG_QUOTA 2803 /* Turn off quotas if they were enabled for orphan cleanup */ 2804 if (quota_update) { 2805 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2806 if (sb_dqopt(sb)->files[i]) 2807 dquot_quota_off(sb, i); 2808 } 2809 } 2810 #endif 2811 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2812 } 2813 2814 /* 2815 * Maximal extent format file size. 2816 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2817 * extent format containers, within a sector_t, and within i_blocks 2818 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2819 * so that won't be a limiting factor. 2820 * 2821 * However there is other limiting factor. We do store extents in the form 2822 * of starting block and length, hence the resulting length of the extent 2823 * covering maximum file size must fit into on-disk format containers as 2824 * well. Given that length is always by 1 unit bigger than max unit (because 2825 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2826 * 2827 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2828 */ 2829 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2830 { 2831 loff_t res; 2832 loff_t upper_limit = MAX_LFS_FILESIZE; 2833 2834 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2835 2836 if (!has_huge_files) { 2837 upper_limit = (1LL << 32) - 1; 2838 2839 /* total blocks in file system block size */ 2840 upper_limit >>= (blkbits - 9); 2841 upper_limit <<= blkbits; 2842 } 2843 2844 /* 2845 * 32-bit extent-start container, ee_block. We lower the maxbytes 2846 * by one fs block, so ee_len can cover the extent of maximum file 2847 * size 2848 */ 2849 res = (1LL << 32) - 1; 2850 res <<= blkbits; 2851 2852 /* Sanity check against vm- & vfs- imposed limits */ 2853 if (res > upper_limit) 2854 res = upper_limit; 2855 2856 return res; 2857 } 2858 2859 /* 2860 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2861 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2862 * We need to be 1 filesystem block less than the 2^48 sector limit. 2863 */ 2864 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2865 { 2866 loff_t res = EXT4_NDIR_BLOCKS; 2867 int meta_blocks; 2868 loff_t upper_limit; 2869 /* This is calculated to be the largest file size for a dense, block 2870 * mapped file such that the file's total number of 512-byte sectors, 2871 * including data and all indirect blocks, does not exceed (2^48 - 1). 2872 * 2873 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2874 * number of 512-byte sectors of the file. 2875 */ 2876 2877 if (!has_huge_files) { 2878 /* 2879 * !has_huge_files or implies that the inode i_block field 2880 * represents total file blocks in 2^32 512-byte sectors == 2881 * size of vfs inode i_blocks * 8 2882 */ 2883 upper_limit = (1LL << 32) - 1; 2884 2885 /* total blocks in file system block size */ 2886 upper_limit >>= (bits - 9); 2887 2888 } else { 2889 /* 2890 * We use 48 bit ext4_inode i_blocks 2891 * With EXT4_HUGE_FILE_FL set the i_blocks 2892 * represent total number of blocks in 2893 * file system block size 2894 */ 2895 upper_limit = (1LL << 48) - 1; 2896 2897 } 2898 2899 /* indirect blocks */ 2900 meta_blocks = 1; 2901 /* double indirect blocks */ 2902 meta_blocks += 1 + (1LL << (bits-2)); 2903 /* tripple indirect blocks */ 2904 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2905 2906 upper_limit -= meta_blocks; 2907 upper_limit <<= bits; 2908 2909 res += 1LL << (bits-2); 2910 res += 1LL << (2*(bits-2)); 2911 res += 1LL << (3*(bits-2)); 2912 res <<= bits; 2913 if (res > upper_limit) 2914 res = upper_limit; 2915 2916 if (res > MAX_LFS_FILESIZE) 2917 res = MAX_LFS_FILESIZE; 2918 2919 return res; 2920 } 2921 2922 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2923 ext4_fsblk_t logical_sb_block, int nr) 2924 { 2925 struct ext4_sb_info *sbi = EXT4_SB(sb); 2926 ext4_group_t bg, first_meta_bg; 2927 int has_super = 0; 2928 2929 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2930 2931 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2932 return logical_sb_block + nr + 1; 2933 bg = sbi->s_desc_per_block * nr; 2934 if (ext4_bg_has_super(sb, bg)) 2935 has_super = 1; 2936 2937 /* 2938 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2939 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2940 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2941 * compensate. 2942 */ 2943 if (sb->s_blocksize == 1024 && nr == 0 && 2944 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2945 has_super++; 2946 2947 return (has_super + ext4_group_first_block_no(sb, bg)); 2948 } 2949 2950 /** 2951 * ext4_get_stripe_size: Get the stripe size. 2952 * @sbi: In memory super block info 2953 * 2954 * If we have specified it via mount option, then 2955 * use the mount option value. If the value specified at mount time is 2956 * greater than the blocks per group use the super block value. 2957 * If the super block value is greater than blocks per group return 0. 2958 * Allocator needs it be less than blocks per group. 2959 * 2960 */ 2961 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2962 { 2963 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2964 unsigned long stripe_width = 2965 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2966 int ret; 2967 2968 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2969 ret = sbi->s_stripe; 2970 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2971 ret = stripe_width; 2972 else if (stride && stride <= sbi->s_blocks_per_group) 2973 ret = stride; 2974 else 2975 ret = 0; 2976 2977 /* 2978 * If the stripe width is 1, this makes no sense and 2979 * we set it to 0 to turn off stripe handling code. 2980 */ 2981 if (ret <= 1) 2982 ret = 0; 2983 2984 return ret; 2985 } 2986 2987 /* 2988 * Check whether this filesystem can be mounted based on 2989 * the features present and the RDONLY/RDWR mount requested. 2990 * Returns 1 if this filesystem can be mounted as requested, 2991 * 0 if it cannot be. 2992 */ 2993 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2994 { 2995 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2996 ext4_msg(sb, KERN_ERR, 2997 "Couldn't mount because of " 2998 "unsupported optional features (%x)", 2999 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3000 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3001 return 0; 3002 } 3003 3004 #ifndef CONFIG_UNICODE 3005 if (ext4_has_feature_casefold(sb)) { 3006 ext4_msg(sb, KERN_ERR, 3007 "Filesystem with casefold feature cannot be " 3008 "mounted without CONFIG_UNICODE"); 3009 return 0; 3010 } 3011 #endif 3012 3013 if (readonly) 3014 return 1; 3015 3016 if (ext4_has_feature_readonly(sb)) { 3017 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3018 sb->s_flags |= SB_RDONLY; 3019 return 1; 3020 } 3021 3022 /* Check that feature set is OK for a read-write mount */ 3023 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3024 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3025 "unsupported optional features (%x)", 3026 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3027 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3028 return 0; 3029 } 3030 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3031 ext4_msg(sb, KERN_ERR, 3032 "Can't support bigalloc feature without " 3033 "extents feature\n"); 3034 return 0; 3035 } 3036 3037 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3038 if (!readonly && (ext4_has_feature_quota(sb) || 3039 ext4_has_feature_project(sb))) { 3040 ext4_msg(sb, KERN_ERR, 3041 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3042 return 0; 3043 } 3044 #endif /* CONFIG_QUOTA */ 3045 return 1; 3046 } 3047 3048 /* 3049 * This function is called once a day if we have errors logged 3050 * on the file system 3051 */ 3052 static void print_daily_error_info(struct timer_list *t) 3053 { 3054 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3055 struct super_block *sb = sbi->s_sb; 3056 struct ext4_super_block *es = sbi->s_es; 3057 3058 if (es->s_error_count) 3059 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3060 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3061 le32_to_cpu(es->s_error_count)); 3062 if (es->s_first_error_time) { 3063 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3064 sb->s_id, 3065 ext4_get_tstamp(es, s_first_error_time), 3066 (int) sizeof(es->s_first_error_func), 3067 es->s_first_error_func, 3068 le32_to_cpu(es->s_first_error_line)); 3069 if (es->s_first_error_ino) 3070 printk(KERN_CONT ": inode %u", 3071 le32_to_cpu(es->s_first_error_ino)); 3072 if (es->s_first_error_block) 3073 printk(KERN_CONT ": block %llu", (unsigned long long) 3074 le64_to_cpu(es->s_first_error_block)); 3075 printk(KERN_CONT "\n"); 3076 } 3077 if (es->s_last_error_time) { 3078 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3079 sb->s_id, 3080 ext4_get_tstamp(es, s_last_error_time), 3081 (int) sizeof(es->s_last_error_func), 3082 es->s_last_error_func, 3083 le32_to_cpu(es->s_last_error_line)); 3084 if (es->s_last_error_ino) 3085 printk(KERN_CONT ": inode %u", 3086 le32_to_cpu(es->s_last_error_ino)); 3087 if (es->s_last_error_block) 3088 printk(KERN_CONT ": block %llu", (unsigned long long) 3089 le64_to_cpu(es->s_last_error_block)); 3090 printk(KERN_CONT "\n"); 3091 } 3092 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3093 } 3094 3095 /* Find next suitable group and run ext4_init_inode_table */ 3096 static int ext4_run_li_request(struct ext4_li_request *elr) 3097 { 3098 struct ext4_group_desc *gdp = NULL; 3099 ext4_group_t group, ngroups; 3100 struct super_block *sb; 3101 unsigned long timeout = 0; 3102 int ret = 0; 3103 3104 sb = elr->lr_super; 3105 ngroups = EXT4_SB(sb)->s_groups_count; 3106 3107 for (group = elr->lr_next_group; group < ngroups; group++) { 3108 gdp = ext4_get_group_desc(sb, group, NULL); 3109 if (!gdp) { 3110 ret = 1; 3111 break; 3112 } 3113 3114 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3115 break; 3116 } 3117 3118 if (group >= ngroups) 3119 ret = 1; 3120 3121 if (!ret) { 3122 timeout = jiffies; 3123 ret = ext4_init_inode_table(sb, group, 3124 elr->lr_timeout ? 0 : 1); 3125 if (elr->lr_timeout == 0) { 3126 timeout = (jiffies - timeout) * 3127 elr->lr_sbi->s_li_wait_mult; 3128 elr->lr_timeout = timeout; 3129 } 3130 elr->lr_next_sched = jiffies + elr->lr_timeout; 3131 elr->lr_next_group = group + 1; 3132 } 3133 return ret; 3134 } 3135 3136 /* 3137 * Remove lr_request from the list_request and free the 3138 * request structure. Should be called with li_list_mtx held 3139 */ 3140 static void ext4_remove_li_request(struct ext4_li_request *elr) 3141 { 3142 struct ext4_sb_info *sbi; 3143 3144 if (!elr) 3145 return; 3146 3147 sbi = elr->lr_sbi; 3148 3149 list_del(&elr->lr_request); 3150 sbi->s_li_request = NULL; 3151 kfree(elr); 3152 } 3153 3154 static void ext4_unregister_li_request(struct super_block *sb) 3155 { 3156 mutex_lock(&ext4_li_mtx); 3157 if (!ext4_li_info) { 3158 mutex_unlock(&ext4_li_mtx); 3159 return; 3160 } 3161 3162 mutex_lock(&ext4_li_info->li_list_mtx); 3163 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3164 mutex_unlock(&ext4_li_info->li_list_mtx); 3165 mutex_unlock(&ext4_li_mtx); 3166 } 3167 3168 static struct task_struct *ext4_lazyinit_task; 3169 3170 /* 3171 * This is the function where ext4lazyinit thread lives. It walks 3172 * through the request list searching for next scheduled filesystem. 3173 * When such a fs is found, run the lazy initialization request 3174 * (ext4_rn_li_request) and keep track of the time spend in this 3175 * function. Based on that time we compute next schedule time of 3176 * the request. When walking through the list is complete, compute 3177 * next waking time and put itself into sleep. 