xref: /openbmc/linux/fs/ext4/super.c (revision f7d84fa7)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"	/* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57 
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61 
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 			     unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 					struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 				   struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 		       const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 					    unsigned int journal_inum);
85 
86 /*
87  * Lock ordering
88  *
89  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90  * i_mmap_rwsem (inode->i_mmap_rwsem)!
91  *
92  * page fault path:
93  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94  *   page lock -> i_data_sem (rw)
95  *
96  * buffered write path:
97  * sb_start_write -> i_mutex -> mmap_sem
98  * sb_start_write -> i_mutex -> transaction start -> page lock ->
99  *   i_data_sem (rw)
100  *
101  * truncate:
102  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103  *   i_mmap_rwsem (w) -> page lock
104  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105  *   transaction start -> i_data_sem (rw)
106  *
107  * direct IO:
108  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110  *   transaction start -> i_data_sem (rw)
111  *
112  * writepages:
113  * transaction start -> page lock(s) -> i_data_sem (rw)
114  */
115 
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 	.owner		= THIS_MODULE,
119 	.name		= "ext2",
120 	.mount		= ext4_mount,
121 	.kill_sb	= kill_block_super,
122 	.fs_flags	= FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130 
131 
132 static struct file_system_type ext3_fs_type = {
133 	.owner		= THIS_MODULE,
134 	.name		= "ext3",
135 	.mount		= ext4_mount,
136 	.kill_sb	= kill_block_super,
137 	.fs_flags	= FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142 
143 static int ext4_verify_csum_type(struct super_block *sb,
144 				 struct ext4_super_block *es)
145 {
146 	if (!ext4_has_feature_metadata_csum(sb))
147 		return 1;
148 
149 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151 
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 				   struct ext4_super_block *es)
154 {
155 	struct ext4_sb_info *sbi = EXT4_SB(sb);
156 	int offset = offsetof(struct ext4_super_block, s_checksum);
157 	__u32 csum;
158 
159 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160 
161 	return cpu_to_le32(csum);
162 }
163 
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 				       struct ext4_super_block *es)
166 {
167 	if (!ext4_has_metadata_csum(sb))
168 		return 1;
169 
170 	return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172 
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176 
177 	if (!ext4_has_metadata_csum(sb))
178 		return;
179 
180 	es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182 
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 	void *ret;
186 
187 	ret = kmalloc(size, flags | __GFP_NOWARN);
188 	if (!ret)
189 		ret = __vmalloc(size, flags, PAGE_KERNEL);
190 	return ret;
191 }
192 
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 	void *ret;
196 
197 	ret = kzalloc(size, flags | __GFP_NOWARN);
198 	if (!ret)
199 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 	return ret;
201 }
202 
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 			       struct ext4_group_desc *bg)
205 {
206 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210 
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 			       struct ext4_group_desc *bg)
213 {
214 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218 
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 			      struct ext4_group_desc *bg)
221 {
222 	return le32_to_cpu(bg->bg_inode_table_lo) |
223 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226 
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 			       struct ext4_group_desc *bg)
229 {
230 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234 
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 			      struct ext4_group_desc *bg)
237 {
238 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242 
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 			      struct ext4_group_desc *bg)
245 {
246 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250 
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 			      struct ext4_group_desc *bg)
253 {
254 	return le16_to_cpu(bg->bg_itable_unused_lo) |
255 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258 
259 void ext4_block_bitmap_set(struct super_block *sb,
260 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266 
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
271 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274 
275 void ext4_inode_table_set(struct super_block *sb,
276 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282 
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 				  struct ext4_group_desc *bg, __u32 count)
285 {
286 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290 
291 void ext4_free_inodes_set(struct super_block *sb,
292 			  struct ext4_group_desc *bg, __u32 count)
293 {
294 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298 
299 void ext4_used_dirs_set(struct super_block *sb,
300 			  struct ext4_group_desc *bg, __u32 count)
301 {
302 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306 
307 void ext4_itable_unused_set(struct super_block *sb,
308 			  struct ext4_group_desc *bg, __u32 count)
309 {
310 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314 
315 
316 static void __save_error_info(struct super_block *sb, const char *func,
317 			    unsigned int line)
318 {
319 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320 
321 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 	if (bdev_read_only(sb->s_bdev))
323 		return;
324 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 	es->s_last_error_time = cpu_to_le32(get_seconds());
326 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 	es->s_last_error_line = cpu_to_le32(line);
328 	if (!es->s_first_error_time) {
329 		es->s_first_error_time = es->s_last_error_time;
330 		strncpy(es->s_first_error_func, func,
331 			sizeof(es->s_first_error_func));
332 		es->s_first_error_line = cpu_to_le32(line);
333 		es->s_first_error_ino = es->s_last_error_ino;
334 		es->s_first_error_block = es->s_last_error_block;
335 	}
336 	/*
337 	 * Start the daily error reporting function if it hasn't been
338 	 * started already
339 	 */
340 	if (!es->s_error_count)
341 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 	le32_add_cpu(&es->s_error_count, 1);
343 }
344 
345 static void save_error_info(struct super_block *sb, const char *func,
346 			    unsigned int line)
347 {
348 	__save_error_info(sb, func, line);
349 	ext4_commit_super(sb, 1);
350 }
351 
352 /*
353  * The del_gendisk() function uninitializes the disk-specific data
354  * structures, including the bdi structure, without telling anyone
355  * else.  Once this happens, any attempt to call mark_buffer_dirty()
356  * (for example, by ext4_commit_super), will cause a kernel OOPS.
357  * This is a kludge to prevent these oops until we can put in a proper
358  * hook in del_gendisk() to inform the VFS and file system layers.
359  */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 	struct inode *bd_inode = sb->s_bdev->bd_inode;
363 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364 
365 	return bdi->dev == NULL;
366 }
367 
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 	struct super_block		*sb = journal->j_private;
371 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
372 	int				error = is_journal_aborted(journal);
373 	struct ext4_journal_cb_entry	*jce;
374 
375 	BUG_ON(txn->t_state == T_FINISHED);
376 	spin_lock(&sbi->s_md_lock);
377 	while (!list_empty(&txn->t_private_list)) {
378 		jce = list_entry(txn->t_private_list.next,
379 				 struct ext4_journal_cb_entry, jce_list);
380 		list_del_init(&jce->jce_list);
381 		spin_unlock(&sbi->s_md_lock);
382 		jce->jce_func(sb, jce, error);
383 		spin_lock(&sbi->s_md_lock);
384 	}
385 	spin_unlock(&sbi->s_md_lock);
386 }
387 
388 /* Deal with the reporting of failure conditions on a filesystem such as
389  * inconsistencies detected or read IO failures.
390  *
391  * On ext2, we can store the error state of the filesystem in the
392  * superblock.  That is not possible on ext4, because we may have other
393  * write ordering constraints on the superblock which prevent us from
394  * writing it out straight away; and given that the journal is about to
395  * be aborted, we can't rely on the current, or future, transactions to
396  * write out the superblock safely.
397  *
398  * We'll just use the jbd2_journal_abort() error code to record an error in
399  * the journal instead.  On recovery, the journal will complain about
400  * that error until we've noted it down and cleared it.
401  */
402 
403 static void ext4_handle_error(struct super_block *sb)
404 {
405 	if (sb->s_flags & MS_RDONLY)
406 		return;
407 
408 	if (!test_opt(sb, ERRORS_CONT)) {
409 		journal_t *journal = EXT4_SB(sb)->s_journal;
410 
411 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
412 		if (journal)
413 			jbd2_journal_abort(journal, -EIO);
414 	}
415 	if (test_opt(sb, ERRORS_RO)) {
416 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
417 		/*
418 		 * Make sure updated value of ->s_mount_flags will be visible
419 		 * before ->s_flags update
420 		 */
421 		smp_wmb();
422 		sb->s_flags |= MS_RDONLY;
423 	}
424 	if (test_opt(sb, ERRORS_PANIC)) {
425 		if (EXT4_SB(sb)->s_journal &&
426 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
427 			return;
428 		panic("EXT4-fs (device %s): panic forced after error\n",
429 			sb->s_id);
430 	}
431 }
432 
433 #define ext4_error_ratelimit(sb)					\
434 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
435 			     "EXT4-fs error")
436 
437 void __ext4_error(struct super_block *sb, const char *function,
438 		  unsigned int line, const char *fmt, ...)
439 {
440 	struct va_format vaf;
441 	va_list args;
442 
443 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
444 		return;
445 
446 	if (ext4_error_ratelimit(sb)) {
447 		va_start(args, fmt);
448 		vaf.fmt = fmt;
449 		vaf.va = &args;
450 		printk(KERN_CRIT
451 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
452 		       sb->s_id, function, line, current->comm, &vaf);
453 		va_end(args);
454 	}
455 	save_error_info(sb, function, line);
456 	ext4_handle_error(sb);
457 }
458 
459 void __ext4_error_inode(struct inode *inode, const char *function,
460 			unsigned int line, ext4_fsblk_t block,
461 			const char *fmt, ...)
462 {
463 	va_list args;
464 	struct va_format vaf;
465 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
466 
467 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
468 		return;
469 
470 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
471 	es->s_last_error_block = cpu_to_le64(block);
472 	if (ext4_error_ratelimit(inode->i_sb)) {
473 		va_start(args, fmt);
474 		vaf.fmt = fmt;
475 		vaf.va = &args;
476 		if (block)
477 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
478 			       "inode #%lu: block %llu: comm %s: %pV\n",
479 			       inode->i_sb->s_id, function, line, inode->i_ino,
480 			       block, current->comm, &vaf);
481 		else
482 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 			       "inode #%lu: comm %s: %pV\n",
484 			       inode->i_sb->s_id, function, line, inode->i_ino,
485 			       current->comm, &vaf);
486 		va_end(args);
487 	}
488 	save_error_info(inode->i_sb, function, line);
489 	ext4_handle_error(inode->i_sb);
490 }
491 
492 void __ext4_error_file(struct file *file, const char *function,
493 		       unsigned int line, ext4_fsblk_t block,
494 		       const char *fmt, ...)
495 {
496 	va_list args;
497 	struct va_format vaf;
498 	struct ext4_super_block *es;
499 	struct inode *inode = file_inode(file);
500 	char pathname[80], *path;
501 
502 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
503 		return;
504 
505 	es = EXT4_SB(inode->i_sb)->s_es;
506 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
507 	if (ext4_error_ratelimit(inode->i_sb)) {
508 		path = file_path(file, pathname, sizeof(pathname));
509 		if (IS_ERR(path))
510 			path = "(unknown)";
511 		va_start(args, fmt);
512 		vaf.fmt = fmt;
513 		vaf.va = &args;
514 		if (block)
515 			printk(KERN_CRIT
516 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
517 			       "block %llu: comm %s: path %s: %pV\n",
518 			       inode->i_sb->s_id, function, line, inode->i_ino,
519 			       block, current->comm, path, &vaf);
520 		else
521 			printk(KERN_CRIT
522 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 			       "comm %s: path %s: %pV\n",
524 			       inode->i_sb->s_id, function, line, inode->i_ino,
525 			       current->comm, path, &vaf);
526 		va_end(args);
527 	}
528 	save_error_info(inode->i_sb, function, line);
529 	ext4_handle_error(inode->i_sb);
530 }
531 
532 const char *ext4_decode_error(struct super_block *sb, int errno,
533 			      char nbuf[16])
534 {
535 	char *errstr = NULL;
536 
537 	switch (errno) {
538 	case -EFSCORRUPTED:
539 		errstr = "Corrupt filesystem";
540 		break;
541 	case -EFSBADCRC:
542 		errstr = "Filesystem failed CRC";
543 		break;
544 	case -EIO:
545 		errstr = "IO failure";
546 		break;
547 	case -ENOMEM:
548 		errstr = "Out of memory";
549 		break;
550 	case -EROFS:
551 		if (!sb || (EXT4_SB(sb)->s_journal &&
552 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
553 			errstr = "Journal has aborted";
554 		else
555 			errstr = "Readonly filesystem";
556 		break;
557 	default:
558 		/* If the caller passed in an extra buffer for unknown
559 		 * errors, textualise them now.  Else we just return
560 		 * NULL. */
561 		if (nbuf) {
562 			/* Check for truncated error codes... */
563 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
564 				errstr = nbuf;
565 		}
566 		break;
567 	}
568 
569 	return errstr;
570 }
571 
572 /* __ext4_std_error decodes expected errors from journaling functions
573  * automatically and invokes the appropriate error response.  */
574 
575 void __ext4_std_error(struct super_block *sb, const char *function,
576 		      unsigned int line, int errno)
577 {
578 	char nbuf[16];
579 	const char *errstr;
580 
581 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
582 		return;
583 
584 	/* Special case: if the error is EROFS, and we're not already
585 	 * inside a transaction, then there's really no point in logging
586 	 * an error. */
587 	if (errno == -EROFS && journal_current_handle() == NULL &&
588 	    (sb->s_flags & MS_RDONLY))
589 		return;
590 
591 	if (ext4_error_ratelimit(sb)) {
592 		errstr = ext4_decode_error(sb, errno, nbuf);
593 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
594 		       sb->s_id, function, line, errstr);
595 	}
596 
597 	save_error_info(sb, function, line);
598 	ext4_handle_error(sb);
599 }
600 
601 /*
602  * ext4_abort is a much stronger failure handler than ext4_error.  The
603  * abort function may be used to deal with unrecoverable failures such
604  * as journal IO errors or ENOMEM at a critical moment in log management.
605  *
606  * We unconditionally force the filesystem into an ABORT|READONLY state,
607  * unless the error response on the fs has been set to panic in which
608  * case we take the easy way out and panic immediately.
609  */
610 
611 void __ext4_abort(struct super_block *sb, const char *function,
612 		unsigned int line, const char *fmt, ...)
613 {
614 	struct va_format vaf;
615 	va_list args;
616 
617 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
618 		return;
619 
620 	save_error_info(sb, function, line);
621 	va_start(args, fmt);
622 	vaf.fmt = fmt;
623 	vaf.va = &args;
624 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
625 	       sb->s_id, function, line, &vaf);
626 	va_end(args);
627 
628 	if ((sb->s_flags & MS_RDONLY) == 0) {
629 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
630 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
631 		/*
632 		 * Make sure updated value of ->s_mount_flags will be visible
633 		 * before ->s_flags update
634 		 */
635 		smp_wmb();
636 		sb->s_flags |= MS_RDONLY;
637 		if (EXT4_SB(sb)->s_journal)
638 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
639 		save_error_info(sb, function, line);
640 	}
641 	if (test_opt(sb, ERRORS_PANIC)) {
642 		if (EXT4_SB(sb)->s_journal &&
643 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
644 			return;
645 		panic("EXT4-fs panic from previous error\n");
646 	}
647 }
648 
649 void __ext4_msg(struct super_block *sb,
650 		const char *prefix, const char *fmt, ...)
651 {
652 	struct va_format vaf;
653 	va_list args;
654 
655 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
656 		return;
657 
658 	va_start(args, fmt);
659 	vaf.fmt = fmt;
660 	vaf.va = &args;
661 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
662 	va_end(args);
663 }
664 
665 #define ext4_warning_ratelimit(sb)					\
666 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
667 			     "EXT4-fs warning")
668 
669 void __ext4_warning(struct super_block *sb, const char *function,
670 		    unsigned int line, const char *fmt, ...)
671 {
672 	struct va_format vaf;
673 	va_list args;
674 
675 	if (!ext4_warning_ratelimit(sb))
676 		return;
677 
678 	va_start(args, fmt);
679 	vaf.fmt = fmt;
680 	vaf.va = &args;
681 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
682 	       sb->s_id, function, line, &vaf);
683 	va_end(args);
684 }
685 
686 void __ext4_warning_inode(const struct inode *inode, const char *function,
687 			  unsigned int line, const char *fmt, ...)
688 {
689 	struct va_format vaf;
690 	va_list args;
691 
692 	if (!ext4_warning_ratelimit(inode->i_sb))
693 		return;
694 
695 	va_start(args, fmt);
696 	vaf.fmt = fmt;
697 	vaf.va = &args;
698 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
699 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
700 	       function, line, inode->i_ino, current->comm, &vaf);
701 	va_end(args);
702 }
703 
704 void __ext4_grp_locked_error(const char *function, unsigned int line,
705 			     struct super_block *sb, ext4_group_t grp,
706 			     unsigned long ino, ext4_fsblk_t block,
707 			     const char *fmt, ...)
708 __releases(bitlock)
709 __acquires(bitlock)
710 {
711 	struct va_format vaf;
712 	va_list args;
713 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
714 
715 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
716 		return;
717 
718 	es->s_last_error_ino = cpu_to_le32(ino);
719 	es->s_last_error_block = cpu_to_le64(block);
720 	__save_error_info(sb, function, line);
721 
722 	if (ext4_error_ratelimit(sb)) {
723 		va_start(args, fmt);
724 		vaf.fmt = fmt;
725 		vaf.va = &args;
726 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
727 		       sb->s_id, function, line, grp);
728 		if (ino)
729 			printk(KERN_CONT "inode %lu: ", ino);
730 		if (block)
731 			printk(KERN_CONT "block %llu:",
732 			       (unsigned long long) block);
733 		printk(KERN_CONT "%pV\n", &vaf);
734 		va_end(args);
735 	}
736 
737 	if (test_opt(sb, ERRORS_CONT)) {
738 		ext4_commit_super(sb, 0);
739 		return;
740 	}
741 
742 	ext4_unlock_group(sb, grp);
743 	ext4_handle_error(sb);
744 	/*
745 	 * We only get here in the ERRORS_RO case; relocking the group
746 	 * may be dangerous, but nothing bad will happen since the
747 	 * filesystem will have already been marked read/only and the
748 	 * journal has been aborted.  We return 1 as a hint to callers
749 	 * who might what to use the return value from
750 	 * ext4_grp_locked_error() to distinguish between the
751 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
752 	 * aggressively from the ext4 function in question, with a
753 	 * more appropriate error code.
754 	 */
755 	ext4_lock_group(sb, grp);
756 	return;
757 }
758 
759 void ext4_update_dynamic_rev(struct super_block *sb)
760 {
761 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
762 
763 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
764 		return;
765 
766 	ext4_warning(sb,
767 		     "updating to rev %d because of new feature flag, "
768 		     "running e2fsck is recommended",
769 		     EXT4_DYNAMIC_REV);
770 
771 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
772 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
773 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
774 	/* leave es->s_feature_*compat flags alone */
775 	/* es->s_uuid will be set by e2fsck if empty */
776 
777 	/*
778 	 * The rest of the superblock fields should be zero, and if not it
779 	 * means they are likely already in use, so leave them alone.  We
780 	 * can leave it up to e2fsck to clean up any inconsistencies there.
781 	 */
782 }
783 
784 /*
785  * Open the external journal device
786  */
787 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
788 {
789 	struct block_device *bdev;
790 	char b[BDEVNAME_SIZE];
791 
792 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
793 	if (IS_ERR(bdev))
794 		goto fail;
795 	return bdev;
796 
797 fail:
798 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
799 			__bdevname(dev, b), PTR_ERR(bdev));
800 	return NULL;
801 }
802 
803 /*
804  * Release the journal device
805  */
806 static void ext4_blkdev_put(struct block_device *bdev)
807 {
808 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
809 }
810 
811 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
812 {
813 	struct block_device *bdev;
814 	bdev = sbi->journal_bdev;
815 	if (bdev) {
816 		ext4_blkdev_put(bdev);
817 		sbi->journal_bdev = NULL;
818 	}
819 }
820 
821 static inline struct inode *orphan_list_entry(struct list_head *l)
822 {
823 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
824 }
825 
826 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
827 {
828 	struct list_head *l;
829 
830 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
831 		 le32_to_cpu(sbi->s_es->s_last_orphan));
832 
833 	printk(KERN_ERR "sb_info orphan list:\n");
834 	list_for_each(l, &sbi->s_orphan) {
835 		struct inode *inode = orphan_list_entry(l);
836 		printk(KERN_ERR "  "
837 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
838 		       inode->i_sb->s_id, inode->i_ino, inode,
839 		       inode->i_mode, inode->i_nlink,
840 		       NEXT_ORPHAN(inode));
841 	}
842 }
843 
844 #ifdef CONFIG_QUOTA
845 static int ext4_quota_off(struct super_block *sb, int type);
846 
847 static inline void ext4_quota_off_umount(struct super_block *sb)
848 {
849 	int type;
850 
851 	/* Use our quota_off function to clear inode flags etc. */
852 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
853 		ext4_quota_off(sb, type);
854 }
855 #else
856 static inline void ext4_quota_off_umount(struct super_block *sb)
857 {
858 }
859 #endif
860 
861 static void ext4_put_super(struct super_block *sb)
862 {
863 	struct ext4_sb_info *sbi = EXT4_SB(sb);
864 	struct ext4_super_block *es = sbi->s_es;
865 	int aborted = 0;
866 	int i, err;
867 
868 	ext4_unregister_li_request(sb);
869 	ext4_quota_off_umount(sb);
870 
871 	flush_workqueue(sbi->rsv_conversion_wq);
872 	destroy_workqueue(sbi->rsv_conversion_wq);
873 
874 	if (sbi->s_journal) {
875 		aborted = is_journal_aborted(sbi->s_journal);
876 		err = jbd2_journal_destroy(sbi->s_journal);
877 		sbi->s_journal = NULL;
878 		if ((err < 0) && !aborted)
879 			ext4_abort(sb, "Couldn't clean up the journal");
880 	}
881 
882 	ext4_unregister_sysfs(sb);
883 	ext4_es_unregister_shrinker(sbi);
884 	del_timer_sync(&sbi->s_err_report);
885 	ext4_release_system_zone(sb);
886 	ext4_mb_release(sb);
887 	ext4_ext_release(sb);
888 
889 	if (!(sb->s_flags & MS_RDONLY) && !aborted) {
890 		ext4_clear_feature_journal_needs_recovery(sb);
891 		es->s_state = cpu_to_le16(sbi->s_mount_state);
892 	}
893 	if (!(sb->s_flags & MS_RDONLY))
894 		ext4_commit_super(sb, 1);
895 
896 	for (i = 0; i < sbi->s_gdb_count; i++)
897 		brelse(sbi->s_group_desc[i]);
898 	kvfree(sbi->s_group_desc);
899 	kvfree(sbi->s_flex_groups);
900 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
901 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
902 	percpu_counter_destroy(&sbi->s_dirs_counter);
903 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
904 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
905 #ifdef CONFIG_QUOTA
906 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
907 		kfree(sbi->s_qf_names[i]);
908 #endif
909 
910 	/* Debugging code just in case the in-memory inode orphan list
911 	 * isn't empty.  The on-disk one can be non-empty if we've
912 	 * detected an error and taken the fs readonly, but the
913 	 * in-memory list had better be clean by this point. */
914 	if (!list_empty(&sbi->s_orphan))
915 		dump_orphan_list(sb, sbi);
916 	J_ASSERT(list_empty(&sbi->s_orphan));
917 
918 	sync_blockdev(sb->s_bdev);
919 	invalidate_bdev(sb->s_bdev);
920 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
921 		/*
922 		 * Invalidate the journal device's buffers.  We don't want them
923 		 * floating about in memory - the physical journal device may
924 		 * hotswapped, and it breaks the `ro-after' testing code.
