1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/dax.h> 41 #include <linux/cleancache.h> 42 #include <linux/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 #include "fsmap.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ext4.h> 57 58 static struct ext4_lazy_init *ext4_li_info; 59 static struct mutex ext4_li_mtx; 60 static struct ratelimit_state ext4_mount_msg_ratelimit; 61 62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 63 unsigned long journal_devnum); 64 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 65 static int ext4_commit_super(struct super_block *sb, int sync); 66 static void ext4_mark_recovery_complete(struct super_block *sb, 67 struct ext4_super_block *es); 68 static void ext4_clear_journal_err(struct super_block *sb, 69 struct ext4_super_block *es); 70 static int ext4_sync_fs(struct super_block *sb, int wait); 71 static int ext4_remount(struct super_block *sb, int *flags, char *data); 72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 73 static int ext4_unfreeze(struct super_block *sb); 74 static int ext4_freeze(struct super_block *sb); 75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 76 const char *dev_name, void *data); 77 static inline int ext2_feature_set_ok(struct super_block *sb); 78 static inline int ext3_feature_set_ok(struct super_block *sb); 79 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 80 static void ext4_destroy_lazyinit_thread(void); 81 static void ext4_unregister_li_request(struct super_block *sb); 82 static void ext4_clear_request_list(void); 83 static struct inode *ext4_get_journal_inode(struct super_block *sb, 84 unsigned int journal_inum); 85 86 /* 87 * Lock ordering 88 * 89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 90 * i_mmap_rwsem (inode->i_mmap_rwsem)! 91 * 92 * page fault path: 93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 94 * page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_sem 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * i_mmap_rwsem (w) -> page lock 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 105 * transaction start -> i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 110 * transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 spin_lock(&sbi->s_md_lock); 377 while (!list_empty(&txn->t_private_list)) { 378 jce = list_entry(txn->t_private_list.next, 379 struct ext4_journal_cb_entry, jce_list); 380 list_del_init(&jce->jce_list); 381 spin_unlock(&sbi->s_md_lock); 382 jce->jce_func(sb, jce, error); 383 spin_lock(&sbi->s_md_lock); 384 } 385 spin_unlock(&sbi->s_md_lock); 386 } 387 388 /* Deal with the reporting of failure conditions on a filesystem such as 389 * inconsistencies detected or read IO failures. 390 * 391 * On ext2, we can store the error state of the filesystem in the 392 * superblock. That is not possible on ext4, because we may have other 393 * write ordering constraints on the superblock which prevent us from 394 * writing it out straight away; and given that the journal is about to 395 * be aborted, we can't rely on the current, or future, transactions to 396 * write out the superblock safely. 397 * 398 * We'll just use the jbd2_journal_abort() error code to record an error in 399 * the journal instead. On recovery, the journal will complain about 400 * that error until we've noted it down and cleared it. 401 */ 402 403 static void ext4_handle_error(struct super_block *sb) 404 { 405 if (sb->s_flags & MS_RDONLY) 406 return; 407 408 if (!test_opt(sb, ERRORS_CONT)) { 409 journal_t *journal = EXT4_SB(sb)->s_journal; 410 411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 412 if (journal) 413 jbd2_journal_abort(journal, -EIO); 414 } 415 if (test_opt(sb, ERRORS_RO)) { 416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 417 /* 418 * Make sure updated value of ->s_mount_flags will be visible 419 * before ->s_flags update 420 */ 421 smp_wmb(); 422 sb->s_flags |= MS_RDONLY; 423 } 424 if (test_opt(sb, ERRORS_PANIC)) { 425 if (EXT4_SB(sb)->s_journal && 426 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 427 return; 428 panic("EXT4-fs (device %s): panic forced after error\n", 429 sb->s_id); 430 } 431 } 432 433 #define ext4_error_ratelimit(sb) \ 434 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 435 "EXT4-fs error") 436 437 void __ext4_error(struct super_block *sb, const char *function, 438 unsigned int line, const char *fmt, ...) 439 { 440 struct va_format vaf; 441 va_list args; 442 443 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 444 return; 445 446 if (ext4_error_ratelimit(sb)) { 447 va_start(args, fmt); 448 vaf.fmt = fmt; 449 vaf.va = &args; 450 printk(KERN_CRIT 451 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 452 sb->s_id, function, line, current->comm, &vaf); 453 va_end(args); 454 } 455 save_error_info(sb, function, line); 456 ext4_handle_error(sb); 457 } 458 459 void __ext4_error_inode(struct inode *inode, const char *function, 460 unsigned int line, ext4_fsblk_t block, 461 const char *fmt, ...) 462 { 463 va_list args; 464 struct va_format vaf; 465 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 466 467 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 468 return; 469 470 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 471 es->s_last_error_block = cpu_to_le64(block); 472 if (ext4_error_ratelimit(inode->i_sb)) { 473 va_start(args, fmt); 474 vaf.fmt = fmt; 475 vaf.va = &args; 476 if (block) 477 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 478 "inode #%lu: block %llu: comm %s: %pV\n", 479 inode->i_sb->s_id, function, line, inode->i_ino, 480 block, current->comm, &vaf); 481 else 482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 483 "inode #%lu: comm %s: %pV\n", 484 inode->i_sb->s_id, function, line, inode->i_ino, 485 current->comm, &vaf); 486 va_end(args); 487 } 488 save_error_info(inode->i_sb, function, line); 489 ext4_handle_error(inode->i_sb); 490 } 491 492 void __ext4_error_file(struct file *file, const char *function, 493 unsigned int line, ext4_fsblk_t block, 494 const char *fmt, ...) 495 { 496 va_list args; 497 struct va_format vaf; 498 struct ext4_super_block *es; 499 struct inode *inode = file_inode(file); 500 char pathname[80], *path; 501 502 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 503 return; 504 505 es = EXT4_SB(inode->i_sb)->s_es; 506 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 507 if (ext4_error_ratelimit(inode->i_sb)) { 508 path = file_path(file, pathname, sizeof(pathname)); 509 if (IS_ERR(path)) 510 path = "(unknown)"; 511 va_start(args, fmt); 512 vaf.fmt = fmt; 513 vaf.va = &args; 514 if (block) 515 printk(KERN_CRIT 516 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 517 "block %llu: comm %s: path %s: %pV\n", 518 inode->i_sb->s_id, function, line, inode->i_ino, 519 block, current->comm, path, &vaf); 520 else 521 printk(KERN_CRIT 522 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 523 "comm %s: path %s: %pV\n", 524 inode->i_sb->s_id, function, line, inode->i_ino, 525 current->comm, path, &vaf); 526 va_end(args); 527 } 528 save_error_info(inode->i_sb, function, line); 529 ext4_handle_error(inode->i_sb); 530 } 531 532 const char *ext4_decode_error(struct super_block *sb, int errno, 533 char nbuf[16]) 534 { 535 char *errstr = NULL; 536 537 switch (errno) { 538 case -EFSCORRUPTED: 539 errstr = "Corrupt filesystem"; 540 break; 541 case -EFSBADCRC: 542 errstr = "Filesystem failed CRC"; 543 break; 544 case -EIO: 545 errstr = "IO failure"; 546 break; 547 case -ENOMEM: 548 errstr = "Out of memory"; 549 break; 550 case -EROFS: 551 if (!sb || (EXT4_SB(sb)->s_journal && 552 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 553 errstr = "Journal has aborted"; 554 else 555 errstr = "Readonly filesystem"; 556 break; 557 default: 558 /* If the caller passed in an extra buffer for unknown 559 * errors, textualise them now. Else we just return 560 * NULL. */ 561 if (nbuf) { 562 /* Check for truncated error codes... */ 563 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 564 errstr = nbuf; 565 } 566 break; 567 } 568 569 return errstr; 570 } 571 572 /* __ext4_std_error decodes expected errors from journaling functions 573 * automatically and invokes the appropriate error response. */ 574 575 void __ext4_std_error(struct super_block *sb, const char *function, 576 unsigned int line, int errno) 577 { 578 char nbuf[16]; 579 const char *errstr; 580 581 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 582 return; 583 584 /* Special case: if the error is EROFS, and we're not already 585 * inside a transaction, then there's really no point in logging 586 * an error. */ 587 if (errno == -EROFS && journal_current_handle() == NULL && 588 (sb->s_flags & MS_RDONLY)) 589 return; 590 591 if (ext4_error_ratelimit(sb)) { 592 errstr = ext4_decode_error(sb, errno, nbuf); 593 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 594 sb->s_id, function, line, errstr); 595 } 596 597 save_error_info(sb, function, line); 598 ext4_handle_error(sb); 599 } 600 601 /* 602 * ext4_abort is a much stronger failure handler than ext4_error. The 603 * abort function may be used to deal with unrecoverable failures such 604 * as journal IO errors or ENOMEM at a critical moment in log management. 605 * 606 * We unconditionally force the filesystem into an ABORT|READONLY state, 607 * unless the error response on the fs has been set to panic in which 608 * case we take the easy way out and panic immediately. 609 */ 610 611 void __ext4_abort(struct super_block *sb, const char *function, 612 unsigned int line, const char *fmt, ...) 613 { 614 struct va_format vaf; 615 va_list args; 616 617 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 618 return; 619 620 save_error_info(sb, function, line); 621 va_start(args, fmt); 622 vaf.fmt = fmt; 623 vaf.va = &args; 624 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 625 sb->s_id, function, line, &vaf); 626 va_end(args); 627 628 if ((sb->s_flags & MS_RDONLY) == 0) { 629 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 630 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 631 /* 632 * Make sure updated value of ->s_mount_flags will be visible 633 * before ->s_flags update 634 */ 635 smp_wmb(); 636 sb->s_flags |= MS_RDONLY; 637 if (EXT4_SB(sb)->s_journal) 638 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 639 save_error_info(sb, function, line); 640 } 641 if (test_opt(sb, ERRORS_PANIC)) { 642 if (EXT4_SB(sb)->s_journal && 643 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 644 return; 645 panic("EXT4-fs panic from previous error\n"); 646 } 647 } 648 649 void __ext4_msg(struct super_block *sb, 650 const char *prefix, const char *fmt, ...) 651 { 652 struct va_format vaf; 653 va_list args; 654 655 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 656 return; 657 658 va_start(args, fmt); 659 vaf.fmt = fmt; 660 vaf.va = &args; 661 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 662 va_end(args); 663 } 664 665 #define ext4_warning_ratelimit(sb) \ 666 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 667 "EXT4-fs warning") 668 669 void __ext4_warning(struct super_block *sb, const char *function, 670 unsigned int line, const char *fmt, ...) 671 { 672 struct va_format vaf; 673 va_list args; 674 675 if (!ext4_warning_ratelimit(sb)) 676 return; 677 678 va_start(args, fmt); 679 vaf.fmt = fmt; 680 vaf.va = &args; 681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 682 sb->s_id, function, line, &vaf); 683 va_end(args); 684 } 685 686 void __ext4_warning_inode(const struct inode *inode, const char *function, 687 unsigned int line, const char *fmt, ...) 688 { 689 struct va_format vaf; 690 va_list args; 691 692 if (!ext4_warning_ratelimit(inode->i_sb)) 693 return; 694 695 va_start(args, fmt); 696 vaf.fmt = fmt; 697 vaf.va = &args; 698 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 699 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 700 function, line, inode->i_ino, current->comm, &vaf); 701 va_end(args); 702 } 703 704 void __ext4_grp_locked_error(const char *function, unsigned int line, 705 struct super_block *sb, ext4_group_t grp, 706 unsigned long ino, ext4_fsblk_t block, 707 const char *fmt, ...) 708 __releases(bitlock) 709 __acquires(bitlock) 710 { 711 struct va_format vaf; 712 va_list args; 713 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 714 715 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 716 return; 717 718 es->s_last_error_ino = cpu_to_le32(ino); 719 es->s_last_error_block = cpu_to_le64(block); 720 __save_error_info(sb, function, line); 721 722 if (ext4_error_ratelimit(sb)) { 723 va_start(args, fmt); 724 vaf.fmt = fmt; 725 vaf.va = &args; 726 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 727 sb->s_id, function, line, grp); 728 if (ino) 729 printk(KERN_CONT "inode %lu: ", ino); 730 if (block) 731 printk(KERN_CONT "block %llu:", 732 (unsigned long long) block); 733 printk(KERN_CONT "%pV\n", &vaf); 734 va_end(args); 735 } 736 737 if (test_opt(sb, ERRORS_CONT)) { 738 ext4_commit_super(sb, 0); 739 return; 740 } 741 742 ext4_unlock_group(sb, grp); 743 ext4_handle_error(sb); 744 /* 745 * We only get here in the ERRORS_RO case; relocking the group 746 * may be dangerous, but nothing bad will happen since the 747 * filesystem will have already been marked read/only and the 748 * journal has been aborted. We return 1 as a hint to callers 749 * who might what to use the return value from 750 * ext4_grp_locked_error() to distinguish between the 751 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 752 * aggressively from the ext4 function in question, with a 753 * more appropriate error code. 754 */ 755 ext4_lock_group(sb, grp); 756 return; 757 } 758 759 void ext4_update_dynamic_rev(struct super_block *sb) 760 { 761 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 762 763 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 764 return; 765 766 ext4_warning(sb, 767 "updating to rev %d because of new feature flag, " 768 "running e2fsck is recommended", 769 EXT4_DYNAMIC_REV); 770 771 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 772 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 773 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 774 /* leave es->s_feature_*compat flags alone */ 775 /* es->s_uuid will be set by e2fsck if empty */ 776 777 /* 778 * The rest of the superblock fields should be zero, and if not it 779 * means they are likely already in use, so leave them alone. We 780 * can leave it up to e2fsck to clean up any inconsistencies there. 781 */ 782 } 783 784 /* 785 * Open the external journal device 786 */ 787 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 788 { 789 struct block_device *bdev; 790 char b[BDEVNAME_SIZE]; 791 792 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 793 if (IS_ERR(bdev)) 794 goto fail; 795 return bdev; 796 797 fail: 798 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 799 __bdevname(dev, b), PTR_ERR(bdev)); 800 return NULL; 801 } 802 803 /* 804 * Release the journal device 805 */ 806 static void ext4_blkdev_put(struct block_device *bdev) 807 { 808 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 809 } 810 811 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 812 { 813 struct block_device *bdev; 814 bdev = sbi->journal_bdev; 815 if (bdev) { 816 ext4_blkdev_put(bdev); 817 sbi->journal_bdev = NULL; 818 } 819 } 820 821 static inline struct inode *orphan_list_entry(struct list_head *l) 822 { 823 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 824 } 825 826 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 827 { 828 struct list_head *l; 829 830 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 831 le32_to_cpu(sbi->s_es->s_last_orphan)); 832 833 printk(KERN_ERR "sb_info orphan list:\n"); 834 list_for_each(l, &sbi->s_orphan) { 835 struct inode *inode = orphan_list_entry(l); 836 printk(KERN_ERR " " 837 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 838 inode->i_sb->s_id, inode->i_ino, inode, 839 inode->i_mode, inode->i_nlink, 840 NEXT_ORPHAN(inode)); 841 } 842 } 843 844 #ifdef CONFIG_QUOTA 845 static int ext4_quota_off(struct super_block *sb, int type); 846 847 static inline void ext4_quota_off_umount(struct super_block *sb) 848 { 849 int type; 850 851 /* Use our quota_off function to clear inode flags etc. */ 852 for (type = 0; type < EXT4_MAXQUOTAS; type++) 853 ext4_quota_off(sb, type); 854 } 855 #else 856 static inline void ext4_quota_off_umount(struct super_block *sb) 857 { 858 } 859 #endif 860 861 static void ext4_put_super(struct super_block *sb) 862 { 863 struct ext4_sb_info *sbi = EXT4_SB(sb); 864 struct ext4_super_block *es = sbi->s_es; 865 int aborted = 0; 866 int i, err; 867 868 ext4_unregister_li_request(sb); 869 ext4_quota_off_umount(sb); 870 871 flush_workqueue(sbi->rsv_conversion_wq); 872 destroy_workqueue(sbi->rsv_conversion_wq); 873 874 if (sbi->s_journal) { 875 aborted = is_journal_aborted(sbi->s_journal); 876 err = jbd2_journal_destroy(sbi->s_journal); 877 sbi->s_journal = NULL; 878 if ((err < 0) && !aborted) 879 ext4_abort(sb, "Couldn't clean up the journal"); 880 } 881 882 ext4_unregister_sysfs(sb); 883 ext4_es_unregister_shrinker(sbi); 884 del_timer_sync(&sbi->s_err_report); 885 ext4_release_system_zone(sb); 886 ext4_mb_release(sb); 887 ext4_ext_release(sb); 888 889 if (!(sb->s_flags & MS_RDONLY) && !aborted) { 890 ext4_clear_feature_journal_needs_recovery(sb); 891 es->s_state = cpu_to_le16(sbi->s_mount_state); 892 } 893 if (!(sb->s_flags & MS_RDONLY)) 894 ext4_commit_super(sb, 1); 895 896 for (i = 0; i < sbi->s_gdb_count; i++) 897 brelse(sbi->s_group_desc[i]); 898 kvfree(sbi->s_group_desc); 899 kvfree(sbi->s_flex_groups); 900 percpu_counter_destroy(&sbi->s_freeclusters_counter); 901 percpu_counter_destroy(&sbi->s_freeinodes_counter); 902 percpu_counter_destroy(&sbi->s_dirs_counter); 903 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 904 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 905 #ifdef CONFIG_QUOTA 906 for (i = 0; i < EXT4_MAXQUOTAS; i++) 907 kfree(sbi->s_qf_names[i]); 908 #endif 909 910 /* Debugging code just in case the in-memory inode orphan list 911 * isn't empty. The on-disk one can be non-empty if we've 912 * detected an error and taken the fs readonly, but the 913 * in-memory list had better be clean by this point. */ 914 if (!list_empty(&sbi->s_orphan)) 915 dump_orphan_list(sb, sbi); 916 J_ASSERT(list_empty(&sbi->s_orphan)); 917 918 sync_blockdev(sb->s_bdev); 919 invalidate_bdev(sb->s_bdev); 920 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 921 /* 922 * Invalidate the journal device's buffers. We don't want them 923 * floating about in memory - the physical journal device may 924 * hotswapped, and it breaks the `ro-after' testing code. 925 */ 926 sync_blockdev(sbi->journal_bdev); 927 invalidate_bdev(sbi->journal_bdev); 928 ext4_blkdev_remove(sbi); 929 } 930 if (sbi->s_mb_cache) { 931 ext4_xattr_destroy_cache(sbi->s_mb_cache); 932 sbi->s_mb_cache = NULL; 933 } 934 if (sbi->s_mmp_tsk) 935 kthread_stop(sbi->s_mmp_tsk); 936 brelse(sbi->s_sbh); 937 sb->s_fs_info = NULL; 938 /* 939 * Now that we are completely done shutting down the 940 * superblock, we need to actually destroy the kobject. 941 */ 942 kobject_put(&sbi->s_kobj); 943 wait_for_completion(&sbi->s_kobj_unregister); 944 if (sbi->s_chksum_driver) 945 crypto_free_shash(sbi->s_chksum_driver); 946 kfree(sbi->s_blockgroup_lock); 947 kfree(sbi); 948 } 949 950 static struct kmem_cache *ext4_inode_cachep; 951 952 /* 953 * Called inside transaction, so use GFP_NOFS 954 */ 955 static struct inode *ext4_alloc_inode(struct super_block *sb) 956 { 957 struct ext4_inode_info *ei; 958 959 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 960 if (!ei) 961 return NULL; 962 963 ei->vfs_inode.i_version = 1; 964 spin_lock_init(&ei->i_raw_lock); 965 INIT_LIST_HEAD(&ei->i_prealloc_list); 966 spin_lock_init(&ei->i_prealloc_lock); 967 ext4_es_init_tree(&ei->i_es_tree); 968 rwlock_init(&ei->i_es_lock); 969 INIT_LIST_HEAD(&ei->i_es_list); 970 ei->i_es_all_nr = 0; 971 ei->i_es_shk_nr = 0; 972 ei->i_es_shrink_lblk = 0; 973 ei->i_reserved_data_blocks = 0; 974 ei->i_reserved_meta_blocks = 0; 975 ei->i_allocated_meta_blocks = 0; 976 ei->i_da_metadata_calc_len = 0; 977 ei->i_da_metadata_calc_last_lblock = 0; 978 spin_lock_init(&(ei->i_block_reservation_lock)); 979 #ifdef CONFIG_QUOTA 980 ei->i_reserved_quota = 0; 981 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 982 #endif 983 ei->jinode = NULL; 984 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 985 spin_lock_init(&ei->i_completed_io_lock); 986 ei->i_sync_tid = 0; 987 ei->i_datasync_tid = 0; 988 atomic_set(&ei->i_unwritten, 0); 989 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 990 return &ei->vfs_inode; 991 } 992 993 static int ext4_drop_inode(struct inode *inode) 994 { 995 int drop = generic_drop_inode(inode); 996 997 trace_ext4_drop_inode(inode, drop); 998 return drop; 999 } 1000 1001 static void ext4_i_callback(struct rcu_head *head) 1002 { 1003 struct inode *inode = container_of(head, struct inode, i_rcu); 1004 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1005 } 1006 1007 static void ext4_destroy_inode(struct inode *inode) 1008 { 1009 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1010 ext4_msg(inode->i_sb, KERN_ERR, 1011 "Inode %lu (%p): orphan list check failed!", 1012 inode->i_ino, EXT4_I(inode)); 1013 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1014 EXT4_I(inode), sizeof(struct ext4_inode_info), 1015 true); 1016 dump_stack(); 1017 } 1018 call_rcu(&inode->i_rcu, ext4_i_callback); 1019 } 1020 1021 static void init_once(void *foo) 1022 { 1023 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1024 1025 INIT_LIST_HEAD(&ei->i_orphan); 1026 init_rwsem(&ei->xattr_sem); 1027 init_rwsem(&ei->i_data_sem); 1028 init_rwsem(&ei->i_mmap_sem); 1029 inode_init_once(&ei->vfs_inode); 1030 } 1031 1032 static int __init init_inodecache(void) 1033 { 1034 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1035 sizeof(struct ext4_inode_info), 1036 0, (SLAB_RECLAIM_ACCOUNT| 1037 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1038 init_once); 1039 if (ext4_inode_cachep == NULL) 1040 return -ENOMEM; 1041 return 0; 1042 } 1043 1044 static void destroy_inodecache(void) 1045 { 1046 /* 1047 * Make sure all delayed rcu free inodes are flushed before we 1048 * destroy cache. 