1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 86 87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 88 static struct file_system_type ext2_fs_type = { 89 .owner = THIS_MODULE, 90 .name = "ext2", 91 .mount = ext4_mount, 92 .kill_sb = kill_block_super, 93 .fs_flags = FS_REQUIRES_DEV, 94 }; 95 MODULE_ALIAS_FS("ext2"); 96 MODULE_ALIAS("ext2"); 97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 98 #else 99 #define IS_EXT2_SB(sb) (0) 100 #endif 101 102 103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 104 static struct file_system_type ext3_fs_type = { 105 .owner = THIS_MODULE, 106 .name = "ext3", 107 .mount = ext4_mount, 108 .kill_sb = kill_block_super, 109 .fs_flags = FS_REQUIRES_DEV, 110 }; 111 MODULE_ALIAS_FS("ext3"); 112 MODULE_ALIAS("ext3"); 113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 114 #else 115 #define IS_EXT3_SB(sb) (0) 116 #endif 117 118 static int ext4_verify_csum_type(struct super_block *sb, 119 struct ext4_super_block *es) 120 { 121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 123 return 1; 124 125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 126 } 127 128 static __le32 ext4_superblock_csum(struct super_block *sb, 129 struct ext4_super_block *es) 130 { 131 struct ext4_sb_info *sbi = EXT4_SB(sb); 132 int offset = offsetof(struct ext4_super_block, s_checksum); 133 __u32 csum; 134 135 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 136 137 return cpu_to_le32(csum); 138 } 139 140 int ext4_superblock_csum_verify(struct super_block *sb, 141 struct ext4_super_block *es) 142 { 143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 145 return 1; 146 147 return es->s_checksum == ext4_superblock_csum(sb, es); 148 } 149 150 void ext4_superblock_csum_set(struct super_block *sb) 151 { 152 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 153 154 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 155 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 156 return; 157 158 es->s_checksum = ext4_superblock_csum(sb, es); 159 } 160 161 void *ext4_kvmalloc(size_t size, gfp_t flags) 162 { 163 void *ret; 164 165 ret = kmalloc(size, flags | __GFP_NOWARN); 166 if (!ret) 167 ret = __vmalloc(size, flags, PAGE_KERNEL); 168 return ret; 169 } 170 171 void *ext4_kvzalloc(size_t size, gfp_t flags) 172 { 173 void *ret; 174 175 ret = kzalloc(size, flags | __GFP_NOWARN); 176 if (!ret) 177 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 178 return ret; 179 } 180 181 void ext4_kvfree(void *ptr) 182 { 183 if (is_vmalloc_addr(ptr)) 184 vfree(ptr); 185 else 186 kfree(ptr); 187 188 } 189 190 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 191 struct ext4_group_desc *bg) 192 { 193 return le32_to_cpu(bg->bg_block_bitmap_lo) | 194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 195 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 196 } 197 198 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 199 struct ext4_group_desc *bg) 200 { 201 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 202 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 203 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 204 } 205 206 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 207 struct ext4_group_desc *bg) 208 { 209 return le32_to_cpu(bg->bg_inode_table_lo) | 210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 211 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 212 } 213 214 __u32 ext4_free_group_clusters(struct super_block *sb, 215 struct ext4_group_desc *bg) 216 { 217 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 219 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 220 } 221 222 __u32 ext4_free_inodes_count(struct super_block *sb, 223 struct ext4_group_desc *bg) 224 { 225 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 227 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 228 } 229 230 __u32 ext4_used_dirs_count(struct super_block *sb, 231 struct ext4_group_desc *bg) 232 { 233 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 235 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 236 } 237 238 __u32 ext4_itable_unused_count(struct super_block *sb, 239 struct ext4_group_desc *bg) 240 { 241 return le16_to_cpu(bg->bg_itable_unused_lo) | 242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 243 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 244 } 245 246 void ext4_block_bitmap_set(struct super_block *sb, 247 struct ext4_group_desc *bg, ext4_fsblk_t blk) 248 { 249 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 251 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 252 } 253 254 void ext4_inode_bitmap_set(struct super_block *sb, 255 struct ext4_group_desc *bg, ext4_fsblk_t blk) 256 { 257 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 258 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 259 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 260 } 261 262 void ext4_inode_table_set(struct super_block *sb, 263 struct ext4_group_desc *bg, ext4_fsblk_t blk) 264 { 265 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 267 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 268 } 269 270 void ext4_free_group_clusters_set(struct super_block *sb, 271 struct ext4_group_desc *bg, __u32 count) 272 { 273 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 275 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 276 } 277 278 void ext4_free_inodes_set(struct super_block *sb, 279 struct ext4_group_desc *bg, __u32 count) 280 { 281 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 283 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 284 } 285 286 void ext4_used_dirs_set(struct super_block *sb, 287 struct ext4_group_desc *bg, __u32 count) 288 { 289 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 291 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 292 } 293 294 void ext4_itable_unused_set(struct super_block *sb, 295 struct ext4_group_desc *bg, __u32 count) 296 { 297 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 299 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 300 } 301 302 303 static void __save_error_info(struct super_block *sb, const char *func, 304 unsigned int line) 305 { 306 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 307 308 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 310 es->s_last_error_time = cpu_to_le32(get_seconds()); 311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 312 es->s_last_error_line = cpu_to_le32(line); 313 if (!es->s_first_error_time) { 314 es->s_first_error_time = es->s_last_error_time; 315 strncpy(es->s_first_error_func, func, 316 sizeof(es->s_first_error_func)); 317 es->s_first_error_line = cpu_to_le32(line); 318 es->s_first_error_ino = es->s_last_error_ino; 319 es->s_first_error_block = es->s_last_error_block; 320 } 321 /* 322 * Start the daily error reporting function if it hasn't been 323 * started already 324 */ 325 if (!es->s_error_count) 326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 327 le32_add_cpu(&es->s_error_count, 1); 328 } 329 330 static void save_error_info(struct super_block *sb, const char *func, 331 unsigned int line) 332 { 333 __save_error_info(sb, func, line); 334 ext4_commit_super(sb, 1); 335 } 336 337 /* 338 * The del_gendisk() function uninitializes the disk-specific data 339 * structures, including the bdi structure, without telling anyone 340 * else. Once this happens, any attempt to call mark_buffer_dirty() 341 * (for example, by ext4_commit_super), will cause a kernel OOPS. 342 * This is a kludge to prevent these oops until we can put in a proper 343 * hook in del_gendisk() to inform the VFS and file system layers. 344 */ 345 static int block_device_ejected(struct super_block *sb) 346 { 347 struct inode *bd_inode = sb->s_bdev->bd_inode; 348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 349 350 return bdi->dev == NULL; 351 } 352 353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 354 { 355 struct super_block *sb = journal->j_private; 356 struct ext4_sb_info *sbi = EXT4_SB(sb); 357 int error = is_journal_aborted(journal); 358 struct ext4_journal_cb_entry *jce; 359 360 BUG_ON(txn->t_state == T_FINISHED); 361 spin_lock(&sbi->s_md_lock); 362 while (!list_empty(&txn->t_private_list)) { 363 jce = list_entry(txn->t_private_list.next, 364 struct ext4_journal_cb_entry, jce_list); 365 list_del_init(&jce->jce_list); 366 spin_unlock(&sbi->s_md_lock); 367 jce->jce_func(sb, jce, error); 368 spin_lock(&sbi->s_md_lock); 369 } 370 spin_unlock(&sbi->s_md_lock); 371 } 372 373 /* Deal with the reporting of failure conditions on a filesystem such as 374 * inconsistencies detected or read IO failures. 