3178 */ 3179 static int ext4_lazyinit_thread(void *arg) 3180 { 3181 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3182 struct list_head *pos, *n; 3183 struct ext4_li_request *elr; 3184 unsigned long next_wakeup, cur; 3185 3186 BUG_ON(NULL == eli); 3187 3188 cont_thread: 3189 while (true) { 3190 next_wakeup = MAX_JIFFY_OFFSET; 3191 3192 mutex_lock(&eli->li_list_mtx); 3193 if (list_empty(&eli->li_request_list)) { 3194 mutex_unlock(&eli->li_list_mtx); 3195 goto exit_thread; 3196 } 3197 list_for_each_safe(pos, n, &eli->li_request_list) { 3198 int err = 0; 3199 int progress = 0; 3200 elr = list_entry(pos, struct ext4_li_request, 3201 lr_request); 3202 3203 if (time_before(jiffies, elr->lr_next_sched)) { 3204 if (time_before(elr->lr_next_sched, next_wakeup)) 3205 next_wakeup = elr->lr_next_sched; 3206 continue; 3207 } 3208 if (down_read_trylock(&elr->lr_super->s_umount)) { 3209 if (sb_start_write_trylock(elr->lr_super)) { 3210 progress = 1; 3211 /* 3212 * We hold sb->s_umount, sb can not 3213 * be removed from the list, it is 3214 * now safe to drop li_list_mtx 3215 */ 3216 mutex_unlock(&eli->li_list_mtx); 3217 err = ext4_run_li_request(elr); 3218 sb_end_write(elr->lr_super); 3219 mutex_lock(&eli->li_list_mtx); 3220 n = pos->next; 3221 } 3222 up_read((&elr->lr_super->s_umount)); 3223 } 3224 /* error, remove the lazy_init job */ 3225 if (err) { 3226 ext4_remove_li_request(elr); 3227 continue; 3228 } 3229 if (!progress) { 3230 elr->lr_next_sched = jiffies + 3231 (prandom_u32() 3232 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3233 } 3234 if (time_before(elr->lr_next_sched, next_wakeup)) 3235 next_wakeup = elr->lr_next_sched; 3236 } 3237 mutex_unlock(&eli->li_list_mtx); 3238 3239 try_to_freeze(); 3240 3241 cur = jiffies; 3242 if ((time_after_eq(cur, next_wakeup)) || 3243 (MAX_JIFFY_OFFSET == next_wakeup)) { 3244 cond_resched(); 3245 continue; 3246 } 3247 3248 schedule_timeout_interruptible(next_wakeup - cur); 3249 3250 if (kthread_should_stop()) { 3251 ext4_clear_request_list(); 3252 goto exit_thread; 3253 } 3254 } 3255 3256 exit_thread: 3257 /* 3258 * It looks like the request list is empty, but we need 3259 * to check it under the li_list_mtx lock, to prevent any 3260 * additions into it, and of course we should lock ext4_li_mtx 3261 * to atomically free the list and ext4_li_info, because at 3262 * this point another ext4 filesystem could be registering 3263 * new one. 3264 */ 3265 mutex_lock(&ext4_li_mtx); 3266 mutex_lock(&eli->li_list_mtx); 3267 if (!list_empty(&eli->li_request_list)) { 3268 mutex_unlock(&eli->li_list_mtx); 3269 mutex_unlock(&ext4_li_mtx); 3270 goto cont_thread; 3271 } 3272 mutex_unlock(&eli->li_list_mtx); 3273 kfree(ext4_li_info); 3274 ext4_li_info = NULL; 3275 mutex_unlock(&ext4_li_mtx); 3276 3277 return 0; 3278 } 3279 3280 static void ext4_clear_request_list(void) 3281 { 3282 struct list_head *pos, *n; 3283 struct ext4_li_request *elr; 3284 3285 mutex_lock(&ext4_li_info->li_list_mtx); 3286 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3287 elr = list_entry(pos, struct ext4_li_request, 3288 lr_request); 3289 ext4_remove_li_request(elr); 3290 } 3291 mutex_unlock(&ext4_li_info->li_list_mtx); 3292 } 3293 3294 static int ext4_run_lazyinit_thread(void) 3295 { 3296 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3297 ext4_li_info, "ext4lazyinit"); 3298 if (IS_ERR(ext4_lazyinit_task)) { 3299 int err = PTR_ERR(ext4_lazyinit_task); 3300 ext4_clear_request_list(); 3301 kfree(ext4_li_info); 3302 ext4_li_info = NULL; 3303 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3304 "initialization thread\n", 3305 err); 3306 return err; 3307 } 3308 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3309 return 0; 3310 } 3311 3312 /* 3313 * Check whether it make sense to run itable init. thread or not. 3314 * If there is at least one uninitialized inode table, return 3315 * corresponding group number, else the loop goes through all 3316 * groups and return total number of groups. 3317 */ 3318 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3319 { 3320 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3321 struct ext4_group_desc *gdp = NULL; 3322 3323 if (!ext4_has_group_desc_csum(sb)) 3324 return ngroups; 3325 3326 for (group = 0; group < ngroups; group++) { 3327 gdp = ext4_get_group_desc(sb, group, NULL); 3328 if (!gdp) 3329 continue; 3330 3331 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3332 break; 3333 } 3334 3335 return group; 3336 } 3337 3338 static int ext4_li_info_new(void) 3339 { 3340 struct ext4_lazy_init *eli = NULL; 3341 3342 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3343 if (!eli) 3344 return -ENOMEM; 3345 3346 INIT_LIST_HEAD(&eli->li_request_list); 3347 mutex_init(&eli->li_list_mtx); 3348 3349 eli->li_state |= EXT4_LAZYINIT_QUIT; 3350 3351 ext4_li_info = eli; 3352 3353 return 0; 3354 } 3355 3356 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3357 ext4_group_t start) 3358 { 3359 struct ext4_sb_info *sbi = EXT4_SB(sb); 3360 struct ext4_li_request *elr; 3361 3362 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3363 if (!elr) 3364 return NULL; 3365 3366 elr->lr_super = sb; 3367 elr->lr_sbi = sbi; 3368 elr->lr_next_group = start; 3369 3370 /* 3371 * Randomize first schedule time of the request to 3372 * spread the inode table initialization requests 3373 * better. 3374 */ 3375 elr->lr_next_sched = jiffies + (prandom_u32() % 3376 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3377 return elr; 3378 } 3379 3380 int ext4_register_li_request(struct super_block *sb, 3381 ext4_group_t first_not_zeroed) 3382 { 3383 struct ext4_sb_info *sbi = EXT4_SB(sb); 3384 struct ext4_li_request *elr = NULL; 3385 ext4_group_t ngroups = sbi->s_groups_count; 3386 int ret = 0; 3387 3388 mutex_lock(&ext4_li_mtx); 3389 if (sbi->s_li_request != NULL) { 3390 /* 3391 * Reset timeout so it can be computed again, because 3392 * s_li_wait_mult might have changed. 3393 */ 3394 sbi->s_li_request->lr_timeout = 0; 3395 goto out; 3396 } 3397 3398 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3399 !test_opt(sb, INIT_INODE_TABLE)) 3400 goto out; 3401 3402 elr = ext4_li_request_new(sb, first_not_zeroed); 3403 if (!elr) { 3404 ret = -ENOMEM; 3405 goto out; 3406 } 3407 3408 if (NULL == ext4_li_info) { 3409 ret = ext4_li_info_new(); 3410 if (ret) 3411 goto out; 3412 } 3413 3414 mutex_lock(&ext4_li_info->li_list_mtx); 3415 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3416 mutex_unlock(&ext4_li_info->li_list_mtx); 3417 3418 sbi->s_li_request = elr; 3419 /* 3420 * set elr to NULL here since it has been inserted to 3421 * the request_list and the removal and free of it is 3422 * handled by ext4_clear_request_list from now on. 3423 */ 3424 elr = NULL; 3425 3426 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3427 ret = ext4_run_lazyinit_thread(); 3428 if (ret) 3429 goto out; 3430 } 3431 out: 3432 mutex_unlock(&ext4_li_mtx); 3433 if (ret) 3434 kfree(elr); 3435 return ret; 3436 } 3437 3438 /* 3439 * We do not need to lock anything since this is called on 3440 * module unload. 3441 */ 3442 static void ext4_destroy_lazyinit_thread(void) 3443 { 3444 /* 3445 * If thread exited earlier 3446 * there's nothing to be done. 3447 */ 3448 if (!ext4_li_info || !ext4_lazyinit_task) 3449 return; 3450 3451 kthread_stop(ext4_lazyinit_task); 3452 } 3453 3454 static int set_journal_csum_feature_set(struct super_block *sb) 3455 { 3456 int ret = 1; 3457 int compat, incompat; 3458 struct ext4_sb_info *sbi = EXT4_SB(sb); 3459 3460 if (ext4_has_metadata_csum(sb)) { 3461 /* journal checksum v3 */ 3462 compat = 0; 3463 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3464 } else { 3465 /* journal checksum v1 */ 3466 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3467 incompat = 0; 3468 } 3469 3470 jbd2_journal_clear_features(sbi->s_journal, 3471 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3472 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3473 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3474 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3475 ret = jbd2_journal_set_features(sbi->s_journal, 3476 compat, 0, 3477 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3478 incompat); 3479 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3480 ret = jbd2_journal_set_features(sbi->s_journal, 3481 compat, 0, 3482 incompat); 3483 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3484 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3485 } else { 3486 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3487 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3488 } 3489 3490 return ret; 3491 } 3492 3493 /* 3494 * Note: calculating the overhead so we can be compatible with 3495 * historical BSD practice is quite difficult in the face of 3496 * clusters/bigalloc. This is because multiple metadata blocks from 3497 * different block group can end up in the same allocation cluster. 3498 * Calculating the exact overhead in the face of clustered allocation 3499 * requires either O(all block bitmaps) in memory or O(number of block 3500 * groups**2) in time. We will still calculate the superblock for 3501 * older file systems --- and if we come across with a bigalloc file 3502 * system with zero in s_overhead_clusters the estimate will be close to 3503 * correct especially for very large cluster sizes --- but for newer 3504 * file systems, it's better to calculate this figure once at mkfs 3505 * time, and store it in the superblock. If the superblock value is 3506 * present (even for non-bigalloc file systems), we will use it. 3507 */ 3508 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3509 char *buf) 3510 { 3511 struct ext4_sb_info *sbi = EXT4_SB(sb); 3512 struct ext4_group_desc *gdp; 3513 ext4_fsblk_t first_block, last_block, b; 3514 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3515 int s, j, count = 0; 3516 3517 if (!ext4_has_feature_bigalloc(sb)) 3518 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3519 sbi->s_itb_per_group + 2); 3520 3521 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3522 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3523 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3524 for (i = 0; i < ngroups; i++) { 3525 gdp = ext4_get_group_desc(sb, i, NULL); 3526 b = ext4_block_bitmap(sb, gdp); 3527 if (b >= first_block && b <= last_block) { 3528 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3529 count++; 3530 } 3531 b = ext4_inode_bitmap(sb, gdp); 3532 if (b >= first_block && b <= last_block) { 3533 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3534 count++; 3535 } 3536 b = ext4_inode_table(sb, gdp); 3537 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3538 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3539 int c = EXT4_B2C(sbi, b - first_block); 3540 ext4_set_bit(c, buf); 3541 count++; 3542 } 3543 if (i != grp) 3544 continue; 3545 s = 0; 3546 if (ext4_bg_has_super(sb, grp)) { 3547 ext4_set_bit(s++, buf); 3548 count++; 3549 } 3550 j = ext4_bg_num_gdb(sb, grp); 3551 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3552 ext4_error(sb, "Invalid number of block group " 3553 "descriptor blocks: %d", j); 3554 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3555 } 3556 count += j; 3557 for (; j > 0; j--) 3558 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3559 } 3560 if (!count) 3561 return 0; 3562 return EXT4_CLUSTERS_PER_GROUP(sb) - 3563 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3564 } 3565 3566 /* 3567 * Compute the overhead and stash it in sbi->s_overhead 3568 */ 3569 int ext4_calculate_overhead(struct super_block *sb) 3570 { 3571 struct ext4_sb_info *sbi = EXT4_SB(sb); 3572 struct ext4_super_block *es = sbi->s_es; 3573 struct inode *j_inode; 3574 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3575 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3576 ext4_fsblk_t overhead = 0; 3577 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3578 3579 if (!buf) 3580 return -ENOMEM; 3581 3582 /* 3583 * Compute the overhead (FS structures). This is constant 3584 * for a given filesystem unless the number of block groups 3585 * changes so we cache the previous value until it does. 3586 */ 3587 3588 /* 3589 * All of the blocks before first_data_block are overhead 3590 */ 3591 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3592 3593 /* 3594 * Add the overhead found in each block group 3595 */ 3596 for (i = 0; i < ngroups; i++) { 3597 int blks; 3598 3599 blks = count_overhead(sb, i, buf); 3600 overhead += blks; 3601 if (blks) 3602 memset(buf, 0, PAGE_SIZE); 3603 cond_resched(); 3604 } 3605 3606 /* 3607 * Add the internal journal blocks whether the journal has been 3608 * loaded or not 3609 */ 3610 if (sbi->s_journal && !sbi->journal_bdev) 3611 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3612 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3613 j_inode = ext4_get_journal_inode(sb, j_inum); 3614 if (j_inode) { 3615 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3616 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3617 iput(j_inode); 3618 } else { 3619 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3620 } 3621 } 3622 sbi->s_overhead = overhead; 3623 smp_wmb(); 3624 free_page((unsigned long) buf); 3625 return 0; 3626 } 3627 3628 static void ext4_set_resv_clusters(struct super_block *sb) 3629 { 3630 ext4_fsblk_t resv_clusters; 3631 struct ext4_sb_info *sbi = EXT4_SB(sb); 3632 3633 /* 3634 * There's no need to reserve anything when we aren't using extents. 3635 * The space estimates are exact, there are no unwritten extents, 3636 * hole punching doesn't need new metadata... This is needed especially 3637 * to keep ext2/3 backward compatibility. 3638 */ 3639 if (!ext4_has_feature_extents(sb)) 3640 return; 3641 /* 3642 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3643 * This should cover the situations where we can not afford to run 3644 * out of space like for example punch hole, or converting 3645 * unwritten extents in delalloc path. In most cases such 3646 * allocation would require 1, or 2 blocks, higher numbers are 3647 * very rare. 3648 */ 3649 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3650 sbi->s_cluster_bits); 3651 3652 do_div(resv_clusters, 50); 3653 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3654 3655 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3656 } 3657 3658 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3659 { 3660 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3661 char *orig_data = kstrdup(data, GFP_KERNEL); 3662 struct buffer_head *bh, **group_desc; 3663 struct ext4_super_block *es = NULL; 3664 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3665 struct flex_groups **flex_groups; 3666 ext4_fsblk_t block; 3667 ext4_fsblk_t sb_block = get_sb_block(&data); 3668 ext4_fsblk_t logical_sb_block; 3669 unsigned long offset = 0; 3670 unsigned long journal_devnum = 0; 3671 unsigned long def_mount_opts; 3672 struct inode *root; 3673 const char *descr; 3674 int ret = -ENOMEM; 3675 int blocksize, clustersize; 3676 unsigned int db_count; 3677 unsigned int i; 3678 int needs_recovery, has_huge_files, has_bigalloc; 3679 __u64 blocks_count; 3680 int err = 0; 3681 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3682 ext4_group_t first_not_zeroed; 3683 3684 if ((data && !orig_data) || !sbi) 3685 goto out_free_base; 3686 3687 sbi->s_daxdev = dax_dev; 3688 sbi->s_blockgroup_lock = 3689 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3690 if (!sbi->s_blockgroup_lock) 3691 goto out_free_base; 3692 3693 sb->s_fs_info = sbi; 3694 sbi->s_sb = sb; 3695 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3696 sbi->s_sb_block = sb_block; 3697 if (sb->s_bdev->bd_part) 3698 sbi->s_sectors_written_start = 3699 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3700 3701 /* Cleanup superblock name */ 3702 strreplace(sb->s_id, '/', '!'); 3703 3704 /* -EINVAL is default */ 3705 ret = -EINVAL; 3706 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3707 if (!blocksize) { 3708 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3709 goto out_fail; 3710 } 3711 3712 /* 3713 * The ext4 superblock will not be buffer aligned for other than 1kB 3714 * block sizes. We need to calculate the offset from buffer start. 