925 		 */
926 		sync_blockdev(sbi->journal_bdev);
927 		invalidate_bdev(sbi->journal_bdev);
928 		ext4_blkdev_remove(sbi);
929 	}
930 	if (sbi->s_mb_cache) {
931 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
932 		sbi->s_mb_cache = NULL;
933 	}
934 	if (sbi->s_mmp_tsk)
935 		kthread_stop(sbi->s_mmp_tsk);
936 	brelse(sbi->s_sbh);
937 	sb->s_fs_info = NULL;
938 	/*
939 	 * Now that we are completely done shutting down the
940 	 * superblock, we need to actually destroy the kobject.
941 	 */
942 	kobject_put(&sbi->s_kobj);
943 	wait_for_completion(&sbi->s_kobj_unregister);
944 	if (sbi->s_chksum_driver)
945 		crypto_free_shash(sbi->s_chksum_driver);
946 	kfree(sbi->s_blockgroup_lock);
947 	kfree(sbi);
948 }
949 
950 static struct kmem_cache *ext4_inode_cachep;
951 
952 /*
953  * Called inside transaction, so use GFP_NOFS
954  */
955 static struct inode *ext4_alloc_inode(struct super_block *sb)
956 {
957 	struct ext4_inode_info *ei;
958 
959 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
960 	if (!ei)
961 		return NULL;
962 
963 	ei->vfs_inode.i_version = 1;
964 	spin_lock_init(&ei->i_raw_lock);
965 	INIT_LIST_HEAD(&ei->i_prealloc_list);
966 	spin_lock_init(&ei->i_prealloc_lock);
967 	ext4_es_init_tree(&ei->i_es_tree);
968 	rwlock_init(&ei->i_es_lock);
969 	INIT_LIST_HEAD(&ei->i_es_list);
970 	ei->i_es_all_nr = 0;
971 	ei->i_es_shk_nr = 0;
972 	ei->i_es_shrink_lblk = 0;
973 	ei->i_reserved_data_blocks = 0;
974 	ei->i_reserved_meta_blocks = 0;
975 	ei->i_allocated_meta_blocks = 0;
976 	ei->i_da_metadata_calc_len = 0;
977 	ei->i_da_metadata_calc_last_lblock = 0;
978 	spin_lock_init(&(ei->i_block_reservation_lock));
979 #ifdef CONFIG_QUOTA
980 	ei->i_reserved_quota = 0;
981 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
982 #endif
983 	ei->jinode = NULL;
984 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
985 	spin_lock_init(&ei->i_completed_io_lock);
986 	ei->i_sync_tid = 0;
987 	ei->i_datasync_tid = 0;
988 	atomic_set(&ei->i_unwritten, 0);
989 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
990 	return &ei->vfs_inode;
991 }
992 
993 static int ext4_drop_inode(struct inode *inode)
994 {
995 	int drop = generic_drop_inode(inode);
996 
997 	trace_ext4_drop_inode(inode, drop);
998 	return drop;
999 }
1000 
1001 static void ext4_i_callback(struct rcu_head *head)
1002 {
1003 	struct inode *inode = container_of(head, struct inode, i_rcu);
1004 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1005 }
1006 
1007 static void ext4_destroy_inode(struct inode *inode)
1008 {
1009 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1010 		ext4_msg(inode->i_sb, KERN_ERR,
1011 			 "Inode %lu (%p): orphan list check failed!",
1012 			 inode->i_ino, EXT4_I(inode));
1013 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1014 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1015 				true);
1016 		dump_stack();
1017 	}
1018 	call_rcu(&inode->i_rcu, ext4_i_callback);
1019 }
1020 
1021 static void init_once(void *foo)
1022 {
1023 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1024 
1025 	INIT_LIST_HEAD(&ei->i_orphan);
1026 	init_rwsem(&ei->xattr_sem);
1027 	init_rwsem(&ei->i_data_sem);
1028 	init_rwsem(&ei->i_mmap_sem);
1029 	inode_init_once(&ei->vfs_inode);
1030 }
1031 
1032 static int __init init_inodecache(void)
1033 {
1034 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1035 					     sizeof(struct ext4_inode_info),
1036 					     0, (SLAB_RECLAIM_ACCOUNT|
1037 						SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1038 					     init_once);
1039 	if (ext4_inode_cachep == NULL)
1040 		return -ENOMEM;
1041 	return 0;
1042 }
1043 
1044 static void destroy_inodecache(void)
1045 {
1046 	/*
1047 	 * Make sure all delayed rcu free inodes are flushed before we
1048 	 * destroy cache.
1049 	 */
1050 	rcu_barrier();
1051 	kmem_cache_destroy(ext4_inode_cachep);
1052 }
1053 
1054 void ext4_clear_inode(struct inode *inode)
1055 {
1056 	invalidate_inode_buffers(inode);
1057 	clear_inode(inode);
1058 	dquot_drop(inode);
1059 	ext4_discard_preallocations(inode);
1060 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1061 	if (EXT4_I(inode)->jinode) {
1062 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1063 					       EXT4_I(inode)->jinode);
1064 		jbd2_free_inode(EXT4_I(inode)->jinode);
1065 		EXT4_I(inode)->jinode = NULL;
1066 	}
1067 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1068 	fscrypt_put_encryption_info(inode, NULL);
1069 #endif
1070 }
1071 
1072 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1073 					u64 ino, u32 generation)
1074 {
1075 	struct inode *inode;
1076 
1077 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1078 		return ERR_PTR(-ESTALE);
1079 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1080 		return ERR_PTR(-ESTALE);
1081 
1082 	/* iget isn't really right if the inode is currently unallocated!!
1083 	 *
1084 	 * ext4_read_inode will return a bad_inode if the inode had been
1085 	 * deleted, so we should be safe.
1086 	 *
1087 	 * Currently we don't know the generation for parent directory, so
1088 	 * a generation of 0 means "accept any"
1089 	 */
1090 	inode = ext4_iget_normal(sb, ino);
1091 	if (IS_ERR(inode))
1092 		return ERR_CAST(inode);
1093 	if (generation && inode->i_generation != generation) {
1094 		iput(inode);
1095 		return ERR_PTR(-ESTALE);
1096 	}
1097 
1098 	return inode;
1099 }
1100 
1101 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1102 					int fh_len, int fh_type)
1103 {
1104 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1105 				    ext4_nfs_get_inode);
1106 }
1107 
1108 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1109 					int fh_len, int fh_type)
1110 {
1111 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1112 				    ext4_nfs_get_inode);
1113 }
1114 
1115 /*
1116  * Try to release metadata pages (indirect blocks, directories) which are
1117  * mapped via the block device.  Since these pages could have journal heads
1118  * which would prevent try_to_free_buffers() from freeing them, we must use
1119  * jbd2 layer's try_to_free_buffers() function to release them.
1120  */
1121 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1122 				 gfp_t wait)
1123 {
1124 	journal_t *journal = EXT4_SB(sb)->s_journal;
1125 
1126 	WARN_ON(PageChecked(page));
1127 	if (!page_has_buffers(page))
1128 		return 0;
1129 	if (journal)
1130 		return jbd2_journal_try_to_free_buffers(journal, page,
1131 						wait & ~__GFP_DIRECT_RECLAIM);
1132 	return try_to_free_buffers(page);
1133 }
1134 
1135 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1136 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1137 {
1138 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1139 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1140 }
1141 
1142 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1143 							void *fs_data)
1144 {
1145 	handle_t *handle = fs_data;
1146 	int res, res2, retries = 0;
1147 
1148 	res = ext4_convert_inline_data(inode);
1149 	if (res)
1150 		return res;
1151 
1152 	/*
1153 	 * If a journal handle was specified, then the encryption context is
1154 	 * being set on a new inode via inheritance and is part of a larger
1155 	 * transaction to create the inode.  Otherwise the encryption context is
1156 	 * being set on an existing inode in its own transaction.  Only in the
1157 	 * latter case should the "retry on ENOSPC" logic be used.
1158 	 */
1159 
1160 	if (handle) {
1161 		res = ext4_xattr_set_handle(handle, inode,
1162 					    EXT4_XATTR_INDEX_ENCRYPTION,
1163 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1164 					    ctx, len, 0);
1165 		if (!res) {
1166 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1167 			ext4_clear_inode_state(inode,
1168 					EXT4_STATE_MAY_INLINE_DATA);
1169 			/*
1170 			 * Update inode->i_flags - e.g. S_DAX may get disabled
1171 			 */
1172 			ext4_set_inode_flags(inode);
1173 		}
1174 		return res;
1175 	}
1176 
1177 	res = dquot_initialize(inode);
1178 	if (res)
1179 		return res;
1180 retry:
1181 	handle = ext4_journal_start(inode, EXT4_HT_MISC,
1182 			ext4_jbd2_credits_xattr(inode));
1183 	if (IS_ERR(handle))
1184 		return PTR_ERR(handle);
1185 
1186 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1187 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1188 				    ctx, len, 0);
1189 	if (!res) {
1190 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1191 		/* Update inode->i_flags - e.g. S_DAX may get disabled */
1192 		ext4_set_inode_flags(inode);
1193 		res = ext4_mark_inode_dirty(handle, inode);
1194 		if (res)
1195 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1196 	}
1197 	res2 = ext4_journal_stop(handle);
1198 
1199 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1200 		goto retry;
1201 	if (!res)
1202 		res = res2;
1203 	return res;
1204 }
1205 
1206 static int ext4_dummy_context(struct inode *inode)
1207 {
1208 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1209 }
1210 
1211 static unsigned ext4_max_namelen(struct inode *inode)
1212 {
1213 	return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1214 		EXT4_NAME_LEN;
1215 }
1216 
1217 static const struct fscrypt_operations ext4_cryptops = {
1218 	.key_prefix		= "ext4:",
1219 	.get_context		= ext4_get_context,
1220 	.set_context		= ext4_set_context,
1221 	.dummy_context		= ext4_dummy_context,
1222 	.is_encrypted		= ext4_encrypted_inode,
1223 	.empty_dir		= ext4_empty_dir,
1224 	.max_namelen		= ext4_max_namelen,
1225 };
1226 #else
1227 static const struct fscrypt_operations ext4_cryptops = {
1228 	.is_encrypted		= ext4_encrypted_inode,
1229 };
1230 #endif
1231 
1232 #ifdef CONFIG_QUOTA
1233 static const char * const quotatypes[] = INITQFNAMES;
1234 #define QTYPE2NAME(t) (quotatypes[t])
1235 
1236 static int ext4_write_dquot(struct dquot *dquot);
1237 static int ext4_acquire_dquot(struct dquot *dquot);
1238 static int ext4_release_dquot(struct dquot *dquot);
1239 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1240 static int ext4_write_info(struct super_block *sb, int type);
1241 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1242 			 const struct path *path);
1243 static int ext4_quota_on_mount(struct super_block *sb, int type);
1244 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1245 			       size_t len, loff_t off);
1246 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1247 				const char *data, size_t len, loff_t off);
1248 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1249 			     unsigned int flags);
1250 static int ext4_enable_quotas(struct super_block *sb);
1251 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1252 
1253 static struct dquot **ext4_get_dquots(struct inode *inode)
1254 {
1255 	return EXT4_I(inode)->i_dquot;
1256 }
1257 
1258 static const struct dquot_operations ext4_quota_operations = {
1259 	.get_reserved_space = ext4_get_reserved_space,
1260 	.write_dquot	= ext4_write_dquot,
1261 	.acquire_dquot	= ext4_acquire_dquot,
1262 	.release_dquot	= ext4_release_dquot,
1263 	.mark_dirty	= ext4_mark_dquot_dirty,
1264 	.write_info	= ext4_write_info,
1265 	.alloc_dquot	= dquot_alloc,
1266 	.destroy_dquot	= dquot_destroy,
1267 	.get_projid	= ext4_get_projid,
1268 	.get_next_id	= ext4_get_next_id,
1269 };
1270 
1271 static const struct quotactl_ops ext4_qctl_operations = {
1272 	.quota_on	= ext4_quota_on,
1273 	.quota_off	= ext4_quota_off,
1274 	.quota_sync	= dquot_quota_sync,
1275 	.get_state	= dquot_get_state,
1276 	.set_info	= dquot_set_dqinfo,
1277 	.get_dqblk	= dquot_get_dqblk,
1278 	.set_dqblk	= dquot_set_dqblk,
1279 	.get_nextdqblk	= dquot_get_next_dqblk,
1280 };
1281 #endif
1282 
1283 static const struct super_operations ext4_sops = {
1284 	.alloc_inode	= ext4_alloc_inode,
1285 	.destroy_inode	= ext4_destroy_inode,
1286 	.write_inode	= ext4_write_inode,
1287 	.dirty_inode	= ext4_dirty_inode,
1288 	.drop_inode	= ext4_drop_inode,
1289 	.evict_inode	= ext4_evict_inode,
1290 	.put_super	= ext4_put_super,
1291 	.sync_fs	= ext4_sync_fs,
1292 	.freeze_fs	= ext4_freeze,
1293 	.unfreeze_fs	= ext4_unfreeze,
1294 	.statfs		= ext4_statfs,
1295 	.remount_fs	= ext4_remount,
1296 	.show_options	= ext4_show_options,
1297 #ifdef CONFIG_QUOTA
1298 	.quota_read	= ext4_quota_read,
1299 	.quota_write	= ext4_quota_write,
1300 	.get_dquots	= ext4_get_dquots,
1301 #endif
1302 	.bdev_try_to_free_page = bdev_try_to_free_page,
1303 };
1304 
1305 static const struct export_operations ext4_export_ops = {
1306 	.fh_to_dentry = ext4_fh_to_dentry,
1307 	.fh_to_parent = ext4_fh_to_parent,
1308 	.get_parent = ext4_get_parent,
1309 };
1310 
1311 enum {
1312 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1313 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1314 	Opt_nouid32, Opt_debug, Opt_removed,
1315 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1316 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1317 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1318 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1319 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1320 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1321 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1322 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1323 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1324 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1325 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1326 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1327 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1328 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1329 	Opt_dioread_nolock, Opt_dioread_lock,
1330 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1331 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1332 };
1333 
1334 static const match_table_t tokens = {
1335 	{Opt_bsd_df, "bsddf"},
1336 	{Opt_minix_df, "minixdf"},
1337 	{Opt_grpid, "grpid"},
1338 	{Opt_grpid, "bsdgroups"},
1339 	{Opt_nogrpid, "nogrpid"},
1340 	{Opt_nogrpid, "sysvgroups"},
1341 	{Opt_resgid, "resgid=%u"},
1342 	{Opt_resuid, "resuid=%u"},
1343 	{Opt_sb, "sb=%u"},
1344 	{Opt_err_cont, "errors=continue"},
1345 	{Opt_err_panic, "errors=panic"},
1346 	{Opt_err_ro, "errors=remount-ro"},
1347 	{Opt_nouid32, "nouid32"},
1348 	{Opt_debug, "debug"},
1349 	{Opt_removed, "oldalloc"},
1350 	{Opt_removed, "orlov"},
1351 	{Opt_user_xattr, "user_xattr"},
1352 	{Opt_nouser_xattr, "nouser_xattr"},
1353 	{Opt_acl, "acl"},
1354 	{Opt_noacl, "noacl"},
1355 	{Opt_noload, "norecovery"},
1356 	{Opt_noload, "noload"},
1357 	{Opt_removed, "nobh"},
1358 	{Opt_removed, "bh"},
1359 	{Opt_commit, "commit=%u"},
1360 	{Opt_min_batch_time, "min_batch_time=%u"},
1361 	{Opt_max_batch_time, "max_batch_time=%u"},
1362 	{Opt_journal_dev, "journal_dev=%u"},
1363 	{Opt_journal_path, "journal_path=%s"},
1364 	{Opt_journal_checksum, "journal_checksum"},
1365 	{Opt_nojournal_checksum, "nojournal_checksum"},
1366 	{Opt_journal_async_commit, "journal_async_commit"},
1367 	{Opt_abort, "abort"},
1368 	{Opt_data_journal, "data=journal"},
1369 	{Opt_data_ordered, "data=ordered"},
1370 	{Opt_data_writeback, "data=writeback"},
1371 	{Opt_data_err_abort, "data_err=abort"},
1372 	{Opt_data_err_ignore, "data_err=ignore"},
1373 	{Opt_offusrjquota, "usrjquota="},
1374 	{Opt_usrjquota, "usrjquota=%s"},
1375 	{Opt_offgrpjquota, "grpjquota="},
1376 	{Opt_grpjquota, "grpjquota=%s"},
1377 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1378 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1379 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1380 	{Opt_grpquota, "grpquota"},
1381 	{Opt_noquota, "noquota"},
1382 	{Opt_quota, "quota"},
1383 	{Opt_usrquota, "usrquota"},
1384 	{Opt_prjquota, "prjquota"},
1385 	{Opt_barrier, "barrier=%u"},
1386 	{Opt_barrier, "barrier"},
1387 	{Opt_nobarrier, "nobarrier"},
1388 	{Opt_i_version, "i_version"},
1389 	{Opt_dax, "dax"},
1390 	{Opt_stripe, "stripe=%u"},
1391 	{Opt_delalloc, "delalloc"},
1392 	{Opt_lazytime, "lazytime"},
1393 	{Opt_nolazytime, "nolazytime"},
1394 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1395 	{Opt_nodelalloc, "nodelalloc"},
1396 	{Opt_removed, "mblk_io_submit"},
1397 	{Opt_removed, "nomblk_io_submit"},
1398 	{Opt_block_validity, "block_validity"},
1399 	{Opt_noblock_validity, "noblock_validity"},
1400 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1401 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1402 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1403 	{Opt_auto_da_alloc, "auto_da_alloc"},
1404 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1405 	{Opt_dioread_nolock, "dioread_nolock"},
1406 	{Opt_dioread_lock, "dioread_lock"},
1407 	{Opt_discard, "discard"},
1408 	{Opt_nodiscard, "nodiscard"},
1409 	{Opt_init_itable, "init_itable=%u"},
1410 	{Opt_init_itable, "init_itable"},
1411 	{Opt_noinit_itable, "noinit_itable"},
1412 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1413 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1414 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1415 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1416 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1417 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1418 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1419 	{Opt_err, NULL},
1420 };
1421 
1422 static ext4_fsblk_t get_sb_block(void **data)
1423 {
1424 	ext4_fsblk_t	sb_block;
1425 	char		*options = (char *) *data;
1426 
1427 	if (!options || strncmp(options, "sb=", 3) != 0)
1428 		return 1;	/* Default location */
1429 
1430 	options += 3;
1431 	/* TODO: use simple_strtoll with >32bit ext4 */
1432 	sb_block = simple_strtoul(options, &options, 0);
1433 	if (*options && *options != ',') {
1434 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1435 		       (char *) *data);
1436 		return 1;
1437 	}
1438 	if (*options == ',')
1439 		options++;
1440 	*data = (void *) options;
1441 
1442 	return sb_block;
1443 }
1444 
1445 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1446 static const char deprecated_msg[] =
1447 	"Mount option \"%s\" will be removed by %s\n"
1448 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1449 
1450 #ifdef CONFIG_QUOTA
1451 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1452 {
1453 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1454 	char *qname;
1455 	int ret = -1;
1456 
1457 	if (sb_any_quota_loaded(sb) &&
1458 		!sbi->s_qf_names[qtype]) {
1459 		ext4_msg(sb, KERN_ERR,
1460 			"Cannot change journaled "
1461 			"quota options when quota turned on");
1462 		return -1;
1463 	}
1464 	if (ext4_has_feature_quota(sb)) {
1465 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1466 			 "ignored when QUOTA feature is enabled");
1467 		return 1;
1468 	}
1469 	qname = match_strdup(args);
1470 	if (!qname) {
1471 		ext4_msg(sb, KERN_ERR,
1472 			"Not enough memory for storing quotafile name");
1473 		return -1;
1474 	}
1475 	if (sbi->s_qf_names[qtype]) {
1476 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1477 			ret = 1;
1478 		else
1479 			ext4_msg(sb, KERN_ERR,
1480 				 "%s quota file already specified",
1481 				 QTYPE2NAME(qtype));
1482 		goto errout;
1483 	}
1484 	if (strchr(qname, '/')) {
1485 		ext4_msg(sb, KERN_ERR,
1486 			"quotafile must be on filesystem root");
1487 		goto errout;
1488 	}
1489 	sbi->s_qf_names[qtype] = qname;
1490 	set_opt(sb, QUOTA);
1491 	return 1;
1492 errout:
1493 	kfree(qname);
1494 	return ret;
1495 }
1496 
1497 static int clear_qf_name(struct super_block *sb, int qtype)
1498 {
1499 
1500 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1501 
1502 	if (sb_any_quota_loaded(sb) &&
1503 		sbi->s_qf_names[qtype]) {
1504 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1505 			" when quota turned on");
1506 		return -1;
1507 	}
1508 	kfree(sbi->s_qf_names[qtype]);
1509 	sbi->s_qf_names[qtype] = NULL;
1510 	return 1;
1511 }
1512 #endif
1513 
1514 #define MOPT_SET	0x0001
1515 #define MOPT_CLEAR	0x0002
1516 #define MOPT_NOSUPPORT	0x0004
1517 #define MOPT_EXPLICIT	0x0008
1518 #define MOPT_CLEAR_ERR	0x0010
1519 #define MOPT_GTE0	0x0020
1520 #ifdef CONFIG_QUOTA
1521 #define MOPT_Q		0
1522 #define MOPT_QFMT	0x0040
1523 #else
1524 #define MOPT_Q		MOPT_NOSUPPORT
1525 #define MOPT_QFMT	MOPT_NOSUPPORT
1526 #endif
1527 #define MOPT_DATAJ	0x0080
1528 #define MOPT_NO_EXT2	0x0100
1529 #define MOPT_NO_EXT3	0x0200
1530 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1531 #define MOPT_STRING	0x0400
1532 
1533 static const struct mount_opts {
1534 	int	token;
1535 	int	mount_opt;
1536 	int	flags;
1537 } ext4_mount_opts[] = {
1538 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1539 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1540 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1541 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1542 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1543 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1544 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1545 	 MOPT_EXT4_ONLY | MOPT_SET},
1546 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1547 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1548 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1549 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1550 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1551 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1552 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1553 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1554 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1555 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1556 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1557 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1558 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1559 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1560 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1561 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1562 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1563 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1564 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1565 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1566 	 MOPT_NO_EXT2},
1567 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1568 	 MOPT_NO_EXT2},
1569 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1570 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1571 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1572 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1573 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1574 	{Opt_commit, 0, MOPT_GTE0},
1575 	{Opt_max_batch_time, 0, MOPT_GTE0},
1576 	{Opt_min_batch_time, 0, MOPT_GTE0},
1577 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1578 	{Opt_init_itable, 0, MOPT_GTE0},
1579 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1580 	{Opt_stripe, 0, MOPT_GTE0},
1581 	{Opt_resuid, 0, MOPT_GTE0},
1582 	{Opt_resgid, 0, MOPT_GTE0},
1583 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1584 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1585 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1586 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1587 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1588 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1589 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1590 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1591 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1592 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1593 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1594 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1595 #else
1596 	{Opt_acl, 0, MOPT_NOSUPPORT},
1597 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1598 #endif
1599 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1600 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1601 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1602 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1603 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1604 							MOPT_SET | MOPT_Q},
1605 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1606 							MOPT_SET | MOPT_Q},
1607 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1608 							MOPT_SET | MOPT_Q},
1609 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1610 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1611 							MOPT_CLEAR | MOPT_Q},
1612 	{Opt_usrjquota, 0, MOPT_Q},
1613 	{Opt_grpjquota, 0, MOPT_Q},
1614 	{Opt_offusrjquota, 0, MOPT_Q},
1615 	{Opt_offgrpjquota, 0, MOPT_Q},
1616 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1617 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1618 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1619 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1620 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1621 	{Opt_err, 0, 0}
1622 };
1623 
1624 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1625 			    substring_t *args, unsigned long *journal_devnum,
1626 			    unsigned int *journal_ioprio, int is_remount)
1627 {