375 * 376 * On ext2, we can store the error state of the filesystem in the 377 * superblock. That is not possible on ext4, because we may have other 378 * write ordering constraints on the superblock which prevent us from 379 * writing it out straight away; and given that the journal is about to 380 * be aborted, we can't rely on the current, or future, transactions to 381 * write out the superblock safely. 382 * 383 * We'll just use the jbd2_journal_abort() error code to record an error in 384 * the journal instead. On recovery, the journal will complain about 385 * that error until we've noted it down and cleared it. 386 */ 387 388 static void ext4_handle_error(struct super_block *sb) 389 { 390 if (sb->s_flags & MS_RDONLY) 391 return; 392 393 if (!test_opt(sb, ERRORS_CONT)) { 394 journal_t *journal = EXT4_SB(sb)->s_journal; 395 396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 397 if (journal) 398 jbd2_journal_abort(journal, -EIO); 399 } 400 if (test_opt(sb, ERRORS_RO)) { 401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 402 /* 403 * Make sure updated value of ->s_mount_flags will be visible 404 * before ->s_flags update 405 */ 406 smp_wmb(); 407 sb->s_flags |= MS_RDONLY; 408 } 409 if (test_opt(sb, ERRORS_PANIC)) 410 panic("EXT4-fs (device %s): panic forced after error\n", 411 sb->s_id); 412 } 413 414 void __ext4_error(struct super_block *sb, const char *function, 415 unsigned int line, const char *fmt, ...) 416 { 417 struct va_format vaf; 418 va_list args; 419 420 va_start(args, fmt); 421 vaf.fmt = fmt; 422 vaf.va = &args; 423 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 424 sb->s_id, function, line, current->comm, &vaf); 425 va_end(args); 426 save_error_info(sb, function, line); 427 428 ext4_handle_error(sb); 429 } 430 431 void __ext4_error_inode(struct inode *inode, const char *function, 432 unsigned int line, ext4_fsblk_t block, 433 const char *fmt, ...) 434 { 435 va_list args; 436 struct va_format vaf; 437 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 438 439 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 440 es->s_last_error_block = cpu_to_le64(block); 441 save_error_info(inode->i_sb, function, line); 442 va_start(args, fmt); 443 vaf.fmt = fmt; 444 vaf.va = &args; 445 if (block) 446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 447 "inode #%lu: block %llu: comm %s: %pV\n", 448 inode->i_sb->s_id, function, line, inode->i_ino, 449 block, current->comm, &vaf); 450 else 451 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 452 "inode #%lu: comm %s: %pV\n", 453 inode->i_sb->s_id, function, line, inode->i_ino, 454 current->comm, &vaf); 455 va_end(args); 456 457 ext4_handle_error(inode->i_sb); 458 } 459 460 void __ext4_error_file(struct file *file, const char *function, 461 unsigned int line, ext4_fsblk_t block, 462 const char *fmt, ...) 463 { 464 va_list args; 465 struct va_format vaf; 466 struct ext4_super_block *es; 467 struct inode *inode = file_inode(file); 468 char pathname[80], *path; 469 470 es = EXT4_SB(inode->i_sb)->s_es; 471 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 472 save_error_info(inode->i_sb, function, line); 473 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 474 if (IS_ERR(path)) 475 path = "(unknown)"; 476 va_start(args, fmt); 477 vaf.fmt = fmt; 478 vaf.va = &args; 479 if (block) 480 printk(KERN_CRIT 481 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 482 "block %llu: comm %s: path %s: %pV\n", 483 inode->i_sb->s_id, function, line, inode->i_ino, 484 block, current->comm, path, &vaf); 485 else 486 printk(KERN_CRIT 487 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 488 "comm %s: path %s: %pV\n", 489 inode->i_sb->s_id, function, line, inode->i_ino, 490 current->comm, path, &vaf); 491 va_end(args); 492 493 ext4_handle_error(inode->i_sb); 494 } 495 496 const char *ext4_decode_error(struct super_block *sb, int errno, 497 char nbuf[16]) 498 { 499 char *errstr = NULL; 500 501 switch (errno) { 502 case -EIO: 503 errstr = "IO failure"; 504 break; 505 case -ENOMEM: 506 errstr = "Out of memory"; 507 break; 508 case -EROFS: 509 if (!sb || (EXT4_SB(sb)->s_journal && 510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 511 errstr = "Journal has aborted"; 512 else 513 errstr = "Readonly filesystem"; 514 break; 515 default: 516 /* If the caller passed in an extra buffer for unknown 517 * errors, textualise them now. Else we just return 518 * NULL. */ 519 if (nbuf) { 520 /* Check for truncated error codes... */ 521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 522 errstr = nbuf; 523 } 524 break; 525 } 526 527 return errstr; 528 } 529 530 /* __ext4_std_error decodes expected errors from journaling functions 531 * automatically and invokes the appropriate error response. */ 532 533 void __ext4_std_error(struct super_block *sb, const char *function, 534 unsigned int line, int errno) 535 { 536 char nbuf[16]; 537 const char *errstr; 538 539 /* Special case: if the error is EROFS, and we're not already 540 * inside a transaction, then there's really no point in logging 541 * an error. */ 542 if (errno == -EROFS && journal_current_handle() == NULL && 543 (sb->s_flags & MS_RDONLY)) 544 return; 545 546 errstr = ext4_decode_error(sb, errno, nbuf); 547 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 548 sb->s_id, function, line, errstr); 549 save_error_info(sb, function, line); 550 551 ext4_handle_error(sb); 552 } 553 554 /* 555 * ext4_abort is a much stronger failure handler than ext4_error. The 556 * abort function may be used to deal with unrecoverable failures such 557 * as journal IO errors or ENOMEM at a critical moment in log management. 558 * 559 * We unconditionally force the filesystem into an ABORT|READONLY state, 560 * unless the error response on the fs has been set to panic in which 561 * case we take the easy way out and panic immediately. 562 */ 563 564 void __ext4_abort(struct super_block *sb, const char *function, 565 unsigned int line, const char *fmt, ...) 566 { 567 va_list args; 568 569 save_error_info(sb, function, line); 570 va_start(args, fmt); 571 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 572 function, line); 573 vprintk(fmt, args); 574 printk("\n"); 575 va_end(args); 576 577 if ((sb->s_flags & MS_RDONLY) == 0) { 578 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 579 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 580 /* 581 * Make sure updated value of ->s_mount_flags will be visible 582 * before ->s_flags update 583 */ 584 smp_wmb(); 585 sb->s_flags |= MS_RDONLY; 586 if (EXT4_SB(sb)->s_journal) 587 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 588 save_error_info(sb, function, line); 589 } 590 if (test_opt(sb, ERRORS_PANIC)) 591 panic("EXT4-fs panic from previous error\n"); 592 } 593 594 void __ext4_msg(struct super_block *sb, 595 const char *prefix, const char *fmt, ...) 596 { 597 struct va_format vaf; 598 va_list args; 599 600 va_start(args, fmt); 601 vaf.fmt = fmt; 602 vaf.va = &args; 603 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 604 va_end(args); 605 } 606 607 void __ext4_warning(struct super_block *sb, const char *function, 608 unsigned int line, const char *fmt, ...) 609 { 610 struct va_format vaf; 611 va_list args; 612 613 va_start(args, fmt); 614 vaf.fmt = fmt; 615 vaf.va = &args; 616 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 617 sb->s_id, function, line, &vaf); 618 va_end(args); 619 } 620 621 void __ext4_grp_locked_error(const char *function, unsigned int line, 622 struct super_block *sb, ext4_group_t grp, 623 unsigned long ino, ext4_fsblk_t block, 624 const char *fmt, ...) 