3715 */ 3716 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3717 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3718 offset = do_div(logical_sb_block, blocksize); 3719 } else { 3720 logical_sb_block = sb_block; 3721 } 3722 3723 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3724 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3725 goto out_fail; 3726 } 3727 /* 3728 * Note: s_es must be initialized as soon as possible because 3729 * some ext4 macro-instructions depend on its value 3730 */ 3731 es = (struct ext4_super_block *) (bh->b_data + offset); 3732 sbi->s_es = es; 3733 sb->s_magic = le16_to_cpu(es->s_magic); 3734 if (sb->s_magic != EXT4_SUPER_MAGIC) 3735 goto cantfind_ext4; 3736 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3737 3738 /* Warn if metadata_csum and gdt_csum are both set. */ 3739 if (ext4_has_feature_metadata_csum(sb) && 3740 ext4_has_feature_gdt_csum(sb)) 3741 ext4_warning(sb, "metadata_csum and uninit_bg are " 3742 "redundant flags; please run fsck."); 3743 3744 /* Check for a known checksum algorithm */ 3745 if (!ext4_verify_csum_type(sb, es)) { 3746 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3747 "unknown checksum algorithm."); 3748 silent = 1; 3749 goto cantfind_ext4; 3750 } 3751 3752 /* Load the checksum driver */ 3753 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3754 if (IS_ERR(sbi->s_chksum_driver)) { 3755 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3756 ret = PTR_ERR(sbi->s_chksum_driver); 3757 sbi->s_chksum_driver = NULL; 3758 goto failed_mount; 3759 } 3760 3761 /* Check superblock checksum */ 3762 if (!ext4_superblock_csum_verify(sb, es)) { 3763 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3764 "invalid superblock checksum. Run e2fsck?"); 3765 silent = 1; 3766 ret = -EFSBADCRC; 3767 goto cantfind_ext4; 3768 } 3769 3770 /* Precompute checksum seed for all metadata */ 3771 if (ext4_has_feature_csum_seed(sb)) 3772 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3773 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3774 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3775 sizeof(es->s_uuid)); 3776 3777 /* Set defaults before we parse the mount options */ 3778 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3779 set_opt(sb, INIT_INODE_TABLE); 3780 if (def_mount_opts & EXT4_DEFM_DEBUG) 3781 set_opt(sb, DEBUG); 3782 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3783 set_opt(sb, GRPID); 3784 if (def_mount_opts & EXT4_DEFM_UID16) 3785 set_opt(sb, NO_UID32); 3786 /* xattr user namespace & acls are now defaulted on */ 3787 set_opt(sb, XATTR_USER); 3788 set_opt(sb, DIOREAD_NOLOCK); 3789 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3790 set_opt(sb, POSIX_ACL); 3791 #endif 3792 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3793 if (ext4_has_metadata_csum(sb)) 3794 set_opt(sb, JOURNAL_CHECKSUM); 3795 3796 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3797 set_opt(sb, JOURNAL_DATA); 3798 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3799 set_opt(sb, ORDERED_DATA); 3800 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3801 set_opt(sb, WRITEBACK_DATA); 3802 3803 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3804 set_opt(sb, ERRORS_PANIC); 3805 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3806 set_opt(sb, ERRORS_CONT); 3807 else 3808 set_opt(sb, ERRORS_RO); 3809 /* block_validity enabled by default; disable with noblock_validity */ 3810 set_opt(sb, BLOCK_VALIDITY); 3811 if (def_mount_opts & EXT4_DEFM_DISCARD) 3812 set_opt(sb, DISCARD); 3813 3814 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3815 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3816 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3817 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3818 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3819 3820 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3821 set_opt(sb, BARRIER); 3822 3823 /* 3824 * enable delayed allocation by default 3825 * Use -o nodelalloc to turn it off 3826 */ 3827 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3828 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3829 set_opt(sb, DELALLOC); 3830 3831 /* 3832 * set default s_li_wait_mult for lazyinit, for the case there is 3833 * no mount option specified. 3834 */ 3835 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3836 3837 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3838 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3839 blocksize > EXT4_MAX_BLOCK_SIZE) { 3840 ext4_msg(sb, KERN_ERR, 3841 "Unsupported filesystem blocksize %d (%d log_block_size)", 3842 blocksize, le32_to_cpu(es->s_log_block_size)); 3843 goto failed_mount; 3844 } 3845 3846 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3847 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3848 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3849 } else { 3850 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3851 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3852 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3853 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3854 sbi->s_first_ino); 3855 goto failed_mount; 3856 } 3857 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3858 (!is_power_of_2(sbi->s_inode_size)) || 3859 (sbi->s_inode_size > blocksize)) { 3860 ext4_msg(sb, KERN_ERR, 3861 "unsupported inode size: %d", 3862 sbi->s_inode_size); 3863 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 3864 goto failed_mount; 3865 } 3866 /* 3867 * i_atime_extra is the last extra field available for 3868 * [acm]times in struct ext4_inode. Checking for that 3869 * field should suffice to ensure we have extra space 3870 * for all three. 3871 */ 3872 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3873 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3874 sb->s_time_gran = 1; 3875 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3876 } else { 3877 sb->s_time_gran = NSEC_PER_SEC; 3878 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 3879 } 3880 sb->s_time_min = EXT4_TIMESTAMP_MIN; 3881 } 3882 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3883 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3884 EXT4_GOOD_OLD_INODE_SIZE; 3885 if (ext4_has_feature_extra_isize(sb)) { 3886 unsigned v, max = (sbi->s_inode_size - 3887 EXT4_GOOD_OLD_INODE_SIZE); 3888 3889 v = le16_to_cpu(es->s_want_extra_isize); 3890 if (v > max) { 3891 ext4_msg(sb, KERN_ERR, 3892 "bad s_want_extra_isize: %d", v); 3893 goto failed_mount; 3894 } 3895 if (sbi->s_want_extra_isize < v) 3896 sbi->s_want_extra_isize = v; 3897 3898 v = le16_to_cpu(es->s_min_extra_isize); 3899 if (v > max) { 3900 ext4_msg(sb, KERN_ERR, 3901 "bad s_min_extra_isize: %d", v); 3902 goto failed_mount; 3903 } 3904 if (sbi->s_want_extra_isize < v) 3905 sbi->s_want_extra_isize = v; 3906 } 3907 } 3908 3909 if (sbi->s_es->s_mount_opts[0]) { 3910 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3911 sizeof(sbi->s_es->s_mount_opts), 3912 GFP_KERNEL); 3913 if (!s_mount_opts) 3914 goto failed_mount; 3915 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3916 &journal_ioprio, 0)) { 3917 ext4_msg(sb, KERN_WARNING, 3918 "failed to parse options in superblock: %s", 3919 s_mount_opts); 3920 } 3921 kfree(s_mount_opts); 3922 } 3923 sbi->s_def_mount_opt = sbi->s_mount_opt; 3924 if (!parse_options((char *) data, sb, &journal_devnum, 3925 &journal_ioprio, 0)) 3926 goto failed_mount; 3927 3928 #ifdef CONFIG_UNICODE 3929 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 3930 const struct ext4_sb_encodings *encoding_info; 3931 struct unicode_map *encoding; 3932 __u16 encoding_flags; 3933 3934 if (ext4_has_feature_encrypt(sb)) { 3935 ext4_msg(sb, KERN_ERR, 3936 "Can't mount with encoding and encryption"); 3937 goto failed_mount; 3938 } 3939 3940 if (ext4_sb_read_encoding(es, &encoding_info, 3941 &encoding_flags)) { 3942 ext4_msg(sb, KERN_ERR, 3943 "Encoding requested by superblock is unknown"); 3944 goto failed_mount; 3945 } 3946 3947 encoding = utf8_load(encoding_info->version); 3948 if (IS_ERR(encoding)) { 3949 ext4_msg(sb, KERN_ERR, 3950 "can't mount with superblock charset: %s-%s " 3951 "not supported by the kernel. flags: 0x%x.", 3952 encoding_info->name, encoding_info->version, 3953 encoding_flags); 3954 goto failed_mount; 3955 } 3956 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 3957 "%s-%s with flags 0x%hx", encoding_info->name, 3958 encoding_info->version?:"\b", encoding_flags); 3959 3960 sbi->s_encoding = encoding; 3961 sbi->s_encoding_flags = encoding_flags; 3962 } 3963 #endif 3964 3965 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3966 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 3967 clear_opt(sb, DIOREAD_NOLOCK); 3968 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3969 ext4_msg(sb, KERN_ERR, "can't mount with " 3970 "both data=journal and delalloc"); 3971 goto failed_mount; 3972 } 3973 if (test_opt(sb, DIOREAD_NOLOCK)) { 3974 ext4_msg(sb, KERN_ERR, "can't mount with " 3975 "both data=journal and dioread_nolock"); 3976 goto failed_mount; 3977 } 3978 if (test_opt(sb, DAX)) { 3979 ext4_msg(sb, KERN_ERR, "can't mount with " 3980 "both data=journal and dax"); 3981 goto failed_mount; 3982 } 3983 if (ext4_has_feature_encrypt(sb)) { 3984 ext4_msg(sb, KERN_WARNING, 3985 "encrypted files will use data=ordered " 3986 "instead of data journaling mode"); 3987 } 3988 if (test_opt(sb, DELALLOC)) 3989 clear_opt(sb, DELALLOC); 3990 } else { 3991 sb->s_iflags |= SB_I_CGROUPWB; 3992 } 3993 3994 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3995 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3996 3997 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3998 (ext4_has_compat_features(sb) || 3999 ext4_has_ro_compat_features(sb) || 4000 ext4_has_incompat_features(sb))) 4001 ext4_msg(sb, KERN_WARNING, 4002 "feature flags set on rev 0 fs, " 4003 "running e2fsck is recommended"); 4004 4005 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4006 set_opt2(sb, HURD_COMPAT); 4007 if (ext4_has_feature_64bit(sb)) { 4008 ext4_msg(sb, KERN_ERR, 4009 "The Hurd can't support 64-bit file systems"); 4010 goto failed_mount; 4011 } 4012 4013 /* 4014 * ea_inode feature uses l_i_version field which is not 4015 * available in HURD_COMPAT mode. 4016 */ 4017 if (ext4_has_feature_ea_inode(sb)) { 4018 ext4_msg(sb, KERN_ERR, 4019 "ea_inode feature is not supported for Hurd"); 4020 goto failed_mount; 4021 } 4022 } 4023 4024 if (IS_EXT2_SB(sb)) { 4025 if (ext2_feature_set_ok(sb)) 4026 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4027 "using the ext4 subsystem"); 4028 else { 4029 /* 4030 * If we're probing be silent, if this looks like 4031 * it's actually an ext[34] filesystem. 4032 */ 4033 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4034 goto failed_mount; 4035 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4036 "to feature incompatibilities"); 4037 goto failed_mount; 4038 } 4039 } 4040 4041 if (IS_EXT3_SB(sb)) { 4042 if (ext3_feature_set_ok(sb)) 4043 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4044 "using the ext4 subsystem"); 4045 else { 4046 /* 4047 * If we're probing be silent, if this looks like 4048 * it's actually an ext4 filesystem. 4049 */ 4050 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4051 goto failed_mount; 4052 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4053 "to feature incompatibilities"); 4054 goto failed_mount; 4055 } 4056 } 4057 4058 /* 4059 * Check feature flags regardless of the revision level, since we 4060 * previously didn't change the revision level when setting the flags, 4061 * so there is a chance incompat flags are set on a rev 0 filesystem. 