1049 */ 1050 rcu_barrier(); 1051 kmem_cache_destroy(ext4_inode_cachep); 1052 } 1053 1054 void ext4_clear_inode(struct inode *inode) 1055 { 1056 invalidate_inode_buffers(inode); 1057 clear_inode(inode); 1058 dquot_drop(inode); 1059 ext4_discard_preallocations(inode); 1060 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1061 if (EXT4_I(inode)->jinode) { 1062 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1063 EXT4_I(inode)->jinode); 1064 jbd2_free_inode(EXT4_I(inode)->jinode); 1065 EXT4_I(inode)->jinode = NULL; 1066 } 1067 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1068 fscrypt_put_encryption_info(inode, NULL); 1069 #endif 1070 } 1071 1072 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1073 u64 ino, u32 generation) 1074 { 1075 struct inode *inode; 1076 1077 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1078 return ERR_PTR(-ESTALE); 1079 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1080 return ERR_PTR(-ESTALE); 1081 1082 /* iget isn't really right if the inode is currently unallocated!! 1083 * 1084 * ext4_read_inode will return a bad_inode if the inode had been 1085 * deleted, so we should be safe. 1086 * 1087 * Currently we don't know the generation for parent directory, so 1088 * a generation of 0 means "accept any" 1089 */ 1090 inode = ext4_iget_normal(sb, ino); 1091 if (IS_ERR(inode)) 1092 return ERR_CAST(inode); 1093 if (generation && inode->i_generation != generation) { 1094 iput(inode); 1095 return ERR_PTR(-ESTALE); 1096 } 1097 1098 return inode; 1099 } 1100 1101 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1102 int fh_len, int fh_type) 1103 { 1104 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1105 ext4_nfs_get_inode); 1106 } 1107 1108 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1109 int fh_len, int fh_type) 1110 { 1111 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1112 ext4_nfs_get_inode); 1113 } 1114 1115 /* 1116 * Try to release metadata pages (indirect blocks, directories) which are 1117 * mapped via the block device. Since these pages could have journal heads 1118 * which would prevent try_to_free_buffers() from freeing them, we must use 1119 * jbd2 layer's try_to_free_buffers() function to release them. 1120 */ 1121 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1122 gfp_t wait) 1123 { 1124 journal_t *journal = EXT4_SB(sb)->s_journal; 1125 1126 WARN_ON(PageChecked(page)); 1127 if (!page_has_buffers(page)) 1128 return 0; 1129 if (journal) 1130 return jbd2_journal_try_to_free_buffers(journal, page, 1131 wait & ~__GFP_DIRECT_RECLAIM); 1132 return try_to_free_buffers(page); 1133 } 1134 1135 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1136 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1137 { 1138 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1139 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1140 } 1141 1142 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1143 void *fs_data) 1144 { 1145 handle_t *handle = fs_data; 1146 int res, res2, retries = 0; 1147 1148 res = ext4_convert_inline_data(inode); 1149 if (res) 1150 return res; 1151 1152 /* 1153 * If a journal handle was specified, then the encryption context is 1154 * being set on a new inode via inheritance and is part of a larger 1155 * transaction to create the inode. Otherwise the encryption context is 1156 * being set on an existing inode in its own transaction. Only in the 1157 * latter case should the "retry on ENOSPC" logic be used. 1158 */ 1159 1160 if (handle) { 1161 res = ext4_xattr_set_handle(handle, inode, 1162 EXT4_XATTR_INDEX_ENCRYPTION, 1163 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1164 ctx, len, 0); 1165 if (!res) { 1166 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1167 ext4_clear_inode_state(inode, 1168 EXT4_STATE_MAY_INLINE_DATA); 1169 /* 1170 * Update inode->i_flags - e.g. S_DAX may get disabled 1171 */ 1172 ext4_set_inode_flags(inode); 1173 } 1174 return res; 1175 } 1176 1177 res = dquot_initialize(inode); 1178 if (res) 1179 return res; 1180 retry: 1181 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1182 ext4_jbd2_credits_xattr(inode)); 1183 if (IS_ERR(handle)) 1184 return PTR_ERR(handle); 1185 1186 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1187 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1188 ctx, len, 0); 1189 if (!res) { 1190 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1191 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1192 ext4_set_inode_flags(inode); 1193 res = ext4_mark_inode_dirty(handle, inode); 1194 if (res) 1195 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1196 } 1197 res2 = ext4_journal_stop(handle); 1198 1199 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1200 goto retry; 1201 if (!res) 1202 res = res2; 1203 return res; 1204 } 1205 1206 static int ext4_dummy_context(struct inode *inode) 1207 { 1208 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1209 } 1210 1211 static unsigned ext4_max_namelen(struct inode *inode) 1212 { 1213 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1214 EXT4_NAME_LEN; 1215 } 1216 1217 static const struct fscrypt_operations ext4_cryptops = { 1218 .key_prefix = "ext4:", 1219 .get_context = ext4_get_context, 1220 .set_context = ext4_set_context, 1221 .dummy_context = ext4_dummy_context, 1222 .is_encrypted = ext4_encrypted_inode, 1223 .empty_dir = ext4_empty_dir, 1224 .max_namelen = ext4_max_namelen, 1225 }; 1226 #else 1227 static const struct fscrypt_operations ext4_cryptops = { 1228 .is_encrypted = ext4_encrypted_inode, 1229 }; 1230 #endif 1231 1232 #ifdef CONFIG_QUOTA 1233 static const char * const quotatypes[] = INITQFNAMES; 1234 #define QTYPE2NAME(t) (quotatypes[t]) 1235 1236 static int ext4_write_dquot(struct dquot *dquot); 1237 static int ext4_acquire_dquot(struct dquot *dquot); 1238 static int ext4_release_dquot(struct dquot *dquot); 1239 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1240 static int ext4_write_info(struct super_block *sb, int type); 1241 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1242 const struct path *path); 1243 static int ext4_quota_on_mount(struct super_block *sb, int type); 1244 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1245 size_t len, loff_t off); 1246 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1247 const char *data, size_t len, loff_t off); 1248 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1249 unsigned int flags); 1250 static int ext4_enable_quotas(struct super_block *sb); 1251 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1252 1253 static struct dquot **ext4_get_dquots(struct inode *inode) 1254 { 1255 return EXT4_I(inode)->i_dquot; 1256 } 1257 1258 static const struct dquot_operations ext4_quota_operations = { 1259 .get_reserved_space = ext4_get_reserved_space, 1260 .write_dquot = ext4_write_dquot, 1261 .acquire_dquot = ext4_acquire_dquot, 1262 .release_dquot = ext4_release_dquot, 1263 .mark_dirty = ext4_mark_dquot_dirty, 1264 .write_info = ext4_write_info, 1265 .alloc_dquot = dquot_alloc, 1266 .destroy_dquot = dquot_destroy, 1267 .get_projid = ext4_get_projid, 1268 .get_next_id = ext4_get_next_id, 1269 }; 1270 1271 static const struct quotactl_ops ext4_qctl_operations = { 1272 .quota_on = ext4_quota_on, 1273 .quota_off = ext4_quota_off, 1274 .quota_sync = dquot_quota_sync, 1275 .get_state = dquot_get_state, 1276 .set_info = dquot_set_dqinfo, 1277 .get_dqblk = dquot_get_dqblk, 1278 .set_dqblk = dquot_set_dqblk, 1279 .get_nextdqblk = dquot_get_next_dqblk, 1280 }; 1281 #endif 1282 1283 static const struct super_operations ext4_sops = { 1284 .alloc_inode = ext4_alloc_inode, 1285 .destroy_inode = ext4_destroy_inode, 1286 .write_inode = ext4_write_inode, 1287 .dirty_inode = ext4_dirty_inode, 1288 .drop_inode = ext4_drop_inode, 1289 .evict_inode = ext4_evict_inode, 1290 .put_super = ext4_put_super, 1291 .sync_fs = ext4_sync_fs, 1292 .freeze_fs = ext4_freeze, 1293 .unfreeze_fs = ext4_unfreeze, 1294 .statfs = ext4_statfs, 1295 .remount_fs = ext4_remount, 1296 .show_options = ext4_show_options, 1297 #ifdef CONFIG_QUOTA 1298 .quota_read = ext4_quota_read, 1299 .quota_write = ext4_quota_write, 1300 .get_dquots = ext4_get_dquots, 1301 #endif 1302 .bdev_try_to_free_page = bdev_try_to_free_page, 1303 }; 1304 1305 static const struct export_operations ext4_export_ops = { 1306 .fh_to_dentry = ext4_fh_to_dentry, 1307 .fh_to_parent = ext4_fh_to_parent, 1308 .get_parent = ext4_get_parent, 1309 }; 1310 1311 enum { 1312 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1313 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1314 Opt_nouid32, Opt_debug, Opt_removed, 1315 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1316 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1317 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1318 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1319 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1320 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1321 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1322 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1323 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1324 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1325 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1326 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1327 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1328 Opt_inode_readahead_blks, Opt_journal_ioprio, 1329 Opt_dioread_nolock, Opt_dioread_lock, 1330 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1331 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1332 }; 1333 1334 static const match_table_t tokens = { 1335 {Opt_bsd_df, "bsddf"}, 1336 {Opt_minix_df, "minixdf"}, 1337 {Opt_grpid, "grpid"}, 1338 {Opt_grpid, "bsdgroups"}, 1339 {Opt_nogrpid, "nogrpid"}, 1340 {Opt_nogrpid, "sysvgroups"}, 1341 {Opt_resgid, "resgid=%u"}, 1342 {Opt_resuid, "resuid=%u"}, 1343 {Opt_sb, "sb=%u"}, 1344 {Opt_err_cont, "errors=continue"}, 1345 {Opt_err_panic, "errors=panic"}, 1346 {Opt_err_ro, "errors=remount-ro"}, 1347 {Opt_nouid32, "nouid32"}, 1348 {Opt_debug, "debug"}, 1349 {Opt_removed, "oldalloc"}, 1350 {Opt_removed, "orlov"}, 1351 {Opt_user_xattr, "user_xattr"}, 1352 {Opt_nouser_xattr, "nouser_xattr"}, 1353 {Opt_acl, "acl"}, 1354 {Opt_noacl, "noacl"}, 1355 {Opt_noload, "norecovery"}, 1356 {Opt_noload, "noload"}, 1357 {Opt_removed, "nobh"}, 1358 {Opt_removed, "bh"}, 1359 {Opt_commit, "commit=%u"}, 1360 {Opt_min_batch_time, "min_batch_time=%u"}, 1361 {Opt_max_batch_time, "max_batch_time=%u"}, 1362 {Opt_journal_dev, "journal_dev=%u"}, 1363 {Opt_journal_path, "journal_path=%s"}, 1364 {Opt_journal_checksum, "journal_checksum"}, 1365 {Opt_nojournal_checksum, "nojournal_checksum"}, 1366 {Opt_journal_async_commit, "journal_async_commit"}, 1367 {Opt_abort, "abort"}, 1368 {Opt_data_journal, "data=journal"}, 1369 {Opt_data_ordered, "data=ordered"}, 1370 {Opt_data_writeback, "data=writeback"}, 1371 {Opt_data_err_abort, "data_err=abort"}, 1372 {Opt_data_err_ignore, "data_err=ignore"}, 1373 {Opt_offusrjquota, "usrjquota="}, 1374 {Opt_usrjquota, "usrjquota=%s"}, 1375 {Opt_offgrpjquota, "grpjquota="}, 1376 {Opt_grpjquota, "grpjquota=%s"}, 1377 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1378 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1379 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1380 {Opt_grpquota, "grpquota"}, 1381 {Opt_noquota, "noquota"}, 1382 {Opt_quota, "quota"}, 1383 {Opt_usrquota, "usrquota"}, 1384 {Opt_prjquota, "prjquota"}, 1385 {Opt_barrier, "barrier=%u"}, 1386 {Opt_barrier, "barrier"}, 1387 {Opt_nobarrier, "nobarrier"}, 1388 {Opt_i_version, "i_version"}, 1389 {Opt_dax, "dax"}, 1390 {Opt_stripe, "stripe=%u"}, 1391 {Opt_delalloc, "delalloc"}, 1392 {Opt_lazytime, "lazytime"}, 1393 {Opt_nolazytime, "nolazytime"}, 1394 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1395 {Opt_nodelalloc, "nodelalloc"}, 1396 {Opt_removed, "mblk_io_submit"}, 1397 {Opt_removed, "nomblk_io_submit"}, 1398 {Opt_block_validity, "block_validity"}, 1399 {Opt_noblock_validity, "noblock_validity"}, 1400 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1401 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1402 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1403 {Opt_auto_da_alloc, "auto_da_alloc"}, 1404 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1405 {Opt_dioread_nolock, "dioread_nolock"}, 1406 {Opt_dioread_lock, "dioread_lock"}, 1407 {Opt_discard, "discard"}, 1408 {Opt_nodiscard, "nodiscard"}, 1409 {Opt_init_itable, "init_itable=%u"}, 1410 {Opt_init_itable, "init_itable"}, 1411 {Opt_noinit_itable, "noinit_itable"}, 1412 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1413 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1414 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1415 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1416 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1417 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1418 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1419 {Opt_err, NULL}, 1420 }; 1421 1422 static ext4_fsblk_t get_sb_block(void **data) 1423 { 1424 ext4_fsblk_t sb_block; 1425 char *options = (char *) *data; 1426 1427 if (!options || strncmp(options, "sb=", 3) != 0) 1428 return 1; /* Default location */ 1429 1430 options += 3; 1431 /* TODO: use simple_strtoll with >32bit ext4 */ 1432 sb_block = simple_strtoul(options, &options, 0); 1433 if (*options && *options != ',') { 1434 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1435 (char *) *data); 1436 return 1; 1437 } 1438 if (*options == ',') 1439 options++; 1440 *data = (void *) options; 1441 1442 return sb_block; 1443 } 1444 1445 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1446 static const char deprecated_msg[] = 1447 "Mount option \"%s\" will be removed by %s\n" 1448 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1449 1450 #ifdef CONFIG_QUOTA 1451 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1452 { 1453 struct ext4_sb_info *sbi = EXT4_SB(sb); 1454 char *qname; 1455 int ret = -1; 1456 1457 if (sb_any_quota_loaded(sb) && 1458 !sbi->s_qf_names[qtype]) { 1459 ext4_msg(sb, KERN_ERR, 1460 "Cannot change journaled " 1461 "quota options when quota turned on"); 1462 return -1; 1463 } 1464 if (ext4_has_feature_quota(sb)) { 1465 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1466 "ignored when QUOTA feature is enabled"); 1467 return 1; 1468 } 1469 qname = match_strdup(args); 1470 if (!qname) { 1471 ext4_msg(sb, KERN_ERR, 1472 "Not enough memory for storing quotafile name"); 1473 return -1; 1474 } 1475 if (sbi->s_qf_names[qtype]) { 1476 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1477 ret = 1; 1478 else 1479 ext4_msg(sb, KERN_ERR, 1480 "%s quota file already specified", 1481 QTYPE2NAME(qtype)); 1482 goto errout; 1483 } 1484 if (strchr(qname, '/')) { 1485 ext4_msg(sb, KERN_ERR, 1486 "quotafile must be on filesystem root"); 1487 goto errout; 1488 } 1489 sbi->s_qf_names[qtype] = qname; 1490 set_opt(sb, QUOTA); 1491 return 1; 1492 errout: 1493 kfree(qname); 1494 return ret; 1495 } 1496 1497 static int clear_qf_name(struct super_block *sb, int qtype) 1498 { 1499 1500 struct ext4_sb_info *sbi = EXT4_SB(sb); 1501 1502 if (sb_any_quota_loaded(sb) && 1503 sbi->s_qf_names[qtype]) { 1504 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1505 " when quota turned on"); 1506 return -1; 1507 } 1508 kfree(sbi->s_qf_names[qtype]); 1509 sbi->s_qf_names[qtype] = NULL; 1510 return 1; 1511 } 1512 #endif 1513 1514 #define MOPT_SET 0x0001 1515 #define MOPT_CLEAR 0x0002 1516 #define MOPT_NOSUPPORT 0x0004 1517 #define MOPT_EXPLICIT 0x0008 1518 #define MOPT_CLEAR_ERR 0x0010 1519 #define MOPT_GTE0 0x0020 1520 #ifdef CONFIG_QUOTA 1521 #define MOPT_Q 0 1522 #define MOPT_QFMT 0x0040 1523 #else 1524 #define MOPT_Q MOPT_NOSUPPORT 1525 #define MOPT_QFMT MOPT_NOSUPPORT 1526 #endif 1527 #define MOPT_DATAJ 0x0080 1528 #define MOPT_NO_EXT2 0x0100 1529 #define MOPT_NO_EXT3 0x0200 1530 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1531 #define MOPT_STRING 0x0400 1532 1533 static const struct mount_opts { 1534 int token; 1535 int mount_opt; 1536 int flags; 1537 } ext4_mount_opts[] = { 1538 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1539 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1540 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1541 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1542 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1543 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1544 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1545 MOPT_EXT4_ONLY | MOPT_SET}, 1546 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1547 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1548 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1549 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1550 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1551 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1552 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1553 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1554 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1555 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1556 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1557 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1558 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1559 EXT4_MOUNT_JOURNAL_CHECKSUM), 1560 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1561 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1562 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1563 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1564 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1565 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1566 MOPT_NO_EXT2}, 1567 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1568 MOPT_NO_EXT2}, 1569 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1570 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1571 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1572 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1573 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1574 {Opt_commit, 0, MOPT_GTE0}, 1575 {Opt_max_batch_time, 0, MOPT_GTE0}, 1576 {Opt_min_batch_time, 0, MOPT_GTE0}, 1577 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1578 {Opt_init_itable, 0, MOPT_GTE0}, 1579 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1580 {Opt_stripe, 0, MOPT_GTE0}, 1581 {Opt_resuid, 0, MOPT_GTE0}, 1582 {Opt_resgid, 0, MOPT_GTE0}, 1583 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1584 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1585 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1586 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1587 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1588 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1589 MOPT_NO_EXT2 | MOPT_DATAJ}, 1590 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1591 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1592 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1593 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1594 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1595 #else 1596 {Opt_acl, 0, MOPT_NOSUPPORT}, 1597 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1598 #endif 1599 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1600 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1601 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1602 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1603 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1604 MOPT_SET | MOPT_Q}, 1605 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1606 MOPT_SET | MOPT_Q}, 1607 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1608 MOPT_SET | MOPT_Q}, 1609 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1610 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1611 MOPT_CLEAR | MOPT_Q}, 1612 {Opt_usrjquota, 0, MOPT_Q}, 1613 {Opt_grpjquota, 0, MOPT_Q}, 1614 {Opt_offusrjquota, 0, MOPT_Q}, 1615 {Opt_offgrpjquota, 0, MOPT_Q}, 1616 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1617 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1618 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1619 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1620 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1621 {Opt_err, 0, 0} 1622 }; 1623 1624 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1625 substring_t *args, unsigned long *journal_devnum, 1626 unsigned int *journal_ioprio, int is_remount) 1627 { 1628 struct ext4_sb_info *sbi = EXT4_SB(sb); 1629 const struct mount_opts *m; 1630 kuid_t uid; 1631 kgid_t gid; 1632 int arg = 0; 1633 1634 #ifdef CONFIG_QUOTA 1635 if (token == Opt_usrjquota) 1636 return set_qf_name(sb, USRQUOTA, &args[0]); 1637 else if (token == Opt_grpjquota) 1638 return set_qf_name(sb, GRPQUOTA, &args[0]); 1639 else if (token == Opt_offusrjquota) 1640 return