625 __releases(bitlock) 626 __acquires(bitlock) 627 { 628 struct va_format vaf; 629 va_list args; 630 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 631 632 es->s_last_error_ino = cpu_to_le32(ino); 633 es->s_last_error_block = cpu_to_le64(block); 634 __save_error_info(sb, function, line); 635 636 va_start(args, fmt); 637 638 vaf.fmt = fmt; 639 vaf.va = &args; 640 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 641 sb->s_id, function, line, grp); 642 if (ino) 643 printk(KERN_CONT "inode %lu: ", ino); 644 if (block) 645 printk(KERN_CONT "block %llu:", (unsigned long long) block); 646 printk(KERN_CONT "%pV\n", &vaf); 647 va_end(args); 648 649 if (test_opt(sb, ERRORS_CONT)) { 650 ext4_commit_super(sb, 0); 651 return; 652 } 653 654 ext4_unlock_group(sb, grp); 655 ext4_handle_error(sb); 656 /* 657 * We only get here in the ERRORS_RO case; relocking the group 658 * may be dangerous, but nothing bad will happen since the 659 * filesystem will have already been marked read/only and the 660 * journal has been aborted. We return 1 as a hint to callers 661 * who might what to use the return value from 662 * ext4_grp_locked_error() to distinguish between the 663 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 664 * aggressively from the ext4 function in question, with a 665 * more appropriate error code. 666 */ 667 ext4_lock_group(sb, grp); 668 return; 669 } 670 671 void ext4_update_dynamic_rev(struct super_block *sb) 672 { 673 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 674 675 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 676 return; 677 678 ext4_warning(sb, 679 "updating to rev %d because of new feature flag, " 680 "running e2fsck is recommended", 681 EXT4_DYNAMIC_REV); 682 683 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 684 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 685 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 686 /* leave es->s_feature_*compat flags alone */ 687 /* es->s_uuid will be set by e2fsck if empty */ 688 689 /* 690 * The rest of the superblock fields should be zero, and if not it 691 * means they are likely already in use, so leave them alone. We 692 * can leave it up to e2fsck to clean up any inconsistencies there. 693 */ 694 } 695 696 /* 697 * Open the external journal device 698 */ 699 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 700 { 701 struct block_device *bdev; 702 char b[BDEVNAME_SIZE]; 703 704 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 705 if (IS_ERR(bdev)) 706 goto fail; 707 return bdev; 708 709 fail: 710 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 711 __bdevname(dev, b), PTR_ERR(bdev)); 712 return NULL; 713 } 714 715 /* 716 * Release the journal device 717 */ 718 static void ext4_blkdev_put(struct block_device *bdev) 719 { 720 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 721 } 722 723 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 724 { 725 struct block_device *bdev; 726 bdev = sbi->journal_bdev; 727 if (bdev) { 728 ext4_blkdev_put(bdev); 729 sbi->journal_bdev = NULL; 730 } 731 } 732 733 static inline struct inode *orphan_list_entry(struct list_head *l) 734 { 735 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 736 } 737 738 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 739 { 740 struct list_head *l; 741 742 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 743 le32_to_cpu(sbi->s_es->s_last_orphan)); 744 745 printk(KERN_ERR "sb_info orphan list:\n"); 746 list_for_each(l, &sbi->s_orphan) { 747 struct inode *inode = orphan_list_entry(l); 748 printk(KERN_ERR " " 749 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 750 inode->i_sb->s_id, inode->i_ino, inode, 751 inode->i_mode, inode->i_nlink, 752 NEXT_ORPHAN(inode)); 753 } 754 } 755 756 static void ext4_put_super(struct super_block *sb) 757 { 758 struct ext4_sb_info *sbi = EXT4_SB(sb); 759 struct ext4_super_block *es = sbi->s_es; 760 int i, err; 761 762 ext4_unregister_li_request(sb); 763 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 764 765 flush_workqueue(sbi->rsv_conversion_wq); 766 destroy_workqueue(sbi->rsv_conversion_wq); 767 768 if (sbi->s_journal) { 769 err = jbd2_journal_destroy(sbi->s_journal); 770 sbi->s_journal = NULL; 771 if (err < 0) 772 ext4_abort(sb, "Couldn't clean up the journal"); 773 } 774 775 ext4_es_unregister_shrinker(sbi); 776 del_timer(&sbi->s_err_report); 777 ext4_release_system_zone(sb); 778 ext4_mb_release(sb); 779 ext4_ext_release(sb); 780 ext4_xattr_put_super(sb); 781 782 if (!(sb->s_flags & MS_RDONLY)) { 783 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 784 es->s_state = cpu_to_le16(sbi->s_mount_state); 785 } 786 if (!(sb->s_flags & MS_RDONLY)) 787 ext4_commit_super(sb, 1); 788 789 if (sbi->s_proc) { 790 remove_proc_entry("options", sbi->s_proc); 791 remove_proc_entry(sb->s_id, ext4_proc_root); 792 } 793 kobject_del(&sbi->s_kobj); 794 795 for (i = 0; i < sbi->s_gdb_count; i++) 796 brelse(sbi->s_group_desc[i]); 797 ext4_kvfree(sbi->s_group_desc); 798 ext4_kvfree(sbi->s_flex_groups); 799 percpu_counter_destroy(&sbi->s_freeclusters_counter); 800 percpu_counter_destroy(&sbi->s_freeinodes_counter); 801 percpu_counter_destroy(&sbi->s_dirs_counter); 802 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 803 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 804 brelse(sbi->s_sbh); 805 #ifdef CONFIG_QUOTA 806 for (i = 0; i < MAXQUOTAS; i++) 807 kfree(sbi->s_qf_names[i]); 808 #endif 809 810 /* Debugging code just in case the in-memory inode orphan list 811 * isn't empty. The on-disk one can be non-empty if we've 812 * detected an error and taken the fs readonly, but the 813 * in-memory list had better be clean by this point. */ 814 if (!list_empty(&sbi->s_orphan)) 815 dump_orphan_list(sb, sbi); 816 J_ASSERT(list_empty(&sbi->s_orphan)); 817 818 invalidate_bdev(sb->s_bdev); 819 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 820 /* 821 * Invalidate the journal device's buffers. We don't want them 822 * floating about in memory - the physical journal device may 823 * hotswapped, and it breaks the `ro-after' testing code. 824 */ 825 sync_blockdev(sbi->journal_bdev); 826 invalidate_bdev(sbi->journal_bdev); 827 ext4_blkdev_remove(sbi); 828 } 829 if (sbi->s_mmp_tsk) 830 kthread_stop(sbi->s_mmp_tsk); 831 sb->s_fs_info = NULL; 832 /* 833 * Now that we are completely done shutting down the 834 * superblock, we need to actually destroy the kobject. 835 */ 836 kobject_put(&sbi->s_kobj); 837 wait_for_completion(&sbi->s_kobj_unregister); 838 if (sbi->s_chksum_driver) 839 crypto_free_shash(sbi->s_chksum_driver); 840 kfree(sbi->s_blockgroup_lock); 841 kfree(sbi); 842 } 843 844 static struct kmem_cache *ext4_inode_cachep; 845 846 /* 847 * Called inside transaction, so use GFP_NOFS 848 */ 849 static struct inode *ext4_alloc_inode(struct super_block *sb) 850 { 851 struct ext4_inode_info *ei; 852 853 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 854 if (!ei) 855 return NULL; 856 857 ei->vfs_inode.i_version = 1; 858 INIT_LIST_HEAD(&ei->i_prealloc_list); 859 spin_lock_init(&ei->i_prealloc_lock); 860 ext4_es_init_tree(&ei->i_es_tree); 861 rwlock_init(&ei->i_es_lock); 862 INIT_LIST_HEAD(&ei->i_es_lru); 863 ei->i_es_lru_nr = 0; 864 ei->i_touch_when = 0; 865 ei->i_reserved_data_blocks = 0; 866 ei->i_reserved_meta_blocks = 0; 867 ei->i_allocated_meta_blocks = 0; 868 ei->i_da_metadata_calc_len = 0; 869 ei->i_da_metadata_calc_last_lblock = 0; 870 spin_lock_init(&(ei->i_block_reservation_lock)); 871 #ifdef CONFIG_QUOTA 872 ei->i_reserved_quota = 0; 873 #endif 874 ei->jinode = NULL; 875 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 876 spin_lock_init(&ei->i_completed_io_lock); 877 ei->i_sync_tid = 0; 878 ei->i_datasync_tid = 0; 879 atomic_set(&ei->i_ioend_count, 0); 880 atomic_set(&ei->i_unwritten, 0); 881 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 882 883 return &ei->vfs_inode; 884 } 885 886 static int ext4_drop_inode(struct inode *inode) 887 { 888 int drop = generic_drop_inode(inode); 889 890 trace_ext4_drop_inode(inode, drop); 891 return drop; 892 } 893 894 static void ext4_i_callback(struct rcu_head *head) 895 { 896 struct inode *inode = container_of(head, struct inode, i_rcu); 897 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 898 } 899 900 static void ext4_destroy_inode(struct inode *inode) 901 { 902 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 903 ext4_msg(inode->i_sb, KERN_ERR, 904 "Inode %lu (%p): orphan list check failed!", 905 inode->i_ino, EXT4_I(inode)); 906 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 907 EXT4_I(inode), sizeof(struct ext4_inode_info), 908 true); 909 dump_stack(); 910 } 911 call_rcu(&inode->i_rcu, ext4_i_callback); 912 } 913 914 static void init_once(void *foo) 915 { 916 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 917 918 INIT_LIST_HEAD(&ei->i_orphan); 919 init_rwsem(&ei->xattr_sem); 920 init_rwsem(&ei->i_data_sem); 921 inode_init_once(&ei->vfs_inode); 922 } 923 924 static int init_inodecache(void) 925 { 926 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 927 sizeof(struct ext4_inode_info), 928 0, (SLAB_RECLAIM_ACCOUNT| 929 SLAB_MEM_SPREAD), 930 init_once); 931 if (ext4_inode_cachep == NULL) 932 return -ENOMEM; 933 return 0; 934 } 935 936 static void destroy_inodecache(void) 937 { 938 /* 939 * Make sure all delayed rcu free inodes are flushed before we 940 * destroy cache. 