4062 */ 4063 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4064 goto failed_mount; 4065 4066 if (le32_to_cpu(es->s_log_block_size) > 4067 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4068 ext4_msg(sb, KERN_ERR, 4069 "Invalid log block size: %u", 4070 le32_to_cpu(es->s_log_block_size)); 4071 goto failed_mount; 4072 } 4073 if (le32_to_cpu(es->s_log_cluster_size) > 4074 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4075 ext4_msg(sb, KERN_ERR, 4076 "Invalid log cluster size: %u", 4077 le32_to_cpu(es->s_log_cluster_size)); 4078 goto failed_mount; 4079 } 4080 4081 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4082 ext4_msg(sb, KERN_ERR, 4083 "Number of reserved GDT blocks insanely large: %d", 4084 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4085 goto failed_mount; 4086 } 4087 4088 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 4089 if (ext4_has_feature_inline_data(sb)) { 4090 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4091 " that may contain inline data"); 4092 goto failed_mount; 4093 } 4094 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 4095 ext4_msg(sb, KERN_ERR, 4096 "DAX unsupported by block device."); 4097 goto failed_mount; 4098 } 4099 } 4100 4101 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4102 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4103 es->s_encryption_level); 4104 goto failed_mount; 4105 } 4106 4107 if (sb->s_blocksize != blocksize) { 4108 /* Validate the filesystem blocksize */ 4109 if (!sb_set_blocksize(sb, blocksize)) { 4110 ext4_msg(sb, KERN_ERR, "bad block size %d", 4111 blocksize); 4112 goto failed_mount; 4113 } 4114 4115 brelse(bh); 4116 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4117 offset = do_div(logical_sb_block, blocksize); 4118 bh = sb_bread_unmovable(sb, logical_sb_block); 4119 if (!bh) { 4120 ext4_msg(sb, KERN_ERR, 4121 "Can't read superblock on 2nd try"); 4122 goto failed_mount; 4123 } 4124 es = (struct ext4_super_block *)(bh->b_data + offset); 4125 sbi->s_es = es; 4126 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4127 ext4_msg(sb, KERN_ERR, 4128 "Magic mismatch, very weird!"); 4129 goto failed_mount; 4130 } 4131 } 4132 4133 has_huge_files = ext4_has_feature_huge_file(sb); 4134 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4135 has_huge_files); 4136 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4137 4138 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4139 if (ext4_has_feature_64bit(sb)) { 4140 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4141 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4142 !is_power_of_2(sbi->s_desc_size)) { 4143 ext4_msg(sb, KERN_ERR, 4144 "unsupported descriptor size %lu", 4145 sbi->s_desc_size); 4146 goto failed_mount; 4147 } 4148 } else 4149 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4150 4151 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4152 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4153 4154 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4155 if (sbi->s_inodes_per_block == 0) 4156 goto cantfind_ext4; 4157 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4158 sbi->s_inodes_per_group > blocksize * 8) { 4159 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4160 sbi->s_blocks_per_group); 4161 goto failed_mount; 4162 } 4163 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4164 sbi->s_inodes_per_block; 4165 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4166 sbi->s_sbh = bh; 4167 sbi->s_mount_state = le16_to_cpu(es->s_state); 4168 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4169 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4170 4171 for (i = 0; i < 4; i++) 4172 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4173 sbi->s_def_hash_version = es->s_def_hash_version; 4174 if (ext4_has_feature_dir_index(sb)) { 4175 i = le32_to_cpu(es->s_flags); 4176 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4177 sbi->s_hash_unsigned = 3; 4178 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4179 #ifdef __CHAR_UNSIGNED__ 4180 if (!sb_rdonly(sb)) 4181 es->s_flags |= 4182 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4183 sbi->s_hash_unsigned = 3; 4184 #else 4185 if (!sb_rdonly(sb)) 4186 es->s_flags |= 4187 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4188 #endif 4189 } 4190 } 4191 4192 /* Handle clustersize */ 4193 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4194 has_bigalloc = ext4_has_feature_bigalloc(sb); 4195 if (has_bigalloc) { 4196 if (clustersize < blocksize) { 4197 ext4_msg(sb, KERN_ERR, 4198 "cluster size (%d) smaller than " 4199 "block size (%d)", clustersize, blocksize); 4200 goto failed_mount; 4201 } 4202 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4203 le32_to_cpu(es->s_log_block_size); 4204 sbi->s_clusters_per_group = 4205 le32_to_cpu(es->s_clusters_per_group); 4206 if (sbi->s_clusters_per_group > blocksize * 8) { 4207 ext4_msg(sb, KERN_ERR, 4208 "#clusters per group too big: %lu", 4209 sbi->s_clusters_per_group); 4210 goto failed_mount; 4211 } 4212 if (sbi->s_blocks_per_group != 4213 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4214 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4215 "clusters per group (%lu) inconsistent", 4216 sbi->s_blocks_per_group, 4217 sbi->s_clusters_per_group); 4218 goto failed_mount; 4219 } 4220 } else { 4221 if (clustersize != blocksize) { 4222 ext4_msg(sb, KERN_ERR, 4223 "fragment/cluster size (%d) != " 4224 "block size (%d)", clustersize, blocksize); 4225 goto failed_mount; 4226 } 4227 if (sbi->s_blocks_per_group > blocksize * 8) { 4228 ext4_msg(sb, KERN_ERR, 4229 "#blocks per group too big: %lu", 4230 sbi->s_blocks_per_group); 4231 goto failed_mount; 4232 } 4233 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4234 sbi->s_cluster_bits = 0; 4235 } 4236 sbi->s_cluster_ratio = clustersize / blocksize; 4237 4238 /* Do we have standard group size of clustersize * 8 blocks ? */ 4239 if (sbi->s_blocks_per_group == clustersize << 3) 4240 set_opt2(sb, STD_GROUP_SIZE); 4241 4242 /* 4243 * Test whether we have more sectors than will fit in sector_t, 4244 * and whether the max offset is addressable by the page cache. 4245 */ 4246 err = generic_check_addressable(sb->s_blocksize_bits, 4247 ext4_blocks_count(es)); 4248 if (err) { 4249 ext4_msg(sb, KERN_ERR, "filesystem" 4250 " too large to mount safely on this system"); 4251 goto failed_mount; 4252 } 4253 4254 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4255 goto cantfind_ext4; 4256 4257 /* check blocks count against device size */ 4258 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4259 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4260 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4261 "exceeds size of device (%llu blocks)", 4262 ext4_blocks_count(es), blocks_count); 4263 goto failed_mount; 4264 } 4265 4266 /* 4267 * It makes no sense for the first data block to be beyond the end 4268 * of the filesystem. 4269 */ 4270 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4271 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4272 "block %u is beyond end of filesystem (%llu)", 4273 le32_to_cpu(es->s_first_data_block), 4274 ext4_blocks_count(es)); 4275 goto failed_mount; 4276 } 4277 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4278 (sbi->s_cluster_ratio == 1)) { 4279 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4280 "block is 0 with a 1k block and cluster size"); 4281 goto failed_mount; 4282 } 4283 4284 blocks_count = (ext4_blocks_count(es) - 4285 le32_to_cpu(es->s_first_data_block) + 4286 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4287 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4288 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4289 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4290 "(block count %llu, first data block %u, " 4291 "blocks per group %lu)", sbi->s_groups_count, 4292 ext4_blocks_count(es), 4293 le32_to_cpu(es->s_first_data_block), 4294 EXT4_BLOCKS_PER_GROUP(sb)); 4295 goto failed_mount; 4296 } 4297 sbi->s_groups_count = blocks_count; 4298 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4299 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4300 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4301 le32_to_cpu(es->s_inodes_count)) { 4302 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4303 le32_to_cpu(es->s_inodes_count), 4304 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4305 ret = -EINVAL; 4306 goto failed_mount; 4307 } 4308 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4309 EXT4_DESC_PER_BLOCK(sb); 4310 if (ext4_has_feature_meta_bg(sb)) { 4311 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4312 ext4_msg(sb, KERN_WARNING, 4313 "first meta block group too large: %u " 4314 "(group descriptor block count %u)", 4315 le32_to_cpu(es->s_first_meta_bg), db_count); 4316 goto failed_mount; 4317 } 4318 } 4319 rcu_assign_pointer(sbi->s_group_desc, 4320 kvmalloc_array(db_count, 4321 sizeof(struct buffer_head *), 4322 GFP_KERNEL)); 4323 if (sbi->s_group_desc == NULL) { 4324 ext4_msg(sb, KERN_ERR, "not enough memory"); 4325 ret = -ENOMEM; 4326 goto failed_mount; 4327 } 4328 4329 bgl_lock_init(sbi->s_blockgroup_lock); 4330 4331 /* Pre-read the descriptors into the buffer cache */ 4332 for (i = 0; i < db_count; i++) { 4333 block = descriptor_loc(sb, logical_sb_block, i); 4334 sb_breadahead(sb, block); 4335 } 4336 4337 for (i = 0; i < db_count; i++) { 4338 struct buffer_head *bh; 4339 4340 block = descriptor_loc(sb, logical_sb_block, i); 4341 bh = sb_bread_unmovable(sb, block); 4342 if (!bh) { 4343 ext4_msg(sb, KERN_ERR, 4344 "can't read group descriptor %d", i); 4345 db_count = i; 4346 goto failed_mount2; 4347 } 4348 rcu_read_lock(); 4349 rcu_dereference(sbi->s_group_desc)[i] = bh; 4350 rcu_read_unlock(); 4351 } 4352 sbi->s_gdb_count = db_count; 4353 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4354 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4355 ret = -EFSCORRUPTED; 4356 goto failed_mount2; 4357 } 4358 4359 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4360 4361 /* Register extent status tree shrinker */ 4362 if (ext4_es_register_shrinker(sbi)) 4363 goto failed_mount3; 4364 4365 sbi->s_stripe = ext4_get_stripe_size(sbi); 4366 sbi->s_extent_max_zeroout_kb = 32; 4367 4368 /* 4369 * set up enough so that it can read an inode 4370 */ 4371 sb->s_op = &ext4_sops; 4372 sb->s_export_op = &ext4_export_ops; 4373 sb->s_xattr = ext4_xattr_handlers; 4374 #ifdef CONFIG_FS_ENCRYPTION 4375 sb->s_cop = &ext4_cryptops; 4376 #endif 4377 #ifdef CONFIG_FS_VERITY 4378 sb->s_vop = &ext4_verityops; 4379 #endif 4380 #ifdef CONFIG_QUOTA 4381 sb->dq_op = &ext4_quota_operations; 4382 if (ext4_has_feature_quota(sb)) 4383 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4384 else 4385 sb->s_qcop = &ext4_qctl_operations; 4386 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4387 #endif 4388 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4389 4390 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4391 mutex_init(&sbi->s_orphan_lock); 4392 4393 sb->s_root = NULL; 4394 4395 needs_recovery = (es->s_last_orphan != 0 || 4396 ext4_has_feature_journal_needs_recovery(sb)); 4397 4398 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4399 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4400 goto failed_mount3a; 4401 4402 /* 4403 * The first inode we look at is the journal inode. Don't try 4404 * root first: it may be modified in the journal! 4405 */ 4406 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4407 err = ext4_load_journal(sb, es, journal_devnum); 4408 if (err) 4409 goto failed_mount3a; 4410 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4411 ext4_has_feature_journal_needs_recovery(sb)) { 4412 ext4_msg(sb, KERN_ERR, "required journal recovery " 4413 "suppressed and not mounted read-only"); 4414 goto failed_mount_wq; 4415 } else { 4416 /* Nojournal mode, all journal mount options are illegal */ 4417 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4418 ext4_msg(sb, KERN_ERR, "can't mount with " 4419 "journal_checksum, fs mounted w/o journal"); 4420 goto failed_mount_wq; 4421 } 4422 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4423 ext4_msg(sb, KERN_ERR, "can't mount with " 4424 "journal_async_commit, fs mounted w/o journal"); 4425 goto failed_mount_wq; 4426 } 4427 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4428 ext4_msg(sb, KERN_ERR, "can't mount with " 4429 "commit=%lu, fs mounted w/o journal", 4430 sbi->s_commit_interval / HZ); 4431 goto failed_mount_wq; 4432 } 4433 if (EXT4_MOUNT_DATA_FLAGS & 4434 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4435 ext4_msg(sb, KERN_ERR, "can't mount with " 4436 "data=, fs mounted w/o journal"); 4437 goto failed_mount_wq; 4438 } 4439 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4440 clear_opt(sb, JOURNAL_CHECKSUM); 4441 clear_opt(sb, DATA_FLAGS); 4442 sbi->s_journal = NULL; 4443 needs_recovery = 0; 4444 goto no_journal; 4445 } 4446 4447 if (ext4_has_feature_64bit(sb) && 4448 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4449 JBD2_FEATURE_INCOMPAT_64BIT)) { 4450 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4451 goto failed_mount_wq; 4452 } 4453 4454 if (!set_journal_csum_feature_set(sb)) { 4455 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4456 "feature set"); 4457 goto failed_mount_wq; 4458 } 4459 4460 /* We have now updated the journal if required, so we can 4461 * validate the data journaling mode. */ 4462 switch (test_opt(sb, DATA_FLAGS)) { 4463 case 0: 4464 /* No mode set, assume a default based on the journal 4465 * capabilities: ORDERED_DATA if the journal can 4466 * cope, else JOURNAL_DATA 4467 */ 4468 if (jbd2_journal_check_available_features 4469 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4470 set_opt(sb, ORDERED_DATA); 4471 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4472 } else { 4473 set_opt(sb, JOURNAL_DATA); 4474 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4475 } 4476 break; 4477 4478 case EXT4_MOUNT_ORDERED_DATA: 4479 case EXT4_MOUNT_WRITEBACK_DATA: 4480 if (!jbd2_journal_check_available_features 4481 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4482 ext4_msg(sb, KERN_ERR, "Journal does not support " 4483 "requested data journaling mode"); 4484 goto failed_mount_wq; 4485 } 4486 default: 4487 break; 4488 } 4489 4490 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4491 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4492 ext4_msg(sb, KERN_ERR, "can't mount with " 4493 "journal_async_commit in data=ordered mode"); 4494 goto failed_mount_wq; 4495 } 4496 4497 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4498 4499 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4500 4501 no_journal: 4502 if (!test_opt(sb, NO_MBCACHE)) { 4503 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4504 if (!sbi->s_ea_block_cache) { 4505 ext4_msg(sb, KERN_ERR, 4506 "Failed to create ea_block_cache"); 4507 goto failed_mount_wq; 4508 } 4509 4510 if (ext4_has_feature_ea_inode(sb)) { 4511 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4512 if (!sbi->s_ea_inode_cache) { 4513 ext4_msg(sb, KERN_ERR, 4514 "Failed to create ea_inode_cache"); 4515 goto failed_mount_wq; 4516 } 4517 } 4518 } 4519 4520 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4521 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4522 goto failed_mount_wq; 4523 } 4524 4525 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4526 !ext4_has_feature_encrypt(sb)) { 4527 ext4_set_feature_encrypt(sb); 4528 ext4_commit_super(sb, 1); 4529 } 4530 4531 /* 4532 * Get the # of file system overhead blocks from the 4533 * superblock if present. 