clear_qf_name(sb, USRQUOTA); 1641 else if (token == Opt_offgrpjquota) 1642 return clear_qf_name(sb, GRPQUOTA); 1643 #endif 1644 switch (token) { 1645 case Opt_noacl: 1646 case Opt_nouser_xattr: 1647 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1648 break; 1649 case Opt_sb: 1650 return 1; /* handled by get_sb_block() */ 1651 case Opt_removed: 1652 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1653 return 1; 1654 case Opt_abort: 1655 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1656 return 1; 1657 case Opt_i_version: 1658 sb->s_flags |= MS_I_VERSION; 1659 return 1; 1660 case Opt_lazytime: 1661 sb->s_flags |= MS_LAZYTIME; 1662 return 1; 1663 case Opt_nolazytime: 1664 sb->s_flags &= ~MS_LAZYTIME; 1665 return 1; 1666 } 1667 1668 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1669 if (token == m->token) 1670 break; 1671 1672 if (m->token == Opt_err) { 1673 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1674 "or missing value", opt); 1675 return -1; 1676 } 1677 1678 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1679 ext4_msg(sb, KERN_ERR, 1680 "Mount option \"%s\" incompatible with ext2", opt); 1681 return -1; 1682 } 1683 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1684 ext4_msg(sb, KERN_ERR, 1685 "Mount option \"%s\" incompatible with ext3", opt); 1686 return -1; 1687 } 1688 1689 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1690 return -1; 1691 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1692 return -1; 1693 if (m->flags & MOPT_EXPLICIT) { 1694 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1695 set_opt2(sb, EXPLICIT_DELALLOC); 1696 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1697 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1698 } else 1699 return -1; 1700 } 1701 if (m->flags & MOPT_CLEAR_ERR) 1702 clear_opt(sb, ERRORS_MASK); 1703 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1704 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1705 "options when quota turned on"); 1706 return -1; 1707 } 1708 1709 if (m->flags & MOPT_NOSUPPORT) { 1710 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1711 } else if (token == Opt_commit) { 1712 if (arg == 0) 1713 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1714 sbi->s_commit_interval = HZ * arg; 1715 } else if (token == Opt_debug_want_extra_isize) { 1716 sbi->s_want_extra_isize = arg; 1717 } else if (token == Opt_max_batch_time) { 1718 sbi->s_max_batch_time = arg; 1719 } else if (token == Opt_min_batch_time) { 1720 sbi->s_min_batch_time = arg; 1721 } else if (token == Opt_inode_readahead_blks) { 1722 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1723 ext4_msg(sb, KERN_ERR, 1724 "EXT4-fs: inode_readahead_blks must be " 1725 "0 or a power of 2 smaller than 2^31"); 1726 return -1; 1727 } 1728 sbi->s_inode_readahead_blks = arg; 1729 } else if (token == Opt_init_itable) { 1730 set_opt(sb, INIT_INODE_TABLE); 1731 if (!args->from) 1732 arg = EXT4_DEF_LI_WAIT_MULT; 1733 sbi->s_li_wait_mult = arg; 1734 } else if (token == Opt_max_dir_size_kb) { 1735 sbi->s_max_dir_size_kb = arg; 1736 } else if (token == Opt_stripe) { 1737 sbi->s_stripe = arg; 1738 } else if (token == Opt_resuid) { 1739 uid = make_kuid(current_user_ns(), arg); 1740 if (!uid_valid(uid)) { 1741 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1742 return -1; 1743 } 1744 sbi->s_resuid = uid; 1745 } else if (token == Opt_resgid) { 1746 gid = make_kgid(current_user_ns(), arg); 1747 if (!gid_valid(gid)) { 1748 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1749 return -1; 1750 } 1751 sbi->s_resgid = gid; 1752 } else if (token == Opt_journal_dev) { 1753 if (is_remount) { 1754 ext4_msg(sb, KERN_ERR, 1755 "Cannot specify journal on remount"); 1756 return -1; 1757 } 1758 *journal_devnum = arg; 1759 } else if (token == Opt_journal_path) { 1760 char *journal_path; 1761 struct inode *journal_inode; 1762 struct path path; 1763 int error; 1764 1765 if (is_remount) { 1766 ext4_msg(sb, KERN_ERR, 1767 "Cannot specify journal on remount"); 1768 return -1; 1769 } 1770 journal_path = match_strdup(&args[0]); 1771 if (!journal_path) { 1772 ext4_msg(sb, KERN_ERR, "error: could not dup " 1773 "journal device string"); 1774 return -1; 1775 } 1776 1777 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1778 if (error) { 1779 ext4_msg(sb, KERN_ERR, "error: could not find " 1780 "journal device path: error %d", error); 1781 kfree(journal_path); 1782 return -1; 1783 } 1784 1785 journal_inode = d_inode(path.dentry); 1786 if (!S_ISBLK(journal_inode->i_mode)) { 1787 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1788 "is not a block device", journal_path); 1789 path_put(&path); 1790 kfree(journal_path); 1791 return -1; 1792 } 1793 1794 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1795 path_put(&path); 1796 kfree(journal_path); 1797 } else if (token == Opt_journal_ioprio) { 1798 if (arg > 7) { 1799 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1800 " (must be 0-7)"); 1801 return -1; 1802 } 1803 *journal_ioprio = 1804 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1805 } else if (token == Opt_test_dummy_encryption) { 1806 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1807 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1808 ext4_msg(sb, KERN_WARNING, 1809 "Test dummy encryption mode enabled"); 1810 #else 1811 ext4_msg(sb, KERN_WARNING, 1812 "Test dummy encryption mount option ignored"); 1813 #endif 1814 } else if (m->flags & MOPT_DATAJ) { 1815 if (is_remount) { 1816 if (!sbi->s_journal) 1817 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1818 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1819 ext4_msg(sb, KERN_ERR, 1820 "Cannot change data mode on remount"); 1821 return -1; 1822 } 1823 } else { 1824 clear_opt(sb, DATA_FLAGS); 1825 sbi->s_mount_opt |= m->mount_opt; 1826 } 1827 #ifdef CONFIG_QUOTA 1828 } else if (m->flags & MOPT_QFMT) { 1829 if (sb_any_quota_loaded(sb) && 1830 sbi->s_jquota_fmt != m->mount_opt) { 1831 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1832 "quota options when quota turned on"); 1833 return -1; 1834 } 1835 if (ext4_has_feature_quota(sb)) { 1836 ext4_msg(sb, KERN_INFO, 1837 "Quota format mount options ignored " 1838 "when QUOTA feature is enabled"); 1839 return 1; 1840 } 1841 sbi->s_jquota_fmt = m->mount_opt; 1842 #endif 1843 } else if (token == Opt_dax) { 1844 #ifdef CONFIG_FS_DAX 1845 ext4_msg(sb, KERN_WARNING, 1846 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1847 sbi->s_mount_opt |= m->mount_opt; 1848 #else 1849 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1850 return -1; 1851 #endif 1852 } else if (token == Opt_data_err_abort) { 1853 sbi->s_mount_opt |= m->mount_opt; 1854 } else if (token == Opt_data_err_ignore) { 1855 sbi->s_mount_opt &= ~m->mount_opt; 1856 } else { 1857 if (!args->from) 1858 arg = 1; 1859 if (m->flags & MOPT_CLEAR) 1860 arg = !arg; 1861 else if (unlikely(!(m->flags & MOPT_SET))) { 1862 ext4_msg(sb, KERN_WARNING, 1863 "buggy handling of option %s", opt); 1864 WARN_ON(1); 1865 return -1; 1866 } 1867 if (arg != 0) 1868 sbi->s_mount_opt |= m->mount_opt; 1869 else 1870 sbi->s_mount_opt &= ~m->mount_opt; 1871 } 1872 return 1; 1873 } 1874 1875 static int parse_options(char *options, struct super_block *sb, 1876 unsigned long *journal_devnum, 1877 unsigned int *journal_ioprio, 1878 int is_remount) 1879 { 1880 struct ext4_sb_info *sbi = EXT4_SB(sb); 1881 char *p; 1882 substring_t args[MAX_OPT_ARGS]; 1883 int token; 1884 1885 if (!options) 1886 return 1; 1887 1888 while ((p = strsep(&options, ",")) != NULL) { 1889 if (!*p) 1890 continue; 1891 /* 1892 * Initialize args struct so we know whether arg was 1893 * found; some options take optional arguments. 1894 */ 1895 args[0].to = args[0].from = NULL; 1896 token = match_token(p, tokens, args); 1897 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1898 journal_ioprio, is_remount) < 0) 1899 return 0; 1900 } 1901 #ifdef CONFIG_QUOTA 1902 /* 1903 * We do the test below only for project quotas. 'usrquota' and 1904 * 'grpquota' mount options are allowed even without quota feature 1905 * to support legacy quotas in quota files. 1906 */ 1907 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1908 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1909 "Cannot enable project quota enforcement."); 1910 return 0; 1911 } 1912 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1913 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1914 clear_opt(sb, USRQUOTA); 1915 1916 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1917 clear_opt(sb, GRPQUOTA); 1918 1919 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1920 ext4_msg(sb, KERN_ERR, "old and new quota " 1921 "format mixing"); 1922 return 0; 1923 } 1924 1925 if (!sbi->s_jquota_fmt) { 1926 ext4_msg(sb, KERN_ERR, "journaled quota format " 1927 "not specified"); 1928 return 0; 1929 } 1930 } 1931 #endif 1932 if (test_opt(sb, DIOREAD_NOLOCK)) { 1933 int blocksize = 1934 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1935 1936 if (blocksize < PAGE_SIZE) { 1937 ext4_msg(sb, KERN_ERR, "can't mount with " 1938 "dioread_nolock if block size != PAGE_SIZE"); 1939 return 0; 1940 } 1941 } 1942 return 1; 1943 } 1944 1945 static inline void ext4_show_quota_options(struct seq_file *seq, 1946 struct super_block *sb) 1947 { 1948 #if defined(CONFIG_QUOTA) 1949 struct ext4_sb_info *sbi = EXT4_SB(sb); 1950 1951 if (sbi->s_jquota_fmt) { 1952 char *fmtname = ""; 1953 1954 switch (sbi->s_jquota_fmt) { 1955 case QFMT_VFS_OLD: 1956 fmtname = "vfsold"; 1957 break; 1958 case QFMT_VFS_V0: 1959 fmtname = "vfsv0"; 1960 break; 1961 case QFMT_VFS_V1: 1962 fmtname = "vfsv1"; 1963 break; 1964 } 1965 seq_printf(seq, ",jqfmt=%s", fmtname); 1966 } 1967 1968 if (sbi->s_qf_names[USRQUOTA]) 1969 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1970 1971 if (sbi->s_qf_names[GRPQUOTA]) 1972 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1973 #endif 1974 } 1975 1976 static const char *token2str(int token) 1977 { 1978 const struct match_token *t; 1979 1980 for (t = tokens; t->token != Opt_err; t++) 1981 if (t->token == token && !strchr(t->pattern, '=')) 1982 break; 1983 return t->pattern; 1984 } 1985 1986 /* 1987 * Show an option if 1988 * - it's set to a non-default value OR 1989 * - if the per-sb default is different from the global default 1990 */ 1991 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1992 int nodefs) 1993 { 1994 struct ext4_sb_info *sbi = EXT4_SB(sb); 1995 struct ext4_super_block *es = sbi->s_es; 1996 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1997 const struct mount_opts *m; 1998 char sep = nodefs ? '\n' : ','; 1999 2000 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2001 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2002 2003 if (sbi->s_sb_block != 1) 2004 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2005 2006 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2007 int want_set = m->flags & MOPT_SET; 2008 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2009 (m->flags & MOPT_CLEAR_ERR)) 2010 continue; 2011 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2012 continue; /* skip if same as the default */ 2013 if ((want_set && 2014 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2015 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2016 continue; /* select Opt_noFoo vs Opt_Foo */ 2017 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2018 } 2019 2020 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2021 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2022 SEQ_OPTS_PRINT("resuid=%u", 2023 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2024 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2025 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2026 SEQ_OPTS_PRINT("resgid=%u", 2027 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2028 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2029 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2030 SEQ_OPTS_PUTS("errors=remount-ro"); 2031 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2032 SEQ_OPTS_PUTS("errors=continue"); 2033 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2034 SEQ_OPTS_PUTS("errors=panic"); 2035 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2036 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2037 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2038 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2039 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2040 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2041 if (sb->s_flags & MS_I_VERSION) 2042 SEQ_OPTS_PUTS("i_version"); 2043 if (nodefs || sbi->s_stripe) 2044 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2045 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2046 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2047 SEQ_OPTS_PUTS("data=journal"); 2048 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2049 SEQ_OPTS_PUTS("data=ordered"); 2050 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2051 SEQ_OPTS_PUTS("data=writeback"); 2052 } 2053 if (nodefs || 2054 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2055 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2056 sbi->s_inode_readahead_blks); 2057 2058 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2059 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2060 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2061 if (nodefs || sbi->s_max_dir_size_kb) 2062 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2063 if (test_opt(sb, DATA_ERR_ABORT)) 2064 SEQ_OPTS_PUTS("data_err=abort"); 2065 2066 ext4_show_quota_options(seq, sb); 2067 return 0; 2068 } 2069 2070 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2071 { 2072 return _ext4_show_options(seq, root->d_sb, 0); 2073 } 2074 2075 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2076 { 2077 struct super_block *sb = seq->private; 2078 int rc; 2079 2080 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2081 rc = _ext4_show_options(seq, sb, 1); 2082 seq_puts(seq, "\n"); 2083 return rc; 2084 } 2085 2086 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2087 int read_only) 2088 { 2089 struct ext4_sb_info *sbi = EXT4_SB(sb); 2090 int res = 0; 2091 2092 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2093 ext4_msg(sb, KERN_ERR, "revision level too high, " 2094 "forcing read-only mode"); 2095 res = MS_RDONLY; 2096 } 2097 if (read_only) 2098 goto done; 2099 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2100 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2101 "running e2fsck is recommended"); 2102 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2103 ext4_msg(sb, KERN_WARNING, 2104 "warning: mounting fs with errors, " 2105 "running e2fsck is recommended"); 2106 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2107 le16_to_cpu(es->s_mnt_count) >= 2108 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2109 ext4_msg(sb, KERN_WARNING, 2110 "warning: maximal mount count reached, " 2111 "running e2fsck is recommended"); 2112 else if (le32_to_cpu(es->s_checkinterval) && 2113 (le32_to_cpu(es->s_lastcheck) + 2114 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2115 ext4_msg(sb, KERN_WARNING, 2116 "warning: checktime reached, " 2117 "running e2fsck is recommended"); 2118 if (!sbi->s_journal) 2119 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2120 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2121 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2122 le16_add_cpu(&es->s_mnt_count, 1); 2123 es->s_mtime = cpu_to_le32(get_seconds()); 2124 ext4_update_dynamic_rev(sb); 2125 if (sbi->s_journal) 2126 ext4_set_feature_journal_needs_recovery(sb); 2127 2128 ext4_commit_super(sb, 1); 2129 done: 2130 if (test_opt(sb, DEBUG)) 2131 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2132 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2133 sb->s_blocksize, 2134 sbi->s_groups_count, 2135 EXT4_BLOCKS_PER_GROUP(sb), 2136 EXT4_INODES_PER_GROUP(sb), 2137 sbi->s_mount_opt, sbi->s_mount_opt2); 2138 2139 cleancache_init_fs(sb); 2140 return res; 2141 } 2142 2143 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2144 { 2145 struct ext4_sb_info *sbi = EXT4_SB(sb); 2146 struct flex_groups *new_groups; 2147 int size; 2148 2149 if (!sbi->s_log_groups_per_flex) 2150 return 0; 2151 2152 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2153 if (size <= sbi->s_flex_groups_allocated) 2154 return 0; 2155 2156 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2157 new_groups = kvzalloc(size, GFP_KERNEL); 2158 if (!new_groups) { 2159 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2160 size / (int) sizeof(struct flex_groups)); 2161 return -ENOMEM; 2162 } 2163 2164 if (sbi->s_flex_groups) { 2165 memcpy(new_groups, sbi->s_flex_groups, 2166 (sbi->s_flex_groups_allocated * 2167 sizeof(struct flex_groups))); 2168 kvfree(sbi->s_flex_groups); 2169 } 2170 sbi->s_flex_groups = new_groups; 2171 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2172 return 0; 2173 } 2174 2175 static int ext4_fill_flex_info(struct super_block *sb) 2176 { 2177 struct ext4_sb_info *sbi = EXT4_SB(sb); 2178 struct ext4_group_desc *gdp = NULL; 2179 ext4_group_t flex_group; 2180 int i, err; 2181 2182 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2183 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2184 sbi->s_log_groups_per_flex = 0; 2185 return 1; 2186 } 2187 2188 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2189 if (err) 2190 goto failed; 2191 2192 for (i = 0; i < sbi->s_groups_count; i++) { 2193 gdp = ext4_get_group_desc(sb, i, NULL); 2194 2195 flex_group = ext4_flex_group(sbi, i); 2196 atomic_add(ext4_free_inodes_count(sb, gdp), 2197 &sbi->s_flex_groups[flex_group].free_inodes); 2198 atomic64_add(ext4_free_group_clusters(sb, gdp), 2199 &sbi->s_flex_groups[flex_group].free_clusters); 2200 atomic_add(ext4_used_dirs_count(sb, gdp), 2201 &sbi->s_flex_groups[flex_group].used_dirs); 2202 } 2203 2204 return 1; 2205 failed: 2206 return 0; 2207 } 2208 2209 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2210 struct ext4_group_desc *gdp) 2211 { 2212 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2213 __u16 crc = 0; 2214 __le32 le_group = cpu_to_le32(block_group); 2215 struct ext4_sb_info *sbi = EXT4_SB(sb); 2216 2217 if (ext4_has_metadata_csum(sbi->s_sb)) { 2218 /* Use new metadata_csum algorithm */ 2219 __u32 csum32; 2220 __u16 dummy_csum = 0; 2221 2222 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2223 sizeof(le_group)); 2224 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2225 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2226 sizeof(dummy_csum)); 2227 offset += sizeof(dummy_csum); 2228 if (offset < sbi->s_desc_size) 2229 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2230 sbi->s_desc_size - offset); 2231 2232 crc = csum32 & 0xFFFF; 2233 goto out; 2234 } 2235 2236 /* old crc16 code */ 2237 if (!ext4_has_feature_gdt_csum(sb)) 2238 return 0; 2239 2240 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2241 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2242 crc = crc16(crc, (__u8 *)gdp, offset); 2243 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2244 /* for checksum of struct ext4_group_desc do the rest...*/ 2245 if (ext4_has_feature_64bit(sb) && 2246 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2247 crc = crc16(crc, (__u8 *)gdp + offset, 2248 le16_to_cpu(sbi->s_es->s_desc_size) - 2249 offset); 2250 2251 out: 2252 return cpu_to_le16(crc); 2253 } 2254 2255 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2256 struct ext4_group_desc *gdp) 2257 { 2258 if (ext4_has_group_desc_csum(sb) && 2259 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2260 return 0; 2261 2262 return 1; 2263 } 2264 2265 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2266 struct ext4_group_desc *gdp) 2267 { 2268 if (!ext4_has_group_desc_csum(sb)) 2269 return; 2270 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2271 } 2272 2273 /* Called at mount-time, super-block is locked */ 2274 static int ext4_check_descriptors(struct super_block *sb, 2275 ext4_fsblk_t sb_block, 2276 ext4_group_t *first_not_zeroed) 2277 { 2278 struct ext4_sb_info *sbi = EXT4_SB(sb); 2279 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2280 ext4_fsblk_t last_block; 2281 ext4_fsblk_t block_bitmap; 2282 ext4_fsblk_t inode_bitmap; 2283 ext4_fsblk_t inode_table; 2284 int flexbg_flag = 0; 2285 ext4_group_t i, grp = sbi->s_groups_count; 2286 2287 if (ext4_has_feature_flex_bg(sb)) 2288 flexbg_flag = 1; 2289 2290 ext4_debug("Checking group descriptors"); 2291 2292 for (i = 0; i < sbi->s_groups_count; i++) { 2293 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2294 2295 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2296 last_block = ext4_blocks_count(sbi->s_es) - 1; 2297 else 2298 last_block = first_block + 2299 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2300 2301 if ((grp == sbi->s_groups_count) && 2302 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2303 grp = i; 2304 2305 block_bitmap = ext4_block_bitmap(sb, gdp); 2306 if (block_bitmap == sb_block) { 2307 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2308 "Block bitmap for group %u overlaps " 2309 "superblock", i); 2310 } 2311 if (block_bitmap < first_block || block_bitmap > last_block) { 2312 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2313 "Block bitmap for group %u not in group " 2314 "(block %llu)!", i, block_bitmap); 2315 return 0; 2316 } 2317 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2318 if (inode_bitmap == sb_block) { 2319 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2320 "Inode bitmap for group %u overlaps " 2321 "superblock", i); 2322 } 2323 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2324 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2325 "Inode bitmap for group %u not in group " 2326 "(block %llu)!", i, inode_bitmap); 2327 return 0; 2328 } 2329 inode_table = ext4_inode_table(sb, gdp); 2330 if (inode_table == sb_block) { 2331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2332 "Inode table for group %u overlaps " 2333 "superblock", i); 2334 } 2335 if (inode_table < first_block || 2336 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2338 "Inode table for group %u not in group " 2339 "(block %llu)!", i, inode_table); 2340 return 0; 2341 } 2342 ext4_lock_group(sb, i); 2343 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2345 "Checksum for group %u failed (%u!