1628 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1629 	const struct mount_opts *m;
1630 	kuid_t uid;
1631 	kgid_t gid;
1632 	int arg = 0;
1633 
1634 #ifdef CONFIG_QUOTA
1635 	if (token == Opt_usrjquota)
1636 		return set_qf_name(sb, USRQUOTA, &args[0]);
1637 	else if (token == Opt_grpjquota)
1638 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1639 	else if (token == Opt_offusrjquota)
1640 		return clear_qf_name(sb, USRQUOTA);
1641 	else if (token == Opt_offgrpjquota)
1642 		return clear_qf_name(sb, GRPQUOTA);
1643 #endif
1644 	switch (token) {
1645 	case Opt_noacl:
1646 	case Opt_nouser_xattr:
1647 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1648 		break;
1649 	case Opt_sb:
1650 		return 1;	/* handled by get_sb_block() */
1651 	case Opt_removed:
1652 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1653 		return 1;
1654 	case Opt_abort:
1655 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1656 		return 1;
1657 	case Opt_i_version:
1658 		sb->s_flags |= MS_I_VERSION;
1659 		return 1;
1660 	case Opt_lazytime:
1661 		sb->s_flags |= MS_LAZYTIME;
1662 		return 1;
1663 	case Opt_nolazytime:
1664 		sb->s_flags &= ~MS_LAZYTIME;
1665 		return 1;
1666 	}
1667 
1668 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1669 		if (token == m->token)
1670 			break;
1671 
1672 	if (m->token == Opt_err) {
1673 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1674 			 "or missing value", opt);
1675 		return -1;
1676 	}
1677 
1678 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1679 		ext4_msg(sb, KERN_ERR,
1680 			 "Mount option \"%s\" incompatible with ext2", opt);
1681 		return -1;
1682 	}
1683 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1684 		ext4_msg(sb, KERN_ERR,
1685 			 "Mount option \"%s\" incompatible with ext3", opt);
1686 		return -1;
1687 	}
1688 
1689 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1690 		return -1;
1691 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1692 		return -1;
1693 	if (m->flags & MOPT_EXPLICIT) {
1694 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1695 			set_opt2(sb, EXPLICIT_DELALLOC);
1696 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1697 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1698 		} else
1699 			return -1;
1700 	}
1701 	if (m->flags & MOPT_CLEAR_ERR)
1702 		clear_opt(sb, ERRORS_MASK);
1703 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1704 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1705 			 "options when quota turned on");
1706 		return -1;
1707 	}
1708 
1709 	if (m->flags & MOPT_NOSUPPORT) {
1710 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1711 	} else if (token == Opt_commit) {
1712 		if (arg == 0)
1713 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1714 		sbi->s_commit_interval = HZ * arg;
1715 	} else if (token == Opt_debug_want_extra_isize) {
1716 		sbi->s_want_extra_isize = arg;
1717 	} else if (token == Opt_max_batch_time) {
1718 		sbi->s_max_batch_time = arg;
1719 	} else if (token == Opt_min_batch_time) {
1720 		sbi->s_min_batch_time = arg;
1721 	} else if (token == Opt_inode_readahead_blks) {
1722 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1723 			ext4_msg(sb, KERN_ERR,
1724 				 "EXT4-fs: inode_readahead_blks must be "
1725 				 "0 or a power of 2 smaller than 2^31");
1726 			return -1;
1727 		}
1728 		sbi->s_inode_readahead_blks = arg;
1729 	} else if (token == Opt_init_itable) {
1730 		set_opt(sb, INIT_INODE_TABLE);
1731 		if (!args->from)
1732 			arg = EXT4_DEF_LI_WAIT_MULT;
1733 		sbi->s_li_wait_mult = arg;
1734 	} else if (token == Opt_max_dir_size_kb) {
1735 		sbi->s_max_dir_size_kb = arg;
1736 	} else if (token == Opt_stripe) {
1737 		sbi->s_stripe = arg;
1738 	} else if (token == Opt_resuid) {
1739 		uid = make_kuid(current_user_ns(), arg);
1740 		if (!uid_valid(uid)) {
1741 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1742 			return -1;
1743 		}
1744 		sbi->s_resuid = uid;
1745 	} else if (token == Opt_resgid) {
1746 		gid = make_kgid(current_user_ns(), arg);
1747 		if (!gid_valid(gid)) {
1748 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1749 			return -1;
1750 		}
1751 		sbi->s_resgid = gid;
1752 	} else if (token == Opt_journal_dev) {
1753 		if (is_remount) {
1754 			ext4_msg(sb, KERN_ERR,
1755 				 "Cannot specify journal on remount");
1756 			return -1;
1757 		}
1758 		*journal_devnum = arg;
1759 	} else if (token == Opt_journal_path) {
1760 		char *journal_path;
1761 		struct inode *journal_inode;
1762 		struct path path;
1763 		int error;
1764 
1765 		if (is_remount) {
1766 			ext4_msg(sb, KERN_ERR,
1767 				 "Cannot specify journal on remount");
1768 			return -1;
1769 		}
1770 		journal_path = match_strdup(&args[0]);
1771 		if (!journal_path) {
1772 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1773 				"journal device string");
1774 			return -1;
1775 		}
1776 
1777 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1778 		if (error) {
1779 			ext4_msg(sb, KERN_ERR, "error: could not find "
1780 				"journal device path: error %d", error);
1781 			kfree(journal_path);
1782 			return -1;
1783 		}
1784 
1785 		journal_inode = d_inode(path.dentry);
1786 		if (!S_ISBLK(journal_inode->i_mode)) {
1787 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1788 				"is not a block device", journal_path);
1789 			path_put(&path);
1790 			kfree(journal_path);
1791 			return -1;
1792 		}
1793 
1794 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1795 		path_put(&path);
1796 		kfree(journal_path);
1797 	} else if (token == Opt_journal_ioprio) {
1798 		if (arg > 7) {
1799 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1800 				 " (must be 0-7)");
1801 			return -1;
1802 		}
1803 		*journal_ioprio =
1804 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1805 	} else if (token == Opt_test_dummy_encryption) {
1806 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1807 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1808 		ext4_msg(sb, KERN_WARNING,
1809 			 "Test dummy encryption mode enabled");
1810 #else
1811 		ext4_msg(sb, KERN_WARNING,
1812 			 "Test dummy encryption mount option ignored");
1813 #endif
1814 	} else if (m->flags & MOPT_DATAJ) {
1815 		if (is_remount) {
1816 			if (!sbi->s_journal)
1817 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1818 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1819 				ext4_msg(sb, KERN_ERR,
1820 					 "Cannot change data mode on remount");
1821 				return -1;
1822 			}
1823 		} else {
1824 			clear_opt(sb, DATA_FLAGS);
1825 			sbi->s_mount_opt |= m->mount_opt;
1826 		}
1827 #ifdef CONFIG_QUOTA
1828 	} else if (m->flags & MOPT_QFMT) {
1829 		if (sb_any_quota_loaded(sb) &&
1830 		    sbi->s_jquota_fmt != m->mount_opt) {
1831 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1832 				 "quota options when quota turned on");
1833 			return -1;
1834 		}
1835 		if (ext4_has_feature_quota(sb)) {
1836 			ext4_msg(sb, KERN_INFO,
1837 				 "Quota format mount options ignored "
1838 				 "when QUOTA feature is enabled");
1839 			return 1;
1840 		}
1841 		sbi->s_jquota_fmt = m->mount_opt;
1842 #endif
1843 	} else if (token == Opt_dax) {
1844 #ifdef CONFIG_FS_DAX
1845 		ext4_msg(sb, KERN_WARNING,
1846 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1847 			sbi->s_mount_opt |= m->mount_opt;
1848 #else
1849 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1850 		return -1;
1851 #endif
1852 	} else if (token == Opt_data_err_abort) {
1853 		sbi->s_mount_opt |= m->mount_opt;
1854 	} else if (token == Opt_data_err_ignore) {
1855 		sbi->s_mount_opt &= ~m->mount_opt;
1856 	} else {
1857 		if (!args->from)
1858 			arg = 1;
1859 		if (m->flags & MOPT_CLEAR)
1860 			arg = !arg;
1861 		else if (unlikely(!(m->flags & MOPT_SET))) {
1862 			ext4_msg(sb, KERN_WARNING,
1863 				 "buggy handling of option %s", opt);
1864 			WARN_ON(1);
1865 			return -1;
1866 		}
1867 		if (arg != 0)
1868 			sbi->s_mount_opt |= m->mount_opt;
1869 		else
1870 			sbi->s_mount_opt &= ~m->mount_opt;
1871 	}
1872 	return 1;
1873 }
1874 
1875 static int parse_options(char *options, struct super_block *sb,
1876 			 unsigned long *journal_devnum,
1877 			 unsigned int *journal_ioprio,
1878 			 int is_remount)
1879 {
1880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1881 	char *p;
1882 	substring_t args[MAX_OPT_ARGS];
1883 	int token;
1884 
1885 	if (!options)
1886 		return 1;
1887 
1888 	while ((p = strsep(&options, ",")) != NULL) {
1889 		if (!*p)
1890 			continue;
1891 		/*
1892 		 * Initialize args struct so we know whether arg was
1893 		 * found; some options take optional arguments.
1894 		 */
1895 		args[0].to = args[0].from = NULL;
1896 		token = match_token(p, tokens, args);
1897 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1898 				     journal_ioprio, is_remount) < 0)
1899 			return 0;
1900 	}
1901 #ifdef CONFIG_QUOTA
1902 	/*
1903 	 * We do the test below only for project quotas. 'usrquota' and
1904 	 * 'grpquota' mount options are allowed even without quota feature
1905 	 * to support legacy quotas in quota files.
1906 	 */
1907 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1908 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1909 			 "Cannot enable project quota enforcement.");
1910 		return 0;
1911 	}
1912 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1913 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1914 			clear_opt(sb, USRQUOTA);
1915 
1916 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1917 			clear_opt(sb, GRPQUOTA);
1918 
1919 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1920 			ext4_msg(sb, KERN_ERR, "old and new quota "
1921 					"format mixing");
1922 			return 0;
1923 		}
1924 
1925 		if (!sbi->s_jquota_fmt) {
1926 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1927 					"not specified");
1928 			return 0;
1929 		}
1930 	}
1931 #endif
1932 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1933 		int blocksize =
1934 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1935 
1936 		if (blocksize < PAGE_SIZE) {
1937 			ext4_msg(sb, KERN_ERR, "can't mount with "
1938 				 "dioread_nolock if block size != PAGE_SIZE");
1939 			return 0;
1940 		}
1941 	}
1942 	return 1;
1943 }
1944 
1945 static inline void ext4_show_quota_options(struct seq_file *seq,
1946 					   struct super_block *sb)
1947 {
1948 #if defined(CONFIG_QUOTA)
1949 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1950 
1951 	if (sbi->s_jquota_fmt) {
1952 		char *fmtname = "";
1953 
1954 		switch (sbi->s_jquota_fmt) {
1955 		case QFMT_VFS_OLD:
1956 			fmtname = "vfsold";
1957 			break;
1958 		case QFMT_VFS_V0:
1959 			fmtname = "vfsv0";
1960 			break;
1961 		case QFMT_VFS_V1:
1962 			fmtname = "vfsv1";
1963 			break;
1964 		}
1965 		seq_printf(seq, ",jqfmt=%s", fmtname);
1966 	}
1967 
1968 	if (sbi->s_qf_names[USRQUOTA])
1969 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1970 
1971 	if (sbi->s_qf_names[GRPQUOTA])
1972 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1973 #endif
1974 }
1975 
1976 static const char *token2str(int token)
1977 {
1978 	const struct match_token *t;
1979 
1980 	for (t = tokens; t->token != Opt_err; t++)
1981 		if (t->token == token && !strchr(t->pattern, '='))
1982 			break;
1983 	return t->pattern;
1984 }
1985 
1986 /*
1987  * Show an option if
1988  *  - it's set to a non-default value OR
1989  *  - if the per-sb default is different from the global default
1990  */
1991 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1992 			      int nodefs)
1993 {
1994 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1995 	struct ext4_super_block *es = sbi->s_es;
1996 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1997 	const struct mount_opts *m;
1998 	char sep = nodefs ? '\n' : ',';
1999 
2000 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2001 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2002 
2003 	if (sbi->s_sb_block != 1)
2004 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2005 
2006 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2007 		int want_set = m->flags & MOPT_SET;
2008 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2009 		    (m->flags & MOPT_CLEAR_ERR))
2010 			continue;
2011 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2012 			continue; /* skip if same as the default */
2013 		if ((want_set &&
2014 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2015 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2016 			continue; /* select Opt_noFoo vs Opt_Foo */
2017 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2018 	}
2019 
2020 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2021 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2022 		SEQ_OPTS_PRINT("resuid=%u",
2023 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2024 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2025 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2026 		SEQ_OPTS_PRINT("resgid=%u",
2027 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2028 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2029 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2030 		SEQ_OPTS_PUTS("errors=remount-ro");
2031 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2032 		SEQ_OPTS_PUTS("errors=continue");
2033 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2034 		SEQ_OPTS_PUTS("errors=panic");
2035 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2036 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2037 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2038 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2039 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2040 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2041 	if (sb->s_flags & MS_I_VERSION)
2042 		SEQ_OPTS_PUTS("i_version");
2043 	if (nodefs || sbi->s_stripe)
2044 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2045 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2046 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2047 			SEQ_OPTS_PUTS("data=journal");
2048 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2049 			SEQ_OPTS_PUTS("data=ordered");
2050 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2051 			SEQ_OPTS_PUTS("data=writeback");
2052 	}
2053 	if (nodefs ||
2054 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2055 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2056 			       sbi->s_inode_readahead_blks);
2057 
2058 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2059 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2060 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2061 	if (nodefs || sbi->s_max_dir_size_kb)
2062 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2063 	if (test_opt(sb, DATA_ERR_ABORT))
2064 		SEQ_OPTS_PUTS("data_err=abort");
2065 
2066 	ext4_show_quota_options(seq, sb);
2067 	return 0;
2068 }
2069 
2070 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2071 {
2072 	return _ext4_show_options(seq, root->d_sb, 0);
2073 }
2074 
2075 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2076 {
2077 	struct super_block *sb = seq->private;
2078 	int rc;
2079 
2080 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2081 	rc = _ext4_show_options(seq, sb, 1);
2082 	seq_puts(seq, "\n");
2083 	return rc;
2084 }
2085 
2086 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2087 			    int read_only)
2088 {
2089 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2090 	int res = 0;
2091 
2092 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2093 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2094 			 "forcing read-only mode");
2095 		res = MS_RDONLY;
2096 	}
2097 	if (read_only)
2098 		goto done;
2099 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2100 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2101 			 "running e2fsck is recommended");
2102 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2103 		ext4_msg(sb, KERN_WARNING,
2104 			 "warning: mounting fs with errors, "
2105 			 "running e2fsck is recommended");
2106 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2107 		 le16_to_cpu(es->s_mnt_count) >=
2108 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2109 		ext4_msg(sb, KERN_WARNING,
2110 			 "warning: maximal mount count reached, "
2111 			 "running e2fsck is recommended");
2112 	else if (le32_to_cpu(es->s_checkinterval) &&
2113 		(le32_to_cpu(es->s_lastcheck) +
2114 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2115 		ext4_msg(sb, KERN_WARNING,
2116 			 "warning: checktime reached, "
2117 			 "running e2fsck is recommended");
2118 	if (!sbi->s_journal)
2119 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2120 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2121 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2122 	le16_add_cpu(&es->s_mnt_count, 1);
2123 	es->s_mtime = cpu_to_le32(get_seconds());
2124 	ext4_update_dynamic_rev(sb);
2125 	if (sbi->s_journal)
2126 		ext4_set_feature_journal_needs_recovery(sb);
2127 
2128 	ext4_commit_super(sb, 1);
2129 done:
2130 	if (test_opt(sb, DEBUG))
2131 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2132 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2133 			sb->s_blocksize,
2134 			sbi->s_groups_count,
2135 			EXT4_BLOCKS_PER_GROUP(sb),
2136 			EXT4_INODES_PER_GROUP(sb),
2137 			sbi->s_mount_opt, sbi->s_mount_opt2);
2138 
2139 	cleancache_init_fs(sb);
2140 	return res;
2141 }
2142 
2143 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2144 {
2145 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2146 	struct flex_groups *new_groups;
2147 	int size;
2148 
2149 	if (!sbi->s_log_groups_per_flex)
2150 		return 0;
2151 
2152 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2153 	if (size <= sbi->s_flex_groups_allocated)
2154 		return 0;
2155 
2156 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2157 	new_groups = kvzalloc(size, GFP_KERNEL);
2158 	if (!new_groups) {
2159 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2160 			 size / (int) sizeof(struct flex_groups));
2161 		return -ENOMEM;
2162 	}
2163 
2164 	if (sbi->s_flex_groups) {
2165 		memcpy(new_groups, sbi->s_flex_groups,
2166 		       (sbi->s_flex_groups_allocated *
2167 			sizeof(struct flex_groups)));
2168 		kvfree(sbi->s_flex_groups);
2169 	}
2170 	sbi->s_flex_groups = new_groups;
2171 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2172 	return 0;
2173 }
2174 
2175 static int ext4_fill_flex_info(struct super_block *sb)
2176 {
2177 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2178 	struct ext4_group_desc *gdp = NULL;
2179 	ext4_group_t flex_group;
2180 	int i, err;
2181 
2182 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2183 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2184 		sbi->s_log_groups_per_flex = 0;
2185 		return 1;
2186 	}
2187 
2188 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2189 	if (err)
2190 		goto failed;
2191 
2192 	for (i = 0; i < sbi->s_groups_count; i++) {
2193 		gdp = ext4_get_group_desc(sb, i, NULL);
2194 
2195 		flex_group = ext4_flex_group(sbi, i);
2196 		atomic_add(ext4_free_inodes_count(sb, gdp),
2197 			   &sbi->s_flex_groups[flex_group].free_inodes);
2198 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2199 			     &sbi->s_flex_groups[flex_group].free_clusters);
2200 		atomic_add(ext4_used_dirs_count(sb, gdp),
2201 			   &sbi->s_flex_groups[flex_group].used_dirs);
2202 	}
2203 
2204 	return 1;
2205 failed:
2206 	return 0;
2207 }
2208 
2209 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2210 				   struct ext4_group_desc *gdp)
2211 {
2212 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2213 	__u16 crc = 0;
2214 	__le32 le_group = cpu_to_le32(block_group);
2215 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2216 
2217 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2218 		/* Use new metadata_csum algorithm */
2219 		__u32 csum32;
2220 		__u16 dummy_csum = 0;
2221 
2222 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2223 				     sizeof(le_group));
2224 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2225 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2226 				     sizeof(dummy_csum));
2227 		offset += sizeof(dummy_csum);
2228 		if (offset < sbi->s_desc_size)
2229 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2230 					     sbi->s_desc_size - offset);
2231 
2232 		crc = csum32 & 0xFFFF;
2233 		goto out;
2234 	}
2235 
2236 	/* old crc16 code */
2237 	if (!ext4_has_feature_gdt_csum(sb))
2238 		return 0;
2239 
2240 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2241 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2242 	crc = crc16(crc, (__u8 *)gdp, offset);
2243 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2244 	/* for checksum of struct ext4_group_desc do the rest...*/
2245 	if (ext4_has_feature_64bit(sb) &&
2246 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2247 		crc = crc16(crc, (__u8 *)gdp + offset,
2248 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2249 				offset);
2250 
2251 out:
2252 	return cpu_to_le16(crc);
2253 }
2254 
2255 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2256 				struct ext4_group_desc *gdp)
2257 {
2258 	if (ext4_has_group_desc_csum(sb) &&
2259 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2260 		return 0;
2261 
2262 	return 1;
2263 }
2264 
2265 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2266 			      struct ext4_group_desc *gdp)
2267 {
2268 	if (!ext4_has_group_desc_csum(sb))
2269 		return;
2270 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2271 }
2272 
2273 /* Called at mount-time, super-block is locked */
2274 static int ext4_check_descriptors(struct super_block *sb,
2275 				  ext4_fsblk_t sb_block,
2276 				  ext4_group_t *first_not_zeroed)
2277 {
2278 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2279 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2280 	ext4_fsblk_t last_block;
2281 	ext4_fsblk_t block_bitmap;
2282 	ext4_fsblk_t inode_bitmap;
2283 	ext4_fsblk_t inode_table;
2284 	int flexbg_flag = 0;
2285 	ext4_group_t i, grp = sbi->s_groups_count;
2286 
2287 	if (ext4_has_feature_flex_bg(sb))
2288 		flexbg_flag = 1;
2289 
2290 	ext4_debug("Checking group descriptors");
2291 
2292 	for (i = 0; i < sbi->s_groups_count; i++) {
2293 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2294 
2295 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2296 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2297 		else
2298 			last_block = first_block +
2299 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2300 
2301 		if ((grp == sbi->s_groups_count) &&
2302 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2303 			grp = i;
2304 
2305 		block_bitmap = ext4_block_bitmap(sb, gdp);
2306 		if (block_bitmap == sb_block) {
2307 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2308 				 "Block bitmap for group %u overlaps "
2309 				 "superblock", i);
2310 		}
2311 		if (block_bitmap < first_block || block_bitmap > last_block) {
2312 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2313 			       "Block bitmap for group %u not in group "
2314 			       "(block %llu)!", i, block_bitmap);
2315 			return 0;
2316 		}
2317 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2318 		if (inode_bitmap == sb_block) {
2319 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2320 				 "Inode bitmap for group %u overlaps "
2321 				 "superblock", i);
2322 		}
2323 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2324 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2325 			       "Inode bitmap for group %u not in group "
2326 			       "(block %llu)!", i, inode_bitmap);
2327 			return 0;
2328 		}
2329 		inode_table = ext4_inode_table(sb, gdp);
2330 		if (inode_table == sb_block) {
2331 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2332 				 "Inode table for group %u overlaps "
2333 				 "superblock", i);
2334 		}
2335 		if (inode_table < first_block ||
2336 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2337 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2338 			       "Inode table for group %u not in group "
2339 			       "(block %llu)!", i, inode_table);
2340 			return 0;
2341 		}
2342 		ext4_lock_group(sb, i);
2343 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2344 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2345 				 "Checksum for group %u failed (%u!=%u)",
2346 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2347 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2348 			if (!(sb->s_flags & MS_RDONLY)) {
2349 				ext4_unlock_group(sb, i);
2350 				return 0;
2351 			}
2352 		}
2353 		ext4_unlock_group(sb, i);
2354 		if (!flexbg_flag)
2355 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2356 	}
2357 	if (NULL != first_not_zeroed)
2358 		*first_not_zeroed = grp;
2359 	return 1;
2360 }
2361 
2362 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2363  * the superblock) which were deleted from all directories, but held open by
2364  * a process at the time of a crash.  We walk the list and try to delete these
2365  * inodes at recovery time (only with a read-write filesystem).