4534 */ 4535 if (es->s_overhead_clusters) 4536 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4537 else { 4538 err = ext4_calculate_overhead(sb); 4539 if (err) 4540 goto failed_mount_wq; 4541 } 4542 4543 /* 4544 * The maximum number of concurrent works can be high and 4545 * concurrency isn't really necessary. Limit it to 1. 4546 */ 4547 EXT4_SB(sb)->rsv_conversion_wq = 4548 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4549 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4550 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4551 ret = -ENOMEM; 4552 goto failed_mount4; 4553 } 4554 4555 /* 4556 * The jbd2_journal_load will have done any necessary log recovery, 4557 * so we can safely mount the rest of the filesystem now. 4558 */ 4559 4560 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4561 if (IS_ERR(root)) { 4562 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4563 ret = PTR_ERR(root); 4564 root = NULL; 4565 goto failed_mount4; 4566 } 4567 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4568 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4569 iput(root); 4570 goto failed_mount4; 4571 } 4572 4573 #ifdef CONFIG_UNICODE 4574 if (sbi->s_encoding) 4575 sb->s_d_op = &ext4_dentry_ops; 4576 #endif 4577 4578 sb->s_root = d_make_root(root); 4579 if (!sb->s_root) { 4580 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4581 ret = -ENOMEM; 4582 goto failed_mount4; 4583 } 4584 4585 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4586 if (ret == -EROFS) { 4587 sb->s_flags |= SB_RDONLY; 4588 ret = 0; 4589 } else if (ret) 4590 goto failed_mount4a; 4591 4592 ext4_set_resv_clusters(sb); 4593 4594 err = ext4_setup_system_zone(sb); 4595 if (err) { 4596 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4597 "zone (%d)", err); 4598 goto failed_mount4a; 4599 } 4600 4601 ext4_ext_init(sb); 4602 err = ext4_mb_init(sb); 4603 if (err) { 4604 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4605 err); 4606 goto failed_mount5; 4607 } 4608 4609 block = ext4_count_free_clusters(sb); 4610 ext4_free_blocks_count_set(sbi->s_es, 4611 EXT4_C2B(sbi, block)); 4612 ext4_superblock_csum_set(sb); 4613 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4614 GFP_KERNEL); 4615 if (!err) { 4616 unsigned long freei = ext4_count_free_inodes(sb); 4617 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4618 ext4_superblock_csum_set(sb); 4619 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4620 GFP_KERNEL); 4621 } 4622 if (!err) 4623 err = percpu_counter_init(&sbi->s_dirs_counter, 4624 ext4_count_dirs(sb), GFP_KERNEL); 4625 if (!err) 4626 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4627 GFP_KERNEL); 4628 if (!err) 4629 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4630 4631 if (err) { 4632 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4633 goto failed_mount6; 4634 } 4635 4636 if (ext4_has_feature_flex_bg(sb)) 4637 if (!ext4_fill_flex_info(sb)) { 4638 ext4_msg(sb, KERN_ERR, 4639 "unable to initialize " 4640 "flex_bg meta info!"); 4641 goto failed_mount6; 4642 } 4643 4644 err = ext4_register_li_request(sb, first_not_zeroed); 4645 if (err) 4646 goto failed_mount6; 4647 4648 err = ext4_register_sysfs(sb); 4649 if (err) 4650 goto failed_mount7; 4651 4652 #ifdef CONFIG_QUOTA 4653 /* Enable quota usage during mount. */ 4654 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4655 err = ext4_enable_quotas(sb); 4656 if (err) 4657 goto failed_mount8; 4658 } 4659 #endif /* CONFIG_QUOTA */ 4660 4661 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4662 ext4_orphan_cleanup(sb, es); 4663 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4664 if (needs_recovery) { 4665 ext4_msg(sb, KERN_INFO, "recovery complete"); 4666 ext4_mark_recovery_complete(sb, es); 4667 } 4668 if (EXT4_SB(sb)->s_journal) { 4669 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4670 descr = " journalled data mode"; 4671 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4672 descr = " ordered data mode"; 4673 else 4674 descr = " writeback data mode"; 4675 } else 4676 descr = "out journal"; 4677 4678 if (test_opt(sb, DISCARD)) { 4679 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4680 if (!blk_queue_discard(q)) 4681 ext4_msg(sb, KERN_WARNING, 4682 "mounting with \"discard\" option, but " 4683 "the device does not support discard"); 4684 } 4685 4686 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4687 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4688 "Opts: %.*s%s%s", descr, 4689 (int) sizeof(sbi->s_es->s_mount_opts), 4690 sbi->s_es->s_mount_opts, 4691 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4692 4693 if (es->s_error_count) 4694 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4695 4696 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4697 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4698 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4699 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4700 4701 kfree(orig_data); 4702 return 0; 4703 4704 cantfind_ext4: 4705 if (!silent) 4706 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4707 goto failed_mount; 4708 4709 #ifdef CONFIG_QUOTA 4710 failed_mount8: 4711 ext4_unregister_sysfs(sb); 4712 #endif 4713 failed_mount7: 4714 ext4_unregister_li_request(sb); 4715 failed_mount6: 4716 ext4_mb_release(sb); 4717 rcu_read_lock(); 4718 flex_groups = rcu_dereference(sbi->s_flex_groups); 4719 if (flex_groups) { 4720 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 4721 kvfree(flex_groups[i]); 4722 kvfree(flex_groups); 4723 } 4724 rcu_read_unlock(); 4725 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4726 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4727 percpu_counter_destroy(&sbi->s_dirs_counter); 4728 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4729 percpu_free_rwsem(&sbi->s_writepages_rwsem); 4730 failed_mount5: 4731 ext4_ext_release(sb); 4732 ext4_release_system_zone(sb); 4733 failed_mount4a: 4734 dput(sb->s_root); 4735 sb->s_root = NULL; 4736 failed_mount4: 4737 ext4_msg(sb, KERN_ERR, "mount failed"); 4738 if (EXT4_SB(sb)->rsv_conversion_wq) 4739 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4740 failed_mount_wq: 4741 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4742 sbi->s_ea_inode_cache = NULL; 4743 4744 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4745 sbi->s_ea_block_cache = NULL; 4746 4747 if (sbi->s_journal) { 4748 jbd2_journal_destroy(sbi->s_journal); 4749 sbi->s_journal = NULL; 4750 } 4751 failed_mount3a: 4752 ext4_es_unregister_shrinker(sbi); 4753 failed_mount3: 4754 del_timer_sync(&sbi->s_err_report); 4755 if (sbi->s_mmp_tsk) 4756 kthread_stop(sbi->s_mmp_tsk); 4757 failed_mount2: 4758 rcu_read_lock(); 4759 group_desc = rcu_dereference(sbi->s_group_desc); 4760 for (i = 0; i < db_count; i++) 4761 brelse(group_desc[i]); 4762 kvfree(group_desc); 4763 rcu_read_unlock(); 4764 failed_mount: 4765 if (sbi->s_chksum_driver) 4766 crypto_free_shash(sbi->s_chksum_driver); 4767 4768 #ifdef CONFIG_UNICODE 4769 utf8_unload(sbi->s_encoding); 4770 #endif 4771 4772 #ifdef CONFIG_QUOTA 4773 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4774 kfree(get_qf_name(sb, sbi, i)); 4775 #endif 4776 ext4_blkdev_remove(sbi); 4777 brelse(bh); 4778 out_fail: 4779 sb->s_fs_info = NULL; 4780 kfree(sbi->s_blockgroup_lock); 4781 out_free_base: 4782 kfree(sbi); 4783 kfree(orig_data); 4784 fs_put_dax(dax_dev); 4785 return err ? err : ret; 4786 } 4787 4788 /* 4789 * Setup any per-fs journal parameters now. We'll do this both on 4790 * initial mount, once the journal has been initialised but before we've 4791 * done any recovery; and again on any subsequent remount. 4792 */ 4793 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4794 { 4795 struct ext4_sb_info *sbi = EXT4_SB(sb); 4796 4797 journal->j_commit_interval = sbi->s_commit_interval; 4798 journal->j_min_batch_time = sbi->s_min_batch_time; 4799 journal->j_max_batch_time = sbi->s_max_batch_time; 4800 4801 write_lock(&journal->j_state_lock); 4802 if (test_opt(sb, BARRIER)) 4803 journal->j_flags |= JBD2_BARRIER; 4804 else 4805 journal->j_flags &= ~JBD2_BARRIER; 4806 if (test_opt(sb, DATA_ERR_ABORT)) 4807 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4808 else 4809 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4810 write_unlock(&journal->j_state_lock); 4811 } 4812 4813 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4814 unsigned int journal_inum) 4815 { 4816 struct inode *journal_inode; 4817 4818 /* 4819 * Test for the existence of a valid inode on disk. Bad things 4820 * happen if we iget() an unused inode, as the subsequent iput() 4821 * will try to delete it. 4822 */ 4823 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4824 if (IS_ERR(journal_inode)) { 4825 ext4_msg(sb, KERN_ERR, "no journal found"); 4826 return NULL; 4827 } 4828 if (!journal_inode->i_nlink) { 4829 make_bad_inode(journal_inode); 4830 iput(journal_inode); 4831 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4832 return NULL; 4833 } 4834 4835 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4836 journal_inode, journal_inode->i_size); 4837 if (!S_ISREG(journal_inode->i_mode)) { 4838 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4839 iput(journal_inode); 4840 return NULL; 4841 } 4842 return journal_inode; 4843 } 4844 4845 static journal_t *ext4_get_journal(struct super_block *sb, 4846 unsigned int journal_inum) 4847 { 4848 struct inode *journal_inode; 4849 journal_t *journal; 4850 4851 BUG_ON(!ext4_has_feature_journal(sb)); 4852 4853 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4854 if (!journal_inode) 4855 return NULL; 4856 4857 journal = jbd2_journal_init_inode(journal_inode); 4858 if (!journal) { 4859 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4860 iput(journal_inode); 4861 return NULL; 4862 } 4863 journal->j_private = sb; 4864 ext4_init_journal_params(sb, journal); 4865 return journal; 4866 } 4867 4868 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4869 dev_t j_dev) 4870 { 4871 struct buffer_head *bh; 4872 journal_t *journal; 4873 ext4_fsblk_t start; 4874 ext4_fsblk_t len; 4875 int hblock, blocksize; 4876 ext4_fsblk_t sb_block; 4877 unsigned long offset; 4878 struct ext4_super_block *es; 4879 struct block_device *bdev; 4880 4881 BUG_ON(!ext4_has_feature_journal(sb)); 4882 4883 bdev = ext4_blkdev_get(j_dev, sb); 4884 if (bdev == NULL) 4885 return NULL; 4886 4887 blocksize = sb->s_blocksize; 4888 hblock = bdev_logical_block_size(bdev); 4889 if (blocksize < hblock) { 4890 ext4_msg(sb, KERN_ERR, 4891 "blocksize too small for journal device"); 4892 goto out_bdev; 4893 } 4894 4895 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4896 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4897 set_blocksize(bdev, blocksize); 4898 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4899 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4900 "external journal"); 4901 goto out_bdev; 4902 } 4903 4904 es = (struct ext4_super_block *) (bh->b_data + offset); 4905 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4906 !