=%u)", 2346 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2347 gdp)), le16_to_cpu(gdp->bg_checksum)); 2348 if (!(sb->s_flags & MS_RDONLY)) { 2349 ext4_unlock_group(sb, i); 2350 return 0; 2351 } 2352 } 2353 ext4_unlock_group(sb, i); 2354 if (!flexbg_flag) 2355 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2356 } 2357 if (NULL != first_not_zeroed) 2358 *first_not_zeroed = grp; 2359 return 1; 2360 } 2361 2362 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2363 * the superblock) which were deleted from all directories, but held open by 2364 * a process at the time of a crash. We walk the list and try to delete these 2365 * inodes at recovery time (only with a read-write filesystem). 2366 * 2367 * In order to keep the orphan inode chain consistent during traversal (in 2368 * case of crash during recovery), we link each inode into the superblock 2369 * orphan list_head and handle it the same way as an inode deletion during 2370 * normal operation (which journals the operations for us). 2371 * 2372 * We only do an iget() and an iput() on each inode, which is very safe if we 2373 * accidentally point at an in-use or already deleted inode. The worst that 2374 * can happen in this case is that we get a "bit already cleared" message from 2375 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2376 * e2fsck was run on this filesystem, and it must have already done the orphan 2377 * inode cleanup for us, so we can safely abort without any further action. 2378 */ 2379 static void ext4_orphan_cleanup(struct super_block *sb, 2380 struct ext4_super_block *es) 2381 { 2382 unsigned int s_flags = sb->s_flags; 2383 int ret, nr_orphans = 0, nr_truncates = 0; 2384 #ifdef CONFIG_QUOTA 2385 int i; 2386 #endif 2387 if (!es->s_last_orphan) { 2388 jbd_debug(4, "no orphan inodes to clean up\n"); 2389 return; 2390 } 2391 2392 if (bdev_read_only(sb->s_bdev)) { 2393 ext4_msg(sb, KERN_ERR, "write access " 2394 "unavailable, skipping orphan cleanup"); 2395 return; 2396 } 2397 2398 /* Check if feature set would not allow a r/w mount */ 2399 if (!ext4_feature_set_ok(sb, 0)) { 2400 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2401 "unknown ROCOMPAT features"); 2402 return; 2403 } 2404 2405 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2406 /* don't clear list on RO mount w/ errors */ 2407 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2408 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2409 "clearing orphan list.\n"); 2410 es->s_last_orphan = 0; 2411 } 2412 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2413 return; 2414 } 2415 2416 if (s_flags & MS_RDONLY) { 2417 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2418 sb->s_flags &= ~MS_RDONLY; 2419 } 2420 #ifdef CONFIG_QUOTA 2421 /* Needed for iput() to work correctly and not trash data */ 2422 sb->s_flags |= MS_ACTIVE; 2423 /* Turn on quotas so that they are updated correctly */ 2424 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2425 if (EXT4_SB(sb)->s_qf_names[i]) { 2426 int ret = ext4_quota_on_mount(sb, i); 2427 if (ret < 0) 2428 ext4_msg(sb, KERN_ERR, 2429 "Cannot turn on journaled " 2430 "quota: error %d", ret); 2431 } 2432 } 2433 #endif 2434 2435 while (es->s_last_orphan) { 2436 struct inode *inode; 2437 2438 /* 2439 * We may have encountered an error during cleanup; if 2440 * so, skip the rest. 2441 */ 2442 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2443 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2444 es->s_last_orphan = 0; 2445 break; 2446 } 2447 2448 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2449 if (IS_ERR(inode)) { 2450 es->s_last_orphan = 0; 2451 break; 2452 } 2453 2454 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2455 dquot_initialize(inode); 2456 if (inode->i_nlink) { 2457 if (test_opt(sb, DEBUG)) 2458 ext4_msg(sb, KERN_DEBUG, 2459 "%s: truncating inode %lu to %lld bytes", 2460 __func__, inode->i_ino, inode->i_size); 2461 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2462 inode->i_ino, inode->i_size); 2463 inode_lock(inode); 2464 truncate_inode_pages(inode->i_mapping, inode->i_size); 2465 ret = ext4_truncate(inode); 2466 if (ret) 2467 ext4_std_error(inode->i_sb, ret); 2468 inode_unlock(inode); 2469 nr_truncates++; 2470 } else { 2471 if (test_opt(sb, DEBUG)) 2472 ext4_msg(sb, KERN_DEBUG, 2473 "%s: deleting unreferenced inode %lu", 2474 __func__, inode->i_ino); 2475 jbd_debug(2, "deleting unreferenced inode %lu\n", 2476 inode->i_ino); 2477 nr_orphans++; 2478 } 2479 iput(inode); /* The delete magic happens here! */ 2480 } 2481 2482 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2483 2484 if (nr_orphans) 2485 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2486 PLURAL(nr_orphans)); 2487 if (nr_truncates) 2488 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2489 PLURAL(nr_truncates)); 2490 #ifdef CONFIG_QUOTA 2491 /* Turn quotas off */ 2492 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2493 if (sb_dqopt(sb)->files[i]) 2494 dquot_quota_off(sb, i); 2495 } 2496 #endif 2497 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2498 } 2499 2500 /* 2501 * Maximal extent format file size. 2502 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2503 * extent format containers, within a sector_t, and within i_blocks 2504 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2505 * so that won't be a limiting factor. 2506 * 2507 * However there is other limiting factor. We do store extents in the form 2508 * of starting block and length, hence the resulting length of the extent 2509 * covering maximum file size must fit into on-disk format containers as 2510 * well. Given that length is always by 1 unit bigger than max unit (because 2511 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2512 * 2513 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2514 */ 2515 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2516 { 2517 loff_t res; 2518 loff_t upper_limit = MAX_LFS_FILESIZE; 2519 2520 /* small i_blocks in vfs inode? */ 2521 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2522 /* 2523 * CONFIG_LBDAF is not enabled implies the inode 2524 * i_block represent total blocks in 512 bytes 2525 * 32 == size of vfs inode i_blocks * 8 2526 */ 2527 upper_limit = (1LL << 32) - 1; 2528 2529 /* total blocks in file system block size */ 2530 upper_limit >>= (blkbits - 9); 2531 upper_limit <<= blkbits; 2532 } 2533 2534 /* 2535 * 32-bit extent-start container, ee_block. We lower the maxbytes 2536 * by one fs block, so ee_len can cover the extent of maximum file 2537 * size 2538 */ 2539 res = (1LL << 32) - 1; 2540 res <<= blkbits; 2541 2542 /* Sanity check against vm- & vfs- imposed limits */ 2543 if (res > upper_limit) 2544 res = upper_limit; 2545 2546 return res; 2547 } 2548 2549 /* 2550 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2551 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2552 * We need to be 1 filesystem block less than the 2^48 sector limit. 2553 */ 2554 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2555 { 2556 loff_t res = EXT4_NDIR_BLOCKS; 2557 int meta_blocks; 2558 loff_t upper_limit; 2559 /* This is calculated to be the largest file size for a dense, block 2560 * mapped file such that the file's total number of 512-byte sectors, 2561 * including data and all indirect blocks, does not exceed (2^48 - 1). 2562 * 2563 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2564 * number of 512-byte sectors of the file. 2565 */ 2566 2567 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2568 /* 2569 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2570 * the inode i_block field represents total file blocks in 2571 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2572 */ 2573 upper_limit = (1LL << 32) - 1; 2574 2575 /* total blocks in file system block size */ 2576 upper_limit >>= (bits - 9); 2577 2578 } else { 2579 /* 2580 * We use 48 bit ext4_inode i_blocks 2581 * With EXT4_HUGE_FILE_FL set the i_blocks 2582 * represent total number of blocks in 2583 * file system block size 2584 */ 2585 upper_limit = (1LL << 48) - 1; 2586 2587 } 2588 2589 /* indirect blocks */ 2590 meta_blocks = 1; 2591 /* double indirect blocks */ 2592 meta_blocks += 1 + (1LL << (bits-2)); 2593 /* tripple indirect blocks */ 2594 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2595 2596 upper_limit -= meta_blocks; 2597 upper_limit <<= bits; 2598 2599 res += 1LL << (bits-2); 2600 res += 1LL << (2*(bits-2)); 2601 res += 1LL << (3*(bits-2)); 2602 res <<= bits; 2603 if (res > upper_limit) 2604 res = upper_limit; 2605 2606 if (res > MAX_LFS_FILESIZE) 2607 res = MAX_LFS_FILESIZE; 2608 2609 return res; 2610 } 2611 2612 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2613 ext4_fsblk_t logical_sb_block, int nr) 2614 { 2615 struct ext4_sb_info *sbi = EXT4_SB(sb); 2616 ext4_group_t bg, first_meta_bg; 2617 int has_super = 0; 2618 2619 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2620 2621 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2622 return logical_sb_block + nr + 1; 2623 bg = sbi->s_desc_per_block * nr; 2624 if (ext4_bg_has_super(sb, bg)) 2625 has_super = 1; 2626 2627 /* 2628 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2629 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2630 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2631 * compensate. 2632 */ 2633 if (sb->s_blocksize == 1024 && nr == 0 && 2634 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2635 has_super++; 2636 2637 return (has_super + ext4_group_first_block_no(sb, bg)); 2638 } 2639 2640 /** 2641 * ext4_get_stripe_size: Get the stripe size. 2642 * @sbi: In memory super block info 2643 * 2644 * If we have specified it via mount option, then 2645 * use the mount option value. If the value specified at mount time is 2646 * greater than the blocks per group use the super block value. 2647 * If the super block value is greater than blocks per group return 0. 2648 * Allocator needs it be less than blocks per group. 2649 * 2650 */ 2651 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2652 { 2653 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2654 unsigned long stripe_width = 2655 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2656 int ret; 2657 2658 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2659 ret = sbi->s_stripe; 2660 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2661 ret = stripe_width; 2662 else if (stride && stride <= sbi->s_blocks_per_group) 2663 ret = stride; 2664 else 2665 ret = 0; 2666 2667 /* 2668 * If the stripe width is 1, this makes no sense and 2669 * we set it to 0 to turn off stripe handling code. 2670 */ 2671 if (ret <= 1) 2672 ret = 0; 2673 2674 return ret; 2675 } 2676 2677 /* 2678 * Check whether this filesystem can be mounted based on 2679 * the features present and the RDONLY/RDWR mount requested. 2680 * Returns 1 if this filesystem can be mounted as requested, 2681 * 0 if it cannot be. 2682 */ 2683 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2684 { 2685 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2686 ext4_msg(sb, KERN_ERR, 2687 "Couldn't mount because of " 2688 "unsupported optional features (%x)", 2689 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2690 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2691 return 0; 2692 } 2693 2694 if (readonly) 2695 return 1; 2696 2697 if (ext4_has_feature_readonly(sb)) { 2698 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2699 sb->s_flags |= MS_RDONLY; 2700 return 1; 2701 } 2702 2703 /* Check that feature set is OK for a read-write mount */ 2704 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2705 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2706 "unsupported optional features (%x)", 2707 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2708 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2709 return 0; 2710 } 2711 /* 2712 * Large file size enabled file system can only be mounted 2713 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2714 */ 2715 if (ext4_has_feature_huge_file(sb)) { 2716 if (sizeof(blkcnt_t) < sizeof(u64)) { 2717 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2718 "cannot be mounted RDWR without " 2719 "CONFIG_LBDAF"); 2720 return 0; 2721 } 2722 } 2723 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2724 ext4_msg(sb, KERN_ERR, 2725 "Can't support bigalloc feature without " 2726 "extents feature\n"); 2727 return 0; 2728 } 2729 2730 #ifndef CONFIG_QUOTA 2731 if (ext4_has_feature_quota(sb) && !readonly) { 2732 ext4_msg(sb, KERN_ERR, 2733 "Filesystem with quota feature cannot be mounted RDWR " 2734 "without CONFIG_QUOTA"); 2735 return 0; 2736 } 2737 if (ext4_has_feature_project(sb) && !readonly) { 2738 ext4_msg(sb, KERN_ERR, 2739 "Filesystem with project quota feature cannot be mounted RDWR " 2740 "without CONFIG_QUOTA"); 2741 return 0; 2742 } 2743 #endif /* CONFIG_QUOTA */ 2744 return 1; 2745 } 2746 2747 /* 2748 * This function is called once a day if we have errors logged 2749 * on the file system 2750 */ 2751 static void print_daily_error_info(unsigned long arg) 2752 { 2753 struct super_block *sb = (struct super_block *) arg; 2754 struct ext4_sb_info *sbi; 2755 struct ext4_super_block *es; 2756 2757 sbi = EXT4_SB(sb); 2758 es = sbi->s_es; 2759 2760 if (es->s_error_count) 2761 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2762 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2763 le32_to_cpu(es->s_error_count)); 2764 if (es->s_first_error_time) { 2765 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2766 sb->s_id, le32_to_cpu(es->s_first_error_time), 2767 (int) sizeof(es->s_first_error_func), 2768 es->s_first_error_func, 2769 le32_to_cpu(es->s_first_error_line)); 2770 if (es->s_first_error_ino) 2771 printk(KERN_CONT ": inode %u", 2772 le32_to_cpu(es->s_first_error_ino)); 2773 if (es->s_first_error_block) 2774 printk(KERN_CONT ": block %llu", (unsigned long long) 2775 le64_to_cpu(es->s_first_error_block)); 2776 printk(KERN_CONT "\n"); 2777 } 2778 if (es->s_last_error_time) { 2779 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2780 sb->s_id, le32_to_cpu(es->s_last_error_time), 2781 (int) sizeof(es->s_last_error_func), 2782 es->s_last_error_func, 2783 le32_to_cpu(es->s_last_error_line)); 2784 if (es->s_last_error_ino) 2785 printk(KERN_CONT ": inode %u", 2786 le32_to_cpu(es->s_last_error_ino)); 2787 if (es->s_last_error_block) 2788 printk(KERN_CONT ": block %llu", (unsigned long long) 2789 le64_to_cpu(es->s_last_error_block)); 2790 printk(KERN_CONT "\n"); 2791 } 2792 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2793 } 2794 2795 /* Find next suitable group and run ext4_init_inode_table */ 2796 static int ext4_run_li_request(struct ext4_li_request *elr) 2797 { 2798 struct ext4_group_desc *gdp = NULL; 2799 ext4_group_t group, ngroups; 2800 struct super_block *sb; 2801 unsigned long timeout = 0; 2802 int ret = 0; 2803 2804 sb = elr->lr_super; 2805 ngroups = EXT4_SB(sb)->s_groups_count; 2806 2807 for (group = elr->lr_next_group; group < ngroups; group++) { 2808 gdp = ext4_get_group_desc(sb, group, NULL); 2809 if (!gdp) { 2810 ret = 1; 2811 break; 2812 } 2813 2814 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2815 break; 2816 } 2817 2818 if (group >= ngroups) 2819 ret = 1; 2820 2821 if (!ret) { 2822 timeout = jiffies; 2823 ret = ext4_init_inode_table(sb, group, 2824 elr->lr_timeout ? 0 : 1); 2825 if (elr->lr_timeout == 0) { 2826 timeout = (jiffies - timeout) * 2827 elr->lr_sbi->s_li_wait_mult; 2828 elr->lr_timeout = timeout; 2829 } 2830 elr->lr_next_sched = jiffies + elr->lr_timeout; 2831 elr->lr_next_group = group + 1; 2832 } 2833 return ret; 2834 } 2835 2836 /* 2837 * Remove lr_request from the list_request and free the 2838 * request structure. Should be called with li_list_mtx held 2839 */ 2840 static void ext4_remove_li_request(struct ext4_li_request *elr) 2841 { 2842 struct ext4_sb_info *sbi; 2843 2844 if (!elr) 2845 return; 2846 2847 sbi = elr->lr_sbi; 2848 2849 list_del(&elr->lr_request); 2850 sbi->s_li_request = NULL; 2851 kfree(elr); 2852 } 2853 2854 static void ext4_unregister_li_request(struct super_block *sb) 2855 { 2856 mutex_lock(&ext4_li_mtx); 2857 if (!ext4_li_info) { 2858 mutex_unlock(&ext4_li_mtx); 2859 return; 2860 } 2861 2862 mutex_lock(&ext4_li_info->li_list_mtx); 2863 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2864 mutex_unlock(&ext4_li_info->li_list_mtx); 2865 mutex_unlock(&ext4_li_mtx); 2866 } 2867 2868 static struct task_struct *ext4_lazyinit_task; 2869 2870 /* 2871 * This is the function where ext4lazyinit thread lives. It walks 2872 * through the request list searching for next scheduled filesystem. 2873 * When such a fs is found, run the lazy initialization request 2874 * (ext4_rn_li_request) and keep track of the time spend in this 2875 * function. Based on that time we compute next schedule time of 2876 * the request. When walking through the list is complete, compute 2877 * next waking time and put itself into sleep. 2878 */ 2879 static int ext4_lazyinit_thread(void *arg) 2880 { 2881 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2882 struct list_head *pos, *n; 2883 struct ext4_li_request *elr; 2884 unsigned long next_wakeup, cur; 2885 2886 BUG_ON(NULL == eli); 2887 2888 cont_thread: 2889 while (true) { 2890 next_wakeup = MAX_JIFFY_OFFSET; 2891 2892 mutex_lock(&eli->li_list_mtx); 2893 if (list_empty(&eli->li_request_list)) { 2894 mutex_unlock(&eli->li_list_mtx); 2895 goto exit_thread; 2896 } 2897 list_for_each_safe(pos, n, &eli->li_request_list) { 2898 int err = 0; 2899 int progress = 0; 2900 elr = list_entry(pos, struct ext4_li_request, 2901 lr_request); 2902 2903 if (time_before(jiffies, elr->lr_next_sched)) { 2904 if (time_before(elr->lr_next_sched, next_wakeup)) 2905 next_wakeup = elr->lr_next_sched; 2906 continue; 2907 } 2908 if (down_read_trylock(&elr->lr_super->s_umount)) { 2909 if (sb_start_write_trylock(elr->lr_super)) { 2910 progress = 1; 2911 /* 2912 * We hold sb->s_umount, sb can not 2913 * be removed from the list, it is 2914 * now safe to drop li_list_mtx 2915 */ 2916 mutex_unlock(&eli->li_list_mtx); 2917 err = ext4_run_li_request(elr); 2918 sb_end_write(elr->lr_super); 2919 mutex_lock(&eli->li_list_mtx); 2920 n = pos->next; 2921 } 2922 up_read((&elr->lr_super->s_umount)); 2923 } 2924 /* error, remove the lazy_init job */ 2925 if (err) { 2926 ext4_remove_li_request(elr); 2927 continue; 2928 } 2929 if (!progress) { 2930 elr->lr_next_sched = jiffies + 2931 (prandom_u32() 2932 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2933 } 2934 if (time_before(elr->lr_next_sched, next_wakeup)) 2935 next_wakeup = elr->lr_next_sched; 2936 } 2937 mutex_unlock(&eli->li_list_mtx); 2938 2939 try_to_freeze(); 2940 2941 cur = jiffies; 2942 if ((time_after_eq(cur, next_wakeup)) || 2943 (MAX_JIFFY_OFFSET == next_wakeup)) { 2944 cond_resched(); 2945 continue; 2946 } 2947 2948 schedule_timeout_interruptible(next_wakeup - cur); 2949 2950 if (kthread_should_stop()) { 2951 ext4_clear_request_list(); 2952 goto exit_thread; 2953 } 2954 } 2955 2956 exit_thread: 2957 /* 2958 * It looks like the request list is empty, but we need 2959 * to check it under the li_list_mtx lock, to prevent any 2960 * additions into it, and of course we should lock ext4_li_mtx 2961 * to atomically free the list and ext4_li_info, because at 2962 * this point another ext4 filesystem could be registering 2963 * new one. 2964 */ 2965 mutex_lock(&ext4_li_mtx); 2966 mutex_lock(&eli->li_list_mtx); 2967 if (!list_empty(&eli->li_request_list)) { 2968 mutex_unlock(&eli->li_list_mtx); 2969 mutex_unlock(&ext4_li_mtx); 2970 goto cont_thread; 2971 } 2972 mutex_unlock(&eli->li_list_mtx); 2973 kfree(ext4_li_info); 2974 ext4_li_info = NULL; 2975 mutex_unlock(&ext4_li_mtx); 2976 2977 return 0; 2978 } 2979 2980 static void ext4_clear_request_list(void) 2981 { 2982 struct list_head *pos, *n; 2983 struct ext4_li_request *elr; 2984 2985 mutex_lock(&ext4_li_info->li_list_mtx); 2986 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2987 elr = list_entry(pos, struct ext4_li_request, 2988 lr_request); 2989 ext4_remove_li_request(elr); 2990 } 2991 mutex_unlock(&ext4_li_info->li_list_mtx); 2992 } 2993 2994 static int ext4_run_lazyinit_thread(void) 2995 { 2996 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2997 ext4_li_info, "ext4lazyinit"); 2998 if (IS_ERR(ext4_lazyinit_task)) { 2999 int err = PTR_ERR(ext4_lazyinit_task); 3000 ext4_clear_request_list(); 3001 kfree(ext4_li_info); 3002 ext4_li_info = NULL; 3003 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3004 "initialization thread\n", 3005 err); 3006 return err; 3007 } 3008 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3009 return 0; 3010 } 3011 3012 /* 3013 * Check whether it make sense to run itable init. thread or not. 3014 * If there is at least one uninitialized inode table, return 3015 * corresponding group number, else the loop goes through all 3016 * groups and return total number of groups. 