2366  *
2367  * In order to keep the orphan inode chain consistent during traversal (in
2368  * case of crash during recovery), we link each inode into the superblock
2369  * orphan list_head and handle it the same way as an inode deletion during
2370  * normal operation (which journals the operations for us).
2371  *
2372  * We only do an iget() and an iput() on each inode, which is very safe if we
2373  * accidentally point at an in-use or already deleted inode.  The worst that
2374  * can happen in this case is that we get a "bit already cleared" message from
2375  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2376  * e2fsck was run on this filesystem, and it must have already done the orphan
2377  * inode cleanup for us, so we can safely abort without any further action.
2378  */
2379 static void ext4_orphan_cleanup(struct super_block *sb,
2380 				struct ext4_super_block *es)
2381 {
2382 	unsigned int s_flags = sb->s_flags;
2383 	int ret, nr_orphans = 0, nr_truncates = 0;
2384 #ifdef CONFIG_QUOTA
2385 	int i;
2386 #endif
2387 	if (!es->s_last_orphan) {
2388 		jbd_debug(4, "no orphan inodes to clean up\n");
2389 		return;
2390 	}
2391 
2392 	if (bdev_read_only(sb->s_bdev)) {
2393 		ext4_msg(sb, KERN_ERR, "write access "
2394 			"unavailable, skipping orphan cleanup");
2395 		return;
2396 	}
2397 
2398 	/* Check if feature set would not allow a r/w mount */
2399 	if (!ext4_feature_set_ok(sb, 0)) {
2400 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2401 			 "unknown ROCOMPAT features");
2402 		return;
2403 	}
2404 
2405 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2406 		/* don't clear list on RO mount w/ errors */
2407 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2408 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2409 				  "clearing orphan list.\n");
2410 			es->s_last_orphan = 0;
2411 		}
2412 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2413 		return;
2414 	}
2415 
2416 	if (s_flags & MS_RDONLY) {
2417 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2418 		sb->s_flags &= ~MS_RDONLY;
2419 	}
2420 #ifdef CONFIG_QUOTA
2421 	/* Needed for iput() to work correctly and not trash data */
2422 	sb->s_flags |= MS_ACTIVE;
2423 	/* Turn on quotas so that they are updated correctly */
2424 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2425 		if (EXT4_SB(sb)->s_qf_names[i]) {
2426 			int ret = ext4_quota_on_mount(sb, i);
2427 			if (ret < 0)
2428 				ext4_msg(sb, KERN_ERR,
2429 					"Cannot turn on journaled "
2430 					"quota: error %d", ret);
2431 		}
2432 	}
2433 #endif
2434 
2435 	while (es->s_last_orphan) {
2436 		struct inode *inode;
2437 
2438 		/*
2439 		 * We may have encountered an error during cleanup; if
2440 		 * so, skip the rest.
2441 		 */
2442 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2443 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2444 			es->s_last_orphan = 0;
2445 			break;
2446 		}
2447 
2448 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2449 		if (IS_ERR(inode)) {
2450 			es->s_last_orphan = 0;
2451 			break;
2452 		}
2453 
2454 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2455 		dquot_initialize(inode);
2456 		if (inode->i_nlink) {
2457 			if (test_opt(sb, DEBUG))
2458 				ext4_msg(sb, KERN_DEBUG,
2459 					"%s: truncating inode %lu to %lld bytes",
2460 					__func__, inode->i_ino, inode->i_size);
2461 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2462 				  inode->i_ino, inode->i_size);
2463 			inode_lock(inode);
2464 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2465 			ret = ext4_truncate(inode);
2466 			if (ret)
2467 				ext4_std_error(inode->i_sb, ret);
2468 			inode_unlock(inode);
2469 			nr_truncates++;
2470 		} else {
2471 			if (test_opt(sb, DEBUG))
2472 				ext4_msg(sb, KERN_DEBUG,
2473 					"%s: deleting unreferenced inode %lu",
2474 					__func__, inode->i_ino);
2475 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2476 				  inode->i_ino);
2477 			nr_orphans++;
2478 		}
2479 		iput(inode);  /* The delete magic happens here! */
2480 	}
2481 
2482 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2483 
2484 	if (nr_orphans)
2485 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2486 		       PLURAL(nr_orphans));
2487 	if (nr_truncates)
2488 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2489 		       PLURAL(nr_truncates));
2490 #ifdef CONFIG_QUOTA
2491 	/* Turn quotas off */
2492 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493 		if (sb_dqopt(sb)->files[i])
2494 			dquot_quota_off(sb, i);
2495 	}
2496 #endif
2497 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2498 }
2499 
2500 /*
2501  * Maximal extent format file size.
2502  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2503  * extent format containers, within a sector_t, and within i_blocks
2504  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2505  * so that won't be a limiting factor.
2506  *
2507  * However there is other limiting factor. We do store extents in the form
2508  * of starting block and length, hence the resulting length of the extent
2509  * covering maximum file size must fit into on-disk format containers as
2510  * well. Given that length is always by 1 unit bigger than max unit (because
2511  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2512  *
2513  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2514  */
2515 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2516 {
2517 	loff_t res;
2518 	loff_t upper_limit = MAX_LFS_FILESIZE;
2519 
2520 	/* small i_blocks in vfs inode? */
2521 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2522 		/*
2523 		 * CONFIG_LBDAF is not enabled implies the inode
2524 		 * i_block represent total blocks in 512 bytes
2525 		 * 32 == size of vfs inode i_blocks * 8
2526 		 */
2527 		upper_limit = (1LL << 32) - 1;
2528 
2529 		/* total blocks in file system block size */
2530 		upper_limit >>= (blkbits - 9);
2531 		upper_limit <<= blkbits;
2532 	}
2533 
2534 	/*
2535 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2536 	 * by one fs block, so ee_len can cover the extent of maximum file
2537 	 * size
2538 	 */
2539 	res = (1LL << 32) - 1;
2540 	res <<= blkbits;
2541 
2542 	/* Sanity check against vm- & vfs- imposed limits */
2543 	if (res > upper_limit)
2544 		res = upper_limit;
2545 
2546 	return res;
2547 }
2548 
2549 /*
2550  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2551  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2552  * We need to be 1 filesystem block less than the 2^48 sector limit.
2553  */
2554 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2555 {
2556 	loff_t res = EXT4_NDIR_BLOCKS;
2557 	int meta_blocks;
2558 	loff_t upper_limit;
2559 	/* This is calculated to be the largest file size for a dense, block
2560 	 * mapped file such that the file's total number of 512-byte sectors,
2561 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2562 	 *
2563 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2564 	 * number of 512-byte sectors of the file.
2565 	 */
2566 
2567 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2568 		/*
2569 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2570 		 * the inode i_block field represents total file blocks in
2571 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2572 		 */
2573 		upper_limit = (1LL << 32) - 1;
2574 
2575 		/* total blocks in file system block size */
2576 		upper_limit >>= (bits - 9);
2577 
2578 	} else {
2579 		/*
2580 		 * We use 48 bit ext4_inode i_blocks
2581 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2582 		 * represent total number of blocks in
2583 		 * file system block size
2584 		 */
2585 		upper_limit = (1LL << 48) - 1;
2586 
2587 	}
2588 
2589 	/* indirect blocks */
2590 	meta_blocks = 1;
2591 	/* double indirect blocks */
2592 	meta_blocks += 1 + (1LL << (bits-2));
2593 	/* tripple indirect blocks */
2594 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2595 
2596 	upper_limit -= meta_blocks;
2597 	upper_limit <<= bits;
2598 
2599 	res += 1LL << (bits-2);
2600 	res += 1LL << (2*(bits-2));
2601 	res += 1LL << (3*(bits-2));
2602 	res <<= bits;
2603 	if (res > upper_limit)
2604 		res = upper_limit;
2605 
2606 	if (res > MAX_LFS_FILESIZE)
2607 		res = MAX_LFS_FILESIZE;
2608 
2609 	return res;
2610 }
2611 
2612 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2613 				   ext4_fsblk_t logical_sb_block, int nr)
2614 {
2615 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2616 	ext4_group_t bg, first_meta_bg;
2617 	int has_super = 0;
2618 
2619 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2620 
2621 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2622 		return logical_sb_block + nr + 1;
2623 	bg = sbi->s_desc_per_block * nr;
2624 	if (ext4_bg_has_super(sb, bg))
2625 		has_super = 1;
2626 
2627 	/*
2628 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2629 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2630 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2631 	 * compensate.
2632 	 */
2633 	if (sb->s_blocksize == 1024 && nr == 0 &&
2634 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2635 		has_super++;
2636 
2637 	return (has_super + ext4_group_first_block_no(sb, bg));
2638 }
2639 
2640 /**
2641  * ext4_get_stripe_size: Get the stripe size.
2642  * @sbi: In memory super block info
2643  *
2644  * If we have specified it via mount option, then
2645  * use the mount option value. If the value specified at mount time is
2646  * greater than the blocks per group use the super block value.
2647  * If the super block value is greater than blocks per group return 0.
2648  * Allocator needs it be less than blocks per group.
2649  *
2650  */
2651 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2652 {
2653 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2654 	unsigned long stripe_width =
2655 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2656 	int ret;
2657 
2658 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2659 		ret = sbi->s_stripe;
2660 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2661 		ret = stripe_width;
2662 	else if (stride && stride <= sbi->s_blocks_per_group)
2663 		ret = stride;
2664 	else
2665 		ret = 0;
2666 
2667 	/*
2668 	 * If the stripe width is 1, this makes no sense and
2669 	 * we set it to 0 to turn off stripe handling code.
2670 	 */
2671 	if (ret <= 1)
2672 		ret = 0;
2673 
2674 	return ret;
2675 }
2676 
2677 /*
2678  * Check whether this filesystem can be mounted based on
2679  * the features present and the RDONLY/RDWR mount requested.
2680  * Returns 1 if this filesystem can be mounted as requested,
2681  * 0 if it cannot be.
2682  */
2683 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2684 {
2685 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2686 		ext4_msg(sb, KERN_ERR,
2687 			"Couldn't mount because of "
2688 			"unsupported optional features (%x)",
2689 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2690 			~EXT4_FEATURE_INCOMPAT_SUPP));
2691 		return 0;
2692 	}
2693 
2694 	if (readonly)
2695 		return 1;
2696 
2697 	if (ext4_has_feature_readonly(sb)) {
2698 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2699 		sb->s_flags |= MS_RDONLY;
2700 		return 1;
2701 	}
2702 
2703 	/* Check that feature set is OK for a read-write mount */
2704 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2705 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2706 			 "unsupported optional features (%x)",
2707 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2708 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2709 		return 0;
2710 	}
2711 	/*
2712 	 * Large file size enabled file system can only be mounted
2713 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2714 	 */
2715 	if (ext4_has_feature_huge_file(sb)) {
2716 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2717 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2718 				 "cannot be mounted RDWR without "
2719 				 "CONFIG_LBDAF");
2720 			return 0;
2721 		}
2722 	}
2723 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2724 		ext4_msg(sb, KERN_ERR,
2725 			 "Can't support bigalloc feature without "
2726 			 "extents feature\n");
2727 		return 0;
2728 	}
2729 
2730 #ifndef CONFIG_QUOTA
2731 	if (ext4_has_feature_quota(sb) && !readonly) {
2732 		ext4_msg(sb, KERN_ERR,
2733 			 "Filesystem with quota feature cannot be mounted RDWR "
2734 			 "without CONFIG_QUOTA");
2735 		return 0;
2736 	}
2737 	if (ext4_has_feature_project(sb) && !readonly) {
2738 		ext4_msg(sb, KERN_ERR,
2739 			 "Filesystem with project quota feature cannot be mounted RDWR "
2740 			 "without CONFIG_QUOTA");
2741 		return 0;
2742 	}
2743 #endif  /* CONFIG_QUOTA */
2744 	return 1;
2745 }
2746 
2747 /*
2748  * This function is called once a day if we have errors logged
2749  * on the file system
2750  */
2751 static void print_daily_error_info(unsigned long arg)
2752 {
2753 	struct super_block *sb = (struct super_block *) arg;
2754 	struct ext4_sb_info *sbi;
2755 	struct ext4_super_block *es;
2756 
2757 	sbi = EXT4_SB(sb);
2758 	es = sbi->s_es;
2759 
2760 	if (es->s_error_count)
2761 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2762 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2763 			 le32_to_cpu(es->s_error_count));
2764 	if (es->s_first_error_time) {
2765 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2766 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2767 		       (int) sizeof(es->s_first_error_func),
2768 		       es->s_first_error_func,
2769 		       le32_to_cpu(es->s_first_error_line));
2770 		if (es->s_first_error_ino)
2771 			printk(KERN_CONT ": inode %u",
2772 			       le32_to_cpu(es->s_first_error_ino));
2773 		if (es->s_first_error_block)
2774 			printk(KERN_CONT ": block %llu", (unsigned long long)
2775 			       le64_to_cpu(es->s_first_error_block));
2776 		printk(KERN_CONT "\n");
2777 	}
2778 	if (es->s_last_error_time) {
2779 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2780 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2781 		       (int) sizeof(es->s_last_error_func),
2782 		       es->s_last_error_func,
2783 		       le32_to_cpu(es->s_last_error_line));
2784 		if (es->s_last_error_ino)
2785 			printk(KERN_CONT ": inode %u",
2786 			       le32_to_cpu(es->s_last_error_ino));
2787 		if (es->s_last_error_block)
2788 			printk(KERN_CONT ": block %llu", (unsigned long long)
2789 			       le64_to_cpu(es->s_last_error_block));
2790 		printk(KERN_CONT "\n");
2791 	}
2792 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2793 }
2794 
2795 /* Find next suitable group and run ext4_init_inode_table */
2796 static int ext4_run_li_request(struct ext4_li_request *elr)
2797 {
2798 	struct ext4_group_desc *gdp = NULL;
2799 	ext4_group_t group, ngroups;
2800 	struct super_block *sb;
2801 	unsigned long timeout = 0;
2802 	int ret = 0;
2803 
2804 	sb = elr->lr_super;
2805 	ngroups = EXT4_SB(sb)->s_groups_count;
2806 
2807 	for (group = elr->lr_next_group; group < ngroups; group++) {
2808 		gdp = ext4_get_group_desc(sb, group, NULL);
2809 		if (!gdp) {
2810 			ret = 1;
2811 			break;
2812 		}
2813 
2814 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2815 			break;
2816 	}
2817 
2818 	if (group >= ngroups)
2819 		ret = 1;
2820 
2821 	if (!ret) {
2822 		timeout = jiffies;
2823 		ret = ext4_init_inode_table(sb, group,
2824 					    elr->lr_timeout ? 0 : 1);
2825 		if (elr->lr_timeout == 0) {
2826 			timeout = (jiffies - timeout) *
2827 				  elr->lr_sbi->s_li_wait_mult;
2828 			elr->lr_timeout = timeout;
2829 		}
2830 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2831 		elr->lr_next_group = group + 1;
2832 	}
2833 	return ret;
2834 }
2835 
2836 /*
2837  * Remove lr_request from the list_request and free the
2838  * request structure. Should be called with li_list_mtx held
2839  */
2840 static void ext4_remove_li_request(struct ext4_li_request *elr)
2841 {
2842 	struct ext4_sb_info *sbi;
2843 
2844 	if (!elr)
2845 		return;
2846 
2847 	sbi = elr->lr_sbi;
2848 
2849 	list_del(&elr->lr_request);
2850 	sbi->s_li_request = NULL;
2851 	kfree(elr);
2852 }
2853 
2854 static void ext4_unregister_li_request(struct super_block *sb)
2855 {
2856 	mutex_lock(&ext4_li_mtx);
2857 	if (!ext4_li_info) {
2858 		mutex_unlock(&ext4_li_mtx);
2859 		return;
2860 	}
2861 
2862 	mutex_lock(&ext4_li_info->li_list_mtx);
2863 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2864 	mutex_unlock(&ext4_li_info->li_list_mtx);
2865 	mutex_unlock(&ext4_li_mtx);
2866 }
2867 
2868 static struct task_struct *ext4_lazyinit_task;
2869 
2870 /*
2871  * This is the function where ext4lazyinit thread lives. It walks
2872  * through the request list searching for next scheduled filesystem.
2873  * When such a fs is found, run the lazy initialization request
2874  * (ext4_rn_li_request) and keep track of the time spend in this
2875  * function. Based on that time we compute next schedule time of
2876  * the request. When walking through the list is complete, compute
2877  * next waking time and put itself into sleep.
2878  */
2879 static int ext4_lazyinit_thread(void *arg)
2880 {
2881 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2882 	struct list_head *pos, *n;
2883 	struct ext4_li_request *elr;
2884 	unsigned long next_wakeup, cur;
2885 
2886 	BUG_ON(NULL == eli);
2887 
2888 cont_thread:
2889 	while (true) {
2890 		next_wakeup = MAX_JIFFY_OFFSET;
2891 
2892 		mutex_lock(&eli->li_list_mtx);
2893 		if (list_empty(&eli->li_request_list)) {
2894 			mutex_unlock(&eli->li_list_mtx);
2895 			goto exit_thread;
2896 		}
2897 		list_for_each_safe(pos, n, &eli->li_request_list) {
2898 			int err = 0;
2899 			int progress = 0;
2900 			elr = list_entry(pos, struct ext4_li_request,
2901 					 lr_request);
2902 
2903 			if (time_before(jiffies, elr->lr_next_sched)) {
2904 				if (time_before(elr->lr_next_sched, next_wakeup))
2905 					next_wakeup = elr->lr_next_sched;
2906 				continue;
2907 			}
2908 			if (down_read_trylock(&elr->lr_super->s_umount)) {
2909 				if (sb_start_write_trylock(elr->lr_super)) {
2910 					progress = 1;
2911 					/*
2912 					 * We hold sb->s_umount, sb can not
2913 					 * be removed from the list, it is
2914 					 * now safe to drop li_list_mtx
2915 					 */
2916 					mutex_unlock(&eli->li_list_mtx);
2917 					err = ext4_run_li_request(elr);
2918 					sb_end_write(elr->lr_super);
2919 					mutex_lock(&eli->li_list_mtx);
2920 					n = pos->next;
2921 				}
2922 				up_read((&elr->lr_super->s_umount));
2923 			}
2924 			/* error, remove the lazy_init job */
2925 			if (err) {
2926 				ext4_remove_li_request(elr);
2927 				continue;
2928 			}
2929 			if (!progress) {
2930 				elr->lr_next_sched = jiffies +
2931 					(prandom_u32()
2932 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2933 			}
2934 			if (time_before(elr->lr_next_sched, next_wakeup))
2935 				next_wakeup = elr->lr_next_sched;
2936 		}
2937 		mutex_unlock(&eli->li_list_mtx);
2938 
2939 		try_to_freeze();
2940 
2941 		cur = jiffies;
2942 		if ((time_after_eq(cur, next_wakeup)) ||
2943 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2944 			cond_resched();
2945 			continue;
2946 		}
2947 
2948 		schedule_timeout_interruptible(next_wakeup - cur);
2949 
2950 		if (kthread_should_stop()) {
2951 			ext4_clear_request_list();
2952 			goto exit_thread;
2953 		}
2954 	}
2955 
2956 exit_thread:
2957 	/*
2958 	 * It looks like the request list is empty, but we need
2959 	 * to check it under the li_list_mtx lock, to prevent any
2960 	 * additions into it, and of course we should lock ext4_li_mtx
2961 	 * to atomically free the list and ext4_li_info, because at
2962 	 * this point another ext4 filesystem could be registering
2963 	 * new one.