(le32_to_cpu(es->s_feature_incompat) & 4907 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4908 ext4_msg(sb, KERN_ERR, "external journal has " 4909 "bad superblock"); 4910 brelse(bh); 4911 goto out_bdev; 4912 } 4913 4914 if ((le32_to_cpu(es->s_feature_ro_compat) & 4915 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4916 es->s_checksum != ext4_superblock_csum(sb, es)) { 4917 ext4_msg(sb, KERN_ERR, "external journal has " 4918 "corrupt superblock"); 4919 brelse(bh); 4920 goto out_bdev; 4921 } 4922 4923 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4924 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4925 brelse(bh); 4926 goto out_bdev; 4927 } 4928 4929 len = ext4_blocks_count(es); 4930 start = sb_block + 1; 4931 brelse(bh); /* we're done with the superblock */ 4932 4933 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4934 start, len, blocksize); 4935 if (!journal) { 4936 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4937 goto out_bdev; 4938 } 4939 journal->j_private = sb; 4940 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4941 wait_on_buffer(journal->j_sb_buffer); 4942 if (!buffer_uptodate(journal->j_sb_buffer)) { 4943 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4944 goto out_journal; 4945 } 4946 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4947 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4948 "user (unsupported) - %d", 4949 be32_to_cpu(journal->j_superblock->s_nr_users)); 4950 goto out_journal; 4951 } 4952 EXT4_SB(sb)->journal_bdev = bdev; 4953 ext4_init_journal_params(sb, journal); 4954 return journal; 4955 4956 out_journal: 4957 jbd2_journal_destroy(journal); 4958 out_bdev: 4959 ext4_blkdev_put(bdev); 4960 return NULL; 4961 } 4962 4963 static int ext4_load_journal(struct super_block *sb, 4964 struct ext4_super_block *es, 4965 unsigned long journal_devnum) 4966 { 4967 journal_t *journal; 4968 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4969 dev_t journal_dev; 4970 int err = 0; 4971 int really_read_only; 4972 4973 BUG_ON(!ext4_has_feature_journal(sb)); 4974 4975 if (journal_devnum && 4976 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4977 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4978 "numbers have changed"); 4979 journal_dev = new_decode_dev(journal_devnum); 4980 } else 4981 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4982 4983 really_read_only = bdev_read_only(sb->s_bdev); 4984 4985 /* 4986 * Are we loading a blank journal or performing recovery after a 4987 * crash? For recovery, we need to check in advance whether we 4988 * can get read-write access to the device. 4989 */ 4990 if (ext4_has_feature_journal_needs_recovery(sb)) { 4991 if (sb_rdonly(sb)) { 4992 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4993 "required on readonly filesystem"); 4994 if (really_read_only) { 4995 ext4_msg(sb, KERN_ERR, "write access " 4996 "unavailable, cannot proceed " 4997 "(try mounting with noload)"); 4998 return -EROFS; 4999 } 5000 ext4_msg(sb, KERN_INFO, "write access will " 5001 "be enabled during recovery"); 5002 } 5003 } 5004 5005 if (journal_inum && journal_dev) { 5006 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 5007 "and inode journals!"); 5008 return -EINVAL; 5009 } 5010 5011 if (journal_inum) { 5012 if (!(journal = ext4_get_journal(sb, journal_inum))) 5013 return -EINVAL; 5014 } else { 5015 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 5016 return -EINVAL; 5017 } 5018 5019 if (!(journal->j_flags & JBD2_BARRIER)) 5020 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5021 5022 if (!ext4_has_feature_journal_needs_recovery(sb)) 5023 err = jbd2_journal_wipe(journal, !really_read_only); 5024 if (!err) { 5025 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5026 if (save) 5027 memcpy(save, ((char *) es) + 5028 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5029 err = jbd2_journal_load(journal); 5030 if (save) 5031 memcpy(((char *) es) + EXT4_S_ERR_START, 5032 save, EXT4_S_ERR_LEN); 5033 kfree(save); 5034 } 5035 5036 if (err) { 5037 ext4_msg(sb, KERN_ERR, "error loading journal"); 5038 jbd2_journal_destroy(journal); 5039 return err; 5040 } 5041 5042 EXT4_SB(sb)->s_journal = journal; 5043 ext4_clear_journal_err(sb, es); 5044 5045 if (!really_read_only && journal_devnum && 5046 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5047 es->s_journal_dev = cpu_to_le32(journal_devnum); 5048 5049 /* Make sure we flush the recovery flag to disk. */ 5050 ext4_commit_super(sb, 1); 5051 } 5052 5053 return 0; 5054 } 5055 5056 static int ext4_commit_super(struct super_block *sb, int sync) 5057 { 5058 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5059 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5060 int error = 0; 5061 5062 if (!sbh || block_device_ejected(sb)) 5063 return error; 5064 5065 /* 5066 * The superblock bh should be mapped, but it might not be if the 5067 * device was hot-removed. Not much we can do but fail the I/O. 5068 */ 5069 if (!buffer_mapped(sbh)) 5070 return error; 5071 5072 /* 5073 * If the file system is mounted read-only, don't update the 5074 * superblock write time. This avoids updating the superblock 5075 * write time when we are mounting the root file system 5076 * read/only but we need to replay the journal; at that point, 5077 * for people who are east of GMT and who make their clock 5078 * tick in localtime for Windows bug-for-bug compatibility, 5079 * the clock is set in the future, and this will cause e2fsck 5080 * to complain and force a full file system check. 5081 */ 5082 if (!(sb->s_flags & SB_RDONLY)) 5083 ext4_update_tstamp(es, s_wtime); 5084 if (sb->s_bdev->bd_part) 5085 es->s_kbytes_written = 5086 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5087 ((part_stat_read(sb->s_bdev->bd_part, 5088 sectors[STAT_WRITE]) - 5089 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5090 else 5091 es->s_kbytes_written = 5092 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5093 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5094 ext4_free_blocks_count_set(es, 5095 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5096 &EXT4_SB(sb)->s_freeclusters_counter))); 5097 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5098 es->s_free_inodes_count = 5099 cpu_to_le32(percpu_counter_sum_positive( 5100 &EXT4_SB(sb)->s_freeinodes_counter)); 5101 BUFFER_TRACE(sbh, "marking dirty"); 5102 ext4_superblock_csum_set(sb); 5103 if (sync) 5104 lock_buffer(sbh); 5105 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5106 /* 5107 * Oh, dear. A previous attempt to write the 5108 * superblock failed. This could happen because the 5109 * USB device was yanked out. Or it could happen to 5110 * be a transient write error and maybe the block will 5111 * be remapped. Nothing we can do but to retry the 5112 * write and hope for the best. 5113 */ 5114 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5115 "superblock detected"); 5116 clear_buffer_write_io_error(sbh); 5117 set_buffer_uptodate(sbh); 5118 } 5119 mark_buffer_dirty(sbh); 5120 if (sync) { 5121 unlock_buffer(sbh); 5122 error = __sync_dirty_buffer(sbh, 5123 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5124 if (buffer_write_io_error(sbh)) { 5125 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5126 "superblock"); 5127 clear_buffer_write_io_error(sbh); 5128 set_buffer_uptodate(sbh); 5129 } 5130 } 5131 return error; 5132 } 5133 5134 /* 5135 * Have we just finished recovery? If so, and if we are mounting (or 5136 * remounting) the filesystem readonly, then we will end up with a 5137 * consistent fs on disk. Record that fact. 5138 */ 5139 static void ext4_mark_recovery_complete(struct super_block *sb, 5140 struct ext4_super_block *es) 5141 { 5142 journal_t *journal = EXT4_SB(sb)->s_journal; 5143 5144 if (!ext4_has_feature_journal(sb)) { 5145 BUG_ON(journal != NULL); 5146 return; 5147 } 5148 jbd2_journal_lock_updates(journal); 5149 if (jbd2_journal_flush(journal) < 0) 5150 goto out; 5151 5152 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5153 ext4_clear_feature_journal_needs_recovery(sb); 5154 ext4_commit_super(sb, 1); 5155 } 5156 5157 out: 5158 jbd2_journal_unlock_updates(journal); 5159 } 5160 5161 /* 5162 * If we are mounting (or read-write remounting) a filesystem whose journal 5163 * has recorded an error from a previous lifetime, move that error to the 5164 * main filesystem now. 5165 */ 5166 static void ext4_clear_journal_err(struct super_block *sb, 5167 struct ext4_super_block *es) 5168 { 5169 journal_t *journal; 5170 int j_errno; 5171 const char *errstr; 5172 5173 BUG_ON(!ext4_has_feature_journal(sb)); 5174 5175 journal = EXT4_SB(sb)->s_journal; 5176 5177 /* 5178 * Now check for any error status which may have been recorded in the 5179 * journal by a prior ext4_error() or ext4_abort() 5180 */ 5181 5182 j_errno = jbd2_journal_errno(journal); 5183 if (j_errno) { 5184 char nbuf[16]; 5185 5186 errstr = ext4_decode_error(sb, j_errno, nbuf); 5187 ext4_warning(sb, "Filesystem error recorded " 5188 "from previous mount: %s", errstr); 5189 ext4_warning(sb, "Marking fs in need of filesystem check."); 5190 5191 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5192 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5193 ext4_commit_super(sb, 1); 5194 5195 jbd2_journal_clear_err(journal); 5196 jbd2_journal_update_sb_errno(journal); 5197 } 5198 } 5199 5200 /* 5201 * Force the running and committing transactions to commit, 5202 * and wait on the commit. 5203 */ 5204 int ext4_force_commit(struct super_block *sb) 5205 { 5206 journal_t *journal; 5207 5208 if (sb_rdonly(sb)) 5209 return 0; 5210 5211 journal = EXT4_SB(sb)->s_journal; 5212 return ext4_journal_force_commit(journal); 5213 } 5214 5215 static int ext4_sync_fs(struct super_block *sb, int wait) 5216 { 5217 int ret = 0; 5218 tid_t target; 5219 bool needs_barrier = false; 5220 struct ext4_sb_info *sbi = EXT4_SB(sb); 5221 5222 if (unlikely(ext4_forced_shutdown(sbi))) 5223 return 0; 5224 5225 trace_ext4_sync_fs(sb, wait); 5226 flush_workqueue(sbi->rsv_conversion_wq); 5227 /* 5228 * Writeback quota in non-journalled quota case - journalled quota has 5229 * no dirty dquots 5230 */ 5231 dquot_writeback_dquots(sb, -1); 5232 /* 5233 * Data writeback is possible w/o journal transaction, so barrier must 5234 * being sent at the end of the function. But we can skip it if 5235 * transaction_commit will do it for us. 5236 */ 5237 if (sbi->s_journal) { 5238 target = jbd2_get_latest_transaction(sbi->s_journal); 5239 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5240 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5241 needs_barrier = true; 5242 5243 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5244 if (wait) 5245 ret = jbd2_log_wait_commit(sbi->s_journal, 5246 target); 5247 } 5248 } else if (wait && test_opt(sb, BARRIER)) 5249 needs_barrier = true; 5250 if (needs_barrier) { 5251 int err; 5252 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5253 if (!ret) 5254 ret = err; 5255 } 5256 5257 return ret; 5258 } 5259 5260 /* 5261 * LVM calls this function before a (read-only) snapshot is created. This 5262 * gives us a chance to flush the journal completely and mark the fs clean. 5263 * 5264 * Note that only this function cannot bring a filesystem to be in a clean 5265 * state independently. It relies on upper layer to stop all data & metadata 5266 * modifications. 5267 */ 5268 static int ext4_freeze(struct super_block *sb) 5269 { 5270 int error = 0; 5271 journal_t *journal; 5272 5273 if (sb_rdonly(sb)) 5274 return 0; 5275 5276 journal = EXT4_SB(sb)->s_journal; 5277 5278 if (journal) { 5279 /* Now we set up the journal barrier. */ 5280 jbd2_journal_lock_updates(journal); 5281 5282 /* 5283 * Don't clear the needs_recovery flag if we failed to 5284 * flush the journal. 5285 */ 5286 error = jbd2_journal_flush(journal); 5287 if (error < 0) 5288 goto out; 5289 5290 /* Journal blocked and flushed, clear needs_recovery flag. */ 5291 ext4_clear_feature_journal_needs_recovery(sb); 5292 } 5293 5294 error = ext4_commit_super(sb, 1); 5295 out: 5296 if (journal) 5297 /* we rely on upper layer to stop further updates */ 5298 jbd2_journal_unlock_updates(journal); 5299 return error; 5300 } 5301 5302 /* 5303 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5304 * flag here, even though the filesystem is not technically dirty yet. 5305 */ 5306 static int ext4_unfreeze(struct super_block *sb) 5307 { 5308 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5309 return 0; 5310 5311 if (EXT4_SB(sb)->s_journal) { 5312 /* Reset the needs_recovery flag before the fs is unlocked. */ 5313 ext4_set_feature_journal_needs_recovery(sb); 5314 } 5315 5316 ext4_commit_super(sb, 1); 5317 return 0; 5318 } 5319 5320 /* 5321 * Structure to save mount options for ext4_remount's benefit 5322 */ 5323 struct ext4_mount_options { 5324 unsigned long s_mount_opt; 5325 unsigned long s_mount_opt2; 5326 kuid_t s_resuid; 5327 kgid_t s_resgid; 5328 unsigned long s_commit_interval; 5329 u32 s_min_batch_time, s_max_batch_time; 5330 #ifdef CONFIG_QUOTA 5331 int s_jquota_fmt; 5332 char *s_qf_names[EXT4_MAXQUOTAS]; 5333 #endif 5334 }; 5335 5336 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5337 { 5338 struct ext4_super_block *es; 5339 struct ext4_sb_info *sbi = EXT4_SB(sb); 5340 unsigned long old_sb_flags; 5341 struct ext4_mount_options old_opts; 5342 int enable_quota = 0; 5343 ext4_group_t g; 5344 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5345 int err = 0; 5346 #ifdef CONFIG_QUOTA 5347 int i, j; 5348 char *to_free[EXT4_MAXQUOTAS]; 5349 #endif 5350 char *orig_data = kstrdup(data, GFP_KERNEL); 5351 5352 if (data && !orig_data) 5353 return -ENOMEM; 5354 5355 /* Store the original options */ 5356 old_sb_flags = sb->s_flags; 5357 old_opts.s_mount_opt = sbi->s_mount_opt; 5358 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5359 old_opts.s_resuid = sbi->s_resuid; 5360 old_opts.s_resgid = sbi->s_resgid; 5361 old_opts.s_commit_interval = sbi->s_commit_interval; 5362 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5363 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5364 #ifdef CONFIG_QUOTA 5365 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5366 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5367 if (sbi->s_qf_names[i]) { 5368 char *qf_name = get_qf_name(sb, sbi, i); 5369 5370 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5371 if (!old_opts.s_qf_names[i]) { 5372 for (j = 0; j < i; j++) 5373 kfree(old_opts.s_qf_names[j]); 5374 kfree(orig_data); 5375 return -ENOMEM; 5376 } 5377 } else 5378 old_opts.s_qf_names[i] = NULL; 5379 #endif 5380 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5381 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5382 5383 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5384 err = -EINVAL; 5385 goto restore_opts; 5386 } 5387 5388 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5389 test_opt(sb, JOURNAL_CHECKSUM)) { 5390 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5391 "during remount not supported; ignoring"); 5392 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5393 } 5394 5395 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5396 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5397 ext4_msg(sb, KERN_ERR, "can't mount with " 5398 "both data=journal and delalloc"); 5399 err = -EINVAL; 5400 goto restore_opts; 5401 } 5402 if (test_opt(sb, DIOREAD_NOLOCK)) { 5403 ext4_msg(sb, KERN_ERR, "can't mount with " 5404 "both data=journal and dioread_nolock"); 5405 err = -EINVAL; 5406 goto restore_opts; 5407 } 5408 if (test_opt(sb, DAX)) { 5409 ext4_msg(sb, KERN_ERR, "can't mount with " 5410 "both data=journal and dax"); 5411 err = -EINVAL; 5412 goto restore_opts; 5413 } 5414 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5415 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5416 ext4_msg(sb, KERN_ERR, "can't mount with " 5417 "journal_async_commit in data=ordered mode"); 5418 err = -EINVAL; 5419 goto restore_opts; 5420 } 5421 } 5422 5423 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5424 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5425 err = -EINVAL; 5426 goto restore_opts; 5427 } 5428 5429 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5430 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5431 "dax flag with busy inodes while remounting"); 5432 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5433 } 5434 5435 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5436 ext4_abort(sb, "Abort forced by user"); 5437 5438 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5439 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5440 5441 es = sbi->s_es; 5442 5443 if (sbi->s_journal) { 5444 ext4_init_journal_params(sb, sbi->s_journal); 5445 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5446 } 5447 5448 if (*flags & SB_LAZYTIME) 5449 sb->s_flags |= SB_LAZYTIME; 5450 5451 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5452 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5453 err = -EROFS; 5454 goto restore_opts; 5455 } 5456 5457 if (*flags & SB_RDONLY) { 5458 err = sync_filesystem(sb); 5459 if (err < 0) 5460 goto restore_opts; 5461 err = dquot_suspend(sb, -1); 5462 if (err < 0) 5463 goto restore_opts; 5464 5465 /* 5466 * First of all, the unconditional stuff we have to do 5467 * to disable replay of the journal when we next remount 5468 */ 5469 sb->s_flags |= SB_RDONLY; 5470 5471 /* 5472 * OK, test if we are remounting a valid rw partition 5473 * readonly, and if so set the rdonly flag and then 5474 * mark the partition as valid again. 5475 */ 5476 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5477 (sbi->s_mount_state & EXT4_VALID_FS)) 5478 es->s_state = cpu_to_le16(sbi->s_mount_state); 5479 5480 if (sbi->s_journal) 5481 ext4_mark_recovery_complete(sb, es); 5482 if (sbi->s_mmp_tsk) 5483 kthread_stop(sbi->s_mmp_tsk); 5484 } else { 5485 /* Make sure we can mount this feature set readwrite */ 5486 if (ext4_has_feature_readonly(sb) || 5487 !ext4_feature_set_ok(sb, 0)) { 5488 err = -EROFS; 5489 goto restore_opts; 5490 } 5491 /* 5492 * Make sure the group descriptor checksums 5493 * are sane. If they aren't, refuse to remount r/w. 5494 */ 5495 for (g = 0; g < sbi->s_groups_count; g++) { 5496 struct ext4_group_desc *gdp = 5497 ext4_get_group_desc(sb, g, NULL); 5498 5499 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5500 ext4_msg(sb, KERN_ERR, 5501 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5502 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5503 le16_to_cpu(gdp->bg_checksum)); 5504 err = -EFSBADCRC; 5505 goto restore_opts; 5506 } 5507 } 5508 5509 /* 5510 * If we have an unprocessed orphan list hanging 5511 * around from a previously readonly bdev mount, 5512 * require a full umount/remount for now. 5513 */ 5514 if (es->s_last_orphan) { 5515 ext4_msg(sb, KERN_WARNING, "Couldn't " 5516 "remount RDWR because of unprocessed " 5517 "orphan inode list. Please " 5518 "umount/remount instead"); 5519 err = -EINVAL; 5520 goto restore_opts; 5521 } 5522 5523 /* 5524 * Mounting a RDONLY partition read-write, so reread 5525 * and store the current valid flag. (It may have 5526 * been changed by e2fsck since we originally mounted 5527 * the partition.) 5528 */ 5529 if (sbi->s_journal) 5530 ext4_clear_journal_err(sb, es); 5531 sbi->s_mount_state = le16_to_cpu(es->s_state); 5532 5533 err = ext4_setup_super(sb, es, 0); 5534 if (err) 5535 goto restore_opts; 5536 5537 sb->s_flags &= ~SB_RDONLY; 5538 if (ext4_has_feature_mmp(sb)) 5539 if (ext4_multi_mount_protect(sb, 5540 le64_to_cpu(es->s_mmp_block))) { 5541 err = -EROFS; 5542 goto restore_opts; 5543 } 5544 enable_quota = 1; 5545 } 5546 } 5547 5548 /* 5549 * Reinitialize lazy itable initialization thread based on 5550 * current settings 5551 */ 5552 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5553 ext4_unregister_li_request(sb); 5554 else { 5555 ext4_group_t first_not_zeroed; 5556 first_not_zeroed = ext4_has_uninit_itable(sb); 5557 ext4_register_li_request(sb, first_not_zeroed); 5558 } 5559 5560 ext4_setup_system_zone(sb); 5561 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5562 err = ext4_commit_super(sb, 1); 5563 if (err) 5564 goto restore_opts; 5565 } 5566 5567 #ifdef CONFIG_QUOTA 5568 /* Release old quota file names */ 5569 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5570 kfree(old_opts.s_qf_names[i]); 5571 if (enable_quota) { 5572 if (sb_any_quota_suspended(sb)) 5573 dquot_resume(sb, -1); 5574 else if (ext4_has_feature_quota(sb)) { 5575 err = ext4_enable_quotas(sb); 5576 if (err) 5577 goto restore_opts; 5578 } 5579 } 5580 #endif 5581 5582 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5583 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5584 kfree(orig_data); 5585 return 0; 5586 5587 restore_opts: 5588 sb->s_flags = old_sb_flags; 5589 sbi->s_mount_opt = old_opts.s_mount_opt; 5590 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5591 sbi->s_resuid = old_opts.s_resuid; 5592 sbi->s_resgid = old_opts.s_resgid; 5593 sbi->s_commit_interval = old_opts.s_commit_interval; 5594 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5595 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5596 #ifdef CONFIG_QUOTA 5597 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5598 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5599 to_free[i] = get_qf_name(sb, sbi, i); 5600 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5601 } 5602 synchronize_rcu(); 5603 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5604 kfree(to_free[i]); 5605 #endif 5606 kfree(orig_data); 5607 return err; 5608 } 5609 5610 #ifdef CONFIG_QUOTA 5611 static int ext4_statfs_project(struct super_block *sb, 5612 kprojid_t projid, struct kstatfs *buf) 5613 { 5614 struct kqid qid; 5615 struct dquot *dquot; 5616 u64 limit; 5617 u64 curblock; 5618 5619 qid = make_kqid_projid(projid); 5620 dquot = dqget(sb, qid); 5621 if (IS_ERR(dquot)) 5622 return PTR_ERR(dquot); 5623 spin_lock(&dquot->dq_dqb_lock); 5624 5625 limit = dquot->dq_dqb.dqb_bsoftlimit; 5626 if (dquot->dq_dqb.dqb_bhardlimit && 5627 (!limit || dquot->dq_dqb.dqb_bhardlimit < limit)) 5628 limit = dquot->dq_dqb.dqb_bhardlimit; 5629 limit >>= sb->s_blocksize_bits; 5630 5631 if (limit && buf->f_blocks > limit) { 5632 curblock = (dquot->dq_dqb.dqb_curspace + 5633 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5634 buf->f_blocks = limit; 5635 buf->f_bfree = buf->f_bavail = 5636 (buf->f_blocks > curblock) ? 5637 (buf->f_blocks - curblock) : 0; 5638 } 5639 5640 limit = dquot->dq_dqb.dqb_isoftlimit; 5641 if (dquot->dq_dqb.dqb_ihardlimit && 5642 (!limit || dquot->dq_dqb.dqb_ihardlimit < limit)) 5643 limit = dquot->dq_dqb.dqb_ihardlimit; 5644 5645 if (limit && buf->f_files > limit) { 5646 buf->f_files = limit; 5647 buf->f_ffree = 5648 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5649 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5650 } 5651 5652 spin_unlock(&dquot->dq_dqb_lock); 5653 dqput(dquot); 5654 return 0; 5655 } 5656 #endif 5657 5658 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5659 { 5660 struct super_block *sb = dentry->d_sb; 5661 struct ext4_sb_info *sbi = EXT4_SB(sb); 5662 struct ext4_super_block *es = sbi->s_es; 5663 ext4_fsblk_t overhead = 0, resv_blocks; 5664 u64 fsid; 5665 s64 bfree; 5666 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5667 5668 if (!test_opt(sb, MINIX_DF)) 5669 overhead = sbi->s_overhead; 5670 5671 buf->f_type = EXT4_SUPER_MAGIC; 5672 buf->f_bsize = sb->s_blocksize; 5673 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5674 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5675 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5676 /* prevent underflow in case that few free space is available */ 5677 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5678 buf->f_bavail = buf->f_bfree - 5679 (ext4_r_blocks_count(es) + resv_blocks); 5680 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5681 buf->f_bavail = 0; 5682 buf->f_files = le32_to_cpu(es->s_inodes_count); 5683 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5684 buf->f_namelen = EXT4_NAME_LEN; 5685 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5686 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5687 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5688 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5689 5690 #ifdef CONFIG_QUOTA 5691 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5692 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5693 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5694 #endif 5695 return 0; 5696 } 5697 5698 5699 #ifdef CONFIG_QUOTA 5700 5701 /* 5702 * Helper functions so that transaction is started before we acquire dqio_sem 5703 * to keep correct lock ordering of transaction > dqio_sem 5704 */ 5705 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5706 { 5707 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5708 } 5709 5710 static int ext4_write_dquot(struct dquot *dquot) 5711 { 5712 int ret, err; 5713 handle_t *handle; 5714 struct inode *inode; 5715 5716 inode = dquot_to_inode(dquot); 5717 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5718 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5719 if (IS_ERR(handle)) 5720 return PTR_ERR(handle); 5721 ret = dquot_commit(dquot); 5722 err = ext4_journal_stop(handle); 5723 if (!ret) 5724 ret = err; 5725 return ret; 5726 } 5727 5728 static int ext4_acquire_dquot(struct dquot *dquot) 5729 { 5730 int ret, err; 5731 handle_t *handle; 5732 5733 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5734 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5735 if (IS_ERR(handle)) 5736 return PTR_ERR(handle); 5737 ret = dquot_acquire(dquot); 5738 err = ext4_journal_stop(handle); 5739 if (!ret) 5740 ret = err; 5741 return ret; 5742 } 5743 5744 static int ext4_release_dquot(struct dquot *dquot) 5745 { 5746 int ret, err; 5747 handle_t *handle; 5748 5749 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5750 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5751 if (IS_ERR(handle)) { 5752 /* Release dquot anyway to avoid endless cycle in dqput() */ 5753 dquot_release(dquot); 5754 return PTR_ERR(handle); 5755 } 5756 ret = dquot_release(dquot); 5757 err = ext4_journal_stop(handle); 5758 if (!ret) 5759 ret = err; 5760 return ret; 5761 } 5762 5763 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5764 { 5765 struct super_block *sb = dquot->dq_sb; 5766 struct ext4_sb_info *sbi = EXT4_SB(sb); 5767 5768 /* Are we journaling quotas? */ 5769 if (ext4_has_feature_quota(sb) || 5770 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5771 dquot_mark_dquot_dirty(dquot); 5772 return ext4_write_dquot(dquot); 5773 } else { 5774 return dquot_mark_dquot_dirty(dquot); 5775 } 5776 } 5777 5778 static int ext4_write_info(struct super_block *sb, int type) 5779 { 5780 int ret, err; 5781 handle_t *handle; 5782 5783 /* Data block + inode block */ 5784 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5785 if (IS_ERR(handle)) 5786 return PTR_ERR(handle); 5787 ret = dquot_commit_info(sb, type); 5788 err = ext4_journal_stop(handle); 5789 if (!ret) 5790 ret = err; 5791 return ret; 5792 } 5793 5794 /* 5795 * Turn on quotas during mount time - we need to find 5796 * the quota file and such... 5797 */ 5798 static int ext4_quota_on_mount(struct super_block *sb, int type) 5799 { 5800 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5801 EXT4_SB(sb)->s_jquota_fmt, type); 5802 } 5803 5804 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5805 { 5806 struct ext4_inode_info *ei = EXT4_I(inode); 5807 5808 /* The first argument of lockdep_set_subclass has to be 5809 * *exactly* the same as the argument to init_rwsem() --- in 5810 * this case, in init_once() --- or lockdep gets unhappy 5811 * because the name of the lock is set using the 5812 * stringification of the argument to init_rwsem(). 