3017 */ 3018 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3019 { 3020 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3021 struct ext4_group_desc *gdp = NULL; 3022 3023 for (group = 0; group < ngroups; group++) { 3024 gdp = ext4_get_group_desc(sb, group, NULL); 3025 if (!gdp) 3026 continue; 3027 3028 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3029 break; 3030 } 3031 3032 return group; 3033 } 3034 3035 static int ext4_li_info_new(void) 3036 { 3037 struct ext4_lazy_init *eli = NULL; 3038 3039 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3040 if (!eli) 3041 return -ENOMEM; 3042 3043 INIT_LIST_HEAD(&eli->li_request_list); 3044 mutex_init(&eli->li_list_mtx); 3045 3046 eli->li_state |= EXT4_LAZYINIT_QUIT; 3047 3048 ext4_li_info = eli; 3049 3050 return 0; 3051 } 3052 3053 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3054 ext4_group_t start) 3055 { 3056 struct ext4_sb_info *sbi = EXT4_SB(sb); 3057 struct ext4_li_request *elr; 3058 3059 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3060 if (!elr) 3061 return NULL; 3062 3063 elr->lr_super = sb; 3064 elr->lr_sbi = sbi; 3065 elr->lr_next_group = start; 3066 3067 /* 3068 * Randomize first schedule time of the request to 3069 * spread the inode table initialization requests 3070 * better. 3071 */ 3072 elr->lr_next_sched = jiffies + (prandom_u32() % 3073 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3074 return elr; 3075 } 3076 3077 int ext4_register_li_request(struct super_block *sb, 3078 ext4_group_t first_not_zeroed) 3079 { 3080 struct ext4_sb_info *sbi = EXT4_SB(sb); 3081 struct ext4_li_request *elr = NULL; 3082 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3083 int ret = 0; 3084 3085 mutex_lock(&ext4_li_mtx); 3086 if (sbi->s_li_request != NULL) { 3087 /* 3088 * Reset timeout so it can be computed again, because 3089 * s_li_wait_mult might have changed. 3090 */ 3091 sbi->s_li_request->lr_timeout = 0; 3092 goto out; 3093 } 3094 3095 if (first_not_zeroed == ngroups || 3096 (sb->s_flags & MS_RDONLY) || 3097 !test_opt(sb, INIT_INODE_TABLE)) 3098 goto out; 3099 3100 elr = ext4_li_request_new(sb, first_not_zeroed); 3101 if (!elr) { 3102 ret = -ENOMEM; 3103 goto out; 3104 } 3105 3106 if (NULL == ext4_li_info) { 3107 ret = ext4_li_info_new(); 3108 if (ret) 3109 goto out; 3110 } 3111 3112 mutex_lock(&ext4_li_info->li_list_mtx); 3113 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3114 mutex_unlock(&ext4_li_info->li_list_mtx); 3115 3116 sbi->s_li_request = elr; 3117 /* 3118 * set elr to NULL here since it has been inserted to 3119 * the request_list and the removal and free of it is 3120 * handled by ext4_clear_request_list from now on. 3121 */ 3122 elr = NULL; 3123 3124 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3125 ret = ext4_run_lazyinit_thread(); 3126 if (ret) 3127 goto out; 3128 } 3129 out: 3130 mutex_unlock(&ext4_li_mtx); 3131 if (ret) 3132 kfree(elr); 3133 return ret; 3134 } 3135 3136 /* 3137 * We do not need to lock anything since this is called on 3138 * module unload. 3139 */ 3140 static void ext4_destroy_lazyinit_thread(void) 3141 { 3142 /* 3143 * If thread exited earlier 3144 * there's nothing to be done. 3145 */ 3146 if (!ext4_li_info || !ext4_lazyinit_task) 3147 return; 3148 3149 kthread_stop(ext4_lazyinit_task); 3150 } 3151 3152 static int set_journal_csum_feature_set(struct super_block *sb) 3153 { 3154 int ret = 1; 3155 int compat, incompat; 3156 struct ext4_sb_info *sbi = EXT4_SB(sb); 3157 3158 if (ext4_has_metadata_csum(sb)) { 3159 /* journal checksum v3 */ 3160 compat = 0; 3161 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3162 } else { 3163 /* journal checksum v1 */ 3164 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3165 incompat = 0; 3166 } 3167 3168 jbd2_journal_clear_features(sbi->s_journal, 3169 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3170 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3171 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3172 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3173 ret = jbd2_journal_set_features(sbi->s_journal, 3174 compat, 0, 3175 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3176 incompat); 3177 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3178 ret = jbd2_journal_set_features(sbi->s_journal, 3179 compat, 0, 3180 incompat); 3181 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3182 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3183 } else { 3184 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3185 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3186 } 3187 3188 return ret; 3189 } 3190 3191 /* 3192 * Note: calculating the overhead so we can be compatible with 3193 * historical BSD practice is quite difficult in the face of 3194 * clusters/bigalloc. This is because multiple metadata blocks from 3195 * different block group can end up in the same allocation cluster. 3196 * Calculating the exact overhead in the face of clustered allocation 3197 * requires either O(all block bitmaps) in memory or O(number of block 3198 * groups**2) in time. We will still calculate the superblock for 3199 * older file systems --- and if we come across with a bigalloc file 3200 * system with zero in s_overhead_clusters the estimate will be close to 3201 * correct especially for very large cluster sizes --- but for newer 3202 * file systems, it's better to calculate this figure once at mkfs 3203 * time, and store it in the superblock. If the superblock value is 3204 * present (even for non-bigalloc file systems), we will use it. 3205 */ 3206 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3207 char *buf) 3208 { 3209 struct ext4_sb_info *sbi = EXT4_SB(sb); 3210 struct ext4_group_desc *gdp; 3211 ext4_fsblk_t first_block, last_block, b; 3212 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3213 int s, j, count = 0; 3214 3215 if (!ext4_has_feature_bigalloc(sb)) 3216 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3217 sbi->s_itb_per_group + 2); 3218 3219 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3220 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3221 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3222 for (i = 0; i < ngroups; i++) { 3223 gdp = ext4_get_group_desc(sb, i, NULL); 3224 b = ext4_block_bitmap(sb, gdp); 3225 if (b >= first_block && b <= last_block) { 3226 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3227 count++; 3228 } 3229 b = ext4_inode_bitmap(sb, gdp); 3230 if (b >= first_block && b <= last_block) { 3231 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3232 count++; 3233 } 3234 b = ext4_inode_table(sb, gdp); 3235 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3236 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3237 int c = EXT4_B2C(sbi, b - first_block); 3238 ext4_set_bit(c, buf); 3239 count++; 3240 } 3241 if (i != grp) 3242 continue; 3243 s = 0; 3244 if (ext4_bg_has_super(sb, grp)) { 3245 ext4_set_bit(s++, buf); 3246 count++; 3247 } 3248 j = ext4_bg_num_gdb(sb, grp); 3249 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3250 ext4_error(sb, "Invalid number of block group " 3251 "descriptor blocks: %d", j); 3252 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3253 } 3254 count += j; 3255 for (; j > 0; j--) 3256 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3257 } 3258 if (!count) 3259 return 0; 3260 return EXT4_CLUSTERS_PER_GROUP(sb) - 3261 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3262 } 3263 3264 /* 3265 * Compute the overhead and stash it in sbi->s_overhead 3266 */ 3267 int ext4_calculate_overhead(struct super_block *sb) 3268 { 3269 struct ext4_sb_info *sbi = EXT4_SB(sb); 3270 struct ext4_super_block *es = sbi->s_es; 3271 struct inode *j_inode; 3272 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3273 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3274 ext4_fsblk_t overhead = 0; 3275 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3276 3277 if (!buf) 3278 return -ENOMEM; 3279 3280 /* 3281 * Compute the overhead (FS structures). This is constant 3282 * for a given filesystem unless the number of block groups 3283 * changes so we cache the previous value until it does. 3284 */ 3285 3286 /* 3287 * All of the blocks before first_data_block are overhead 3288 */ 3289 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3290 3291 /* 3292 * Add the overhead found in each block group 3293 */ 3294 for (i = 0; i < ngroups; i++) { 3295 int blks; 3296 3297 blks = count_overhead(sb, i, buf); 3298 overhead += blks; 3299 if (blks) 3300 memset(buf, 0, PAGE_SIZE); 3301 cond_resched(); 3302 } 3303 3304 /* 3305 * Add the internal journal blocks whether the journal has been 3306 * loaded or not 3307 */ 3308 if (sbi->s_journal && !sbi->journal_bdev) 3309 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3310 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3311 j_inode = ext4_get_journal_inode(sb, j_inum); 3312 if (j_inode) { 3313 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3314 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3315 iput(j_inode); 3316 } else { 3317 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3318 } 3319 } 3320 sbi->s_overhead = overhead; 3321 smp_wmb(); 3322 free_page((unsigned long) buf); 3323 return 0; 3324 } 3325 3326 static void ext4_set_resv_clusters(struct super_block *sb) 3327 { 3328 ext4_fsblk_t resv_clusters; 3329 struct ext4_sb_info *sbi = EXT4_SB(sb); 3330 3331 /* 3332 * There's no need to reserve anything when we aren't using extents. 3333 * The space estimates are exact, there are no unwritten extents, 3334 * hole punching doesn't need new metadata... This is needed especially 3335 * to keep ext2/3 backward compatibility. 3336 */ 3337 if (!ext4_has_feature_extents(sb)) 3338 return; 3339 /* 3340 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3341 * This should cover the situations where we can not afford to run 3342 * out of space like for example punch hole, or converting 3343 * unwritten extents in delalloc path. In most cases such 3344 * allocation would require 1, or 2 blocks, higher numbers are 3345 * very rare. 3346 */ 3347 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3348 sbi->s_cluster_bits); 3349 3350 do_div(resv_clusters, 50); 3351 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3352 3353 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3354 } 3355 3356 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3357 { 3358 char *orig_data = kstrdup(data, GFP_KERNEL); 3359 struct buffer_head *bh; 3360 struct ext4_super_block *es = NULL; 3361 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3362 ext4_fsblk_t block; 3363 ext4_fsblk_t sb_block = get_sb_block(&data); 3364 ext4_fsblk_t logical_sb_block; 3365 unsigned long offset = 0; 3366 unsigned long journal_devnum = 0; 3367 unsigned long def_mount_opts; 3368 struct inode *root; 3369 const char *descr; 3370 int ret = -ENOMEM; 3371 int blocksize, clustersize; 3372 unsigned int db_count; 3373 unsigned int i; 3374 int needs_recovery, has_huge_files, has_bigalloc; 3375 __u64 blocks_count; 3376 int err = 0; 3377 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3378 ext4_group_t first_not_zeroed; 3379 3380 if ((data && !orig_data) || !sbi) 3381 goto out_free_base; 3382 3383 sbi->s_blockgroup_lock = 3384 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3385 if (!sbi->s_blockgroup_lock) 3386 goto out_free_base; 3387 3388 sb->s_fs_info = sbi; 3389 sbi->s_sb = sb; 3390 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3391 sbi->s_sb_block = sb_block; 3392 if (sb->s_bdev->bd_part) 3393 sbi->s_sectors_written_start = 3394 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3395 3396 /* Cleanup superblock name */ 3397 strreplace(sb->s_id, '/', '!'); 3398 3399 /* -EINVAL is default */ 3400 ret = -EINVAL; 3401 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3402 if (!blocksize) { 3403 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3404 goto out_fail; 3405 } 3406 3407 /* 3408 * The ext4 superblock will not be buffer aligned for other than 1kB 3409 * block sizes. We need to calculate the offset from buffer start. 3410 */ 3411 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3412 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3413 offset = do_div(logical_sb_block, blocksize); 3414 } else { 3415 logical_sb_block = sb_block; 3416 } 3417 3418 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3419 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3420 goto out_fail; 3421 } 3422 /* 3423 * Note: s_es must be initialized as soon as possible because 3424 * some ext4 macro-instructions depend on its value 3425 */ 3426 es = (struct ext4_super_block *) (bh->b_data + offset); 3427 sbi->s_es = es; 3428 sb->s_magic = le16_to_cpu(es->s_magic); 3429 if (sb->s_magic != EXT4_SUPER_MAGIC) 3430 goto cantfind_ext4; 3431 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3432 3433 /* Warn if metadata_csum and gdt_csum are both set. */ 3434 if (ext4_has_feature_metadata_csum(sb) && 3435 ext4_has_feature_gdt_csum(sb)) 3436 ext4_warning(sb, "metadata_csum and uninit_bg are " 3437 "redundant flags; please run fsck."); 3438 3439 /* Check for a known checksum algorithm */ 3440 if (!ext4_verify_csum_type(sb, es)) { 3441 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3442 "unknown checksum algorithm."); 3443 silent = 1; 3444 goto cantfind_ext4; 3445 } 3446 3447 /* Load the checksum driver */ 3448 if (ext4_has_feature_metadata_csum(sb)) { 3449 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3450 if (IS_ERR(sbi->s_chksum_driver)) { 3451 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3452 ret = PTR_ERR(sbi->s_chksum_driver); 3453 sbi->s_chksum_driver = NULL; 3454 goto failed_mount; 3455 } 3456 } 3457 3458 /* Check superblock checksum */ 3459 if (!ext4_superblock_csum_verify(sb, es)) { 3460 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3461 "invalid superblock checksum. Run e2fsck?"); 3462 silent = 1; 3463 ret = -EFSBADCRC; 3464 goto cantfind_ext4; 3465 } 3466 3467 /* Precompute checksum seed for all metadata */ 3468 if (ext4_has_feature_csum_seed(sb)) 3469 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3470 else if (ext4_has_metadata_csum(sb)) 3471 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3472 sizeof(es->s_uuid)); 3473 3474 /* Set defaults before we parse the mount options */ 3475 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3476 set_opt(sb, INIT_INODE_TABLE); 3477 if (def_mount_opts & EXT4_DEFM_DEBUG) 3478 set_opt(sb, DEBUG); 3479 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3480 set_opt(sb, GRPID); 3481 if (def_mount_opts & EXT4_DEFM_UID16) 3482 set_opt(sb, NO_UID32); 3483 /* xattr user namespace & acls are now defaulted on */ 3484 set_opt(sb, XATTR_USER); 3485 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3486 set_opt(sb, POSIX_ACL); 3487 #endif 3488 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3489 if (ext4_has_metadata_csum(sb)) 3490 set_opt(sb, JOURNAL_CHECKSUM); 3491 3492 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3493 set_opt(sb, JOURNAL_DATA); 3494 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3495 set_opt(sb, ORDERED_DATA); 3496 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3497 set_opt(sb, WRITEBACK_DATA); 3498 3499 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3500 set_opt(sb, ERRORS_PANIC); 3501 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3502 set_opt(sb, ERRORS_CONT); 3503 else 3504 set_opt(sb, ERRORS_RO); 3505 /* block_validity enabled by default; disable with noblock_validity */ 3506 set_opt(sb, BLOCK_VALIDITY); 3507 if (def_mount_opts & EXT4_DEFM_DISCARD) 3508 set_opt(sb, DISCARD); 3509 3510 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3511 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3512 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3513 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3514 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3515 3516 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3517 set_opt(sb, BARRIER); 3518 3519 /* 3520 * enable delayed allocation by default 3521 * Use -o nodelalloc to turn it off 3522 */ 3523 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3524 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3525 set_opt(sb, DELALLOC); 3526 3527 /* 3528 * set default s_li_wait_mult for lazyinit, for the case there is 3529 * no mount option specified. 3530 */ 3531 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3532 3533 if (sbi->s_es->s_mount_opts[0]) { 3534 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3535 sizeof(sbi->s_es->s_mount_opts), 3536 GFP_KERNEL); 3537 if (!s_mount_opts) 3538 goto failed_mount; 3539 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3540 &journal_ioprio, 0)) { 3541 ext4_msg(sb, KERN_WARNING, 3542 "failed to parse options in superblock: %s", 3543 s_mount_opts); 3544 } 3545 kfree(s_mount_opts); 3546 } 3547 sbi->s_def_mount_opt = sbi->s_mount_opt; 3548 if (!parse_options((char *) data, sb, &journal_devnum, 3549 &journal_ioprio, 0)) 3550 goto failed_mount; 3551 3552 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3553 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3554 "with data=journal disables delayed " 3555 "allocation and O_DIRECT support!\n"); 3556 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3557 ext4_msg(sb, KERN_ERR, "can't mount with " 3558 "both data=journal and delalloc"); 3559 goto failed_mount; 3560 } 3561 if (test_opt(sb, DIOREAD_NOLOCK)) { 3562 ext4_msg(sb, KERN_ERR, "can't mount with " 3563 "both data=journal and dioread_nolock"); 3564 goto failed_mount; 3565 } 3566 if (test_opt(sb, DAX)) { 3567 ext4_msg(sb, KERN_ERR, "can't mount with " 3568 "both data=journal and dax"); 3569 goto failed_mount; 3570 } 3571 if (ext4_has_feature_encrypt(sb)) { 3572 ext4_msg(sb, KERN_WARNING, 3573 "encrypted files will use data=ordered " 3574 "instead of data journaling mode"); 3575 } 3576 if (test_opt(sb, DELALLOC)) 3577 clear_opt(sb, DELALLOC); 3578 } else { 3579 sb->s_iflags |= SB_I_CGROUPWB; 3580 } 3581 3582 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3583 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3584 3585 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3586 (ext4_has_compat_features(sb) || 3587 ext4_has_ro_compat_features(sb) || 3588 ext4_has_incompat_features(sb))) 3589 ext4_msg(sb, KERN_WARNING, 3590 "feature flags set on rev 0 fs, " 3591 "running e2fsck is recommended"); 3592 3593 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3594 set_opt2(sb, HURD_COMPAT); 3595 if (ext4_has_feature_64bit(sb)) { 3596 ext4_msg(sb, KERN_ERR, 3597 "The Hurd can't support 64-bit file systems"); 3598 goto failed_mount; 3599 } 3600 } 3601 3602 if (IS_EXT2_SB(sb)) { 3603 if (ext2_feature_set_ok(sb)) 3604 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3605 "using the ext4 subsystem"); 3606 else { 3607 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3608 "to feature incompatibilities"); 3609 goto failed_mount; 3610 } 3611 } 3612 3613 if (IS_EXT3_SB(sb)) { 3614 if (ext3_feature_set_ok(sb)) 3615 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3616 "using the ext4 subsystem"); 3617 else { 3618 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3619 "to feature incompatibilities"); 3620 goto failed_mount; 3621 } 3622 } 3623 3624 /* 3625 * Check feature flags regardless of the revision level, since we 3626 * previously didn't change the revision level when setting the flags, 3627 * so there is a chance incompat flags are set on a rev 0 filesystem. 