2964 	 */
2965 	mutex_lock(&ext4_li_mtx);
2966 	mutex_lock(&eli->li_list_mtx);
2967 	if (!list_empty(&eli->li_request_list)) {
2968 		mutex_unlock(&eli->li_list_mtx);
2969 		mutex_unlock(&ext4_li_mtx);
2970 		goto cont_thread;
2971 	}
2972 	mutex_unlock(&eli->li_list_mtx);
2973 	kfree(ext4_li_info);
2974 	ext4_li_info = NULL;
2975 	mutex_unlock(&ext4_li_mtx);
2976 
2977 	return 0;
2978 }
2979 
2980 static void ext4_clear_request_list(void)
2981 {
2982 	struct list_head *pos, *n;
2983 	struct ext4_li_request *elr;
2984 
2985 	mutex_lock(&ext4_li_info->li_list_mtx);
2986 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2987 		elr = list_entry(pos, struct ext4_li_request,
2988 				 lr_request);
2989 		ext4_remove_li_request(elr);
2990 	}
2991 	mutex_unlock(&ext4_li_info->li_list_mtx);
2992 }
2993 
2994 static int ext4_run_lazyinit_thread(void)
2995 {
2996 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2997 					 ext4_li_info, "ext4lazyinit");
2998 	if (IS_ERR(ext4_lazyinit_task)) {
2999 		int err = PTR_ERR(ext4_lazyinit_task);
3000 		ext4_clear_request_list();
3001 		kfree(ext4_li_info);
3002 		ext4_li_info = NULL;
3003 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3004 				 "initialization thread\n",
3005 				 err);
3006 		return err;
3007 	}
3008 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3009 	return 0;
3010 }
3011 
3012 /*
3013  * Check whether it make sense to run itable init. thread or not.
3014  * If there is at least one uninitialized inode table, return
3015  * corresponding group number, else the loop goes through all
3016  * groups and return total number of groups.
3017  */
3018 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3019 {
3020 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3021 	struct ext4_group_desc *gdp = NULL;
3022 
3023 	for (group = 0; group < ngroups; group++) {
3024 		gdp = ext4_get_group_desc(sb, group, NULL);
3025 		if (!gdp)
3026 			continue;
3027 
3028 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3029 			break;
3030 	}
3031 
3032 	return group;
3033 }
3034 
3035 static int ext4_li_info_new(void)
3036 {
3037 	struct ext4_lazy_init *eli = NULL;
3038 
3039 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3040 	if (!eli)
3041 		return -ENOMEM;
3042 
3043 	INIT_LIST_HEAD(&eli->li_request_list);
3044 	mutex_init(&eli->li_list_mtx);
3045 
3046 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3047 
3048 	ext4_li_info = eli;
3049 
3050 	return 0;
3051 }
3052 
3053 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3054 					    ext4_group_t start)
3055 {
3056 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3057 	struct ext4_li_request *elr;
3058 
3059 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3060 	if (!elr)
3061 		return NULL;
3062 
3063 	elr->lr_super = sb;
3064 	elr->lr_sbi = sbi;
3065 	elr->lr_next_group = start;
3066 
3067 	/*
3068 	 * Randomize first schedule time of the request to
3069 	 * spread the inode table initialization requests
3070 	 * better.
3071 	 */
3072 	elr->lr_next_sched = jiffies + (prandom_u32() %
3073 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3074 	return elr;
3075 }
3076 
3077 int ext4_register_li_request(struct super_block *sb,
3078 			     ext4_group_t first_not_zeroed)
3079 {
3080 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3081 	struct ext4_li_request *elr = NULL;
3082 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3083 	int ret = 0;
3084 
3085 	mutex_lock(&ext4_li_mtx);
3086 	if (sbi->s_li_request != NULL) {
3087 		/*
3088 		 * Reset timeout so it can be computed again, because
3089 		 * s_li_wait_mult might have changed.
3090 		 */
3091 		sbi->s_li_request->lr_timeout = 0;
3092 		goto out;
3093 	}
3094 
3095 	if (first_not_zeroed == ngroups ||
3096 	    (sb->s_flags & MS_RDONLY) ||
3097 	    !test_opt(sb, INIT_INODE_TABLE))
3098 		goto out;
3099 
3100 	elr = ext4_li_request_new(sb, first_not_zeroed);
3101 	if (!elr) {
3102 		ret = -ENOMEM;
3103 		goto out;
3104 	}
3105 
3106 	if (NULL == ext4_li_info) {
3107 		ret = ext4_li_info_new();
3108 		if (ret)
3109 			goto out;
3110 	}
3111 
3112 	mutex_lock(&ext4_li_info->li_list_mtx);
3113 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3114 	mutex_unlock(&ext4_li_info->li_list_mtx);
3115 
3116 	sbi->s_li_request = elr;
3117 	/*
3118 	 * set elr to NULL here since it has been inserted to
3119 	 * the request_list and the removal and free of it is
3120 	 * handled by ext4_clear_request_list from now on.
3121 	 */
3122 	elr = NULL;
3123 
3124 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3125 		ret = ext4_run_lazyinit_thread();
3126 		if (ret)
3127 			goto out;
3128 	}
3129 out:
3130 	mutex_unlock(&ext4_li_mtx);
3131 	if (ret)
3132 		kfree(elr);
3133 	return ret;
3134 }
3135 
3136 /*
3137  * We do not need to lock anything since this is called on
3138  * module unload.
3139  */
3140 static void ext4_destroy_lazyinit_thread(void)
3141 {
3142 	/*
3143 	 * If thread exited earlier
3144 	 * there's nothing to be done.
3145 	 */
3146 	if (!ext4_li_info || !ext4_lazyinit_task)
3147 		return;
3148 
3149 	kthread_stop(ext4_lazyinit_task);
3150 }
3151 
3152 static int set_journal_csum_feature_set(struct super_block *sb)
3153 {
3154 	int ret = 1;
3155 	int compat, incompat;
3156 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3157 
3158 	if (ext4_has_metadata_csum(sb)) {
3159 		/* journal checksum v3 */
3160 		compat = 0;
3161 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3162 	} else {
3163 		/* journal checksum v1 */
3164 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3165 		incompat = 0;
3166 	}
3167 
3168 	jbd2_journal_clear_features(sbi->s_journal,
3169 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3170 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3171 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3172 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3173 		ret = jbd2_journal_set_features(sbi->s_journal,
3174 				compat, 0,
3175 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3176 				incompat);
3177 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3178 		ret = jbd2_journal_set_features(sbi->s_journal,
3179 				compat, 0,
3180 				incompat);
3181 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3182 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3183 	} else {
3184 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3185 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3186 	}
3187 
3188 	return ret;
3189 }
3190 
3191 /*
3192  * Note: calculating the overhead so we can be compatible with
3193  * historical BSD practice is quite difficult in the face of
3194  * clusters/bigalloc.  This is because multiple metadata blocks from
3195  * different block group can end up in the same allocation cluster.
3196  * Calculating the exact overhead in the face of clustered allocation
3197  * requires either O(all block bitmaps) in memory or O(number of block
3198  * groups**2) in time.  We will still calculate the superblock for
3199  * older file systems --- and if we come across with a bigalloc file
3200  * system with zero in s_overhead_clusters the estimate will be close to
3201  * correct especially for very large cluster sizes --- but for newer
3202  * file systems, it's better to calculate this figure once at mkfs
3203  * time, and store it in the superblock.  If the superblock value is
3204  * present (even for non-bigalloc file systems), we will use it.
3205  */
3206 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3207 			  char *buf)
3208 {
3209 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3210 	struct ext4_group_desc	*gdp;
3211 	ext4_fsblk_t		first_block, last_block, b;
3212 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3213 	int			s, j, count = 0;
3214 
3215 	if (!ext4_has_feature_bigalloc(sb))
3216 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3217 			sbi->s_itb_per_group + 2);
3218 
3219 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3220 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3221 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3222 	for (i = 0; i < ngroups; i++) {
3223 		gdp = ext4_get_group_desc(sb, i, NULL);
3224 		b = ext4_block_bitmap(sb, gdp);
3225 		if (b >= first_block && b <= last_block) {
3226 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3227 			count++;
3228 		}
3229 		b = ext4_inode_bitmap(sb, gdp);
3230 		if (b >= first_block && b <= last_block) {
3231 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3232 			count++;
3233 		}
3234 		b = ext4_inode_table(sb, gdp);
3235 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3236 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3237 				int c = EXT4_B2C(sbi, b - first_block);
3238 				ext4_set_bit(c, buf);
3239 				count++;
3240 			}
3241 		if (i != grp)
3242 			continue;
3243 		s = 0;
3244 		if (ext4_bg_has_super(sb, grp)) {
3245 			ext4_set_bit(s++, buf);
3246 			count++;
3247 		}
3248 		j = ext4_bg_num_gdb(sb, grp);
3249 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3250 			ext4_error(sb, "Invalid number of block group "
3251 				   "descriptor blocks: %d", j);
3252 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3253 		}
3254 		count += j;
3255 		for (; j > 0; j--)
3256 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3257 	}
3258 	if (!count)
3259 		return 0;
3260 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3261 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3262 }
3263 
3264 /*
3265  * Compute the overhead and stash it in sbi->s_overhead
3266  */
3267 int ext4_calculate_overhead(struct super_block *sb)
3268 {
3269 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3270 	struct ext4_super_block *es = sbi->s_es;
3271 	struct inode *j_inode;
3272 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3273 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3274 	ext4_fsblk_t overhead = 0;
3275 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3276 
3277 	if (!buf)
3278 		return -ENOMEM;
3279 
3280 	/*
3281 	 * Compute the overhead (FS structures).  This is constant
3282 	 * for a given filesystem unless the number of block groups
3283 	 * changes so we cache the previous value until it does.
3284 	 */
3285 
3286 	/*
3287 	 * All of the blocks before first_data_block are overhead
3288 	 */
3289 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3290 
3291 	/*
3292 	 * Add the overhead found in each block group
3293 	 */
3294 	for (i = 0; i < ngroups; i++) {
3295 		int blks;
3296 
3297 		blks = count_overhead(sb, i, buf);
3298 		overhead += blks;
3299 		if (blks)
3300 			memset(buf, 0, PAGE_SIZE);
3301 		cond_resched();
3302 	}
3303 
3304 	/*
3305 	 * Add the internal journal blocks whether the journal has been
3306 	 * loaded or not
3307 	 */
3308 	if (sbi->s_journal && !sbi->journal_bdev)
3309 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3310 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3311 		j_inode = ext4_get_journal_inode(sb, j_inum);
3312 		if (j_inode) {
3313 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3314 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3315 			iput(j_inode);
3316 		} else {
3317 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3318 		}
3319 	}
3320 	sbi->s_overhead = overhead;
3321 	smp_wmb();
3322 	free_page((unsigned long) buf);
3323 	return 0;
3324 }
3325 
3326 static void ext4_set_resv_clusters(struct super_block *sb)
3327 {
3328 	ext4_fsblk_t resv_clusters;
3329 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3330 
3331 	/*
3332 	 * There's no need to reserve anything when we aren't using extents.
3333 	 * The space estimates are exact, there are no unwritten extents,
3334 	 * hole punching doesn't need new metadata... This is needed especially
3335 	 * to keep ext2/3 backward compatibility.
3336 	 */
3337 	if (!ext4_has_feature_extents(sb))
3338 		return;
3339 	/*
3340 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3341 	 * This should cover the situations where we can not afford to run
3342 	 * out of space like for example punch hole, or converting
3343 	 * unwritten extents in delalloc path. In most cases such
3344 	 * allocation would require 1, or 2 blocks, higher numbers are
3345 	 * very rare.
3346 	 */
3347 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3348 			 sbi->s_cluster_bits);
3349 
3350 	do_div(resv_clusters, 50);
3351 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3352 
3353 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3354 }
3355 
3356 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3357 {
3358 	char *orig_data = kstrdup(data, GFP_KERNEL);
3359 	struct buffer_head *bh;
3360 	struct ext4_super_block *es = NULL;
3361 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3362 	ext4_fsblk_t block;
3363 	ext4_fsblk_t sb_block = get_sb_block(&data);
3364 	ext4_fsblk_t logical_sb_block;
3365 	unsigned long offset = 0;
3366 	unsigned long journal_devnum = 0;
3367 	unsigned long def_mount_opts;
3368 	struct inode *root;
3369 	const char *descr;
3370 	int ret = -ENOMEM;
3371 	int blocksize, clustersize;
3372 	unsigned int db_count;
3373 	unsigned int i;
3374 	int needs_recovery, has_huge_files, has_bigalloc;
3375 	__u64 blocks_count;
3376 	int err = 0;
3377 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3378 	ext4_group_t first_not_zeroed;
3379 
3380 	if ((data && !orig_data) || !sbi)
3381 		goto out_free_base;
3382 
3383 	sbi->s_blockgroup_lock =
3384 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3385 	if (!sbi->s_blockgroup_lock)
3386 		goto out_free_base;
3387 
3388 	sb->s_fs_info = sbi;
3389 	sbi->s_sb = sb;
3390 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3391 	sbi->s_sb_block = sb_block;
3392 	if (sb->s_bdev->bd_part)
3393 		sbi->s_sectors_written_start =
3394 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3395 
3396 	/* Cleanup superblock name */
3397 	strreplace(sb->s_id, '/', '!');
3398 
3399 	/* -EINVAL is default */
3400 	ret = -EINVAL;
3401 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3402 	if (!blocksize) {
3403 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3404 		goto out_fail;
3405 	}
3406 
3407 	/*
3408 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3409 	 * block sizes.  We need to calculate the offset from buffer start.
3410 	 */
3411 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3412 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3413 		offset = do_div(logical_sb_block, blocksize);
3414 	} else {
3415 		logical_sb_block = sb_block;
3416 	}
3417 
3418 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3419 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3420 		goto out_fail;
3421 	}
3422 	/*
3423 	 * Note: s_es must be initialized as soon as possible because
3424 	 *       some ext4 macro-instructions depend on its value
3425 	 */
3426 	es = (struct ext4_super_block *) (bh->b_data + offset);
3427 	sbi->s_es = es;
3428 	sb->s_magic = le16_to_cpu(es->s_magic);
3429 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3430 		goto cantfind_ext4;
3431 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3432 
3433 	/* Warn if metadata_csum and gdt_csum are both set. */
3434 	if (ext4_has_feature_metadata_csum(sb) &&
3435 	    ext4_has_feature_gdt_csum(sb))
3436 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3437 			     "redundant flags; please run fsck.");
3438 
3439 	/* Check for a known checksum algorithm */
3440 	if (!ext4_verify_csum_type(sb, es)) {
3441 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3442 			 "unknown checksum algorithm.");
3443 		silent = 1;
3444 		goto cantfind_ext4;
3445 	}
3446 
3447 	/* Load the checksum driver */
3448 	if (ext4_has_feature_metadata_csum(sb)) {
3449 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3450 		if (IS_ERR(sbi->s_chksum_driver)) {
3451 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3452 			ret = PTR_ERR(sbi->s_chksum_driver);
3453 			sbi->s_chksum_driver = NULL;
3454 			goto failed_mount;
3455 		}
3456 	}
3457 
3458 	/* Check superblock checksum */
3459 	if (!ext4_superblock_csum_verify(sb, es)) {
3460 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3461 			 "invalid superblock checksum.  Run e2fsck?");
3462 		silent = 1;
3463 		ret = -EFSBADCRC;
3464 		goto cantfind_ext4;
3465 	}
3466 
3467 	/* Precompute checksum seed for all metadata */
3468 	if (ext4_has_feature_csum_seed(sb))
3469 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3470 	else if (ext4_has_metadata_csum(sb))
3471 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3472 					       sizeof(es->s_uuid));
3473 
3474 	/* Set defaults before we parse the mount options */
3475 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3476 	set_opt(sb, INIT_INODE_TABLE);
3477 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3478 		set_opt(sb, DEBUG);
3479 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3480 		set_opt(sb, GRPID);
3481 	if (def_mount_opts & EXT4_DEFM_UID16)
3482 		set_opt(sb, NO_UID32);
3483 	/* xattr user namespace & acls are now defaulted on */
3484 	set_opt(sb, XATTR_USER);
3485 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3486 	set_opt(sb, POSIX_ACL);
3487 #endif
3488 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3489 	if (ext4_has_metadata_csum(sb))
3490 		set_opt(sb, JOURNAL_CHECKSUM);
3491 
3492 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3493 		set_opt(sb, JOURNAL_DATA);
3494 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3495 		set_opt(sb, ORDERED_DATA);
3496 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3497 		set_opt(sb, WRITEBACK_DATA);
3498 
3499 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3500 		set_opt(sb, ERRORS_PANIC);
3501 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3502 		set_opt(sb, ERRORS_CONT);
3503 	else
3504 		set_opt(sb, ERRORS_RO);
3505 	/* block_validity enabled by default; disable with noblock_validity */
3506 	set_opt(sb, BLOCK_VALIDITY);
3507 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3508 		set_opt(sb, DISCARD);
3509 
3510 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3511 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3512 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3513 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3514 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3515 
3516 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3517 		set_opt(sb, BARRIER);
3518 
3519 	/*
3520 	 * enable delayed allocation by default
3521 	 * Use -o nodelalloc to turn it off
3522 	 */
3523 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3524 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3525 		set_opt(sb, DELALLOC);
3526 
3527 	/*
3528 	 * set default s_li_wait_mult for lazyinit, for the case there is
3529 	 * no mount option specified.