5813 */ 5814 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5815 lockdep_set_subclass(&ei->i_data_sem, subclass); 5816 } 5817 5818 /* 5819 * Standard function to be called on quota_on 5820 */ 5821 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5822 const struct path *path) 5823 { 5824 int err; 5825 5826 if (!test_opt(sb, QUOTA)) 5827 return -EINVAL; 5828 5829 /* Quotafile not on the same filesystem? */ 5830 if (path->dentry->d_sb != sb) 5831 return -EXDEV; 5832 /* Journaling quota? */ 5833 if (EXT4_SB(sb)->s_qf_names[type]) { 5834 /* Quotafile not in fs root? */ 5835 if (path->dentry->d_parent != sb->s_root) 5836 ext4_msg(sb, KERN_WARNING, 5837 "Quota file not on filesystem root. " 5838 "Journaled quota will not work"); 5839 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5840 } else { 5841 /* 5842 * Clear the flag just in case mount options changed since 5843 * last time. 5844 */ 5845 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5846 } 5847 5848 /* 5849 * When we journal data on quota file, we have to flush journal to see 5850 * all updates to the file when we bypass pagecache... 5851 */ 5852 if (EXT4_SB(sb)->s_journal && 5853 ext4_should_journal_data(d_inode(path->dentry))) { 5854 /* 5855 * We don't need to lock updates but journal_flush() could 5856 * otherwise be livelocked... 5857 */ 5858 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5859 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5860 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5861 if (err) 5862 return err; 5863 } 5864 5865 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5866 err = dquot_quota_on(sb, type, format_id, path); 5867 if (err) { 5868 lockdep_set_quota_inode(path->dentry->d_inode, 5869 I_DATA_SEM_NORMAL); 5870 } else { 5871 struct inode *inode = d_inode(path->dentry); 5872 handle_t *handle; 5873 5874 /* 5875 * Set inode flags to prevent userspace from messing with quota 5876 * files. If this fails, we return success anyway since quotas 5877 * are already enabled and this is not a hard failure. 5878 */ 5879 inode_lock(inode); 5880 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5881 if (IS_ERR(handle)) 5882 goto unlock_inode; 5883 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5884 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5885 S_NOATIME | S_IMMUTABLE); 5886 ext4_mark_inode_dirty(handle, inode); 5887 ext4_journal_stop(handle); 5888 unlock_inode: 5889 inode_unlock(inode); 5890 } 5891 return err; 5892 } 5893 5894 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5895 unsigned int flags) 5896 { 5897 int err; 5898 struct inode *qf_inode; 5899 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5900 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5901 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5902 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5903 }; 5904 5905 BUG_ON(!ext4_has_feature_quota(sb)); 5906 5907 if (!qf_inums[type]) 5908 return -EPERM; 5909 5910 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5911 if (IS_ERR(qf_inode)) { 5912 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5913 return PTR_ERR(qf_inode); 5914 } 5915 5916 /* Don't account quota for quota files to avoid recursion */ 5917 qf_inode->i_flags |= S_NOQUOTA; 5918 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5919 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 5920 if (err) 5921 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5922 iput(qf_inode); 5923 5924 return err; 5925 } 5926 5927 /* Enable usage tracking for all quota types. */ 5928 static int ext4_enable_quotas(struct super_block *sb) 5929 { 5930 int type, err = 0; 5931 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5932 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5933 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5934 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5935 }; 5936 bool quota_mopt[EXT4_MAXQUOTAS] = { 5937 test_opt(sb, USRQUOTA), 5938 test_opt(sb, GRPQUOTA), 5939 test_opt(sb, PRJQUOTA), 5940 }; 5941 5942 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5943 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5944 if (qf_inums[type]) { 5945 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5946 DQUOT_USAGE_ENABLED | 5947 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5948 if (err) { 5949 ext4_warning(sb, 5950 "Failed to enable quota tracking " 5951 "(type=%d, err=%d). Please run " 5952 "e2fsck to fix.", type, err); 5953 for (type--; type >= 0; type--) 5954 dquot_quota_off(sb, type); 5955 5956 return err; 5957 } 5958 } 5959 } 5960 return 0; 5961 } 5962 5963 static int ext4_quota_off(struct super_block *sb, int type) 5964 { 5965 struct inode *inode = sb_dqopt(sb)->files[type]; 5966 handle_t *handle; 5967 int err; 5968 5969 /* Force all delayed allocation blocks to be allocated. 5970 * Caller already holds s_umount sem */ 5971 if (test_opt(sb, DELALLOC)) 5972 sync_filesystem(sb); 5973 5974 if (!inode || !igrab(inode)) 5975 goto out; 5976 5977 err = dquot_quota_off(sb, type); 5978 if (err || ext4_has_feature_quota(sb)) 5979 goto out_put; 5980 5981 inode_lock(inode); 5982 /* 5983 * Update modification times of quota files when userspace can 5984 * start looking at them. If we fail, we return success anyway since 5985 * this is not a hard failure and quotas are already disabled. 5986 */ 5987 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5988 if (IS_ERR(handle)) 5989 goto out_unlock; 5990 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5991 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5992 inode->i_mtime = inode->i_ctime = current_time(inode); 5993 ext4_mark_inode_dirty(handle, inode); 5994 ext4_journal_stop(handle); 5995 out_unlock: 5996 inode_unlock(inode); 5997 out_put: 5998 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5999 iput(inode); 6000 return err; 6001 out: 6002 return dquot_quota_off(sb, type); 6003 } 6004 6005 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6006 * acquiring the locks... As quota files are never truncated and quota code 6007 * itself serializes the operations (and no one else should touch the files) 6008 * we don't have to be afraid of races */ 6009 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6010 size_t len, loff_t off) 6011 { 6012 struct inode *inode = sb_dqopt(sb)->files[type]; 6013 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6014 int offset = off & (sb->s_blocksize - 1); 6015 int tocopy; 6016 size_t toread; 6017 struct buffer_head *bh; 6018 loff_t i_size = i_size_read(inode); 6019 6020 if (off > i_size) 6021 return 0; 6022 if (off+len > i_size) 6023 len = i_size-off; 6024 toread = len; 6025 while (toread > 0) { 6026 tocopy = sb->s_blocksize - offset < toread ? 6027 sb->s_blocksize - offset : toread; 6028 bh = ext4_bread(NULL, inode, blk, 0); 6029 if (IS_ERR(bh)) 6030 return PTR_ERR(bh); 6031 if (!bh) /* A hole? */ 6032 memset(data, 0, tocopy); 6033 else 6034 memcpy(data, bh->b_data+offset, tocopy); 6035 brelse(bh); 6036 offset = 0; 6037 toread -= tocopy; 6038 data += tocopy; 6039 blk++; 6040 } 6041 return len; 6042 } 6043 6044 /* Write to quotafile (we know the transaction is already started and has 6045 * enough credits) */ 6046 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6047 const char *data, size_t len, loff_t off) 6048 { 6049 struct inode *inode = sb_dqopt(sb)->files[type]; 6050 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6051 int err, offset = off & (sb->s_blocksize - 1); 6052 int retries = 0; 6053 struct buffer_head *bh; 6054 handle_t *handle = journal_current_handle(); 6055 6056 if (EXT4_SB(sb)->s_journal && !handle) { 6057 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6058 " cancelled because transaction is not started", 6059 (unsigned long long)off, (unsigned long long)len); 6060 return -EIO; 6061 } 6062 /* 6063 * Since we account only one data block in transaction credits, 6064 * then it is impossible to cross a block boundary. 6065 */ 6066 if (sb->s_blocksize - offset < len) { 6067 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6068 " cancelled because not block aligned", 6069 (unsigned long long)off, (unsigned long long)len); 6070 return -EIO; 6071 } 6072 6073 do { 6074 bh = ext4_bread(handle, inode, blk, 6075 EXT4_GET_BLOCKS_CREATE | 6076 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6077 } while (PTR_ERR(bh) == -ENOSPC && 6078 ext4_should_retry_alloc(inode->i_sb, &retries)); 6079 if (IS_ERR(bh)) 6080 return PTR_ERR(bh); 6081 if (!bh) 6082 goto out; 6083 BUFFER_TRACE(bh, "get write access"); 6084 err = ext4_journal_get_write_access(handle, bh); 6085 if (err) { 6086 brelse(bh); 6087 return err; 6088 } 6089 lock_buffer(bh); 6090 memcpy(bh->b_data+offset, data, len); 6091 flush_dcache_page(bh->b_page); 6092 unlock_buffer(bh); 6093 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6094 brelse(bh); 6095 out: 6096 if (inode->i_size < off + len) { 6097 i_size_write(inode, off + len); 6098 EXT4_I(inode)->i_disksize = inode->i_size; 6099 ext4_mark_inode_dirty(handle, inode); 6100 } 6101 return len; 6102 } 6103 #endif 6104 6105 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6106 const char *dev_name, void *data) 6107 { 6108 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6109 } 6110 6111 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6112 static inline void register_as_ext2(void) 6113 { 6114 int err = register_filesystem(&ext2_fs_type); 6115 if (err) 6116 printk(KERN_WARNING 6117 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6118 } 6119 6120 static inline void unregister_as_ext2(void) 6121 { 6122 unregister_filesystem(&ext2_fs_type); 6123 } 6124 6125 static inline int ext2_feature_set_ok(struct super_block *sb) 6126 { 6127 if (ext4_has_unknown_ext2_incompat_features(sb)) 6128 return 0; 6129 if (sb_rdonly(sb)) 6130 return 1; 6131 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6132 return 0; 6133 return 1; 6134 } 6135 #else 6136 static inline void register_as_ext2(void) { } 6137 static inline void unregister_as_ext2(void) { } 6138 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6139 #endif 6140 6141 static inline void register_as_ext3(void) 6142 { 6143 int err = register_filesystem(&ext3_fs_type); 6144 if (err) 6145 printk(KERN_WARNING 6146 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6147 } 6148 6149 static inline void unregister_as_ext3(void) 6150 { 6151 unregister_filesystem(&ext3_fs_type); 6152 } 6153 6154 static inline int ext3_feature_set_ok(struct super_block *sb) 6155 { 6156 if (ext4_has_unknown_ext3_incompat_features(sb)) 6157 return 0; 6158 if (!ext4_has_feature_journal(sb)) 6159 return 0; 6160 if (sb_rdonly(sb)) 6161 return 1; 6162 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6163 return 0; 6164 return 1; 6165 } 6166 6167 static struct file_system_type ext4_fs_type = { 6168 .owner = THIS_MODULE, 6169 .name = "ext4", 6170 .mount = ext4_mount, 6171 .kill_sb = kill_block_super, 6172 .fs_flags = FS_REQUIRES_DEV, 6173 }; 6174 MODULE_ALIAS_FS("ext4"); 6175 6176 /* Shared across all ext4 file systems */ 6177 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6178 6179 static int __init ext4_init_fs(void) 6180 { 6181 int i, err; 6182 6183 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6184 ext4_li_info = NULL; 6185 mutex_init(&ext4_li_mtx); 6186 6187 /* Build-time check for flags consistency */ 6188 ext4_check_flag_values(); 6189 6190 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6191 init_waitqueue_head(&ext4__ioend_wq[i]); 6192 6193 err = ext4_init_es(); 6194 if (err) 6195 return err; 6196 6197 err = ext4_init_pending(); 6198 if (err) 6199 goto out7; 6200 6201 err = ext4_init_post_read_processing(); 6202 if (err) 6203 goto out6; 6204 6205 err = ext4_init_pageio(); 6206 if (err) 6207 goto out5; 6208 6209 err = ext4_init_system_zone(); 6210 if (err) 6211 goto out4; 6212 6213 err = ext4_init_sysfs(); 6214 if (err) 6215 goto out3; 6216 6217 err = ext4_init_mballoc(); 6218 if (err) 6219 goto out2; 6220 err = init_inodecache(); 6221 if (err) 6222 goto out1; 6223 register_as_ext3(); 6224 register_as_ext2(); 6225 err = register_filesystem(&ext4_fs_type); 6226 if (err) 6227 goto out; 6228 6229 return 0; 6230 out: 6231 unregister_as_ext2(); 6232 unregister_as_ext3(); 6233 destroy_inodecache(); 6234 out1: 6235 ext4_exit_mballoc(); 6236 out2: 6237 ext4_exit_sysfs(); 6238 out3: 6239 ext4_exit_system_zone(); 6240 out4: 6241 ext4_exit_pageio(); 6242 out5: 6243 ext4_exit_post_read_processing(); 6244 out6: 6245 ext4_exit_pending(); 6246 out7: 6247 ext4_exit_es(); 6248 6249 return err; 6250 } 6251 6252 static void __exit ext4_exit_fs(void) 6253 { 6254 ext4_destroy_lazyinit_thread(); 6255 unregister_as_ext2(); 6256 unregister_as_ext3(); 6257 unregister_filesystem(&ext4_fs_type); 6258 destroy_inodecache(); 6259 ext4_exit_mballoc(); 6260 ext4_exit_sysfs(); 6261 ext4_exit_system_zone(); 6262 ext4_exit_pageio(); 6263 ext4_exit_post_read_processing(); 6264 ext4_exit_es(); 6265 ext4_exit_pending(); 6266 } 6267 6268 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6269 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6270 MODULE_LICENSE("GPL"); 6271 MODULE_SOFTDEP("pre: crc32c"); 6272 module_init(ext4_init_fs) 6273 module_exit(ext4_exit_fs) 6274