3628 */ 3629 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3630 goto failed_mount; 3631 3632 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3633 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3634 blocksize > EXT4_MAX_BLOCK_SIZE) { 3635 ext4_msg(sb, KERN_ERR, 3636 "Unsupported filesystem blocksize %d (%d log_block_size)", 3637 blocksize, le32_to_cpu(es->s_log_block_size)); 3638 goto failed_mount; 3639 } 3640 if (le32_to_cpu(es->s_log_block_size) > 3641 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3642 ext4_msg(sb, KERN_ERR, 3643 "Invalid log block size: %u", 3644 le32_to_cpu(es->s_log_block_size)); 3645 goto failed_mount; 3646 } 3647 3648 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3649 ext4_msg(sb, KERN_ERR, 3650 "Number of reserved GDT blocks insanely large: %d", 3651 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3652 goto failed_mount; 3653 } 3654 3655 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3656 err = bdev_dax_supported(sb, blocksize); 3657 if (err) 3658 goto failed_mount; 3659 } 3660 3661 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3662 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3663 es->s_encryption_level); 3664 goto failed_mount; 3665 } 3666 3667 if (sb->s_blocksize != blocksize) { 3668 /* Validate the filesystem blocksize */ 3669 if (!sb_set_blocksize(sb, blocksize)) { 3670 ext4_msg(sb, KERN_ERR, "bad block size %d", 3671 blocksize); 3672 goto failed_mount; 3673 } 3674 3675 brelse(bh); 3676 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3677 offset = do_div(logical_sb_block, blocksize); 3678 bh = sb_bread_unmovable(sb, logical_sb_block); 3679 if (!bh) { 3680 ext4_msg(sb, KERN_ERR, 3681 "Can't read superblock on 2nd try"); 3682 goto failed_mount; 3683 } 3684 es = (struct ext4_super_block *)(bh->b_data + offset); 3685 sbi->s_es = es; 3686 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3687 ext4_msg(sb, KERN_ERR, 3688 "Magic mismatch, very weird!"); 3689 goto failed_mount; 3690 } 3691 } 3692 3693 has_huge_files = ext4_has_feature_huge_file(sb); 3694 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3695 has_huge_files); 3696 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3697 3698 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3699 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3700 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3701 } else { 3702 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3703 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3704 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3705 (!is_power_of_2(sbi->s_inode_size)) || 3706 (sbi->s_inode_size > blocksize)) { 3707 ext4_msg(sb, KERN_ERR, 3708 "unsupported inode size: %d", 3709 sbi->s_inode_size); 3710 goto failed_mount; 3711 } 3712 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3713 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3714 } 3715 3716 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3717 if (ext4_has_feature_64bit(sb)) { 3718 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3719 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3720 !is_power_of_2(sbi->s_desc_size)) { 3721 ext4_msg(sb, KERN_ERR, 3722 "unsupported descriptor size %lu", 3723 sbi->s_desc_size); 3724 goto failed_mount; 3725 } 3726 } else 3727 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3728 3729 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3730 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3731 3732 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3733 if (sbi->s_inodes_per_block == 0) 3734 goto cantfind_ext4; 3735 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3736 sbi->s_inodes_per_group > blocksize * 8) { 3737 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3738 sbi->s_blocks_per_group); 3739 goto failed_mount; 3740 } 3741 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3742 sbi->s_inodes_per_block; 3743 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3744 sbi->s_sbh = bh; 3745 sbi->s_mount_state = le16_to_cpu(es->s_state); 3746 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3747 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3748 3749 for (i = 0; i < 4; i++) 3750 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3751 sbi->s_def_hash_version = es->s_def_hash_version; 3752 if (ext4_has_feature_dir_index(sb)) { 3753 i = le32_to_cpu(es->s_flags); 3754 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3755 sbi->s_hash_unsigned = 3; 3756 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3757 #ifdef __CHAR_UNSIGNED__ 3758 if (!(sb->s_flags & MS_RDONLY)) 3759 es->s_flags |= 3760 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3761 sbi->s_hash_unsigned = 3; 3762 #else 3763 if (!(sb->s_flags & MS_RDONLY)) 3764 es->s_flags |= 3765 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3766 #endif 3767 } 3768 } 3769 3770 /* Handle clustersize */ 3771 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3772 has_bigalloc = ext4_has_feature_bigalloc(sb); 3773 if (has_bigalloc) { 3774 if (clustersize < blocksize) { 3775 ext4_msg(sb, KERN_ERR, 3776 "cluster size (%d) smaller than " 3777 "block size (%d)", clustersize, blocksize); 3778 goto failed_mount; 3779 } 3780 if (le32_to_cpu(es->s_log_cluster_size) > 3781 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3782 ext4_msg(sb, KERN_ERR, 3783 "Invalid log cluster size: %u", 3784 le32_to_cpu(es->s_log_cluster_size)); 3785 goto failed_mount; 3786 } 3787 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3788 le32_to_cpu(es->s_log_block_size); 3789 sbi->s_clusters_per_group = 3790 le32_to_cpu(es->s_clusters_per_group); 3791 if (sbi->s_clusters_per_group > blocksize * 8) { 3792 ext4_msg(sb, KERN_ERR, 3793 "#clusters per group too big: %lu", 3794 sbi->s_clusters_per_group); 3795 goto failed_mount; 3796 } 3797 if (sbi->s_blocks_per_group != 3798 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3799 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3800 "clusters per group (%lu) inconsistent", 3801 sbi->s_blocks_per_group, 3802 sbi->s_clusters_per_group); 3803 goto failed_mount; 3804 } 3805 } else { 3806 if (clustersize != blocksize) { 3807 ext4_warning(sb, "fragment/cluster size (%d) != " 3808 "block size (%d)", clustersize, 3809 blocksize); 3810 clustersize = blocksize; 3811 } 3812 if (sbi->s_blocks_per_group > blocksize * 8) { 3813 ext4_msg(sb, KERN_ERR, 3814 "#blocks per group too big: %lu", 3815 sbi->s_blocks_per_group); 3816 goto failed_mount; 3817 } 3818 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3819 sbi->s_cluster_bits = 0; 3820 } 3821 sbi->s_cluster_ratio = clustersize / blocksize; 3822 3823 /* Do we have standard group size of clustersize * 8 blocks ? */ 3824 if (sbi->s_blocks_per_group == clustersize << 3) 3825 set_opt2(sb, STD_GROUP_SIZE); 3826 3827 /* 3828 * Test whether we have more sectors than will fit in sector_t, 3829 * and whether the max offset is addressable by the page cache. 3830 */ 3831 err = generic_check_addressable(sb->s_blocksize_bits, 3832 ext4_blocks_count(es)); 3833 if (err) { 3834 ext4_msg(sb, KERN_ERR, "filesystem" 3835 " too large to mount safely on this system"); 3836 if (sizeof(sector_t) < 8) 3837 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3838 goto failed_mount; 3839 } 3840 3841 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3842 goto cantfind_ext4; 3843 3844 /* check blocks count against device size */ 3845 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3846 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3847 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3848 "exceeds size of device (%llu blocks)", 3849 ext4_blocks_count(es), blocks_count); 3850 goto failed_mount; 3851 } 3852 3853 /* 3854 * It makes no sense for the first data block to be beyond the end 3855 * of the filesystem. 3856 */ 3857 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3858 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3859 "block %u is beyond end of filesystem (%llu)", 3860 le32_to_cpu(es->s_first_data_block), 3861 ext4_blocks_count(es)); 3862 goto failed_mount; 3863 } 3864 blocks_count = (ext4_blocks_count(es) - 3865 le32_to_cpu(es->s_first_data_block) + 3866 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3867 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3868 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3869 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3870 "(block count %llu, first data block %u, " 3871 "blocks per group %lu)", sbi->s_groups_count, 3872 ext4_blocks_count(es), 3873 le32_to_cpu(es->s_first_data_block), 3874 EXT4_BLOCKS_PER_GROUP(sb)); 3875 goto failed_mount; 3876 } 3877 sbi->s_groups_count = blocks_count; 3878 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3879 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3880 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3881 EXT4_DESC_PER_BLOCK(sb); 3882 if (ext4_has_feature_meta_bg(sb)) { 3883 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3884 ext4_msg(sb, KERN_WARNING, 3885 "first meta block group too large: %u " 3886 "(group descriptor block count %u)", 3887 le32_to_cpu(es->s_first_meta_bg), db_count); 3888 goto failed_mount; 3889 } 3890 } 3891 sbi->s_group_desc = kvmalloc(db_count * 3892 sizeof(struct buffer_head *), 3893 GFP_KERNEL); 3894 if (sbi->s_group_desc == NULL) { 3895 ext4_msg(sb, KERN_ERR, "not enough memory"); 3896 ret = -ENOMEM; 3897 goto failed_mount; 3898 } 3899 3900 bgl_lock_init(sbi->s_blockgroup_lock); 3901 3902 /* Pre-read the descriptors into the buffer cache */ 3903 for (i = 0; i < db_count; i++) { 3904 block = descriptor_loc(sb, logical_sb_block, i); 3905 sb_breadahead(sb, block); 3906 } 3907 3908 for (i = 0; i < db_count; i++) { 3909 block = descriptor_loc(sb, logical_sb_block, i); 3910 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3911 if (!sbi->s_group_desc[i]) { 3912 ext4_msg(sb, KERN_ERR, 3913 "can't read group descriptor %d", i); 3914 db_count = i; 3915 goto failed_mount2; 3916 } 3917 } 3918 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3919 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3920 ret = -EFSCORRUPTED; 3921 goto failed_mount2; 3922 } 3923 3924 sbi->s_gdb_count = db_count; 3925 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3926 spin_lock_init(&sbi->s_next_gen_lock); 3927 3928 setup_timer(&sbi->s_err_report, print_daily_error_info, 3929 (unsigned long) sb); 3930 3931 /* Register extent status tree shrinker */ 3932 if (ext4_es_register_shrinker(sbi)) 3933 goto failed_mount3; 3934 3935 sbi->s_stripe = ext4_get_stripe_size(sbi); 3936 sbi->s_extent_max_zeroout_kb = 32; 3937 3938 /* 3939 * set up enough so that it can read an inode 3940 */ 3941 sb->s_op = &ext4_sops; 3942 sb->s_export_op = &ext4_export_ops; 3943 sb->s_xattr = ext4_xattr_handlers; 3944 sb->s_cop = &ext4_cryptops; 3945 #ifdef CONFIG_QUOTA 3946 sb->dq_op = &ext4_quota_operations; 3947 if (ext4_has_feature_quota(sb)) 3948 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3949 else 3950 sb->s_qcop = &ext4_qctl_operations; 3951 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3952 #endif 3953 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3954 3955 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3956 mutex_init(&sbi->s_orphan_lock); 3957 3958 sb->s_root = NULL; 3959 3960 needs_recovery = (es->s_last_orphan != 0 || 3961 ext4_has_feature_journal_needs_recovery(sb)); 3962 3963 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3964 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3965 goto failed_mount3a; 3966 3967 /* 3968 * The first inode we look at is the journal inode. Don't try 3969 * root first: it may be modified in the journal! 3970 */ 3971 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3972 err = ext4_load_journal(sb, es, journal_devnum); 3973 if (err) 3974 goto failed_mount3a; 3975 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3976 ext4_has_feature_journal_needs_recovery(sb)) { 3977 ext4_msg(sb, KERN_ERR, "required journal recovery " 3978 "suppressed and not mounted read-only"); 3979 goto failed_mount_wq; 3980 } else { 3981 /* Nojournal mode, all journal mount options are illegal */ 3982 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3983 ext4_msg(sb, KERN_ERR, "can't mount with " 3984 "journal_checksum, fs mounted w/o journal"); 3985 goto failed_mount_wq; 3986 } 3987 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3988 ext4_msg(sb, KERN_ERR, "can't mount with " 3989 "journal_async_commit, fs mounted w/o journal"); 3990 goto failed_mount_wq; 3991 } 3992 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3993 ext4_msg(sb, KERN_ERR, "can't mount with " 3994 "commit=%lu, fs mounted w/o journal", 3995 sbi->s_commit_interval / HZ); 3996 goto failed_mount_wq; 3997 } 3998 if (EXT4_MOUNT_DATA_FLAGS & 3999 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4000 ext4_msg(sb, KERN_ERR, "can't mount with " 4001 "data=, fs mounted w/o journal"); 4002 goto failed_mount_wq; 4003 } 4004 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4005 clear_opt(sb, JOURNAL_CHECKSUM); 4006 clear_opt(sb, DATA_FLAGS); 4007 sbi->s_journal = NULL; 4008 needs_recovery = 0; 4009 goto no_journal; 4010 } 4011 4012 if (ext4_has_feature_64bit(sb) && 4013 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4014 JBD2_FEATURE_INCOMPAT_64BIT)) { 4015 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4016 goto failed_mount_wq; 4017 } 4018 4019 if (!set_journal_csum_feature_set(sb)) { 4020 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4021 "feature set"); 4022 goto failed_mount_wq; 4023 } 4024 4025 /* We have now updated the journal if required, so we can 4026 * validate the data journaling mode. */ 4027 switch (test_opt(sb, DATA_FLAGS)) { 4028 case 0: 4029 /* No mode set, assume a default based on the journal 4030 * capabilities: ORDERED_DATA if the journal can 4031 * cope, else JOURNAL_DATA 4032 */ 4033 if (jbd2_journal_check_available_features 4034 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4035 set_opt(sb, ORDERED_DATA); 4036 else 4037 set_opt(sb, JOURNAL_DATA); 4038 break; 4039 4040 case EXT4_MOUNT_ORDERED_DATA: 4041 case EXT4_MOUNT_WRITEBACK_DATA: 4042 if (!jbd2_journal_check_available_features 4043 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4044 ext4_msg(sb, KERN_ERR, "Journal does not support " 4045 "requested data journaling mode"); 4046 goto failed_mount_wq; 4047 } 4048 default: 4049 break; 4050 } 4051 4052 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4053 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4054 ext4_msg(sb, KERN_ERR, "can't mount with " 4055 "journal_async_commit in data=ordered mode"); 4056 goto failed_mount_wq; 4057 } 4058 4059 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4060 4061 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4062 4063 no_journal: 4064 sbi->s_mb_cache = ext4_xattr_create_cache(); 4065 if (!sbi->s_mb_cache) { 4066 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4067 goto failed_mount_wq; 4068 } 4069 4070 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4071 (blocksize != PAGE_SIZE)) { 4072 ext4_msg(sb, KERN_ERR, 4073 "Unsupported blocksize for fs encryption"); 4074 goto failed_mount_wq; 4075 } 4076 4077 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4078 !ext4_has_feature_encrypt(sb)) { 4079 ext4_set_feature_encrypt(sb); 4080 ext4_commit_super(sb, 1); 4081 } 4082 4083 /* 4084 * Get the # of file system overhead blocks from the 4085 * superblock if present. 4086 */ 4087 if (es->s_overhead_clusters) 4088 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4089 else { 4090 err = ext4_calculate_overhead(sb); 4091 if (err) 4092 goto failed_mount_wq; 4093 } 4094 4095 /* 4096 * The maximum number of concurrent works can be high and 4097 * concurrency isn't really necessary. Limit it to 1. 4098 */ 4099 EXT4_SB(sb)->rsv_conversion_wq = 4100 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4101 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4102 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4103 ret = -ENOMEM; 4104 goto failed_mount4; 4105 } 4106 4107 /* 4108 * The jbd2_journal_load will have done any necessary log recovery, 4109 * so we can safely mount the rest of the filesystem now. 4110 */ 4111 4112 root = ext4_iget(sb, EXT4_ROOT_INO); 4113 if (IS_ERR(root)) { 4114 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4115 ret = PTR_ERR(root); 4116 root = NULL; 4117 goto failed_mount4; 4118 } 4119 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4120 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4121 iput(root); 4122 goto failed_mount4; 4123 } 4124 sb->s_root = d_make_root(root); 4125 if (!sb->s_root) { 4126 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4127 ret = -ENOMEM; 4128 goto failed_mount4; 4129 } 4130 4131 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4132 sb->s_flags |= MS_RDONLY; 4133 4134 /* determine the minimum size of new large inodes, if present */ 4135 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4136 sbi->s_want_extra_isize == 0) { 4137 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4138 EXT4_GOOD_OLD_INODE_SIZE; 4139 if (ext4_has_feature_extra_isize(sb)) { 4140 if (sbi->s_want_extra_isize < 4141 le16_to_cpu(es->s_want_extra_isize)) 4142 sbi->s_want_extra_isize = 4143 le16_to_cpu(es->s_want_extra_isize); 4144 if (sbi->s_want_extra_isize < 4145 le16_to_cpu(es->s_min_extra_isize)) 4146 sbi->s_want_extra_isize = 4147 le16_to_cpu(es->s_min_extra_isize); 4148 } 4149 } 4150 /* Check if enough inode space is available */ 4151 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4152 sbi->s_inode_size) { 4153 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4154 EXT4_GOOD_OLD_INODE_SIZE; 4155 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4156 "available"); 4157 } 4158 4159 ext4_set_resv_clusters(sb); 4160 4161 err = ext4_setup_system_zone(sb); 4162 if (err) { 4163 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4164 "zone (%d)", err); 4165 goto failed_mount4a; 4166 } 4167 4168 ext4_ext_init(sb); 4169 err = ext4_mb_init(sb); 4170 if (err) { 4171 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4172 err); 4173 goto failed_mount5; 4174 } 4175 4176 block = ext4_count_free_clusters(sb); 4177 ext4_free_blocks_count_set(sbi->s_es, 4178 EXT4_C2B(sbi, block)); 4179 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4180 GFP_KERNEL); 4181 if (!err) { 4182 unsigned long freei = ext4_count_free_inodes(sb); 4183 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4184 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4185 GFP_KERNEL); 4186 } 4187 if (!err) 4188 err = percpu_counter_init(&sbi->s_dirs_counter, 4189 ext4_count_dirs(sb), GFP_KERNEL); 4190 if (!err) 4191 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4192 GFP_KERNEL); 4193 if (!err) 4194 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4195 4196 if (err) { 4197 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4198 goto failed_mount6; 4199 } 4200 4201 if (ext4_has_feature_flex_bg(sb)) 4202 if (!ext4_fill_flex_info(sb)) { 4203 ext4_msg(sb, KERN_ERR, 4204 "unable to initialize " 4205 "flex_bg meta info!"); 4206 goto failed_mount6; 4207 } 4208 4209 err = ext4_register_li_request(sb, first_not_zeroed); 4210 if (err) 4211 goto failed_mount6; 4212 4213 err = ext4_register_sysfs(sb); 4214 if (err) 4215 goto failed_mount7; 4216 4217 #ifdef CONFIG_QUOTA 4218 /* Enable quota usage during mount. */ 4219 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4220 err = ext4_enable_quotas(sb); 4221 if (err) 4222 goto failed_mount8; 4223 } 4224 #endif /* CONFIG_QUOTA */ 4225 4226 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4227 ext4_orphan_cleanup(sb, es); 4228 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4229 if (needs_recovery) { 4230 ext4_msg(sb, KERN_INFO, "recovery complete"); 4231 ext4_mark_recovery_complete(sb, es); 4232 } 4233 if (EXT4_SB(sb)->s_journal) { 4234 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4235 descr = " journalled data mode"; 4236 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4237 descr = " ordered data mode"; 4238 else 4239 descr = " writeback data mode"; 4240 } else 4241 descr = "out journal"; 4242 4243 if (test_opt(sb, DISCARD)) { 4244 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4245 if (!blk_queue_discard(q)) 4246 ext4_msg(sb, KERN_WARNING, 4247 "mounting with \"discard\" option, but " 4248 "the device does not support discard"); 4249 } 4250 4251 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4252 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4253 "Opts: %.*s%s%s", descr, 4254 (int) sizeof(sbi->s_es->s_mount_opts), 4255 sbi->s_es->s_mount_opts, 4256 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4257 4258 if (es->s_error_count) 4259 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4260 4261 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4262 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4263 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4264 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4265 4266 kfree(orig_data); 4267 return 0; 4268 4269 cantfind_ext4: 4270 if (!silent) 4271 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4272 goto failed_mount; 4273 4274 #ifdef CONFIG_QUOTA 4275 failed_mount8: 4276 ext4_unregister_sysfs(sb); 4277 #endif 4278 failed_mount7: 4279 ext4_unregister_li_request(sb); 4280 failed_mount6: 4281 ext4_mb_release(sb); 4282 if (sbi->s_flex_groups) 4283 kvfree(sbi->s_flex_groups); 4284 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4285 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4286 percpu_counter_destroy(&sbi->s_dirs_counter); 4287 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4288 failed_mount5: 4289 ext4_ext_release(sb); 4290 ext4_release_system_zone(sb); 4291 failed_mount4a: 4292 dput(sb->s_root); 4293 sb->s_root = NULL; 4294 failed_mount4: 4295 ext4_msg(sb, KERN_ERR, "mount failed"); 4296 if (EXT4_SB(sb)->rsv_conversion_wq) 4297 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4298 failed_mount_wq: 4299 if (sbi->s_mb_cache) { 4300 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4301 sbi->s_mb_cache = NULL; 4302 } 4303 if (sbi->s_journal) { 4304 jbd2_journal_destroy(sbi->s_journal); 4305 sbi->s_journal = NULL; 4306 } 4307 failed_mount3a: 4308 ext4_es_unregister_shrinker(sbi); 4309 failed_mount3: 4310 del_timer_sync(&sbi->s_err_report); 4311 if (sbi->s_mmp_tsk) 4312 kthread_stop(sbi->s_mmp_tsk); 4313 failed_mount2: 4314 for (i = 0; i < db_count; i++) 4315 brelse(sbi->s_group_desc[i]); 4316 kvfree(sbi->s_group_desc); 4317 failed_mount: 4318 if (sbi->s_chksum_driver) 4319 crypto_free_shash(sbi->s_chksum_driver); 4320 #ifdef CONFIG_QUOTA 4321 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4322 kfree(sbi->s_qf_names[i]); 4323 #endif 4324 ext4_blkdev_remove(sbi); 4325 brelse(bh); 4326 out_fail: 4327 sb->s_fs_info = NULL; 4328 kfree(sbi->s_blockgroup_lock); 4329 out_free_base: 4330 kfree(sbi); 4331 kfree(orig_data); 4332 return err ? err : ret; 4333 } 4334 4335 /* 4336 * Setup any per-fs journal parameters now. We'll do this both on 4337 * initial mount, once the journal has been initialised but before we've 4338 * done any recovery; and again on any subsequent remount. 