941 */ 942 rcu_barrier(); 943 kmem_cache_destroy(ext4_inode_cachep); 944 } 945 946 void ext4_clear_inode(struct inode *inode) 947 { 948 invalidate_inode_buffers(inode); 949 clear_inode(inode); 950 dquot_drop(inode); 951 ext4_discard_preallocations(inode); 952 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 953 ext4_es_lru_del(inode); 954 if (EXT4_I(inode)->jinode) { 955 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 956 EXT4_I(inode)->jinode); 957 jbd2_free_inode(EXT4_I(inode)->jinode); 958 EXT4_I(inode)->jinode = NULL; 959 } 960 } 961 962 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 963 u64 ino, u32 generation) 964 { 965 struct inode *inode; 966 967 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 968 return ERR_PTR(-ESTALE); 969 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 970 return ERR_PTR(-ESTALE); 971 972 /* iget isn't really right if the inode is currently unallocated!! 973 * 974 * ext4_read_inode will return a bad_inode if the inode had been 975 * deleted, so we should be safe. 976 * 977 * Currently we don't know the generation for parent directory, so 978 * a generation of 0 means "accept any" 979 */ 980 inode = ext4_iget(sb, ino); 981 if (IS_ERR(inode)) 982 return ERR_CAST(inode); 983 if (generation && inode->i_generation != generation) { 984 iput(inode); 985 return ERR_PTR(-ESTALE); 986 } 987 988 return inode; 989 } 990 991 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 992 int fh_len, int fh_type) 993 { 994 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 995 ext4_nfs_get_inode); 996 } 997 998 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 999 int fh_len, int fh_type) 1000 { 1001 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1002 ext4_nfs_get_inode); 1003 } 1004 1005 /* 1006 * Try to release metadata pages (indirect blocks, directories) which are 1007 * mapped via the block device. Since these pages could have journal heads 1008 * which would prevent try_to_free_buffers() from freeing them, we must use 1009 * jbd2 layer's try_to_free_buffers() function to release them. 1010 */ 1011 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1012 gfp_t wait) 1013 { 1014 journal_t *journal = EXT4_SB(sb)->s_journal; 1015 1016 WARN_ON(PageChecked(page)); 1017 if (!page_has_buffers(page)) 1018 return 0; 1019 if (journal) 1020 return jbd2_journal_try_to_free_buffers(journal, page, 1021 wait & ~__GFP_WAIT); 1022 return try_to_free_buffers(page); 1023 } 1024 1025 #ifdef CONFIG_QUOTA 1026 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1027 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1028 1029 static int ext4_write_dquot(struct dquot *dquot); 1030 static int ext4_acquire_dquot(struct dquot *dquot); 1031 static int ext4_release_dquot(struct dquot *dquot); 1032 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1033 static int ext4_write_info(struct super_block *sb, int type); 1034 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1035 struct path *path); 1036 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1037 int format_id); 1038 static int ext4_quota_off(struct super_block *sb, int type); 1039 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1040 static int ext4_quota_on_mount(struct super_block *sb, int type); 1041 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1042 size_t len, loff_t off); 1043 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1044 const char *data, size_t len, loff_t off); 1045 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1046 unsigned int flags); 1047 static int ext4_enable_quotas(struct super_block *sb); 1048 1049 static const struct dquot_operations ext4_quota_operations = { 1050 .get_reserved_space = ext4_get_reserved_space, 1051 .write_dquot = ext4_write_dquot, 1052 .acquire_dquot = ext4_acquire_dquot, 1053 .release_dquot = ext4_release_dquot, 1054 .mark_dirty = ext4_mark_dquot_dirty, 1055 .write_info = ext4_write_info, 1056 .alloc_dquot = dquot_alloc, 1057 .destroy_dquot = dquot_destroy, 1058 }; 1059 1060 static const struct quotactl_ops ext4_qctl_operations = { 1061 .quota_on = ext4_quota_on, 1062 .quota_off = ext4_quota_off, 1063 .quota_sync = dquot_quota_sync, 1064 .get_info = dquot_get_dqinfo, 1065 .set_info = dquot_set_dqinfo, 1066 .get_dqblk = dquot_get_dqblk, 1067 .set_dqblk = dquot_set_dqblk 1068 }; 1069 1070 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1071 .quota_on_meta = ext4_quota_on_sysfile, 1072 .quota_off = ext4_quota_off_sysfile, 1073 .quota_sync = dquot_quota_sync, 1074 .get_info = dquot_get_dqinfo, 1075 .set_info = dquot_set_dqinfo, 1076 .get_dqblk = dquot_get_dqblk, 1077 .set_dqblk = dquot_set_dqblk 1078 }; 1079 #endif 1080 1081 static const struct super_operations ext4_sops = { 1082 .alloc_inode = ext4_alloc_inode, 1083 .destroy_inode = ext4_destroy_inode, 1084 .write_inode = ext4_write_inode, 1085 .dirty_inode = ext4_dirty_inode, 1086 .drop_inode = ext4_drop_inode, 1087 .evict_inode = ext4_evict_inode, 1088 .put_super = ext4_put_super, 1089 .sync_fs = ext4_sync_fs, 1090 .freeze_fs = ext4_freeze, 1091 .unfreeze_fs = ext4_unfreeze, 1092 .statfs = ext4_statfs, 1093 .remount_fs = ext4_remount, 1094 .show_options = ext4_show_options, 1095 #ifdef CONFIG_QUOTA 1096 .quota_read = ext4_quota_read, 1097 .quota_write = ext4_quota_write, 1098 #endif 1099 .bdev_try_to_free_page = bdev_try_to_free_page, 1100 }; 1101 1102 static const struct super_operations ext4_nojournal_sops = { 1103 .alloc_inode = ext4_alloc_inode, 1104 .destroy_inode = ext4_destroy_inode, 1105 .write_inode = ext4_write_inode, 1106 .dirty_inode = ext4_dirty_inode, 1107 .drop_inode = ext4_drop_inode, 1108 .evict_inode = ext4_evict_inode, 1109 .sync_fs = ext4_sync_fs_nojournal, 1110 .put_super = ext4_put_super, 1111 .statfs = ext4_statfs, 1112 .remount_fs = ext4_remount, 1113 .show_options = ext4_show_options, 1114 #ifdef CONFIG_QUOTA 1115 .quota_read = ext4_quota_read, 1116 .quota_write = ext4_quota_write, 1117 #endif 1118 .bdev_try_to_free_page = bdev_try_to_free_page, 1119 }; 1120 1121 static const struct export_operations ext4_export_ops = { 1122 .fh_to_dentry = ext4_fh_to_dentry, 1123 .fh_to_parent = ext4_fh_to_parent, 1124 .get_parent = ext4_get_parent, 1125 }; 1126 1127 enum { 1128 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1129 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1130 Opt_nouid32, Opt_debug, Opt_removed, 1131 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1132 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1133 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1134 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1135 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1136 Opt_data_err_abort, Opt_data_err_ignore, 1137 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1138 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1139 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1140 Opt_usrquota, Opt_grpquota, Opt_i_version, 1141 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1142 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1143 Opt_inode_readahead_blks, Opt_journal_ioprio, 1144 Opt_dioread_nolock, Opt_dioread_lock, 1145 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1146 Opt_max_dir_size_kb, 1147 }; 1148 1149 static const match_table_t tokens = { 1150 {Opt_bsd_df, "bsddf"}, 1151 {Opt_minix_df, "minixdf"}, 1152 {Opt_grpid, "grpid"}, 1153 {Opt_grpid, "bsdgroups"}, 1154 {Opt_nogrpid, "nogrpid"}, 1155 {Opt_nogrpid, "sysvgroups"}, 1156 {Opt_resgid, "resgid=%u"}, 1157 {Opt_resuid, "resuid=%u"}, 1158 {Opt_sb, "sb=%u"}, 1159 {Opt_err_cont, "errors=continue"}, 1160 {Opt_err_panic, "errors=panic"}, 1161 {Opt_err_ro, "errors=remount-ro"}, 1162 {Opt_nouid32, "nouid32"}, 1163 {Opt_debug, "debug"}, 1164 {Opt_removed, "oldalloc"}, 1165 {Opt_removed, "orlov"}, 1166 {Opt_user_xattr, "user_xattr"}, 1167 {Opt_nouser_xattr, "nouser_xattr"}, 1168 {Opt_acl, "acl"}, 1169 {Opt_noacl, "noacl"}, 1170 {Opt_noload, "norecovery"}, 1171 {Opt_noload, "noload"}, 1172 {Opt_removed, "nobh"}, 1173 {Opt_removed, "bh"}, 1174 {Opt_commit, "commit=%u"}, 1175 {Opt_min_batch_time, "min_batch_time=%u"}, 1176 {Opt_max_batch_time, "max_batch_time=%u"}, 1177 {Opt_journal_dev, "journal_dev=%u"}, 1178 {Opt_journal_path, "journal_path=%s"}, 1179 {Opt_journal_checksum, "journal_checksum"}, 1180 {Opt_journal_async_commit, "journal_async_commit"}, 1181 {Opt_abort, "abort"}, 1182 {Opt_data_journal, "data=journal"}, 1183 {Opt_data_ordered, "data=ordered"}, 1184 {Opt_data_writeback, "data=writeback"}, 1185 {Opt_data_err_abort, "data_err=abort"}, 1186 {Opt_data_err_ignore, "data_err=ignore"}, 1187 {Opt_offusrjquota, "usrjquota="}, 1188 {Opt_usrjquota, "usrjquota=%s"}, 1189 {Opt_offgrpjquota, "grpjquota="}, 1190 {Opt_grpjquota, "grpjquota=%s"}, 1191 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1192 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1193 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1194 {Opt_grpquota, "grpquota"}, 1195 {Opt_noquota, "noquota"}, 1196 {Opt_quota, "quota"}, 1197 {Opt_usrquota, "usrquota"}, 1198 {Opt_barrier, "barrier=%u"}, 1199 {Opt_barrier, "barrier"}, 1200 {Opt_nobarrier, "nobarrier"}, 1201 {Opt_i_version, "i_version"}, 1202 {Opt_stripe, "stripe=%u"}, 1203 {Opt_delalloc, "delalloc"}, 1204 {Opt_nodelalloc, "nodelalloc"}, 1205 {Opt_removed, "mblk_io_submit"}, 1206 {Opt_removed, "nomblk_io_submit"}, 1207 {Opt_block_validity, "block_validity"}, 1208 {Opt_noblock_validity, "noblock_validity"}, 1209 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1210 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1211 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1212 {Opt_auto_da_alloc, "auto_da_alloc"}, 1213 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1214 {Opt_dioread_nolock, "dioread_nolock"}, 1215 {Opt_dioread_lock, "dioread_lock"}, 1216 {Opt_discard, "discard"}, 1217 {Opt_nodiscard, "nodiscard"}, 1218 {Opt_init_itable, "init_itable=%u"}, 1219 {Opt_init_itable, "init_itable"}, 1220 {Opt_noinit_itable, "noinit_itable"}, 1221 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1222 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1223 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1224 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1225 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1226 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1227 {Opt_err, NULL}, 1228 }; 1229 1230 static ext4_fsblk_t get_sb_block(void **data) 1231 { 1232 ext4_fsblk_t sb_block; 1233 char *options = (char *) *data; 1234 1235 if (!options || strncmp(options, "sb=", 3) != 0) 1236 return 1; /* Default location */ 1237 1238 options += 3; 1239 /* TODO: use simple_strtoll with >32bit ext4 */ 1240 sb_block = simple_strtoul(options, &options, 0); 1241 if (*options && *options != ',') { 1242 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1243 (char *) *data); 1244 return 1; 1245 } 1246 if (*options == ',') 1247 options++; 1248 *data = (void *) options; 1249 1250 return sb_block; 1251 } 1252 1253 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1254 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1255 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1256 1257 #ifdef CONFIG_QUOTA 1258 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1259 { 1260 struct ext4_sb_info *sbi = EXT4_SB(sb); 1261 char *qname; 1262 int ret = -1; 1263 1264 if (sb_any_quota_loaded(sb) && 1265 !sbi->s_qf_names[qtype]) { 1266 ext4_msg(sb, KERN_ERR, 1267 "Cannot change journaled " 1268 "quota options when quota turned on"); 1269 return -1; 1270 } 1271 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1272 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1273 "when QUOTA feature is enabled"); 1274 return -1; 1275 } 1276 qname = match_strdup(args); 1277 if (!qname) { 1278 ext4_msg(sb, KERN_ERR, 1279 "Not enough memory for storing quotafile name"); 1280 return -1; 1281 } 1282 if (sbi->s_qf_names[qtype]) { 1283 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1284 ret = 1; 1285 else 1286 ext4_msg(sb, KERN_ERR, 1287 "%s quota file already specified", 1288 QTYPE2NAME(qtype)); 1289 goto errout; 1290 } 1291 if (strchr(qname, '/')) { 1292 ext4_msg(sb, KERN_ERR, 1293 "quotafile must be on filesystem root"); 1294 goto errout; 1295 } 1296 sbi->s_qf_names[qtype] = qname; 1297 set_opt(sb, QUOTA); 1298 return 1; 1299 errout: 1300 kfree(qname); 1301 return ret; 1302 } 1303 1304 static int clear_qf_name(struct super_block *sb, int qtype) 1305 { 1306 1307 struct ext4_sb_info *sbi = EXT4_SB(sb); 1308 1309 if (sb_any_quota_loaded(sb) && 1310 sbi->s_qf_names[qtype]) { 1311 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1312 " when quota turned on"); 1313 return -1; 1314 } 1315 kfree(sbi->s_qf_names[qtype]); 1316 sbi->s_qf_names[qtype] = NULL; 1317 return 1; 1318 } 1319 #endif 1320 1321 #define MOPT_SET 0x0001 1322 #define MOPT_CLEAR 0x0002 1323 #define MOPT_NOSUPPORT 0x0004 1324 #define MOPT_EXPLICIT 0x0008 1325 #define MOPT_CLEAR_ERR 0x0010 1326 #define MOPT_GTE0 0x0020 1327 #ifdef CONFIG_QUOTA 1328 #define MOPT_Q 0 1329 #define MOPT_QFMT 0x0040 1330 #else 1331 #define MOPT_Q MOPT_NOSUPPORT 1332 #define MOPT_QFMT MOPT_NOSUPPORT 1333 #endif 1334 #define MOPT_DATAJ 0x0080 1335 #define MOPT_NO_EXT2 0x0100 1336 #define MOPT_NO_EXT3 0x0200 1337 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1338 #define MOPT_STRING 0x0400 1339 1340 static const struct mount_opts { 1341 int token; 1342 int mount_opt; 1343 int flags; 1344 } ext4_mount_opts[] = { 1345 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1346 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1347 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1348 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1349 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1350 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1351 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1352 MOPT_EXT4_ONLY | MOPT_SET}, 1353 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1354 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1355 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1356 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1357 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1358 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1359 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1360 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1361 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1362 MOPT_EXT4_ONLY | MOPT_SET}, 1363 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1364 EXT4_MOUNT_JOURNAL_CHECKSUM), 1365 MOPT_EXT4_ONLY | MOPT_SET}, 1366 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1367 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1368 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1369 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1370 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1371 MOPT_NO_EXT2 | MOPT_SET}, 1372 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1373 MOPT_NO_EXT2 | MOPT_CLEAR}, 1374 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1375 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1376 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1377 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1378 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1379 {Opt_commit, 0, MOPT_GTE0}, 1380 {Opt_max_batch_time, 0, MOPT_GTE0}, 1381 {Opt_min_batch_time, 0, MOPT_GTE0}, 1382 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1383 {Opt_init_itable, 0, MOPT_GTE0}, 1384 {Opt_stripe, 0, MOPT_GTE0}, 1385 {Opt_resuid, 0, MOPT_GTE0}, 1386 {Opt_resgid, 0, MOPT_GTE0}, 1387 {Opt_journal_dev, 0, MOPT_GTE0}, 1388 {Opt_journal_path, 0, MOPT_STRING}, 1389 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1390 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1391 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1392 