3530 	 */
3531 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3532 
3533 	if (sbi->s_es->s_mount_opts[0]) {
3534 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3535 					      sizeof(sbi->s_es->s_mount_opts),
3536 					      GFP_KERNEL);
3537 		if (!s_mount_opts)
3538 			goto failed_mount;
3539 		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3540 				   &journal_ioprio, 0)) {
3541 			ext4_msg(sb, KERN_WARNING,
3542 				 "failed to parse options in superblock: %s",
3543 				 s_mount_opts);
3544 		}
3545 		kfree(s_mount_opts);
3546 	}
3547 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3548 	if (!parse_options((char *) data, sb, &journal_devnum,
3549 			   &journal_ioprio, 0))
3550 		goto failed_mount;
3551 
3552 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3553 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3554 			    "with data=journal disables delayed "
3555 			    "allocation and O_DIRECT support!\n");
3556 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3557 			ext4_msg(sb, KERN_ERR, "can't mount with "
3558 				 "both data=journal and delalloc");
3559 			goto failed_mount;
3560 		}
3561 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3562 			ext4_msg(sb, KERN_ERR, "can't mount with "
3563 				 "both data=journal and dioread_nolock");
3564 			goto failed_mount;
3565 		}
3566 		if (test_opt(sb, DAX)) {
3567 			ext4_msg(sb, KERN_ERR, "can't mount with "
3568 				 "both data=journal and dax");
3569 			goto failed_mount;
3570 		}
3571 		if (ext4_has_feature_encrypt(sb)) {
3572 			ext4_msg(sb, KERN_WARNING,
3573 				 "encrypted files will use data=ordered "
3574 				 "instead of data journaling mode");
3575 		}
3576 		if (test_opt(sb, DELALLOC))
3577 			clear_opt(sb, DELALLOC);
3578 	} else {
3579 		sb->s_iflags |= SB_I_CGROUPWB;
3580 	}
3581 
3582 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3583 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3584 
3585 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3586 	    (ext4_has_compat_features(sb) ||
3587 	     ext4_has_ro_compat_features(sb) ||
3588 	     ext4_has_incompat_features(sb)))
3589 		ext4_msg(sb, KERN_WARNING,
3590 		       "feature flags set on rev 0 fs, "
3591 		       "running e2fsck is recommended");
3592 
3593 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3594 		set_opt2(sb, HURD_COMPAT);
3595 		if (ext4_has_feature_64bit(sb)) {
3596 			ext4_msg(sb, KERN_ERR,
3597 				 "The Hurd can't support 64-bit file systems");
3598 			goto failed_mount;
3599 		}
3600 	}
3601 
3602 	if (IS_EXT2_SB(sb)) {
3603 		if (ext2_feature_set_ok(sb))
3604 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3605 				 "using the ext4 subsystem");
3606 		else {
3607 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3608 				 "to feature incompatibilities");
3609 			goto failed_mount;
3610 		}
3611 	}
3612 
3613 	if (IS_EXT3_SB(sb)) {
3614 		if (ext3_feature_set_ok(sb))
3615 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3616 				 "using the ext4 subsystem");
3617 		else {
3618 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3619 				 "to feature incompatibilities");
3620 			goto failed_mount;
3621 		}
3622 	}
3623 
3624 	/*
3625 	 * Check feature flags regardless of the revision level, since we
3626 	 * previously didn't change the revision level when setting the flags,
3627 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3628 	 */
3629 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3630 		goto failed_mount;
3631 
3632 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3633 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3634 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3635 		ext4_msg(sb, KERN_ERR,
3636 		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3637 			 blocksize, le32_to_cpu(es->s_log_block_size));
3638 		goto failed_mount;
3639 	}
3640 	if (le32_to_cpu(es->s_log_block_size) >
3641 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3642 		ext4_msg(sb, KERN_ERR,
3643 			 "Invalid log block size: %u",
3644 			 le32_to_cpu(es->s_log_block_size));
3645 		goto failed_mount;
3646 	}
3647 
3648 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3649 		ext4_msg(sb, KERN_ERR,
3650 			 "Number of reserved GDT blocks insanely large: %d",
3651 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3652 		goto failed_mount;
3653 	}
3654 
3655 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3656 		err = bdev_dax_supported(sb, blocksize);
3657 		if (err)
3658 			goto failed_mount;
3659 	}
3660 
3661 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3662 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3663 			 es->s_encryption_level);
3664 		goto failed_mount;
3665 	}
3666 
3667 	if (sb->s_blocksize != blocksize) {
3668 		/* Validate the filesystem blocksize */
3669 		if (!sb_set_blocksize(sb, blocksize)) {
3670 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3671 					blocksize);
3672 			goto failed_mount;
3673 		}
3674 
3675 		brelse(bh);
3676 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3677 		offset = do_div(logical_sb_block, blocksize);
3678 		bh = sb_bread_unmovable(sb, logical_sb_block);
3679 		if (!bh) {
3680 			ext4_msg(sb, KERN_ERR,
3681 			       "Can't read superblock on 2nd try");
3682 			goto failed_mount;
3683 		}
3684 		es = (struct ext4_super_block *)(bh->b_data + offset);
3685 		sbi->s_es = es;
3686 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3687 			ext4_msg(sb, KERN_ERR,
3688 			       "Magic mismatch, very weird!");
3689 			goto failed_mount;
3690 		}
3691 	}
3692 
3693 	has_huge_files = ext4_has_feature_huge_file(sb);
3694 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3695 						      has_huge_files);
3696 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3697 
3698 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3699 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3700 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3701 	} else {
3702 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3703 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3704 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3705 		    (!is_power_of_2(sbi->s_inode_size)) ||
3706 		    (sbi->s_inode_size > blocksize)) {
3707 			ext4_msg(sb, KERN_ERR,
3708 			       "unsupported inode size: %d",
3709 			       sbi->s_inode_size);
3710 			goto failed_mount;
3711 		}
3712 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3713 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3714 	}
3715 
3716 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3717 	if (ext4_has_feature_64bit(sb)) {
3718 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3719 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3720 		    !is_power_of_2(sbi->s_desc_size)) {
3721 			ext4_msg(sb, KERN_ERR,
3722 			       "unsupported descriptor size %lu",
3723 			       sbi->s_desc_size);
3724 			goto failed_mount;
3725 		}
3726 	} else
3727 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3728 
3729 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3730 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3731 
3732 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3733 	if (sbi->s_inodes_per_block == 0)
3734 		goto cantfind_ext4;
3735 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3736 	    sbi->s_inodes_per_group > blocksize * 8) {
3737 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3738 			 sbi->s_blocks_per_group);
3739 		goto failed_mount;
3740 	}
3741 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3742 					sbi->s_inodes_per_block;
3743 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3744 	sbi->s_sbh = bh;
3745 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3746 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3747 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3748 
3749 	for (i = 0; i < 4; i++)
3750 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3751 	sbi->s_def_hash_version = es->s_def_hash_version;
3752 	if (ext4_has_feature_dir_index(sb)) {
3753 		i = le32_to_cpu(es->s_flags);
3754 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3755 			sbi->s_hash_unsigned = 3;
3756 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3757 #ifdef __CHAR_UNSIGNED__
3758 			if (!(sb->s_flags & MS_RDONLY))
3759 				es->s_flags |=
3760 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3761 			sbi->s_hash_unsigned = 3;
3762 #else
3763 			if (!(sb->s_flags & MS_RDONLY))
3764 				es->s_flags |=
3765 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3766 #endif
3767 		}
3768 	}
3769 
3770 	/* Handle clustersize */
3771 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3772 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3773 	if (has_bigalloc) {
3774 		if (clustersize < blocksize) {
3775 			ext4_msg(sb, KERN_ERR,
3776 				 "cluster size (%d) smaller than "
3777 				 "block size (%d)", clustersize, blocksize);
3778 			goto failed_mount;
3779 		}
3780 		if (le32_to_cpu(es->s_log_cluster_size) >
3781 		    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3782 			ext4_msg(sb, KERN_ERR,
3783 				 "Invalid log cluster size: %u",
3784 				 le32_to_cpu(es->s_log_cluster_size));
3785 			goto failed_mount;
3786 		}
3787 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3788 			le32_to_cpu(es->s_log_block_size);
3789 		sbi->s_clusters_per_group =
3790 			le32_to_cpu(es->s_clusters_per_group);
3791 		if (sbi->s_clusters_per_group > blocksize * 8) {
3792 			ext4_msg(sb, KERN_ERR,
3793 				 "#clusters per group too big: %lu",
3794 				 sbi->s_clusters_per_group);
3795 			goto failed_mount;
3796 		}
3797 		if (sbi->s_blocks_per_group !=
3798 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3799 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3800 				 "clusters per group (%lu) inconsistent",
3801 				 sbi->s_blocks_per_group,
3802 				 sbi->s_clusters_per_group);
3803 			goto failed_mount;
3804 		}
3805 	} else {
3806 		if (clustersize != blocksize) {
3807 			ext4_warning(sb, "fragment/cluster size (%d) != "
3808 				     "block size (%d)", clustersize,
3809 				     blocksize);
3810 			clustersize = blocksize;
3811 		}
3812 		if (sbi->s_blocks_per_group > blocksize * 8) {
3813 			ext4_msg(sb, KERN_ERR,
3814 				 "#blocks per group too big: %lu",
3815 				 sbi->s_blocks_per_group);
3816 			goto failed_mount;
3817 		}
3818 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3819 		sbi->s_cluster_bits = 0;
3820 	}
3821 	sbi->s_cluster_ratio = clustersize / blocksize;
3822 
3823 	/* Do we have standard group size of clustersize * 8 blocks ? */
3824 	if (sbi->s_blocks_per_group == clustersize << 3)
3825 		set_opt2(sb, STD_GROUP_SIZE);
3826 
3827 	/*
3828 	 * Test whether we have more sectors than will fit in sector_t,
3829 	 * and whether the max offset is addressable by the page cache.
3830 	 */
3831 	err = generic_check_addressable(sb->s_blocksize_bits,
3832 					ext4_blocks_count(es));
3833 	if (err) {
3834 		ext4_msg(sb, KERN_ERR, "filesystem"
3835 			 " too large to mount safely on this system");
3836 		if (sizeof(sector_t) < 8)
3837 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3838 		goto failed_mount;
3839 	}
3840 
3841 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3842 		goto cantfind_ext4;
3843 
3844 	/* check blocks count against device size */
3845 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3846 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3847 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3848 		       "exceeds size of device (%llu blocks)",
3849 		       ext4_blocks_count(es), blocks_count);
3850 		goto failed_mount;
3851 	}
3852 
3853 	/*
3854 	 * It makes no sense for the first data block to be beyond the end
3855 	 * of the filesystem.
3856 	 */
3857 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3858 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3859 			 "block %u is beyond end of filesystem (%llu)",
3860 			 le32_to_cpu(es->s_first_data_block),
3861 			 ext4_blocks_count(es));
3862 		goto failed_mount;
3863 	}
3864 	blocks_count = (ext4_blocks_count(es) -
3865 			le32_to_cpu(es->s_first_data_block) +
3866 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3867 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3868 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3869 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3870 		       "(block count %llu, first data block %u, "
3871 		       "blocks per group %lu)", sbi->s_groups_count,
3872 		       ext4_blocks_count(es),
3873 		       le32_to_cpu(es->s_first_data_block),
3874 		       EXT4_BLOCKS_PER_GROUP(sb));
3875 		goto failed_mount;
3876 	}
3877 	sbi->s_groups_count = blocks_count;
3878 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3879 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3880 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3881 		   EXT4_DESC_PER_BLOCK(sb);
3882 	if (ext4_has_feature_meta_bg(sb)) {
3883 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3884 			ext4_msg(sb, KERN_WARNING,
3885 				 "first meta block group too large: %u "
3886 				 "(group descriptor block count %u)",
3887 				 le32_to_cpu(es->s_first_meta_bg), db_count);
3888 			goto failed_mount;
3889 		}
3890 	}
3891 	sbi->s_group_desc = kvmalloc(db_count *
3892 					  sizeof(struct buffer_head *),
3893 					  GFP_KERNEL);
3894 	if (sbi->s_group_desc == NULL) {
3895 		ext4_msg(sb, KERN_ERR, "not enough memory");
3896 		ret = -ENOMEM;
3897 		goto failed_mount;
3898 	}
3899 
3900 	bgl_lock_init(sbi->s_blockgroup_lock);
3901 
3902 	/* Pre-read the descriptors into the buffer cache */
3903 	for (i = 0; i < db_count; i++) {
3904 		block = descriptor_loc(sb, logical_sb_block, i);
3905 		sb_breadahead(sb, block);
3906 	}
3907 
3908 	for (i = 0; i < db_count; i++) {
3909 		block = descriptor_loc(sb, logical_sb_block, i);
3910 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3911 		if (!sbi->s_group_desc[i]) {
3912 			ext4_msg(sb, KERN_ERR,
3913 			       "can't read group descriptor %d", i);
3914 			db_count = i;
3915 			goto failed_mount2;
3916 		}
3917 	}
3918 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3919 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3920 		ret = -EFSCORRUPTED;
3921 		goto failed_mount2;
3922 	}
3923 
3924 	sbi->s_gdb_count = db_count;
3925 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3926 	spin_lock_init(&sbi->s_next_gen_lock);
3927 
3928 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3929 		(unsigned long) sb);
3930 
3931 	/* Register extent status tree shrinker */
3932 	if (ext4_es_register_shrinker(sbi))
3933 		goto failed_mount3;
3934 
3935 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3936 	sbi->s_extent_max_zeroout_kb = 32;
3937 
3938 	/*
3939 	 * set up enough so that it can read an inode
3940 	 */
3941 	sb->s_op = &ext4_sops;
3942 	sb->s_export_op = &ext4_export_ops;
3943 	sb->s_xattr = ext4_xattr_handlers;
3944 	sb->s_cop = &ext4_cryptops;
3945 #ifdef CONFIG_QUOTA
3946 	sb->dq_op = &ext4_quota_operations;
3947 	if (ext4_has_feature_quota(sb))
3948 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3949 	else
3950 		sb->s_qcop = &ext4_qctl_operations;
3951 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3952 #endif
3953 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3954 
3955 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3956 	mutex_init(&sbi->s_orphan_lock);
3957 
3958 	sb->s_root = NULL;
3959 
3960 	needs_recovery = (es->s_last_orphan != 0 ||
3961 			  ext4_has_feature_journal_needs_recovery(sb));
3962 
3963 	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3964 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3965 			goto failed_mount3a;
3966 
3967 	/*
3968 	 * The first inode we look at is the journal inode.  Don't try
3969 	 * root first: it may be modified in the journal!
3970 	 */
3971 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3972 		err = ext4_load_journal(sb, es, journal_devnum);
3973 		if (err)
3974 			goto failed_mount3a;
3975 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3976 		   ext4_has_feature_journal_needs_recovery(sb)) {
3977 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3978 		       "suppressed and not mounted read-only");
3979 		goto failed_mount_wq;
3980 	} else {
3981 		/* Nojournal mode, all journal mount options are illegal */
3982 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3983 			ext4_msg(sb, KERN_ERR, "can't mount with "
3984 				 "journal_checksum, fs mounted w/o journal");
3985 			goto failed_mount_wq;
3986 		}
3987 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3988 			ext4_msg(sb, KERN_ERR, "can't mount with "
3989 				 "journal_async_commit, fs mounted w/o journal");
3990 			goto failed_mount_wq;
3991 		}
3992 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3993 			ext4_msg(sb, KERN_ERR, "can't mount with "
3994 				 "commit=%lu, fs mounted w/o journal",
3995 				 sbi->s_commit_interval / HZ);
3996 			goto failed_mount_wq;
3997 		}
3998 		if (EXT4_MOUNT_DATA_FLAGS &
3999 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4000 			ext4_msg(sb, KERN_ERR, "can't mount with "
4001 				 "data=, fs mounted w/o journal");
4002 			goto failed_mount_wq;
4003 		}
4004 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4005 		clear_opt(sb, JOURNAL_CHECKSUM);
4006 		clear_opt(sb, DATA_FLAGS);
4007 		sbi->s_journal = NULL;
4008 		needs_recovery = 0;
4009 		goto no_journal;
4010 	}
4011 
4012 	if (ext4_has_feature_64bit(sb) &&
4013 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4014 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4015 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4016 		goto failed_mount_wq;
4017 	}
4018 
4019 	if (!set_journal_csum_feature_set(sb)) {
4020 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4021 			 "feature set");
4022 		goto failed_mount_wq;
4023 	}
4024 
4025 	/* We have now updated the journal if required, so we can
4026 	 * validate the data journaling mode. */
4027 	switch (test_opt(sb, DATA_FLAGS)) {
4028 	case 0:
4029 		/* No mode set, assume a default based on the journal
4030 		 * capabilities: ORDERED_DATA if the journal can
4031 		 * cope, else JOURNAL_DATA
4032 		 */
4033 		if (jbd2_journal_check_available_features
4034 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4035 			set_opt(sb, ORDERED_DATA);
4036 		else
4037 			set_opt(sb, JOURNAL_DATA);
4038 		break;
4039 
4040 	case EXT4_MOUNT_ORDERED_DATA:
4041 	case EXT4_MOUNT_WRITEBACK_DATA:
4042 		if (!jbd2_journal_check_available_features
4043 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4044 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4045 			       "requested data journaling mode");
4046 			goto failed_mount_wq;
4047 		}
4048 	default:
4049 		break;
4050 	}
4051 
4052 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4053 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4054 		ext4_msg(sb, KERN_ERR, "can't mount with "
4055 			"journal_async_commit in data=ordered mode");
4056 		goto failed_mount_wq;
4057 	}
4058 
4059 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4060 
4061 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4062 
4063 no_journal:
4064 	sbi->s_mb_cache = ext4_xattr_create_cache();
4065 	if (!sbi->s_mb_cache) {
4066 		ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4067 		goto failed_mount_wq;
4068 	}
4069 
4070 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4071 	    (blocksize != PAGE_SIZE)) {
4072 		ext4_msg(sb, KERN_ERR,
4073 			 "Unsupported blocksize for fs encryption");
4074 		goto failed_mount_wq;
4075 	}
4076 
4077 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4078 	    !ext4_has_feature_encrypt(sb)) {
4079 		ext4_set_feature_encrypt(sb);
4080 		ext4_commit_super(sb, 1);
4081 	}
4082 
4083 	/*
4084 	 * Get the # of file system overhead blocks from the
4085 	 * superblock if present.
4086 	 */
4087 	if (es->s_overhead_clusters)
4088 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4089 	else {
4090 		err = ext4_calculate_overhead(sb);
4091 		if (err)
4092 			goto failed_mount_wq;
4093 	}
4094 
4095 	/*
4096 	 * The maximum number of concurrent works can be high and
4097 	 * concurrency isn't really necessary.  Limit it to 1.
4098 	 */
4099 	EXT4_SB(sb)->rsv_conversion_wq =
4100 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4101 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4102 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4103 		ret = -ENOMEM;
4104 		goto failed_mount4;
4105 	}
4106 
4107 	/*
4108 	 * The jbd2_journal_load will have done any necessary log recovery,
4109 	 * so we can safely mount the rest of the filesystem now.
4110 	 */
4111 
4112 	root = ext4_iget(sb, EXT4_ROOT_INO);
4113 	if (IS_ERR(root)) {
4114 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4115 		ret = PTR_ERR(root);
4116 		root = NULL;
4117 		goto failed_mount4;
4118 	}
4119 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4120 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4121 		iput(root);
4122 		goto failed_mount4;
4123 	}
4124 	sb->s_root = d_make_root(root);
4125 	if (!sb->s_root) {
4126 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4127 		ret = -ENOMEM;
4128 		goto failed_mount4;
4129 	}
4130 
4131 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4132 		sb->s_flags |= MS_RDONLY;
4133 
4134 	/* determine the minimum size of new large inodes, if present */
4135 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4136 	    sbi->s_want_extra_isize == 0) {
4137 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4138 						     EXT4_GOOD_OLD_INODE_SIZE;
4139 		if (ext4_has_feature_extra_isize(sb)) {
4140 			if (sbi->s_want_extra_isize <
4141 			    le16_to_cpu(es->s_want_extra_isize))
4142 				sbi->s_want_extra_isize =
4143 					le16_to_cpu(es->s_want_extra_isize);
4144 			if (sbi->s_want_extra_isize <
4145 			    le16_to_cpu(es->s_min_extra_isize))
4146 				sbi->s_want_extra_isize =
4147 					le16_to_cpu(es->s_min_extra_isize);
4148 		}
4149 	}
4150 	/* Check if enough inode space is available */
4151 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4152 							sbi->s_inode_size) {
4153 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4154 						       EXT4_GOOD_OLD_INODE_SIZE;
4155 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4156 			 "available");
4157 	}
4158 
4159 	ext4_set_resv_clusters(sb);
4160 
4161 	err = ext4_setup_system_zone(sb);
4162 	if (err) {
4163 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4164 			 "zone (%d)", err);
4165 		goto failed_mount4a;
4166 	}
4167 
4168 	ext4_ext_init(sb);
4169 	err = ext4_mb_init(sb);
4170 	if (err) {
4171 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4172 			 err);
4173 		goto failed_mount5;
4174 	}
4175 
4176 	block = ext4_count_free_clusters(sb);
4177 	ext4_free_blocks_count_set(sbi->s_es,
4178 				   EXT4_C2B(sbi, block));
4179 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4180 				  GFP_KERNEL);
4181 	if (!err) {
4182 		unsigned long freei = ext4_count_free_inodes(sb);
4183 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4184 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4185 					  GFP_KERNEL);
4186 	}
4187 	if (!err)
4188 		err = percpu_counter_init(&sbi->s_dirs_counter,
4189 					  ext4_count_dirs(sb), GFP_KERNEL);
4190 	if (!err)
4191 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4192 					  GFP_KERNEL);
4193 	if (!err)
4194 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4195 
4196 	if (err) {
4197 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4198 		goto failed_mount6;
4199 	}
4200 
4201 	if (ext4_has_feature_flex_bg(sb))
4202 		if (!ext4_fill_flex_info(sb)) {
4203 			ext4_msg(sb, KERN_ERR,
4204 			       "unable to initialize "
4205 			       "flex_bg meta info!");
4206 			goto failed_mount6;
4207 		}
4208 
4209 	err = ext4_register_li_request(sb, first_not_zeroed);
4210 	if (err)
4211 		goto failed_mount6;
4212 
4213 	err = ext4_register_sysfs(sb);
4214 	if (err)
4215 		goto failed_mount7;
4216 
4217 #ifdef CONFIG_QUOTA
4218 	/* Enable quota usage during mount. */
4219 	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4220 		err = ext4_enable_quotas(sb);
4221 		if (err)
4222 			goto failed_mount8;
4223 	}
4224 #endif  /* CONFIG_QUOTA */
4225 
4226 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4227 	ext4_orphan_cleanup(sb, es);
4228 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4229 	if (needs_recovery) {
4230 		ext4_msg(sb, KERN_INFO, "recovery complete");
4231 		ext4_mark_recovery_complete(sb, es);
4232 	}
4233 	if (EXT4_SB(sb)->s_journal) {
4234 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4235 			descr = " journalled data mode";
4236 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4237 			descr = " ordered data mode";
4238 		else
4239 			descr = " writeback data mode";
4240 	} else
4241 		descr = "out journal";
4242 
4243 	if (test_opt(sb, DISCARD)) {
4244 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4245 		if (!blk_queue_discard(q))
4246 			ext4_msg(sb, KERN_WARNING,
4247 				 "mounting with \"discard\" option, but "
4248 				 "the device does not support discard");
4249 	}
4250 
4251 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4252 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4253 			 "Opts: %.*s%s%s", descr,
4254 			 (int) sizeof(sbi->s_es->s_mount_opts),
4255 			 sbi->s_es->s_mount_opts,
4256 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4257 
4258 	if (es->s_error_count)
4259 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4260 
4261 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4262 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4263 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4264 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4265 
4266 	kfree(orig_data);
4267 	return 0;
4268 
4269 cantfind_ext4:
4270 	if (!silent)
4271 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4272 	goto failed_mount;
4273 
4274 #ifdef CONFIG_QUOTA
4275 failed_mount8:
4276 	ext4_unregister_sysfs(sb);
4277 #endif
4278 failed_mount7:
4279 	ext4_unregister_li_request(sb);
4280 failed_mount6:
4281 	ext4_mb_release(sb);
4282 	if (sbi->s_flex_groups)
4283 		kvfree(sbi->s_flex_groups);
4284 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4285 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4286 	percpu_counter_destroy(&sbi->s_dirs_counter);
4287 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4288 failed_mount5:
4289 	ext4_ext_release(sb);
4290 	ext4_release_system_zone(sb);
4291 failed_mount4a:
4292 	dput(sb->s_root);
4293 	sb->s_root = NULL;
4294 failed_mount4:
4295 	ext4_msg(sb, KERN_ERR, "mount failed");
4296 	if (EXT4_SB(sb)->rsv_conversion_wq)
4297 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4298 failed_mount_wq:
4299 	if (sbi->s_mb_cache) {
4300 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
4301 		sbi->s_mb_cache = NULL;
4302 	}
4303 	if (sbi->s_journal) {
4304 		jbd2_journal_destroy(sbi->s_journal);
4305 		sbi->s_journal = NULL;
4306 	}
4307 failed_mount3a:
4308 	ext4_es_unregister_shrinker(sbi);
4309 failed_mount3:
4310 	del_timer_sync(&sbi->s_err_report);
4311 	if (sbi->s_mmp_tsk)
4312 		kthread_stop(sbi->s_mmp_tsk);
4313 failed_mount2:
4314 	for (i = 0; i < db_count; i++)
4315 		brelse(sbi->s_group_desc[i]);
4316 	kvfree(sbi->s_group_desc);
4317 failed_mount:
4318 	if (sbi->s_chksum_driver)
4319 		crypto_free_shash(sbi->s_chksum_driver);
4320 #ifdef CONFIG_QUOTA
4321 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4322 		kfree(sbi->s_qf_names[i]);
4323 #endif
4324 	ext4_blkdev_remove(sbi);
4325 	brelse(bh);
4326 out_fail:
4327 	sb->s_fs_info = NULL;
4328 	kfree(sbi->s_blockgroup_lock);
4329 out_free_base:
4330 	kfree(sbi);
4331 	kfree(orig_data);
4332 	return err ? err : ret;
4333 }
4334 
4335 /*
4336  * Setup any per-fs journal parameters now.  We'll do this both on
4337  * initial mount, once the journal has been initialised but before we've
4338  * done any recovery; and again on any subsequent remount.