4339 */ 4340 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4341 { 4342 struct ext4_sb_info *sbi = EXT4_SB(sb); 4343 4344 journal->j_commit_interval = sbi->s_commit_interval; 4345 journal->j_min_batch_time = sbi->s_min_batch_time; 4346 journal->j_max_batch_time = sbi->s_max_batch_time; 4347 4348 write_lock(&journal->j_state_lock); 4349 if (test_opt(sb, BARRIER)) 4350 journal->j_flags |= JBD2_BARRIER; 4351 else 4352 journal->j_flags &= ~JBD2_BARRIER; 4353 if (test_opt(sb, DATA_ERR_ABORT)) 4354 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4355 else 4356 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4357 write_unlock(&journal->j_state_lock); 4358 } 4359 4360 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4361 unsigned int journal_inum) 4362 { 4363 struct inode *journal_inode; 4364 4365 /* 4366 * Test for the existence of a valid inode on disk. Bad things 4367 * happen if we iget() an unused inode, as the subsequent iput() 4368 * will try to delete it. 4369 */ 4370 journal_inode = ext4_iget(sb, journal_inum); 4371 if (IS_ERR(journal_inode)) { 4372 ext4_msg(sb, KERN_ERR, "no journal found"); 4373 return NULL; 4374 } 4375 if (!journal_inode->i_nlink) { 4376 make_bad_inode(journal_inode); 4377 iput(journal_inode); 4378 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4379 return NULL; 4380 } 4381 4382 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4383 journal_inode, journal_inode->i_size); 4384 if (!S_ISREG(journal_inode->i_mode)) { 4385 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4386 iput(journal_inode); 4387 return NULL; 4388 } 4389 return journal_inode; 4390 } 4391 4392 static journal_t *ext4_get_journal(struct super_block *sb, 4393 unsigned int journal_inum) 4394 { 4395 struct inode *journal_inode; 4396 journal_t *journal; 4397 4398 BUG_ON(!ext4_has_feature_journal(sb)); 4399 4400 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4401 if (!journal_inode) 4402 return NULL; 4403 4404 journal = jbd2_journal_init_inode(journal_inode); 4405 if (!journal) { 4406 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4407 iput(journal_inode); 4408 return NULL; 4409 } 4410 journal->j_private = sb; 4411 ext4_init_journal_params(sb, journal); 4412 return journal; 4413 } 4414 4415 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4416 dev_t j_dev) 4417 { 4418 struct buffer_head *bh; 4419 journal_t *journal; 4420 ext4_fsblk_t start; 4421 ext4_fsblk_t len; 4422 int hblock, blocksize; 4423 ext4_fsblk_t sb_block; 4424 unsigned long offset; 4425 struct ext4_super_block *es; 4426 struct block_device *bdev; 4427 4428 BUG_ON(!ext4_has_feature_journal(sb)); 4429 4430 bdev = ext4_blkdev_get(j_dev, sb); 4431 if (bdev == NULL) 4432 return NULL; 4433 4434 blocksize = sb->s_blocksize; 4435 hblock = bdev_logical_block_size(bdev); 4436 if (blocksize < hblock) { 4437 ext4_msg(sb, KERN_ERR, 4438 "blocksize too small for journal device"); 4439 goto out_bdev; 4440 } 4441 4442 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4443 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4444 set_blocksize(bdev, blocksize); 4445 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4446 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4447 "external journal"); 4448 goto out_bdev; 4449 } 4450 4451 es = (struct ext4_super_block *) (bh->b_data + offset); 4452 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4453 !(le32_to_cpu(es->s_feature_incompat) & 4454 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4455 ext4_msg(sb, KERN_ERR, "external journal has " 4456 "bad superblock"); 4457 brelse(bh); 4458 goto out_bdev; 4459 } 4460 4461 if ((le32_to_cpu(es->s_feature_ro_compat) & 4462 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4463 es->s_checksum != ext4_superblock_csum(sb, es)) { 4464 ext4_msg(sb, KERN_ERR, "external journal has " 4465 "corrupt superblock"); 4466 brelse(bh); 4467 goto out_bdev; 4468 } 4469 4470 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4471 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4472 brelse(bh); 4473 goto out_bdev; 4474 } 4475 4476 len = ext4_blocks_count(es); 4477 start = sb_block + 1; 4478 brelse(bh); /* we're done with the superblock */ 4479 4480 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4481 start, len, blocksize); 4482 if (!journal) { 4483 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4484 goto out_bdev; 4485 } 4486 journal->j_private = sb; 4487 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4488 wait_on_buffer(journal->j_sb_buffer); 4489 if (!buffer_uptodate(journal->j_sb_buffer)) { 4490 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4491 goto out_journal; 4492 } 4493 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4494 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4495 "user (unsupported) - %d", 4496 be32_to_cpu(journal->j_superblock->s_nr_users)); 4497 goto out_journal; 4498 } 4499 EXT4_SB(sb)->journal_bdev = bdev; 4500 ext4_init_journal_params(sb, journal); 4501 return journal; 4502 4503 out_journal: 4504 jbd2_journal_destroy(journal); 4505 out_bdev: 4506 ext4_blkdev_put(bdev); 4507 return NULL; 4508 } 4509 4510 static int ext4_load_journal(struct super_block *sb, 4511 struct ext4_super_block *es, 4512 unsigned long journal_devnum) 4513 { 4514 journal_t *journal; 4515 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4516 dev_t journal_dev; 4517 int err = 0; 4518 int really_read_only; 4519 4520 BUG_ON(!ext4_has_feature_journal(sb)); 4521 4522 if (journal_devnum && 4523 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4524 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4525 "numbers have changed"); 4526 journal_dev = new_decode_dev(journal_devnum); 4527 } else 4528 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4529 4530 really_read_only = bdev_read_only(sb->s_bdev); 4531 4532 /* 4533 * Are we loading a blank journal or performing recovery after a 4534 * crash? For recovery, we need to check in advance whether we 4535 * can get read-write access to the device. 4536 */ 4537 if (ext4_has_feature_journal_needs_recovery(sb)) { 4538 if (sb->s_flags & MS_RDONLY) { 4539 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4540 "required on readonly filesystem"); 4541 if (really_read_only) { 4542 ext4_msg(sb, KERN_ERR, "write access " 4543 "unavailable, cannot proceed"); 4544 return -EROFS; 4545 } 4546 ext4_msg(sb, KERN_INFO, "write access will " 4547 "be enabled during recovery"); 4548 } 4549 } 4550 4551 if (journal_inum && journal_dev) { 4552 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4553 "and inode journals!"); 4554 return -EINVAL; 4555 } 4556 4557 if (journal_inum) { 4558 if (!(journal = ext4_get_journal(sb, journal_inum))) 4559 return -EINVAL; 4560 } else { 4561 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4562 return -EINVAL; 4563 } 4564 4565 if (!(journal->j_flags & JBD2_BARRIER)) 4566 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4567 4568 if (!ext4_has_feature_journal_needs_recovery(sb)) 4569 err = jbd2_journal_wipe(journal, !really_read_only); 4570 if (!err) { 4571 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4572 if (save) 4573 memcpy(save, ((char *) es) + 4574 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4575 err = jbd2_journal_load(journal); 4576 if (save) 4577 memcpy(((char *) es) + EXT4_S_ERR_START, 4578 save, EXT4_S_ERR_LEN); 4579 kfree(save); 4580 } 4581 4582 if (err) { 4583 ext4_msg(sb, KERN_ERR, "error loading journal"); 4584 jbd2_journal_destroy(journal); 4585 return err; 4586 } 4587 4588 EXT4_SB(sb)->s_journal = journal; 4589 ext4_clear_journal_err(sb, es); 4590 4591 if (!really_read_only && journal_devnum && 4592 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4593 es->s_journal_dev = cpu_to_le32(journal_devnum); 4594 4595 /* Make sure we flush the recovery flag to disk. */ 4596 ext4_commit_super(sb, 1); 4597 } 4598 4599 return 0; 4600 } 4601 4602 static int ext4_commit_super(struct super_block *sb, int sync) 4603 { 4604 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4605 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4606 int error = 0; 4607 4608 if (!sbh || block_device_ejected(sb)) 4609 return error; 4610 /* 4611 * If the file system is mounted read-only, don't update the 4612 * superblock write time. This avoids updating the superblock 4613 * write time when we are mounting the root file system 4614 * read/only but we need to replay the journal; at that point, 4615 * for people who are east of GMT and who make their clock 4616 * tick in localtime for Windows bug-for-bug compatibility, 4617 * the clock is set in the future, and this will cause e2fsck 4618 * to complain and force a full file system check. 4619 */ 4620 if (!(sb->s_flags & MS_RDONLY)) 4621 es->s_wtime = cpu_to_le32(get_seconds()); 4622 if (sb->s_bdev->bd_part) 4623 es->s_kbytes_written = 4624 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4625 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4626 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4627 else 4628 es->s_kbytes_written = 4629 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4630 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4631 ext4_free_blocks_count_set(es, 4632 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4633 &EXT4_SB(sb)->s_freeclusters_counter))); 4634 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4635 es->s_free_inodes_count = 4636 cpu_to_le32(percpu_counter_sum_positive( 4637 &EXT4_SB(sb)->s_freeinodes_counter)); 4638 BUFFER_TRACE(sbh, "marking dirty"); 4639 ext4_superblock_csum_set(sb); 4640 if (sync) 4641 lock_buffer(sbh); 4642 if (buffer_write_io_error(sbh)) { 4643 /* 4644 * Oh, dear. A previous attempt to write the 4645 * superblock failed. This could happen because the 4646 * USB device was yanked out. Or it could happen to 4647 * be a transient write error and maybe the block will 4648 * be remapped. Nothing we can do but to retry the 4649 * write and hope for the best. 4650 */ 4651 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4652 "superblock detected"); 4653 clear_buffer_write_io_error(sbh); 4654 set_buffer_uptodate(sbh); 4655 } 4656 mark_buffer_dirty(sbh); 4657 if (sync) { 4658 unlock_buffer(sbh); 4659 error = __sync_dirty_buffer(sbh, 4660 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4661 if (error) 4662 return error; 4663 4664 error = buffer_write_io_error(sbh); 4665 if (error) { 4666 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4667 "superblock"); 4668 clear_buffer_write_io_error(sbh); 4669 set_buffer_uptodate(sbh); 4670 } 4671 } 4672 return error; 4673 } 4674 4675 /* 4676 * Have we just finished recovery? If so, and if we are mounting (or 4677 * remounting) the filesystem readonly, then we will end up with a 4678 * consistent fs on disk. Record that fact. 4679 */ 4680 static void ext4_mark_recovery_complete(struct super_block *sb, 4681 struct ext4_super_block *es) 4682 { 4683 journal_t *journal = EXT4_SB(sb)->s_journal; 4684 4685 if (!ext4_has_feature_journal(sb)) { 4686 BUG_ON(journal != NULL); 4687 return; 4688 } 4689 jbd2_journal_lock_updates(journal); 4690 if (jbd2_journal_flush(journal) < 0) 4691 goto out; 4692 4693 if (ext4_has_feature_journal_needs_recovery(sb) && 4694 sb->s_flags & MS_RDONLY) { 4695 ext4_clear_feature_journal_needs_recovery(sb); 4696 ext4_commit_super(sb, 1); 4697 } 4698 4699 out: 4700 jbd2_journal_unlock_updates(journal); 4701 } 4702 4703 /* 4704 * If we are mounting (or read-write remounting) a filesystem whose journal 4705 * has recorded an error from a previous lifetime, move that error to the 4706 * main filesystem now. 4707 */ 4708 static void ext4_clear_journal_err(struct super_block *sb, 4709 struct ext4_super_block *es) 4710 { 4711 journal_t *journal; 4712 int j_errno; 4713 const char *errstr; 4714 4715 BUG_ON(!ext4_has_feature_journal(sb)); 4716 4717 journal = EXT4_SB(sb)->s_journal; 4718 4719 /* 4720 * Now check for any error status which may have been recorded in the 4721 * journal by a prior ext4_error() or ext4_abort() 4722 */ 4723 4724 j_errno = jbd2_journal_errno(journal); 4725 if (j_errno) { 4726 char nbuf[16]; 4727 4728 errstr = ext4_decode_error(sb, j_errno, nbuf); 4729 ext4_warning(sb, "Filesystem error recorded " 4730 "from previous mount: %s", errstr); 4731 ext4_warning(sb, "Marking fs in need of filesystem check."); 4732 4733 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4734 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4735 ext4_commit_super(sb, 1); 4736 4737 jbd2_journal_clear_err(journal); 4738 jbd2_journal_update_sb_errno(journal); 4739 } 4740 } 4741 4742 /* 4743 * Force the running and committing transactions to commit, 4744 * and wait on the commit. 4745 */ 4746 int ext4_force_commit(struct super_block *sb) 4747 { 4748 journal_t *journal; 4749 4750 if (sb->s_flags & MS_RDONLY) 4751 return 0; 4752 4753 journal = EXT4_SB(sb)->s_journal; 4754 return ext4_journal_force_commit(journal); 4755 } 4756 4757 static int ext4_sync_fs(struct super_block *sb, int wait) 4758 { 4759 int ret = 0; 4760 tid_t target; 4761 bool needs_barrier = false; 4762 struct ext4_sb_info *sbi = EXT4_SB(sb); 4763 4764 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4765 return 0; 4766 4767 trace_ext4_sync_fs(sb, wait); 4768 flush_workqueue(sbi->rsv_conversion_wq); 4769 /* 4770 * Writeback quota in non-journalled quota case - journalled quota has 4771 * no dirty dquots 4772 */ 4773 dquot_writeback_dquots(sb, -1); 4774 /* 4775 * Data writeback is possible w/o journal transaction, so barrier must 4776 * being sent at the end of the function. But we can skip it if 4777 * transaction_commit will do it for us. 4778 */ 4779 if (sbi->s_journal) { 4780 target = jbd2_get_latest_transaction(sbi->s_journal); 4781 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4782 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4783 needs_barrier = true; 4784 4785 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4786 if (wait) 4787 ret = jbd2_log_wait_commit(sbi->s_journal, 4788 target); 4789 } 4790 } else if (wait && test_opt(sb, BARRIER)) 4791 needs_barrier = true; 4792 if (needs_barrier) { 4793 int err; 4794 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4795 if (!ret) 4796 ret = err; 4797 } 4798 4799 return ret; 4800 } 4801 4802 /* 4803 * LVM calls this function before a (read-only) snapshot is created. This 4804 * gives us a chance to flush the journal completely and mark the fs clean. 4805 * 4806 * Note that only this function cannot bring a filesystem to be in a clean 4807 * state independently. It relies on upper layer to stop all data & metadata 4808 * modifications. 4809 */ 4810 static int ext4_freeze(struct super_block *sb) 4811 { 4812 int error = 0; 4813 journal_t *journal; 4814 4815 if (sb->s_flags & MS_RDONLY) 4816 return 0; 4817 4818 journal = EXT4_SB(sb)->s_journal; 4819 4820 if (journal) { 4821 /* Now we set up the journal barrier. */ 4822 jbd2_journal_lock_updates(journal); 4823 4824 /* 4825 * Don't clear the needs_recovery flag if we failed to 4826 * flush the journal. 4827 */ 4828 error = jbd2_journal_flush(journal); 4829 if (error < 0) 4830 goto out; 4831 4832 /* Journal blocked and flushed, clear needs_recovery flag. */ 4833 ext4_clear_feature_journal_needs_recovery(sb); 4834 } 4835 4836 error = ext4_commit_super(sb, 1); 4837 out: 4838 if (journal) 4839 /* we rely on upper layer to stop further updates */ 4840 jbd2_journal_unlock_updates(journal); 4841 return error; 4842 } 4843 4844 /* 4845 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4846 * flag here, even though the filesystem is not technically dirty yet. 4847 */ 4848 static int ext4_unfreeze(struct super_block *sb) 4849 { 4850 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb))) 4851 return 0; 4852 4853 if (EXT4_SB(sb)->s_journal) { 4854 /* Reset the needs_recovery flag before the fs is unlocked. */ 4855 ext4_set_feature_journal_needs_recovery(sb); 4856 } 4857 4858 ext4_commit_super(sb, 1); 4859 return 0; 4860 } 4861 4862 /* 4863 * Structure to save mount options for ext4_remount's benefit 4864 */ 4865 struct ext4_mount_options { 4866 unsigned long s_mount_opt; 4867 unsigned long s_mount_opt2; 4868 kuid_t s_resuid; 4869 kgid_t s_resgid; 4870 unsigned long s_commit_interval; 4871 u32 s_min_batch_time, s_max_batch_time; 4872 #ifdef CONFIG_QUOTA 4873 int s_jquota_fmt; 4874 char *s_qf_names[EXT4_MAXQUOTAS]; 4875 #endif 4876 }; 4877 4878 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4879 { 4880 struct ext4_super_block *es; 4881 struct ext4_sb_info *sbi = EXT4_SB(sb); 4882 unsigned long old_sb_flags; 4883 struct ext4_mount_options old_opts; 4884 int enable_quota = 0; 4885 ext4_group_t g; 4886 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4887 int err = 0; 4888 #ifdef CONFIG_QUOTA 4889 int i, j; 4890 #endif 4891 char *orig_data = kstrdup(data, GFP_KERNEL); 4892 4893 /* Store the original options */ 4894 old_sb_flags = sb->s_flags; 4895 old_opts.s_mount_opt = sbi->s_mount_opt; 4896 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4897 old_opts.s_resuid = sbi->s_resuid; 4898 old_opts.s_resgid = sbi->s_resgid; 4899 old_opts.s_commit_interval = sbi->s_commit_interval; 4900 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4901 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4902 #ifdef CONFIG_QUOTA 4903 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4904 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4905 if (sbi->s_qf_names[i]) { 4906 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4907 GFP_KERNEL); 4908 if (!old_opts.s_qf_names[i]) { 4909 for (j = 0; j < i; j++) 4910 kfree(old_opts.s_qf_names[j]); 4911 kfree(orig_data); 4912 return -ENOMEM; 4913 } 4914 } else 4915 old_opts.s_qf_names[i] = NULL; 4916 #endif 4917 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4918 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4919 4920 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4921 err = -EINVAL; 4922 goto restore_opts; 4923 } 4924 4925 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4926 test_opt(sb, JOURNAL_CHECKSUM)) { 4927 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4928 "during remount not supported; ignoring"); 4929 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4930 } 4931 4932 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4933 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4934 ext4_msg(sb, KERN_ERR, "can't mount with " 4935 "both data=journal and delalloc"); 4936 err = -EINVAL; 4937 goto restore_opts; 4938 } 4939 if (test_opt(sb, DIOREAD_NOLOCK)) { 4940 ext4_msg(sb, KERN_ERR, "can't mount with " 4941 "both data=journal and dioread_nolock"); 4942 err = -EINVAL; 4943 goto restore_opts; 4944 } 4945 if (test_opt(sb, DAX)) { 4946 ext4_msg(sb, KERN_ERR, "can't mount with " 4947 "both data=journal and dax"); 4948 err = -EINVAL; 4949 goto restore_opts; 4950 } 4951 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 4952 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4953 ext4_msg(sb, KERN_ERR, "can't mount with " 4954 "journal_async_commit in data=ordered mode"); 4955 err = -EINVAL; 4956 goto restore_opts; 4957 } 4958 } 4959 4960 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4961 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4962 "dax flag with busy inodes while remounting"); 4963 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4964 } 4965 4966 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4967 ext4_abort(sb, "Abort forced by user"); 4968 4969 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4970 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4971 4972 es = sbi->s_es; 4973 4974 if (sbi->s_journal) { 4975 ext4_init_journal_params(sb, sbi->s_journal); 4976 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4977 } 4978 4979 if (*flags & MS_LAZYTIME) 4980 sb->s_flags |= MS_LAZYTIME; 4981 4982 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4983 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4984 err = -EROFS; 4985 goto restore_opts; 4986 } 4987 4988 if (*flags & MS_RDONLY) { 4989 err = sync_filesystem(sb); 4990 if (err < 0) 4991 goto restore_opts; 4992 err = dquot_suspend(sb, -1); 4993 if (err < 0) 4994 goto restore_opts; 4995 4996 /* 4997 * First of all, the unconditional stuff we have to do 4998 * to disable replay of the journal when we next remount 4999 */ 5000 sb->s_flags |= MS_RDONLY; 5001 5002 /* 5003 * OK, test if we are remounting a valid rw partition 5004 * readonly, and if so set the rdonly flag and then 5005 * mark the partition as valid again. 5006 */ 5007 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5008 (sbi->s_mount_state & EXT4_VALID_FS)) 5009 es->s_state = cpu_to_le16(sbi->s_mount_state); 5010 5011 if (sbi->s_journal) 5012 ext4_mark_recovery_complete(sb, es); 5013 } else { 5014 /* Make sure we can mount this feature set readwrite */ 5015 if (ext4_has_feature_readonly(sb) || 5016 !ext4_feature_set_ok(sb, 0)) { 5017 err = -EROFS; 5018 goto restore_opts; 5019 } 5020 /* 5021 * Make sure the group descriptor checksums 5022 * are sane. If they aren't, refuse to remount r/w. 5023 */ 5024 for (g = 0; g < sbi->s_groups_count; g++) { 5025 struct ext4_group_desc *gdp = 5026 ext4_get_group_desc(sb, g, NULL); 5027 5028 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5029 ext4_msg(sb, KERN_ERR, 5030 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5031 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5032 le16_to_cpu(gdp->bg_checksum)); 5033 err = -EFSBADCRC; 5034 goto restore_opts; 5035 } 5036 } 5037 5038 /* 5039 * If we have an unprocessed orphan list hanging 5040 * around from a previously readonly bdev mount, 5041 * require a full umount/remount for now. 5042 */ 5043 if (es->s_last_orphan) { 5044 ext4_msg(sb, KERN_WARNING, "Couldn't " 5045 "remount RDWR because of unprocessed " 5046 "orphan inode list. Please " 5047 "umount/remount instead"); 5048 err = -EINVAL; 5049 goto restore_opts; 5050 } 5051 5052 /* 5053 * Mounting a RDONLY partition read-write, so reread 5054 * and store the current valid flag. (It may have 5055 * been changed by e2fsck since we originally mounted 5056 * the partition.) 