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1393 MOPT_NO_EXT2 | MOPT_DATAJ}, 1394 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1395 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1396 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1397 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1398 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1399 #else 1400 {Opt_acl, 0, MOPT_NOSUPPORT}, 1401 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1402 #endif 1403 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1404 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1405 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1406 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1407 MOPT_SET | MOPT_Q}, 1408 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1409 MOPT_SET | MOPT_Q}, 1410 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1411 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1412 {Opt_usrjquota, 0, MOPT_Q}, 1413 {Opt_grpjquota, 0, MOPT_Q}, 1414 {Opt_offusrjquota, 0, MOPT_Q}, 1415 {Opt_offgrpjquota, 0, MOPT_Q}, 1416 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1417 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1418 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1419 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1420 {Opt_err, 0, 0} 1421 }; 1422 1423 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1424 substring_t *args, unsigned long *journal_devnum, 1425 unsigned int *journal_ioprio, int is_remount) 1426 { 1427 struct ext4_sb_info *sbi = EXT4_SB(sb); 1428 const struct mount_opts *m; 1429 kuid_t uid; 1430 kgid_t gid; 1431 int arg = 0; 1432 1433 #ifdef CONFIG_QUOTA 1434 if (token == Opt_usrjquota) 1435 return set_qf_name(sb, USRQUOTA, &args[0]); 1436 else if (token == Opt_grpjquota) 1437 return set_qf_name(sb, GRPQUOTA, &args[0]); 1438 else if (token == Opt_offusrjquota) 1439 return clear_qf_name(sb, USRQUOTA); 1440 else if (token == Opt_offgrpjquota) 1441 return clear_qf_name(sb, GRPQUOTA); 1442 #endif 1443 switch (token) { 1444 case Opt_noacl: 1445 case Opt_nouser_xattr: 1446 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1447 break; 1448 case Opt_sb: 1449 return 1; /* handled by get_sb_block() */ 1450 case Opt_removed: 1451 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1452 return 1; 1453 case Opt_abort: 1454 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1455 return 1; 1456 case Opt_i_version: 1457 sb->s_flags |= MS_I_VERSION; 1458 return 1; 1459 } 1460 1461 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1462 if (token == m->token) 1463 break; 1464 1465 if (m->token == Opt_err) { 1466 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1467 "or missing value", opt); 1468 return -1; 1469 } 1470 1471 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1472 ext4_msg(sb, KERN_ERR, 1473 "Mount option \"%s\" incompatible with ext2", opt); 1474 return -1; 1475 } 1476 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1477 ext4_msg(sb, KERN_ERR, 1478 "Mount option \"%s\" incompatible with ext3", opt); 1479 return -1; 1480 } 1481 1482 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1483 return -1; 1484 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1485 return -1; 1486 if (m->flags & MOPT_EXPLICIT) 1487 set_opt2(sb, EXPLICIT_DELALLOC); 1488 if (m->flags & MOPT_CLEAR_ERR) 1489 clear_opt(sb, ERRORS_MASK); 1490 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1491 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1492 "options when quota turned on"); 1493 return -1; 1494 } 1495 1496 if (m->flags & MOPT_NOSUPPORT) { 1497 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1498 } else if (token == Opt_commit) { 1499 if (arg == 0) 1500 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1501 sbi->s_commit_interval = HZ * arg; 1502 } else if (token == Opt_max_batch_time) { 1503 if (arg == 0) 1504 arg = EXT4_DEF_MAX_BATCH_TIME; 1505 sbi->s_max_batch_time = arg; 1506 } else if (token == Opt_min_batch_time) { 1507 sbi->s_min_batch_time = arg; 1508 } else if (token == Opt_inode_readahead_blks) { 1509 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1510 ext4_msg(sb, KERN_ERR, 1511 "EXT4-fs: inode_readahead_blks must be " 1512 "0 or a power of 2 smaller than 2^31"); 1513 return -1; 1514 } 1515 sbi->s_inode_readahead_blks = arg; 1516 } else if (token == Opt_init_itable) { 1517 set_opt(sb, INIT_INODE_TABLE); 1518 if (!args->from) 1519 arg = EXT4_DEF_LI_WAIT_MULT; 1520 sbi->s_li_wait_mult = arg; 1521 } else if (token == Opt_max_dir_size_kb) { 1522 sbi->s_max_dir_size_kb = arg; 1523 } else if (token == Opt_stripe) { 1524 sbi->s_stripe = arg; 1525 } else if (token == Opt_resuid) { 1526 uid = make_kuid(current_user_ns(), arg); 1527 if (!uid_valid(uid)) { 1528 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1529 return -1; 1530 } 1531 sbi->s_resuid = uid; 1532 } else if (token == Opt_resgid) { 1533 gid = make_kgid(current_user_ns(), arg); 1534 if (!gid_valid(gid)) { 1535 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1536 return -1; 1537 } 1538 sbi->s_resgid = gid; 1539 } else if (token == Opt_journal_dev) { 1540 if (is_remount) { 1541 ext4_msg(sb, KERN_ERR, 1542 "Cannot specify journal on remount"); 1543 return -1; 1544 } 1545 *journal_devnum = arg; 1546 } else if (token == Opt_journal_path) { 1547 char *journal_path; 1548 struct inode *journal_inode; 1549 struct path path; 1550 int error; 1551 1552 if (is_remount) { 1553 ext4_msg(sb, KERN_ERR, 1554 "Cannot specify journal on remount"); 1555 return -1; 1556 } 1557 journal_path = match_strdup(&args[0]); 1558 if (!journal_path) { 1559 ext4_msg(sb, KERN_ERR, "error: could not dup " 1560 "journal device string"); 1561 return -1; 1562 } 1563 1564 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1565 if (error) { 1566 ext4_msg(sb, KERN_ERR, "error: could not find " 1567 "journal device path: error %d", error); 1568 kfree(journal_path); 1569 return -1; 1570 } 1571 1572 journal_inode = path.dentry->d_inode; 1573 if (!S_ISBLK(journal_inode->i_mode)) { 1574 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1575 "is not a block device", journal_path); 1576 path_put(&path); 1577 kfree(journal_path); 1578 return -1; 1579 } 1580 1581 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1582 path_put(&path); 1583 kfree(journal_path); 1584 } else if (token == Opt_journal_ioprio) { 1585 if (arg > 7) { 1586 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1587 " (must be 0-7)"); 1588 return -1; 1589 } 1590 *journal_ioprio = 1591 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1592 } else if (m->flags & MOPT_DATAJ) { 1593 if (is_remount) { 1594 if (!sbi->s_journal) 1595 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1596 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1597 ext4_msg(sb, KERN_ERR, 1598 "Cannot change data mode on remount"); 1599 return -1; 1600 } 1601 } else { 1602 clear_opt(sb, DATA_FLAGS); 1603 sbi->s_mount_opt |= m->mount_opt; 1604 } 1605 #ifdef CONFIG_QUOTA 1606 } else if (m->flags & MOPT_QFMT) { 1607 if (sb_any_quota_loaded(sb) && 1608 sbi->s_jquota_fmt != m->mount_opt) { 1609 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1610 "quota options when quota turned on"); 1611 return -1; 1612 } 1613 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1614 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1615 ext4_msg(sb, KERN_ERR, 1616 "Cannot set journaled quota options " 1617 "when QUOTA feature is enabled"); 1618 return -1; 1619 } 1620 sbi->s_jquota_fmt = m->mount_opt; 1621 #endif 1622 } else { 1623 if (!args->from) 1624 arg = 1; 1625 if (m->flags & MOPT_CLEAR) 1626 arg = !arg; 1627 else if (unlikely(!(m->flags & MOPT_SET))) { 1628 ext4_msg(sb, KERN_WARNING, 1629 "buggy handling of option %s", opt); 1630 WARN_ON(1); 1631 return -1; 1632 } 1633 if (arg != 0) 1634 sbi->s_mount_opt |= m->mount_opt; 1635 else 1636 sbi->s_mount_opt &= ~m->mount_opt; 1637 } 1638 return 1; 1639 } 1640 1641 static int parse_options(char *options, struct super_block *sb, 1642 unsigned long *journal_devnum, 1643 unsigned int *journal_ioprio, 1644 int is_remount) 1645 { 1646 struct ext4_sb_info *sbi = EXT4_SB(sb); 1647 char *p; 1648 substring_t args[MAX_OPT_ARGS]; 1649 int token; 1650 1651 if (!options) 1652 return 1; 1653 1654 while ((p = strsep(&options, ",")) != NULL) { 1655 if (!