4339  */
4340 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4341 {
4342 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4343 
4344 	journal->j_commit_interval = sbi->s_commit_interval;
4345 	journal->j_min_batch_time = sbi->s_min_batch_time;
4346 	journal->j_max_batch_time = sbi->s_max_batch_time;
4347 
4348 	write_lock(&journal->j_state_lock);
4349 	if (test_opt(sb, BARRIER))
4350 		journal->j_flags |= JBD2_BARRIER;
4351 	else
4352 		journal->j_flags &= ~JBD2_BARRIER;
4353 	if (test_opt(sb, DATA_ERR_ABORT))
4354 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4355 	else
4356 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4357 	write_unlock(&journal->j_state_lock);
4358 }
4359 
4360 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4361 					     unsigned int journal_inum)
4362 {
4363 	struct inode *journal_inode;
4364 
4365 	/*
4366 	 * Test for the existence of a valid inode on disk.  Bad things
4367 	 * happen if we iget() an unused inode, as the subsequent iput()
4368 	 * will try to delete it.
4369 	 */
4370 	journal_inode = ext4_iget(sb, journal_inum);
4371 	if (IS_ERR(journal_inode)) {
4372 		ext4_msg(sb, KERN_ERR, "no journal found");
4373 		return NULL;
4374 	}
4375 	if (!journal_inode->i_nlink) {
4376 		make_bad_inode(journal_inode);
4377 		iput(journal_inode);
4378 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4379 		return NULL;
4380 	}
4381 
4382 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4383 		  journal_inode, journal_inode->i_size);
4384 	if (!S_ISREG(journal_inode->i_mode)) {
4385 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4386 		iput(journal_inode);
4387 		return NULL;
4388 	}
4389 	return journal_inode;
4390 }
4391 
4392 static journal_t *ext4_get_journal(struct super_block *sb,
4393 				   unsigned int journal_inum)
4394 {
4395 	struct inode *journal_inode;
4396 	journal_t *journal;
4397 
4398 	BUG_ON(!ext4_has_feature_journal(sb));
4399 
4400 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4401 	if (!journal_inode)
4402 		return NULL;
4403 
4404 	journal = jbd2_journal_init_inode(journal_inode);
4405 	if (!journal) {
4406 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4407 		iput(journal_inode);
4408 		return NULL;
4409 	}
4410 	journal->j_private = sb;
4411 	ext4_init_journal_params(sb, journal);
4412 	return journal;
4413 }
4414 
4415 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4416 				       dev_t j_dev)
4417 {
4418 	struct buffer_head *bh;
4419 	journal_t *journal;
4420 	ext4_fsblk_t start;
4421 	ext4_fsblk_t len;
4422 	int hblock, blocksize;
4423 	ext4_fsblk_t sb_block;
4424 	unsigned long offset;
4425 	struct ext4_super_block *es;
4426 	struct block_device *bdev;
4427 
4428 	BUG_ON(!ext4_has_feature_journal(sb));
4429 
4430 	bdev = ext4_blkdev_get(j_dev, sb);
4431 	if (bdev == NULL)
4432 		return NULL;
4433 
4434 	blocksize = sb->s_blocksize;
4435 	hblock = bdev_logical_block_size(bdev);
4436 	if (blocksize < hblock) {
4437 		ext4_msg(sb, KERN_ERR,
4438 			"blocksize too small for journal device");
4439 		goto out_bdev;
4440 	}
4441 
4442 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4443 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4444 	set_blocksize(bdev, blocksize);
4445 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4446 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4447 		       "external journal");
4448 		goto out_bdev;
4449 	}
4450 
4451 	es = (struct ext4_super_block *) (bh->b_data + offset);
4452 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4453 	    !(le32_to_cpu(es->s_feature_incompat) &
4454 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4455 		ext4_msg(sb, KERN_ERR, "external journal has "
4456 					"bad superblock");
4457 		brelse(bh);
4458 		goto out_bdev;
4459 	}
4460 
4461 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4462 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4463 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4464 		ext4_msg(sb, KERN_ERR, "external journal has "
4465 				       "corrupt superblock");
4466 		brelse(bh);
4467 		goto out_bdev;
4468 	}
4469 
4470 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4471 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4472 		brelse(bh);
4473 		goto out_bdev;
4474 	}
4475 
4476 	len = ext4_blocks_count(es);
4477 	start = sb_block + 1;
4478 	brelse(bh);	/* we're done with the superblock */
4479 
4480 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4481 					start, len, blocksize);
4482 	if (!journal) {
4483 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4484 		goto out_bdev;
4485 	}
4486 	journal->j_private = sb;
4487 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4488 	wait_on_buffer(journal->j_sb_buffer);
4489 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4490 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4491 		goto out_journal;
4492 	}
4493 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4494 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4495 					"user (unsupported) - %d",
4496 			be32_to_cpu(journal->j_superblock->s_nr_users));
4497 		goto out_journal;
4498 	}
4499 	EXT4_SB(sb)->journal_bdev = bdev;
4500 	ext4_init_journal_params(sb, journal);
4501 	return journal;
4502 
4503 out_journal:
4504 	jbd2_journal_destroy(journal);
4505 out_bdev:
4506 	ext4_blkdev_put(bdev);
4507 	return NULL;
4508 }
4509 
4510 static int ext4_load_journal(struct super_block *sb,
4511 			     struct ext4_super_block *es,
4512 			     unsigned long journal_devnum)
4513 {
4514 	journal_t *journal;
4515 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4516 	dev_t journal_dev;
4517 	int err = 0;
4518 	int really_read_only;
4519 
4520 	BUG_ON(!ext4_has_feature_journal(sb));
4521 
4522 	if (journal_devnum &&
4523 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4524 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4525 			"numbers have changed");
4526 		journal_dev = new_decode_dev(journal_devnum);
4527 	} else
4528 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4529 
4530 	really_read_only = bdev_read_only(sb->s_bdev);
4531 
4532 	/*
4533 	 * Are we loading a blank journal or performing recovery after a
4534 	 * crash?  For recovery, we need to check in advance whether we
4535 	 * can get read-write access to the device.
4536 	 */
4537 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4538 		if (sb->s_flags & MS_RDONLY) {
4539 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4540 					"required on readonly filesystem");
4541 			if (really_read_only) {
4542 				ext4_msg(sb, KERN_ERR, "write access "
4543 					"unavailable, cannot proceed");
4544 				return -EROFS;
4545 			}
4546 			ext4_msg(sb, KERN_INFO, "write access will "
4547 			       "be enabled during recovery");
4548 		}
4549 	}
4550 
4551 	if (journal_inum && journal_dev) {
4552 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4553 		       "and inode journals!");
4554 		return -EINVAL;
4555 	}
4556 
4557 	if (journal_inum) {
4558 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4559 			return -EINVAL;
4560 	} else {
4561 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4562 			return -EINVAL;
4563 	}
4564 
4565 	if (!(journal->j_flags & JBD2_BARRIER))
4566 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4567 
4568 	if (!ext4_has_feature_journal_needs_recovery(sb))
4569 		err = jbd2_journal_wipe(journal, !really_read_only);
4570 	if (!err) {
4571 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4572 		if (save)
4573 			memcpy(save, ((char *) es) +
4574 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4575 		err = jbd2_journal_load(journal);
4576 		if (save)
4577 			memcpy(((char *) es) + EXT4_S_ERR_START,
4578 			       save, EXT4_S_ERR_LEN);
4579 		kfree(save);
4580 	}
4581 
4582 	if (err) {
4583 		ext4_msg(sb, KERN_ERR, "error loading journal");
4584 		jbd2_journal_destroy(journal);
4585 		return err;
4586 	}
4587 
4588 	EXT4_SB(sb)->s_journal = journal;
4589 	ext4_clear_journal_err(sb, es);
4590 
4591 	if (!really_read_only && journal_devnum &&
4592 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4593 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4594 
4595 		/* Make sure we flush the recovery flag to disk. */
4596 		ext4_commit_super(sb, 1);
4597 	}
4598 
4599 	return 0;
4600 }
4601 
4602 static int ext4_commit_super(struct super_block *sb, int sync)
4603 {
4604 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4605 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4606 	int error = 0;
4607 
4608 	if (!sbh || block_device_ejected(sb))
4609 		return error;
4610 	/*
4611 	 * If the file system is mounted read-only, don't update the
4612 	 * superblock write time.  This avoids updating the superblock
4613 	 * write time when we are mounting the root file system
4614 	 * read/only but we need to replay the journal; at that point,
4615 	 * for people who are east of GMT and who make their clock
4616 	 * tick in localtime for Windows bug-for-bug compatibility,
4617 	 * the clock is set in the future, and this will cause e2fsck
4618 	 * to complain and force a full file system check.
4619 	 */
4620 	if (!(sb->s_flags & MS_RDONLY))
4621 		es->s_wtime = cpu_to_le32(get_seconds());
4622 	if (sb->s_bdev->bd_part)
4623 		es->s_kbytes_written =
4624 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4625 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4626 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4627 	else
4628 		es->s_kbytes_written =
4629 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4630 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4631 		ext4_free_blocks_count_set(es,
4632 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4633 				&EXT4_SB(sb)->s_freeclusters_counter)));
4634 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4635 		es->s_free_inodes_count =
4636 			cpu_to_le32(percpu_counter_sum_positive(
4637 				&EXT4_SB(sb)->s_freeinodes_counter));
4638 	BUFFER_TRACE(sbh, "marking dirty");
4639 	ext4_superblock_csum_set(sb);
4640 	if (sync)
4641 		lock_buffer(sbh);
4642 	if (buffer_write_io_error(sbh)) {
4643 		/*
4644 		 * Oh, dear.  A previous attempt to write the
4645 		 * superblock failed.  This could happen because the
4646 		 * USB device was yanked out.  Or it could happen to
4647 		 * be a transient write error and maybe the block will
4648 		 * be remapped.  Nothing we can do but to retry the
4649 		 * write and hope for the best.
4650 		 */
4651 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4652 		       "superblock detected");
4653 		clear_buffer_write_io_error(sbh);
4654 		set_buffer_uptodate(sbh);
4655 	}
4656 	mark_buffer_dirty(sbh);
4657 	if (sync) {
4658 		unlock_buffer(sbh);
4659 		error = __sync_dirty_buffer(sbh,
4660 			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4661 		if (error)
4662 			return error;
4663 
4664 		error = buffer_write_io_error(sbh);
4665 		if (error) {
4666 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4667 			       "superblock");
4668 			clear_buffer_write_io_error(sbh);
4669 			set_buffer_uptodate(sbh);
4670 		}
4671 	}
4672 	return error;
4673 }
4674 
4675 /*
4676  * Have we just finished recovery?  If so, and if we are mounting (or
4677  * remounting) the filesystem readonly, then we will end up with a
4678  * consistent fs on disk.  Record that fact.
4679  */
4680 static void ext4_mark_recovery_complete(struct super_block *sb,
4681 					struct ext4_super_block *es)
4682 {
4683 	journal_t *journal = EXT4_SB(sb)->s_journal;
4684 
4685 	if (!ext4_has_feature_journal(sb)) {
4686 		BUG_ON(journal != NULL);
4687 		return;
4688 	}
4689 	jbd2_journal_lock_updates(journal);
4690 	if (jbd2_journal_flush(journal) < 0)
4691 		goto out;
4692 
4693 	if (ext4_has_feature_journal_needs_recovery(sb) &&
4694 	    sb->s_flags & MS_RDONLY) {
4695 		ext4_clear_feature_journal_needs_recovery(sb);
4696 		ext4_commit_super(sb, 1);
4697 	}
4698 
4699 out:
4700 	jbd2_journal_unlock_updates(journal);
4701 }
4702 
4703 /*
4704  * If we are mounting (or read-write remounting) a filesystem whose journal
4705  * has recorded an error from a previous lifetime, move that error to the
4706  * main filesystem now.
4707  */
4708 static void ext4_clear_journal_err(struct super_block *sb,
4709 				   struct ext4_super_block *es)
4710 {
4711 	journal_t *journal;
4712 	int j_errno;
4713 	const char *errstr;
4714 
4715 	BUG_ON(!ext4_has_feature_journal(sb));
4716 
4717 	journal = EXT4_SB(sb)->s_journal;
4718 
4719 	/*
4720 	 * Now check for any error status which may have been recorded in the
4721 	 * journal by a prior ext4_error() or ext4_abort()
4722 	 */
4723 
4724 	j_errno = jbd2_journal_errno(journal);
4725 	if (j_errno) {
4726 		char nbuf[16];
4727 
4728 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4729 		ext4_warning(sb, "Filesystem error recorded "
4730 			     "from previous mount: %s", errstr);
4731 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4732 
4733 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4734 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4735 		ext4_commit_super(sb, 1);
4736 
4737 		jbd2_journal_clear_err(journal);
4738 		jbd2_journal_update_sb_errno(journal);
4739 	}
4740 }
4741 
4742 /*
4743  * Force the running and committing transactions to commit,
4744  * and wait on the commit.
4745  */
4746 int ext4_force_commit(struct super_block *sb)
4747 {
4748 	journal_t *journal;
4749 
4750 	if (sb->s_flags & MS_RDONLY)
4751 		return 0;
4752 
4753 	journal = EXT4_SB(sb)->s_journal;
4754 	return ext4_journal_force_commit(journal);
4755 }
4756 
4757 static int ext4_sync_fs(struct super_block *sb, int wait)
4758 {
4759 	int ret = 0;
4760 	tid_t target;
4761 	bool needs_barrier = false;
4762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4763 
4764 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4765 		return 0;
4766 
4767 	trace_ext4_sync_fs(sb, wait);
4768 	flush_workqueue(sbi->rsv_conversion_wq);
4769 	/*
4770 	 * Writeback quota in non-journalled quota case - journalled quota has
4771 	 * no dirty dquots
4772 	 */
4773 	dquot_writeback_dquots(sb, -1);
4774 	/*
4775 	 * Data writeback is possible w/o journal transaction, so barrier must
4776 	 * being sent at the end of the function. But we can skip it if
4777 	 * transaction_commit will do it for us.
4778 	 */
4779 	if (sbi->s_journal) {
4780 		target = jbd2_get_latest_transaction(sbi->s_journal);
4781 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4782 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4783 			needs_barrier = true;
4784 
4785 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4786 			if (wait)
4787 				ret = jbd2_log_wait_commit(sbi->s_journal,
4788 							   target);
4789 		}
4790 	} else if (wait && test_opt(sb, BARRIER))
4791 		needs_barrier = true;
4792 	if (needs_barrier) {
4793 		int err;
4794 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4795 		if (!ret)
4796 			ret = err;
4797 	}
4798 
4799 	return ret;
4800 }
4801 
4802 /*
4803  * LVM calls this function before a (read-only) snapshot is created.  This
4804  * gives us a chance to flush the journal completely and mark the fs clean.
4805  *
4806  * Note that only this function cannot bring a filesystem to be in a clean
4807  * state independently. It relies on upper layer to stop all data & metadata
4808  * modifications.
4809  */
4810 static int ext4_freeze(struct super_block *sb)
4811 {
4812 	int error = 0;
4813 	journal_t *journal;
4814 
4815 	if (sb->s_flags & MS_RDONLY)
4816 		return 0;
4817 
4818 	journal = EXT4_SB(sb)->s_journal;
4819 
4820 	if (journal) {
4821 		/* Now we set up the journal barrier. */
4822 		jbd2_journal_lock_updates(journal);
4823 
4824 		/*
4825 		 * Don't clear the needs_recovery flag if we failed to
4826 		 * flush the journal.
4827 		 */
4828 		error = jbd2_journal_flush(journal);
4829 		if (error < 0)
4830 			goto out;
4831 
4832 		/* Journal blocked and flushed, clear needs_recovery flag. */
4833 		ext4_clear_feature_journal_needs_recovery(sb);
4834 	}
4835 
4836 	error = ext4_commit_super(sb, 1);
4837 out:
4838 	if (journal)
4839 		/* we rely on upper layer to stop further updates */
4840 		jbd2_journal_unlock_updates(journal);
4841 	return error;
4842 }
4843 
4844 /*
4845  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4846  * flag here, even though the filesystem is not technically dirty yet.
4847  */
4848 static int ext4_unfreeze(struct super_block *sb)
4849 {
4850 	if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4851 		return 0;
4852 
4853 	if (EXT4_SB(sb)->s_journal) {
4854 		/* Reset the needs_recovery flag before the fs is unlocked. */
4855 		ext4_set_feature_journal_needs_recovery(sb);
4856 	}
4857 
4858 	ext4_commit_super(sb, 1);
4859 	return 0;
4860 }
4861 
4862 /*
4863  * Structure to save mount options for ext4_remount's benefit
4864  */
4865 struct ext4_mount_options {
4866 	unsigned long s_mount_opt;
4867 	unsigned long s_mount_opt2;
4868 	kuid_t s_resuid;
4869 	kgid_t s_resgid;
4870 	unsigned long s_commit_interval;
4871 	u32 s_min_batch_time, s_max_batch_time;
4872 #ifdef CONFIG_QUOTA
4873 	int s_jquota_fmt;
4874 	char *s_qf_names[EXT4_MAXQUOTAS];
4875 #endif
4876 };
4877 
4878 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4879 {
4880 	struct ext4_super_block *es;
4881 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4882 	unsigned long old_sb_flags;
4883 	struct ext4_mount_options old_opts;
4884 	int enable_quota = 0;
4885 	ext4_group_t g;
4886 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4887 	int err = 0;
4888 #ifdef CONFIG_QUOTA
4889 	int i, j;
4890 #endif
4891 	char *orig_data = kstrdup(data, GFP_KERNEL);
4892 
4893 	/* Store the original options */
4894 	old_sb_flags = sb->s_flags;
4895 	old_opts.s_mount_opt = sbi->s_mount_opt;
4896 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4897 	old_opts.s_resuid = sbi->s_resuid;
4898 	old_opts.s_resgid = sbi->s_resgid;
4899 	old_opts.s_commit_interval = sbi->s_commit_interval;
4900 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4901 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4902 #ifdef CONFIG_QUOTA
4903 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4904 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4905 		if (sbi->s_qf_names[i]) {
4906 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4907 							 GFP_KERNEL);
4908 			if (!old_opts.s_qf_names[i]) {
4909 				for (j = 0; j < i; j++)
4910 					kfree(old_opts.s_qf_names[j]);
4911 				kfree(orig_data);
4912 				return -ENOMEM;
4913 			}
4914 		} else
4915 			old_opts.s_qf_names[i] = NULL;
4916 #endif
4917 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4918 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4919 
4920 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4921 		err = -EINVAL;
4922 		goto restore_opts;
4923 	}
4924 
4925 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4926 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4927 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4928 			 "during remount not supported; ignoring");
4929 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4930 	}
4931 
4932 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4933 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4934 			ext4_msg(sb, KERN_ERR, "can't mount with "
4935 				 "both data=journal and delalloc");
4936 			err = -EINVAL;
4937 			goto restore_opts;
4938 		}
4939 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4940 			ext4_msg(sb, KERN_ERR, "can't mount with "
4941 				 "both data=journal and dioread_nolock");
4942 			err = -EINVAL;
4943 			goto restore_opts;
4944 		}
4945 		if (test_opt(sb, DAX)) {
4946 			ext4_msg(sb, KERN_ERR, "can't mount with "
4947 				 "both data=journal and dax");
4948 			err = -EINVAL;
4949 			goto restore_opts;
4950 		}
4951 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4952 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4953 			ext4_msg(sb, KERN_ERR, "can't mount with "
4954 				"journal_async_commit in data=ordered mode");
4955 			err = -EINVAL;
4956 			goto restore_opts;
4957 		}
4958 	}
4959 
4960 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4961 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4962 			"dax flag with busy inodes while remounting");
4963 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4964 	}
4965 
4966 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4967 		ext4_abort(sb, "Abort forced by user");
4968 
4969 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4970 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4971 
4972 	es = sbi->s_es;
4973 
4974 	if (sbi->s_journal) {
4975 		ext4_init_journal_params(sb, sbi->s_journal);
4976 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4977 	}
4978 
4979 	if (*flags & MS_LAZYTIME)
4980 		sb->s_flags |= MS_LAZYTIME;
4981 
4982 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4983 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4984 			err = -EROFS;
4985 			goto restore_opts;
4986 		}
4987 
4988 		if (*flags & MS_RDONLY) {
4989 			err = sync_filesystem(sb);
4990 			if (err < 0)
4991 				goto restore_opts;
4992 			err = dquot_suspend(sb, -1);
4993 			if (err < 0)
4994 				goto restore_opts;
4995 
4996 			/*
4997 			 * First of all, the unconditional stuff we have to do
4998 			 * to disable replay of the journal when we next remount
4999 			 */
5000 			sb->s_flags |= MS_RDONLY;
5001 
5002 			/*
5003 			 * OK, test if we are remounting a valid rw partition
5004 			 * readonly, and if so set the rdonly flag and then
5005 			 * mark the partition as valid again.
5006 			 */
5007 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5008 			    (sbi->s_mount_state & EXT4_VALID_FS))
5009 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5010 
5011 			if (sbi->s_journal)
5012 				ext4_mark_recovery_complete(sb, es);
5013 		} else {
5014 			/* Make sure we can mount this feature set readwrite */
5015 			if (ext4_has_feature_readonly(sb) ||
5016 			    !ext4_feature_set_ok(sb, 0)) {
5017 				err = -EROFS;
5018 				goto restore_opts;
5019 			}
5020 			/*
5021 			 * Make sure the group descriptor checksums
5022 			 * are sane.  If they aren't, refuse to remount r/w.
5023 			 */
5024 			for (g = 0; g < sbi->s_groups_count; g++) {
5025 				struct ext4_group_desc *gdp =
5026 					ext4_get_group_desc(sb, g, NULL);
5027 
5028 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5029 					ext4_msg(sb, KERN_ERR,
5030 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5031 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5032 					       le16_to_cpu(gdp->bg_checksum));
5033 					err = -EFSBADCRC;
5034 					goto restore_opts;
5035 				}
5036 			}
5037 
5038 			/*
5039 			 * If we have an unprocessed orphan list hanging
5040 			 * around from a previously readonly bdev mount,
5041 			 * require a full umount/remount for now.
5042 			 */
5043 			if (es->s_last_orphan) {
5044 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5045 				       "remount RDWR because of unprocessed "
5046 				       "orphan inode list.  Please "
5047 				       "umount/remount instead");
5048 				err = -EINVAL;
5049 				goto restore_opts;
5050 			}
5051 
5052 			/*
5053 			 * Mounting a RDONLY partition read-write, so reread
5054 			 * and store the current valid flag.  (It may have
5055 			 * been changed by e2fsck since we originally mounted
5056 			 * the partition.)