5057 */ 5058 if (sbi->s_journal) 5059 ext4_clear_journal_err(sb, es); 5060 sbi->s_mount_state = le16_to_cpu(es->s_state); 5061 if (!ext4_setup_super(sb, es, 0)) 5062 sb->s_flags &= ~MS_RDONLY; 5063 if (ext4_has_feature_mmp(sb)) 5064 if (ext4_multi_mount_protect(sb, 5065 le64_to_cpu(es->s_mmp_block))) { 5066 err = -EROFS; 5067 goto restore_opts; 5068 } 5069 enable_quota = 1; 5070 } 5071 } 5072 5073 /* 5074 * Reinitialize lazy itable initialization thread based on 5075 * current settings 5076 */ 5077 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5078 ext4_unregister_li_request(sb); 5079 else { 5080 ext4_group_t first_not_zeroed; 5081 first_not_zeroed = ext4_has_uninit_itable(sb); 5082 ext4_register_li_request(sb, first_not_zeroed); 5083 } 5084 5085 ext4_setup_system_zone(sb); 5086 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5087 ext4_commit_super(sb, 1); 5088 5089 #ifdef CONFIG_QUOTA 5090 /* Release old quota file names */ 5091 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5092 kfree(old_opts.s_qf_names[i]); 5093 if (enable_quota) { 5094 if (sb_any_quota_suspended(sb)) 5095 dquot_resume(sb, -1); 5096 else if (ext4_has_feature_quota(sb)) { 5097 err = ext4_enable_quotas(sb); 5098 if (err) 5099 goto restore_opts; 5100 } 5101 } 5102 #endif 5103 5104 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5105 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5106 kfree(orig_data); 5107 return 0; 5108 5109 restore_opts: 5110 sb->s_flags = old_sb_flags; 5111 sbi->s_mount_opt = old_opts.s_mount_opt; 5112 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5113 sbi->s_resuid = old_opts.s_resuid; 5114 sbi->s_resgid = old_opts.s_resgid; 5115 sbi->s_commit_interval = old_opts.s_commit_interval; 5116 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5117 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5118 #ifdef CONFIG_QUOTA 5119 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5120 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5121 kfree(sbi->s_qf_names[i]); 5122 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5123 } 5124 #endif 5125 kfree(orig_data); 5126 return err; 5127 } 5128 5129 #ifdef CONFIG_QUOTA 5130 static int ext4_statfs_project(struct super_block *sb, 5131 kprojid_t projid, struct kstatfs *buf) 5132 { 5133 struct kqid qid; 5134 struct dquot *dquot; 5135 u64 limit; 5136 u64 curblock; 5137 5138 qid = make_kqid_projid(projid); 5139 dquot = dqget(sb, qid); 5140 if (IS_ERR(dquot)) 5141 return PTR_ERR(dquot); 5142 spin_lock(&dq_data_lock); 5143 5144 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5145 dquot->dq_dqb.dqb_bsoftlimit : 5146 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5147 if (limit && buf->f_blocks > limit) { 5148 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5149 buf->f_blocks = limit; 5150 buf->f_bfree = buf->f_bavail = 5151 (buf->f_blocks > curblock) ? 5152 (buf->f_blocks - curblock) : 0; 5153 } 5154 5155 limit = dquot->dq_dqb.dqb_isoftlimit ? 5156 dquot->dq_dqb.dqb_isoftlimit : 5157 dquot->dq_dqb.dqb_ihardlimit; 5158 if (limit && buf->f_files > limit) { 5159 buf->f_files = limit; 5160 buf->f_ffree = 5161 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5162 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5163 } 5164 5165 spin_unlock(&dq_data_lock); 5166 dqput(dquot); 5167 return 0; 5168 } 5169 #endif 5170 5171 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5172 { 5173 struct super_block *sb = dentry->d_sb; 5174 struct ext4_sb_info *sbi = EXT4_SB(sb); 5175 struct ext4_super_block *es = sbi->s_es; 5176 ext4_fsblk_t overhead = 0, resv_blocks; 5177 u64 fsid; 5178 s64 bfree; 5179 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5180 5181 if (!test_opt(sb, MINIX_DF)) 5182 overhead = sbi->s_overhead; 5183 5184 buf->f_type = EXT4_SUPER_MAGIC; 5185 buf->f_bsize = sb->s_blocksize; 5186 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5187 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5188 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5189 /* prevent underflow in case that few free space is available */ 5190 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5191 buf->f_bavail = buf->f_bfree - 5192 (ext4_r_blocks_count(es) + resv_blocks); 5193 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5194 buf->f_bavail = 0; 5195 buf->f_files = le32_to_cpu(es->s_inodes_count); 5196 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5197 buf->f_namelen = EXT4_NAME_LEN; 5198 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5199 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5200 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5201 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5202 5203 #ifdef CONFIG_QUOTA 5204 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5205 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5206 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5207 #endif 5208 return 0; 5209 } 5210 5211 /* Helper function for writing quotas on sync - we need to start transaction 5212 * before quota file is locked for write. Otherwise the are possible deadlocks: 5213 * Process 1 Process 2 5214 * ext4_create() quota_sync() 5215 * jbd2_journal_start() write_dquot() 5216 * dquot_initialize() down(dqio_mutex) 5217 * down(dqio_mutex) jbd2_journal_start() 5218 * 5219 */ 5220 5221 #ifdef CONFIG_QUOTA 5222 5223 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5224 { 5225 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5226 } 5227 5228 static int ext4_write_dquot(struct dquot *dquot) 5229 { 5230 int ret, err; 5231 handle_t *handle; 5232 struct inode *inode; 5233 5234 inode = dquot_to_inode(dquot); 5235 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5236 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5237 if (IS_ERR(handle)) 5238 return PTR_ERR(handle); 5239 ret = dquot_commit(dquot); 5240 err = ext4_journal_stop(handle); 5241 if (!ret) 5242 ret = err; 5243 return ret; 5244 } 5245 5246 static int ext4_acquire_dquot(struct dquot *dquot) 5247 { 5248 int ret, err; 5249 handle_t *handle; 5250 5251 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5252 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5253 if (IS_ERR(handle)) 5254 return PTR_ERR(handle); 5255 ret = dquot_acquire(dquot); 5256 err = ext4_journal_stop(handle); 5257 if (!ret) 5258 ret = err; 5259 return ret; 5260 } 5261 5262 static int ext4_release_dquot(struct dquot *dquot) 5263 { 5264 int ret, err; 5265 handle_t *handle; 5266 5267 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5268 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5269 if (IS_ERR(handle)) { 5270 /* Release dquot anyway to avoid endless cycle in dqput() */ 5271 dquot_release(dquot); 5272 return PTR_ERR(handle); 5273 } 5274 ret = dquot_release(dquot); 5275 err = ext4_journal_stop(handle); 5276 if (!ret) 5277 ret = err; 5278 return ret; 5279 } 5280 5281 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5282 { 5283 struct super_block *sb = dquot->dq_sb; 5284 struct ext4_sb_info *sbi = EXT4_SB(sb); 5285 5286 /* Are we journaling quotas? */ 5287 if (ext4_has_feature_quota(sb) || 5288 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5289 dquot_mark_dquot_dirty(dquot); 5290 return ext4_write_dquot(dquot); 5291 } else { 5292 return dquot_mark_dquot_dirty(dquot); 5293 } 5294 } 5295 5296 static int ext4_write_info(struct super_block *sb, int type) 5297 { 5298 int ret, err; 5299 handle_t *handle; 5300 5301 /* Data block + inode block */ 5302 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5303 if (IS_ERR(handle)) 5304 return PTR_ERR(handle); 5305 ret = dquot_commit_info(sb, type); 5306 err = ext4_journal_stop(handle); 5307 if (!ret) 5308 ret = err; 5309 return ret; 5310 } 5311 5312 /* 5313 * Turn on quotas during mount time - we need to find 5314 * the quota file and such... 5315 */ 5316 static int ext4_quota_on_mount(struct super_block *sb, int type) 5317 { 5318 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5319 EXT4_SB(sb)->s_jquota_fmt, type); 5320 } 5321 5322 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5323 { 5324 struct ext4_inode_info *ei = EXT4_I(inode); 5325 5326 /* The first argument of lockdep_set_subclass has to be 5327 * *exactly* the same as the argument to init_rwsem() --- in 5328 * this case, in init_once() --- or lockdep gets unhappy 5329 * because the name of the lock is set using the 5330 * stringification of the argument to init_rwsem(). 5331 */ 5332 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5333 lockdep_set_subclass(&ei->i_data_sem, subclass); 5334 } 5335 5336 /* 5337 * Standard function to be called on quota_on 5338 */ 5339 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5340 const struct path *path) 5341 { 5342 int err; 5343 5344 if (!test_opt(sb, QUOTA)) 5345 return -EINVAL; 5346 5347 /* Quotafile not on the same filesystem? */ 5348 if (path->dentry->d_sb != sb) 5349 return -EXDEV; 5350 /* Journaling quota? */ 5351 if (EXT4_SB(sb)->s_qf_names[type]) { 5352 /* Quotafile not in fs root? */ 5353 if (path->dentry->d_parent != sb->s_root) 5354 ext4_msg(sb, KERN_WARNING, 5355 "Quota file not on filesystem root. " 5356 "Journaled quota will not work"); 5357 } 5358 5359 /* 5360 * When we journal data on quota file, we have to flush journal to see 5361 * all updates to the file when we bypass pagecache... 5362 */ 5363 if (EXT4_SB(sb)->s_journal && 5364 ext4_should_journal_data(d_inode(path->dentry))) { 5365 /* 5366 * We don't need to lock updates but journal_flush() could 5367 * otherwise be livelocked... 5368 */ 5369 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5370 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5371 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5372 if (err) 5373 return err; 5374 } 5375 5376 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5377 err = dquot_quota_on(sb, type, format_id, path); 5378 if (err) { 5379 lockdep_set_quota_inode(path->dentry->d_inode, 5380 I_DATA_SEM_NORMAL); 5381 } else { 5382 struct inode *inode = d_inode(path->dentry); 5383 handle_t *handle; 5384 5385 /* 5386 * Set inode flags to prevent userspace from messing with quota 5387 * files. If this fails, we return success anyway since quotas 5388 * are already enabled and this is not a hard failure. 5389 */ 5390 inode_lock(inode); 5391 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5392 if (IS_ERR(handle)) 5393 goto unlock_inode; 5394 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5395 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5396 S_NOATIME | S_IMMUTABLE); 5397 ext4_mark_inode_dirty(handle, inode); 5398 ext4_journal_stop(handle); 5399 unlock_inode: 5400 inode_unlock(inode); 5401 } 5402 return err; 5403 } 5404 5405 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5406 unsigned int flags) 5407 { 5408 int err; 5409 struct inode *qf_inode; 5410 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5411 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5412 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5413 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5414 }; 5415 5416 BUG_ON(!ext4_has_feature_quota(sb)); 5417 5418 if (!qf_inums[type]) 5419 return -EPERM; 5420 5421 qf_inode = ext4_iget(sb, qf_inums[type]); 5422 if (IS_ERR(qf_inode)) { 5423 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5424 return PTR_ERR(qf_inode); 5425 } 5426 5427 /* Don't account quota for quota files to avoid recursion */ 5428 qf_inode->i_flags |= S_NOQUOTA; 5429 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5430 err = dquot_enable(qf_inode, type, format_id, flags); 5431 iput(qf_inode); 5432 if (err) 5433 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5434 5435 return err; 5436 } 5437 5438 /* Enable usage tracking for all quota types. */ 5439 static int ext4_enable_quotas(struct super_block *sb) 5440 { 5441 int type, err = 0; 5442 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5443 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5444 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5445 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5446 }; 5447 bool quota_mopt[EXT4_MAXQUOTAS] = { 5448 test_opt(sb, USRQUOTA), 5449 test_opt(sb, GRPQUOTA), 5450 test_opt(sb, PRJQUOTA), 5451 }; 5452 5453 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5454 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5455 if (qf_inums[type]) { 5456 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5457 DQUOT_USAGE_ENABLED | 5458 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5459 if (err) { 5460 ext4_warning(sb, 5461 "Failed to enable quota tracking " 5462 "(type=%d, err=%d). Please run " 5463 "e2fsck to fix.", type, err); 5464 return err; 5465 } 5466 } 5467 } 5468 return 0; 5469 } 5470 5471 static int ext4_quota_off(struct super_block *sb, int type) 5472 { 5473 struct inode *inode = sb_dqopt(sb)->files[type]; 5474 handle_t *handle; 5475 int err; 5476 5477 /* Force all delayed allocation blocks to be allocated. 5478 * Caller already holds s_umount sem */ 5479 if (test_opt(sb, DELALLOC)) 5480 sync_filesystem(sb); 5481 5482 if (!inode || !igrab(inode)) 5483 goto out; 5484 5485 err = dquot_quota_off(sb, type); 5486 if (err || ext4_has_feature_quota(sb)) 5487 goto out_put; 5488 5489 inode_lock(inode); 5490 /* 5491 * Update modification times of quota files when userspace can 5492 * start looking at them. If we fail, we return success anyway since 5493 * this is not a hard failure and quotas are already disabled. 5494 */ 5495 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5496 if (IS_ERR(handle)) 5497 goto out_unlock; 5498 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5499 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5500 inode->i_mtime = inode->i_ctime = current_time(inode); 5501 ext4_mark_inode_dirty(handle, inode); 5502 ext4_journal_stop(handle); 5503 out_unlock: 5504 inode_unlock(inode); 5505 out_put: 5506 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5507 iput(inode); 5508 return err; 5509 out: 5510 return dquot_quota_off(sb, type); 5511 } 5512 5513 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5514 * acquiring the locks... As quota files are never truncated and quota code 5515 * itself serializes the operations (and no one else should touch the files) 5516 * we don't have to be afraid of races */ 5517 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5518 size_t len, loff_t off) 5519 { 5520 struct inode *inode = sb_dqopt(sb)->files[type]; 5521 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5522 int offset = off & (sb->s_blocksize - 1); 5523 int tocopy; 5524 size_t toread; 5525 struct buffer_head *bh; 5526 loff_t i_size = i_size_read(inode); 5527 5528 if (off > i_size) 5529 return 0; 5530 if (off+len > i_size) 5531 len = i_size-off; 5532 toread = len; 5533 while (toread > 0) { 5534 tocopy = sb->s_blocksize - offset < toread ? 5535 sb->s_blocksize - offset : toread; 5536 bh = ext4_bread(NULL, inode, blk, 0); 5537 if (IS_ERR(bh)) 5538 return PTR_ERR(bh); 5539 if (!bh) /* A hole? */ 5540 memset(data, 0, tocopy); 5541 else 5542 memcpy(data, bh->b_data+offset, tocopy); 5543 brelse(bh); 5544 offset = 0; 5545 toread -= tocopy; 5546 data += tocopy; 5547 blk++; 5548 } 5549 return len; 5550 } 5551 5552 /* Write to quotafile (we know the transaction is already started and has 5553 * enough credits) */ 5554 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5555 const char *data, size_t len, loff_t off) 5556 { 5557 struct inode *inode = sb_dqopt(sb)->files[type]; 5558 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5559 int err, offset = off & (sb->s_blocksize - 1); 5560 int retries = 0; 5561 struct buffer_head *bh; 5562 handle_t *handle = journal_current_handle(); 5563 5564 if (EXT4_SB(sb)->s_journal && !handle) { 5565 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5566 " cancelled because transaction is not started", 5567 (unsigned long long)off, (unsigned long long)len); 5568 return -EIO; 5569 } 5570 /* 5571 * Since we account only one data block in transaction credits, 5572 * then it is impossible to cross a block boundary. 5573 */ 5574 if (sb->s_blocksize - offset < len) { 5575 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5576 " cancelled because not block aligned", 5577 (unsigned long long)off, (unsigned long long)len); 5578 return -EIO; 5579 } 5580 5581 do { 5582 bh = ext4_bread(handle, inode, blk, 5583 EXT4_GET_BLOCKS_CREATE | 5584 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5585 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5586 ext4_should_retry_alloc(inode->i_sb, &retries)); 5587 if (IS_ERR(bh)) 5588 return PTR_ERR(bh); 5589 if (!bh) 5590 goto out; 5591 BUFFER_TRACE(bh, "get write access"); 5592 err = ext4_journal_get_write_access(handle, bh); 5593 if (err) { 5594 brelse(bh); 5595 return err; 5596 } 5597 lock_buffer(bh); 5598 memcpy(bh->b_data+offset, data, len); 5599 flush_dcache_page(bh->b_page); 5600 unlock_buffer(bh); 5601 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5602 brelse(bh); 5603 out: 5604 if (inode->i_size < off + len) { 5605 i_size_write(inode, off + len); 5606 EXT4_I(inode)->i_disksize = inode->i_size; 5607 ext4_mark_inode_dirty(handle, inode); 5608 } 5609 return len; 5610 } 5611 5612 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5613 { 5614 const struct quota_format_ops *ops; 5615 5616 if (!sb_has_quota_loaded(sb, qid->type)) 5617 return -ESRCH; 5618 ops = sb_dqopt(sb)->ops[qid->type]; 5619 if (!ops || !ops->get_next_id) 5620 return -ENOSYS; 5621 return dquot_get_next_id(sb, qid); 5622 } 5623 #endif 5624 5625 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5626 const char *dev_name, void *data) 5627 { 5628 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5629 } 5630 5631 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5632 static inline void register_as_ext2(void) 5633 { 5634 int err = register_filesystem(&ext2_fs_type); 5635 if (err) 5636 printk(KERN_WARNING 5637 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5638 } 5639 5640 static inline void unregister_as_ext2(void) 5641 { 5642 unregister_filesystem(&ext2_fs_type); 5643 } 5644 5645 static inline int ext2_feature_set_ok(struct super_block *sb) 5646 { 5647 if (ext4_has_unknown_ext2_incompat_features(sb)) 5648 return 0; 5649 if (sb->s_flags & MS_RDONLY) 5650 return 1; 5651 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5652 return 0; 5653 return 1; 5654 } 5655 #else 5656 static inline void register_as_ext2(void) { } 5657 static inline void unregister_as_ext2(void) { } 5658 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5659 #endif 5660 5661 static inline void register_as_ext3(void) 5662 { 5663 int err = register_filesystem(&ext3_fs_type); 5664 if (err) 5665 printk(KERN_WARNING 5666 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5667 } 5668 5669 static inline void unregister_as_ext3(void) 5670 { 5671 unregister_filesystem(&ext3_fs_type); 5672 } 5673 5674 static inline int ext3_feature_set_ok(struct super_block *sb) 5675 { 5676 if (ext4_has_unknown_ext3_incompat_features(sb)) 5677 return 0; 5678 if (!ext4_has_feature_journal(sb)) 5679 return 0; 5680 if (sb->s_flags & MS_RDONLY) 5681 return 1; 5682 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5683 return 0; 5684 return 1; 5685 } 5686 5687 static struct file_system_type ext4_fs_type = { 5688 .owner = THIS_MODULE, 5689 .name = "ext4", 5690 .mount = ext4_mount, 5691 .kill_sb = kill_block_super, 5692 .fs_flags = FS_REQUIRES_DEV, 5693 }; 5694 MODULE_ALIAS_FS("ext4"); 5695 5696 /* Shared across all ext4 file systems */ 5697 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5698 5699 static int __init ext4_init_fs(void) 5700 { 5701 int i, err; 5702 5703 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5704 ext4_li_info = NULL; 5705 mutex_init(&ext4_li_mtx); 5706 5707 /* Build-time check for flags consistency */ 5708 ext4_check_flag_values(); 5709 5710 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5711 init_waitqueue_head(&ext4__ioend_wq[i]); 5712 5713 err = ext4_init_es(); 5714 if (err) 5715 return err; 5716 5717 err = ext4_init_pageio(); 5718 if (err) 5719 goto out5; 5720 5721 err = ext4_init_system_zone(); 5722 if (err) 5723 goto out4; 5724 5725 err = ext4_init_sysfs(); 5726 if (err) 5727 goto out3; 5728 5729 err = ext4_init_mballoc(); 5730 if (err) 5731 goto out2; 5732 err = init_inodecache(); 5733 if (err) 5734 goto out1; 5735 register_as_ext3(); 5736 register_as_ext2(); 5737 err = register_filesystem(&ext4_fs_type); 5738 if (err) 5739 goto out; 5740 5741 return 0; 5742 out: 5743 unregister_as_ext2(); 5744 unregister_as_ext3(); 5745 destroy_inodecache(); 5746 out1: 5747 ext4_exit_mballoc(); 5748 out2: 5749 ext4_exit_sysfs(); 5750 out3: 5751 ext4_exit_system_zone(); 5752 out4: 5753 ext4_exit_pageio(); 5754 out5: 5755 ext4_exit_es(); 5756 5757 return err; 5758 } 5759 5760 static void __exit ext4_exit_fs(void) 5761 { 5762 ext4_destroy_lazyinit_thread(); 5763 unregister_as_ext2(); 5764 unregister_as_ext3(); 5765 unregister_filesystem(&ext4_fs_type); 5766 destroy_inodecache(); 5767 ext4_exit_mballoc(); 5768 ext4_exit_sysfs(); 5769 ext4_exit_system_zone(); 5770 ext4_exit_pageio(); 5771 ext4_exit_es(); 5772 } 5773 5774 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5775 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5776 MODULE_LICENSE("GPL"); 5777 module_init(ext4_init_fs) 5778 module_exit(ext4_exit_fs) 5779