5057 			 */
5058 			if (sbi->s_journal)
5059 				ext4_clear_journal_err(sb, es);
5060 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5061 			if (!ext4_setup_super(sb, es, 0))
5062 				sb->s_flags &= ~MS_RDONLY;
5063 			if (ext4_has_feature_mmp(sb))
5064 				if (ext4_multi_mount_protect(sb,
5065 						le64_to_cpu(es->s_mmp_block))) {
5066 					err = -EROFS;
5067 					goto restore_opts;
5068 				}
5069 			enable_quota = 1;
5070 		}
5071 	}
5072 
5073 	/*
5074 	 * Reinitialize lazy itable initialization thread based on
5075 	 * current settings
5076 	 */
5077 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5078 		ext4_unregister_li_request(sb);
5079 	else {
5080 		ext4_group_t first_not_zeroed;
5081 		first_not_zeroed = ext4_has_uninit_itable(sb);
5082 		ext4_register_li_request(sb, first_not_zeroed);
5083 	}
5084 
5085 	ext4_setup_system_zone(sb);
5086 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5087 		ext4_commit_super(sb, 1);
5088 
5089 #ifdef CONFIG_QUOTA
5090 	/* Release old quota file names */
5091 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5092 		kfree(old_opts.s_qf_names[i]);
5093 	if (enable_quota) {
5094 		if (sb_any_quota_suspended(sb))
5095 			dquot_resume(sb, -1);
5096 		else if (ext4_has_feature_quota(sb)) {
5097 			err = ext4_enable_quotas(sb);
5098 			if (err)
5099 				goto restore_opts;
5100 		}
5101 	}
5102 #endif
5103 
5104 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5105 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5106 	kfree(orig_data);
5107 	return 0;
5108 
5109 restore_opts:
5110 	sb->s_flags = old_sb_flags;
5111 	sbi->s_mount_opt = old_opts.s_mount_opt;
5112 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5113 	sbi->s_resuid = old_opts.s_resuid;
5114 	sbi->s_resgid = old_opts.s_resgid;
5115 	sbi->s_commit_interval = old_opts.s_commit_interval;
5116 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5117 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5118 #ifdef CONFIG_QUOTA
5119 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5120 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5121 		kfree(sbi->s_qf_names[i]);
5122 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5123 	}
5124 #endif
5125 	kfree(orig_data);
5126 	return err;
5127 }
5128 
5129 #ifdef CONFIG_QUOTA
5130 static int ext4_statfs_project(struct super_block *sb,
5131 			       kprojid_t projid, struct kstatfs *buf)
5132 {
5133 	struct kqid qid;
5134 	struct dquot *dquot;
5135 	u64 limit;
5136 	u64 curblock;
5137 
5138 	qid = make_kqid_projid(projid);
5139 	dquot = dqget(sb, qid);
5140 	if (IS_ERR(dquot))
5141 		return PTR_ERR(dquot);
5142 	spin_lock(&dq_data_lock);
5143 
5144 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5145 		 dquot->dq_dqb.dqb_bsoftlimit :
5146 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5147 	if (limit && buf->f_blocks > limit) {
5148 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5149 		buf->f_blocks = limit;
5150 		buf->f_bfree = buf->f_bavail =
5151 			(buf->f_blocks > curblock) ?
5152 			 (buf->f_blocks - curblock) : 0;
5153 	}
5154 
5155 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5156 		dquot->dq_dqb.dqb_isoftlimit :
5157 		dquot->dq_dqb.dqb_ihardlimit;
5158 	if (limit && buf->f_files > limit) {
5159 		buf->f_files = limit;
5160 		buf->f_ffree =
5161 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5162 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5163 	}
5164 
5165 	spin_unlock(&dq_data_lock);
5166 	dqput(dquot);
5167 	return 0;
5168 }
5169 #endif
5170 
5171 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5172 {
5173 	struct super_block *sb = dentry->d_sb;
5174 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5175 	struct ext4_super_block *es = sbi->s_es;
5176 	ext4_fsblk_t overhead = 0, resv_blocks;
5177 	u64 fsid;
5178 	s64 bfree;
5179 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5180 
5181 	if (!test_opt(sb, MINIX_DF))
5182 		overhead = sbi->s_overhead;
5183 
5184 	buf->f_type = EXT4_SUPER_MAGIC;
5185 	buf->f_bsize = sb->s_blocksize;
5186 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5187 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5188 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5189 	/* prevent underflow in case that few free space is available */
5190 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5191 	buf->f_bavail = buf->f_bfree -
5192 			(ext4_r_blocks_count(es) + resv_blocks);
5193 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5194 		buf->f_bavail = 0;
5195 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5196 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5197 	buf->f_namelen = EXT4_NAME_LEN;
5198 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5199 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5200 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5201 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5202 
5203 #ifdef CONFIG_QUOTA
5204 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5205 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5206 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5207 #endif
5208 	return 0;
5209 }
5210 
5211 /* Helper function for writing quotas on sync - we need to start transaction
5212  * before quota file is locked for write. Otherwise the are possible deadlocks:
5213  * Process 1                         Process 2
5214  * ext4_create()                     quota_sync()
5215  *   jbd2_journal_start()                  write_dquot()
5216  *   dquot_initialize()                         down(dqio_mutex)
5217  *     down(dqio_mutex)                    jbd2_journal_start()
5218  *
5219  */
5220 
5221 #ifdef CONFIG_QUOTA
5222 
5223 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5224 {
5225 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5226 }
5227 
5228 static int ext4_write_dquot(struct dquot *dquot)
5229 {
5230 	int ret, err;
5231 	handle_t *handle;
5232 	struct inode *inode;
5233 
5234 	inode = dquot_to_inode(dquot);
5235 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5236 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5237 	if (IS_ERR(handle))
5238 		return PTR_ERR(handle);
5239 	ret = dquot_commit(dquot);
5240 	err = ext4_journal_stop(handle);
5241 	if (!ret)
5242 		ret = err;
5243 	return ret;
5244 }
5245 
5246 static int ext4_acquire_dquot(struct dquot *dquot)
5247 {
5248 	int ret, err;
5249 	handle_t *handle;
5250 
5251 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5252 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5253 	if (IS_ERR(handle))
5254 		return PTR_ERR(handle);
5255 	ret = dquot_acquire(dquot);
5256 	err = ext4_journal_stop(handle);
5257 	if (!ret)
5258 		ret = err;
5259 	return ret;
5260 }
5261 
5262 static int ext4_release_dquot(struct dquot *dquot)
5263 {
5264 	int ret, err;
5265 	handle_t *handle;
5266 
5267 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5268 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5269 	if (IS_ERR(handle)) {
5270 		/* Release dquot anyway to avoid endless cycle in dqput() */
5271 		dquot_release(dquot);
5272 		return PTR_ERR(handle);
5273 	}
5274 	ret = dquot_release(dquot);
5275 	err = ext4_journal_stop(handle);
5276 	if (!ret)
5277 		ret = err;
5278 	return ret;
5279 }
5280 
5281 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5282 {
5283 	struct super_block *sb = dquot->dq_sb;
5284 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5285 
5286 	/* Are we journaling quotas? */
5287 	if (ext4_has_feature_quota(sb) ||
5288 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5289 		dquot_mark_dquot_dirty(dquot);
5290 		return ext4_write_dquot(dquot);
5291 	} else {
5292 		return dquot_mark_dquot_dirty(dquot);
5293 	}
5294 }
5295 
5296 static int ext4_write_info(struct super_block *sb, int type)
5297 {
5298 	int ret, err;
5299 	handle_t *handle;
5300 
5301 	/* Data block + inode block */
5302 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5303 	if (IS_ERR(handle))
5304 		return PTR_ERR(handle);
5305 	ret = dquot_commit_info(sb, type);
5306 	err = ext4_journal_stop(handle);
5307 	if (!ret)
5308 		ret = err;
5309 	return ret;
5310 }
5311 
5312 /*
5313  * Turn on quotas during mount time - we need to find
5314  * the quota file and such...
5315  */
5316 static int ext4_quota_on_mount(struct super_block *sb, int type)
5317 {
5318 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5319 					EXT4_SB(sb)->s_jquota_fmt, type);
5320 }
5321 
5322 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5323 {
5324 	struct ext4_inode_info *ei = EXT4_I(inode);
5325 
5326 	/* The first argument of lockdep_set_subclass has to be
5327 	 * *exactly* the same as the argument to init_rwsem() --- in
5328 	 * this case, in init_once() --- or lockdep gets unhappy
5329 	 * because the name of the lock is set using the
5330 	 * stringification of the argument to init_rwsem().
5331 	 */
5332 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5333 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5334 }
5335 
5336 /*
5337  * Standard function to be called on quota_on
5338  */
5339 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5340 			 const struct path *path)
5341 {
5342 	int err;
5343 
5344 	if (!test_opt(sb, QUOTA))
5345 		return -EINVAL;
5346 
5347 	/* Quotafile not on the same filesystem? */
5348 	if (path->dentry->d_sb != sb)
5349 		return -EXDEV;
5350 	/* Journaling quota? */
5351 	if (EXT4_SB(sb)->s_qf_names[type]) {
5352 		/* Quotafile not in fs root? */
5353 		if (path->dentry->d_parent != sb->s_root)
5354 			ext4_msg(sb, KERN_WARNING,
5355 				"Quota file not on filesystem root. "
5356 				"Journaled quota will not work");
5357 	}
5358 
5359 	/*
5360 	 * When we journal data on quota file, we have to flush journal to see
5361 	 * all updates to the file when we bypass pagecache...
5362 	 */
5363 	if (EXT4_SB(sb)->s_journal &&
5364 	    ext4_should_journal_data(d_inode(path->dentry))) {
5365 		/*
5366 		 * We don't need to lock updates but journal_flush() could
5367 		 * otherwise be livelocked...
5368 		 */
5369 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5370 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5371 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5372 		if (err)
5373 			return err;
5374 	}
5375 
5376 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5377 	err = dquot_quota_on(sb, type, format_id, path);
5378 	if (err) {
5379 		lockdep_set_quota_inode(path->dentry->d_inode,
5380 					     I_DATA_SEM_NORMAL);
5381 	} else {
5382 		struct inode *inode = d_inode(path->dentry);
5383 		handle_t *handle;
5384 
5385 		/*
5386 		 * Set inode flags to prevent userspace from messing with quota
5387 		 * files. If this fails, we return success anyway since quotas
5388 		 * are already enabled and this is not a hard failure.
5389 		 */
5390 		inode_lock(inode);
5391 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5392 		if (IS_ERR(handle))
5393 			goto unlock_inode;
5394 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5395 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5396 				S_NOATIME | S_IMMUTABLE);
5397 		ext4_mark_inode_dirty(handle, inode);
5398 		ext4_journal_stop(handle);
5399 	unlock_inode:
5400 		inode_unlock(inode);
5401 	}
5402 	return err;
5403 }
5404 
5405 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5406 			     unsigned int flags)
5407 {
5408 	int err;
5409 	struct inode *qf_inode;
5410 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5411 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5412 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5413 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5414 	};
5415 
5416 	BUG_ON(!ext4_has_feature_quota(sb));
5417 
5418 	if (!qf_inums[type])
5419 		return -EPERM;
5420 
5421 	qf_inode = ext4_iget(sb, qf_inums[type]);
5422 	if (IS_ERR(qf_inode)) {
5423 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5424 		return PTR_ERR(qf_inode);
5425 	}
5426 
5427 	/* Don't account quota for quota files to avoid recursion */
5428 	qf_inode->i_flags |= S_NOQUOTA;
5429 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5430 	err = dquot_enable(qf_inode, type, format_id, flags);
5431 	iput(qf_inode);
5432 	if (err)
5433 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5434 
5435 	return err;
5436 }
5437 
5438 /* Enable usage tracking for all quota types. */
5439 static int ext4_enable_quotas(struct super_block *sb)
5440 {
5441 	int type, err = 0;
5442 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5443 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5444 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5445 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5446 	};
5447 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5448 		test_opt(sb, USRQUOTA),
5449 		test_opt(sb, GRPQUOTA),
5450 		test_opt(sb, PRJQUOTA),
5451 	};
5452 
5453 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5454 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5455 		if (qf_inums[type]) {
5456 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5457 				DQUOT_USAGE_ENABLED |
5458 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5459 			if (err) {
5460 				ext4_warning(sb,
5461 					"Failed to enable quota tracking "
5462 					"(type=%d, err=%d). Please run "
5463 					"e2fsck to fix.", type, err);
5464 				return err;
5465 			}
5466 		}
5467 	}
5468 	return 0;
5469 }
5470 
5471 static int ext4_quota_off(struct super_block *sb, int type)
5472 {
5473 	struct inode *inode = sb_dqopt(sb)->files[type];
5474 	handle_t *handle;
5475 	int err;
5476 
5477 	/* Force all delayed allocation blocks to be allocated.
5478 	 * Caller already holds s_umount sem */
5479 	if (test_opt(sb, DELALLOC))
5480 		sync_filesystem(sb);
5481 
5482 	if (!inode || !igrab(inode))
5483 		goto out;
5484 
5485 	err = dquot_quota_off(sb, type);
5486 	if (err || ext4_has_feature_quota(sb))
5487 		goto out_put;
5488 
5489 	inode_lock(inode);
5490 	/*
5491 	 * Update modification times of quota files when userspace can
5492 	 * start looking at them. If we fail, we return success anyway since
5493 	 * this is not a hard failure and quotas are already disabled.
5494 	 */
5495 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5496 	if (IS_ERR(handle))
5497 		goto out_unlock;
5498 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5499 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5500 	inode->i_mtime = inode->i_ctime = current_time(inode);
5501 	ext4_mark_inode_dirty(handle, inode);
5502 	ext4_journal_stop(handle);
5503 out_unlock:
5504 	inode_unlock(inode);
5505 out_put:
5506 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5507 	iput(inode);
5508 	return err;
5509 out:
5510 	return dquot_quota_off(sb, type);
5511 }
5512 
5513 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5514  * acquiring the locks... As quota files are never truncated and quota code
5515  * itself serializes the operations (and no one else should touch the files)
5516  * we don't have to be afraid of races */
5517 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5518 			       size_t len, loff_t off)
5519 {
5520 	struct inode *inode = sb_dqopt(sb)->files[type];
5521 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5522 	int offset = off & (sb->s_blocksize - 1);
5523 	int tocopy;
5524 	size_t toread;
5525 	struct buffer_head *bh;
5526 	loff_t i_size = i_size_read(inode);
5527 
5528 	if (off > i_size)
5529 		return 0;
5530 	if (off+len > i_size)
5531 		len = i_size-off;
5532 	toread = len;
5533 	while (toread > 0) {
5534 		tocopy = sb->s_blocksize - offset < toread ?
5535 				sb->s_blocksize - offset : toread;
5536 		bh = ext4_bread(NULL, inode, blk, 0);
5537 		if (IS_ERR(bh))
5538 			return PTR_ERR(bh);
5539 		if (!bh)	/* A hole? */
5540 			memset(data, 0, tocopy);
5541 		else
5542 			memcpy(data, bh->b_data+offset, tocopy);
5543 		brelse(bh);
5544 		offset = 0;
5545 		toread -= tocopy;
5546 		data += tocopy;
5547 		blk++;
5548 	}
5549 	return len;
5550 }
5551 
5552 /* Write to quotafile (we know the transaction is already started and has
5553  * enough credits) */
5554 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5555 				const char *data, size_t len, loff_t off)
5556 {
5557 	struct inode *inode = sb_dqopt(sb)->files[type];
5558 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5559 	int err, offset = off & (sb->s_blocksize - 1);
5560 	int retries = 0;
5561 	struct buffer_head *bh;
5562 	handle_t *handle = journal_current_handle();
5563 
5564 	if (EXT4_SB(sb)->s_journal && !handle) {
5565 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5566 			" cancelled because transaction is not started",
5567 			(unsigned long long)off, (unsigned long long)len);
5568 		return -EIO;
5569 	}
5570 	/*
5571 	 * Since we account only one data block in transaction credits,
5572 	 * then it is impossible to cross a block boundary.
5573 	 */
5574 	if (sb->s_blocksize - offset < len) {
5575 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5576 			" cancelled because not block aligned",
5577 			(unsigned long long)off, (unsigned long long)len);
5578 		return -EIO;
5579 	}
5580 
5581 	do {
5582 		bh = ext4_bread(handle, inode, blk,
5583 				EXT4_GET_BLOCKS_CREATE |
5584 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5585 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5586 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5587 	if (IS_ERR(bh))
5588 		return PTR_ERR(bh);
5589 	if (!bh)
5590 		goto out;
5591 	BUFFER_TRACE(bh, "get write access");
5592 	err = ext4_journal_get_write_access(handle, bh);
5593 	if (err) {
5594 		brelse(bh);
5595 		return err;
5596 	}
5597 	lock_buffer(bh);
5598 	memcpy(bh->b_data+offset, data, len);
5599 	flush_dcache_page(bh->b_page);
5600 	unlock_buffer(bh);
5601 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5602 	brelse(bh);
5603 out:
5604 	if (inode->i_size < off + len) {
5605 		i_size_write(inode, off + len);
5606 		EXT4_I(inode)->i_disksize = inode->i_size;
5607 		ext4_mark_inode_dirty(handle, inode);
5608 	}
5609 	return len;
5610 }
5611 
5612 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5613 {
5614 	const struct quota_format_ops	*ops;
5615 
5616 	if (!sb_has_quota_loaded(sb, qid->type))
5617 		return -ESRCH;
5618 	ops = sb_dqopt(sb)->ops[qid->type];
5619 	if (!ops || !ops->get_next_id)
5620 		return -ENOSYS;
5621 	return dquot_get_next_id(sb, qid);
5622 }
5623 #endif
5624 
5625 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5626 		       const char *dev_name, void *data)
5627 {
5628 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5629 }
5630 
5631 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5632 static inline void register_as_ext2(void)
5633 {
5634 	int err = register_filesystem(&ext2_fs_type);
5635 	if (err)
5636 		printk(KERN_WARNING
5637 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5638 }
5639 
5640 static inline void unregister_as_ext2(void)
5641 {
5642 	unregister_filesystem(&ext2_fs_type);
5643 }
5644 
5645 static inline int ext2_feature_set_ok(struct super_block *sb)
5646 {
5647 	if (ext4_has_unknown_ext2_incompat_features(sb))
5648 		return 0;
5649 	if (sb->s_flags & MS_RDONLY)
5650 		return 1;
5651 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5652 		return 0;
5653 	return 1;
5654 }
5655 #else
5656 static inline void register_as_ext2(void) { }
5657 static inline void unregister_as_ext2(void) { }
5658 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5659 #endif
5660 
5661 static inline void register_as_ext3(void)
5662 {
5663 	int err = register_filesystem(&ext3_fs_type);
5664 	if (err)
5665 		printk(KERN_WARNING
5666 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5667 }
5668 
5669 static inline void unregister_as_ext3(void)
5670 {
5671 	unregister_filesystem(&ext3_fs_type);
5672 }
5673 
5674 static inline int ext3_feature_set_ok(struct super_block *sb)
5675 {
5676 	if (ext4_has_unknown_ext3_incompat_features(sb))
5677 		return 0;
5678 	if (!ext4_has_feature_journal(sb))
5679 		return 0;
5680 	if (sb->s_flags & MS_RDONLY)
5681 		return 1;
5682 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5683 		return 0;
5684 	return 1;
5685 }
5686 
5687 static struct file_system_type ext4_fs_type = {
5688 	.owner		= THIS_MODULE,
5689 	.name		= "ext4",
5690 	.mount		= ext4_mount,
5691 	.kill_sb	= kill_block_super,
5692 	.fs_flags	= FS_REQUIRES_DEV,
5693 };
5694 MODULE_ALIAS_FS("ext4");
5695 
5696 /* Shared across all ext4 file systems */
5697 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5698 
5699 static int __init ext4_init_fs(void)
5700 {
5701 	int i, err;
5702 
5703 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5704 	ext4_li_info = NULL;
5705 	mutex_init(&ext4_li_mtx);
5706 
5707 	/* Build-time check for flags consistency */
5708 	ext4_check_flag_values();
5709 
5710 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5711 		init_waitqueue_head(&ext4__ioend_wq[i]);
5712 
5713 	err = ext4_init_es();
5714 	if (err)
5715 		return err;
5716 
5717 	err = ext4_init_pageio();
5718 	if (err)
5719 		goto out5;
5720 
5721 	err = ext4_init_system_zone();
5722 	if (err)
5723 		goto out4;
5724 
5725 	err = ext4_init_sysfs();
5726 	if (err)
5727 		goto out3;
5728 
5729 	err = ext4_init_mballoc();
5730 	if (err)
5731 		goto out2;
5732 	err = init_inodecache();
5733 	if (err)
5734 		goto out1;
5735 	register_as_ext3();
5736 	register_as_ext2();
5737 	err = register_filesystem(&ext4_fs_type);
5738 	if (err)
5739 		goto out;
5740 
5741 	return 0;
5742 out:
5743 	unregister_as_ext2();
5744 	unregister_as_ext3();
5745 	destroy_inodecache();
5746 out1:
5747 	ext4_exit_mballoc();
5748 out2:
5749 	ext4_exit_sysfs();
5750 out3:
5751 	ext4_exit_system_zone();
5752 out4:
5753 	ext4_exit_pageio();
5754 out5:
5755 	ext4_exit_es();
5756 
5757 	return err;
5758 }
5759 
5760 static void __exit ext4_exit_fs(void)
5761 {
5762 	ext4_destroy_lazyinit_thread();
5763 	unregister_as_ext2();
5764 	unregister_as_ext3();
5765 	unregister_filesystem(&ext4_fs_type);
5766 	destroy_inodecache();
5767 	ext4_exit_mballoc();
5768 	ext4_exit_sysfs();
5769 	ext4_exit_system_zone();
5770 	ext4_exit_pageio();
5771 	ext4_exit_es();
5772 }
5773 
5774 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5775 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5776 MODULE_LICENSE("GPL");
5777 module_init(ext4_init_fs)
5778 module_exit(ext4_exit_fs)
5779