*p) 1656 continue; 1657 /* 1658 * Initialize args struct so we know whether arg was 1659 * found; some options take optional arguments. 1660 */ 1661 args[0].to = args[0].from = NULL; 1662 token = match_token(p, tokens, args); 1663 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1664 journal_ioprio, is_remount) < 0) 1665 return 0; 1666 } 1667 #ifdef CONFIG_QUOTA 1668 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1669 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1670 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1671 "feature is enabled"); 1672 return 0; 1673 } 1674 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1675 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1676 clear_opt(sb, USRQUOTA); 1677 1678 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1679 clear_opt(sb, GRPQUOTA); 1680 1681 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1682 ext4_msg(sb, KERN_ERR, "old and new quota " 1683 "format mixing"); 1684 return 0; 1685 } 1686 1687 if (!sbi->s_jquota_fmt) { 1688 ext4_msg(sb, KERN_ERR, "journaled quota format " 1689 "not specified"); 1690 return 0; 1691 } 1692 } else { 1693 if (sbi->s_jquota_fmt) { 1694 ext4_msg(sb, KERN_ERR, "journaled quota format " 1695 "specified with no journaling " 1696 "enabled"); 1697 return 0; 1698 } 1699 } 1700 #endif 1701 if (test_opt(sb, DIOREAD_NOLOCK)) { 1702 int blocksize = 1703 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1704 1705 if (blocksize < PAGE_CACHE_SIZE) { 1706 ext4_msg(sb, KERN_ERR, "can't mount with " 1707 "dioread_nolock if block size != PAGE_SIZE"); 1708 return 0; 1709 } 1710 } 1711 return 1; 1712 } 1713 1714 static inline void ext4_show_quota_options(struct seq_file *seq, 1715 struct super_block *sb) 1716 { 1717 #if defined(CONFIG_QUOTA) 1718 struct ext4_sb_info *sbi = EXT4_SB(sb); 1719 1720 if (sbi->s_jquota_fmt) { 1721 char *fmtname = ""; 1722 1723 switch (sbi->s_jquota_fmt) { 1724 case QFMT_VFS_OLD: 1725 fmtname = "vfsold"; 1726 break; 1727 case QFMT_VFS_V0: 1728 fmtname = "vfsv0"; 1729 break; 1730 case QFMT_VFS_V1: 1731 fmtname = "vfsv1"; 1732 break; 1733 } 1734 seq_printf(seq, ",jqfmt=%s", fmtname); 1735 } 1736 1737 if (sbi->s_qf_names[USRQUOTA]) 1738 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1739 1740 if (sbi->s_qf_names[GRPQUOTA]) 1741 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1742 #endif 1743 } 1744 1745 static const char *token2str(int token) 1746 { 1747 const struct match_token *t; 1748 1749 for (t = tokens; t->token != Opt_err; t++) 1750 if (t->token == token && !strchr(t->pattern, '=')) 1751 break; 1752 return t->pattern; 1753 } 1754 1755 /* 1756 * Show an option if 1757 * - it's set to a non-default value OR 1758 * - if the per-sb default is different from the global default 1759 */ 1760 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1761 int nodefs) 1762 { 1763 struct ext4_sb_info *sbi = EXT4_SB(sb); 1764 struct ext4_super_block *es = sbi->s_es; 1765 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1766 const struct mount_opts *m; 1767 char sep = nodefs ? '\n' : ','; 1768 1769 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1770 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1771 1772 if (sbi->s_sb_block != 1) 1773 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1774 1775 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1776 int want_set = m->flags & MOPT_SET; 1777 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1778 (m->flags & MOPT_CLEAR_ERR)) 1779 continue; 1780 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1781 continue; /* skip if same as the default */ 1782 if ((want_set && 1783 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1784 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1785 continue; /* select Opt_noFoo vs Opt_Foo */ 1786 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1787 } 1788 1789 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1790 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1791 SEQ_OPTS_PRINT("resuid=%u", 1792 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1793 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1794 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1795 SEQ_OPTS_PRINT("resgid=%u", 1796 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1797 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1798 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1799 SEQ_OPTS_PUTS("errors=remount-ro"); 1800 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1801 SEQ_OPTS_PUTS("errors=continue"); 1802 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1803 SEQ_OPTS_PUTS("errors=panic"); 1804 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1805 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1806 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1807 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1808 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1809 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1810 if (sb->s_flags & MS_I_VERSION) 1811 SEQ_OPTS_PUTS("i_version"); 1812 if (nodefs || sbi->s_stripe) 1813 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1814 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1815 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1816 SEQ_OPTS_PUTS("data=journal"); 1817 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1818 SEQ_OPTS_PUTS("data=ordered"); 1819 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1820 SEQ_OPTS_PUTS("data=writeback"); 1821 } 1822 if (nodefs || 1823 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1824 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1825 sbi->s_inode_readahead_blks); 1826 1827 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1828 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1829 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1830 if (nodefs || sbi->s_max_dir_size_kb) 1831 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1832 1833 ext4_show_quota_options(seq, sb); 1834 return 0; 1835 } 1836 1837 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1838 { 1839 return _ext4_show_options(seq, root->d_sb, 0); 1840 } 1841 1842 static int options_seq_show(struct seq_file *seq, void *offset) 1843 { 1844 struct super_block *sb = seq->private; 1845 int rc; 1846 1847 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1848 rc = _ext4_show_options(seq, sb, 1); 1849 seq_puts(seq, "\n"); 1850 return rc; 1851 } 1852 1853 static int options_open_fs(struct inode *inode, struct file *file) 1854 { 1855 return single_open(file, options_seq_show, PDE_DATA(inode)); 1856 } 1857 1858 static const struct file_operations ext4_seq_options_fops = { 1859 .owner = THIS_MODULE, 1860 .open = options_open_fs, 1861 .read = seq_read, 1862 .llseek = seq_lseek, 1863 .release = single_release, 1864 }; 1865 1866 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1867 int read_only) 1868 { 1869 struct ext4_sb_info *sbi = EXT4_SB(sb); 1870 int res = 0; 1871 1872 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1873 ext4_msg(sb, KERN_ERR, "revision level too high, " 1874 "forcing read-only mode"); 1875 res = MS_RDONLY; 1876 } 1877 if (read_only) 1878 goto done; 1879 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1880 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1881 "running e2fsck is recommended"); 1882 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1883 ext4_msg(sb, KERN_WARNING, 1884 "warning: mounting fs with errors, " 1885 "running e2fsck is recommended"); 1886 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1887 le16_to_cpu(es->s_mnt_count) >= 1888 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1889 ext4_msg(sb, KERN_WARNING, 1890 "warning: maximal mount count reached, " 1891 "running e2fsck is recommended"); 1892 else if (le32_to_cpu(es->s_checkinterval) && 1893 (le32_to_cpu(es->s_lastcheck) + 1894 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1895 ext4_msg(sb, KERN_WARNING, 1896 "warning: checktime reached, " 1897 "running e2fsck is recommended"); 1898 if (!sbi->s_journal) 1899 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1900 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1901 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1902 le16_add_cpu(&es->s_mnt_count, 1); 1903 es->s_mtime = cpu_to_le32(get_seconds()); 1904 ext4_update_dynamic_rev(sb); 1905 if (sbi->s_journal) 1906 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1907 1908 ext4_commit_super(sb, 1); 1909 done: 1910 if (test_opt(sb, DEBUG)) 1911 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1912 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1913 sb->s_blocksize, 1914 sbi->s_groups_count, 1915 EXT4_BLOCKS_PER_GROUP(sb), 1916 EXT4_INODES_PER_GROUP(sb), 1917 sbi->s_mount_opt, sbi->s_mount_opt2); 1918 1919 cleancache_init_fs(sb); 1920 return res; 1921 } 1922 1923 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1924 { 1925 struct ext4_sb_info *sbi = EXT4_SB(sb); 1926 struct flex_groups *new_groups; 1927 int size; 1928 1929 if (!sbi->s_log_groups_per_flex) 1930 return 0; 1931 1932 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1933 if (size <= sbi->s_flex_groups_allocated) 1934 return 0; 1935 1936 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1937 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1938 if (!new_groups) { 1939 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1940 size / (int) sizeof(struct flex_groups)); 1941 return -ENOMEM; 1942 } 1943 1944 if (sbi->s_flex_groups) { 1945 memcpy(new_groups, sbi->s_flex_groups, 1946 (sbi->s_flex_groups_allocated * 1947 sizeof(struct flex_groups))); 1948 ext4_kvfree(sbi->s_flex_groups); 1949 } 1950 sbi->s_flex_groups = new_groups; 1951 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1952 return 0; 1953 } 1954 1955 static int ext4_fill_flex_info(struct super_block *sb) 1956 { 1957 struct ext4_sb_info *sbi = EXT4_SB(sb); 1958 struct ext4_group_desc *gdp = NULL; 1959 ext4_group_t flex_group; 1960 int i, err; 1961 1962 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1963 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1964 sbi->s_log_groups_per_flex = 0; 1965 return 1; 1966 } 1967 1968 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1969 if (err) 1970 goto failed; 1971 1972 for (i = 0; i < sbi->s_groups_count; i++) { 1973 gdp = ext4_get_group_desc(sb, i, NULL); 1974 1975 flex_group = ext4_flex_group(sbi, i); 1976 atomic_add(ext4_free_inodes_count(sb, gdp), 1977 &sbi->s_flex_groups[flex_group].free_inodes); 1978 atomic64_add(ext4_free_group_clusters(sb, gdp), 1979 &sbi->s_flex_groups[flex_group].free_clusters); 1980 atomic_add(ext4_used_dirs_count(sb, gdp), 1981 &sbi->s_flex_groups[flex_group].used_dirs); 1982 } 1983 1984 return 1; 1985 failed: 1986 return 0; 1987 } 1988 1989 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1990 struct ext4_group_desc *gdp) 1991 { 1992 int offset; 1993 __u16 crc = 0; 1994 __le32 le_group = cpu_to_le32(block_group); 1995 1996 if ((sbi->s_es->s_feature_ro_compat & 1997 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1998 /* Use new metadata_csum algorithm */ 1999 __le16 save_csum; 2000 __u32 csum32; 2001 2002 save_csum = gdp->bg_checksum; 2003 gdp->bg_checksum = 0; 2004 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2005 sizeof(le_group)); 2006 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2007 sbi->s_desc_size); 2008 gdp->bg_checksum = save_csum; 2009 2010 crc = csum32 & 0xFFFF; 2011 goto out; 2012 } 2013 2014 /* old crc16 code */ 2015 offset = offsetof(struct ext4_group_desc, bg_checksum); 2016 2017 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2018 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2019 crc = crc16(crc, (__u8 *)gdp, offset); 2020 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2021 /* for checksum of struct ext4_group_desc do the rest...*/ 2022 if ((sbi->s_es->s_feature_incompat & 2023 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 2024 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2025 crc = crc16(crc, (__u8 *)gdp + offset, 2026 le16_to_cpu(sbi->s_es->s_desc_size) - 2027 offset); 2028 2029 out: 2030 return cpu_to_le16(crc); 2031 } 2032 2033 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2034 struct ext4_group_desc *gdp) 2035 { 2036 if (ext4_has_group_desc_csum(sb) && 2037 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 2038 block_group, gdp))) 2039 return 0; 2040 2041 return 1; 2042 } 2043 2044 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2045 struct ext4_group_desc *gdp) 2046 { 2047 if (!ext4_has_group_desc_csum(sb)) 2048 return; 2049 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2050 } 2051 2052 /* Called at mount-time, super-block is locked */ 2053 static int ext4_check_descriptors(struct super_block *sb, 2054 ext4_group_t *first_not_zeroed) 2055 { 2056 struct ext4_sb_info *sbi = EXT4_SB(sb); 2057 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2058 ext4_fsblk_t last_block; 2059 ext4_fsblk_t block_bitmap; 2060 ext4_fsblk_t inode_bitmap; 2061 ext4_fsblk_t inode_table; 2062 int flexbg_flag = 0; 2063 ext4_group_t i, grp = sbi->s_groups_count; 2064 2065 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2066 flexbg_flag = 1; 2067 2068 ext4_debug("Checking group descriptors"); 2069 2070 for (i = 0; i < sbi->s_groups_count; i++) { 2071 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2072 2073 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2074 last_block = ext4_blocks_count(sbi->s_es) - 1; 2075 else 2076 last_block = first_block + 2077 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2078 2079 if ((grp == sbi->s_groups_count) && 2080 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2081 grp = i; 2082 2083 block_bitmap = ext4_block_bitmap(sb, gdp); 2084 if (block_bitmap < first_block || block_bitmap > last_block) { 2085 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2086 "Block bitmap for group %u not in group " 2087 "(block %llu)!", i, block_bitmap); 2088 return 0; 2089 } 2090 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2091 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2092 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2093 "Inode bitmap for group %u not in group " 2094 "(block %llu)!", i, inode_bitmap); 2095 return 0; 2096 } 2097 inode_table = ext4_inode_table(sb, gdp); 2098 if (inode_table < first_block || 2099 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2100 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2101 "Inode table for group %u not in group " 2102 "(block %llu)!", i, inode_table); 2103 return 0; 2104 } 2105 ext4_lock_group(sb, i); 2106 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2107 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2108 "Checksum for group %u failed (%u!=%u)", 2109 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2110 gdp)), le16_to_cpu(gdp->bg_checksum)); 2111 if (!(sb->s_flags & MS_RDONLY)) { 2112 ext4_unlock_group(sb, i); 2113 return 0; 2114 } 2115 } 2116 ext4_unlock_group(sb, i); 2117 if (!flexbg_flag) 2118 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2119 } 2120 if (NULL != first_not_zeroed) 2121 *first_not_zeroed = grp; 2122 2123 ext4_free_blocks_count_set(sbi->s_es, 2124 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2125 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2126 return 1; 2127 } 2128 2129 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2130 * the superblock) which were deleted from all directories, but held open by 2131 * a process at the time of a crash. We walk the list and try to delete these 2132 * inodes at recovery time (only with a read-write filesystem). 2133 * 2134 * In order to keep the orphan inode chain consistent during traversal (in 2135 * case of crash during recovery), we link each inode into the superblock 2136 * orphan list_head and handle it the same way as an inode deletion during 2137 * normal operation (which journals the operations for us). 2138 * 2139 * We only do an iget() and an iput() on each inode, which is very safe if we 2140 * accidentally point at an in-use or already deleted inode. The worst that 2141 * can happen in this case is that we get a "bit already cleared" message from 2142 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2143 * e2fsck was run on this filesystem, and it must have already done the orphan 2144 * inode cleanup for us, so we can safely abort without any further action. 2145 */ 2146 static void ext4_orphan_cleanup(struct super_block *sb, 2147 struct ext4_super_block *es) 2148 { 2149 unsigned int s_flags = sb->s_flags; 2150 int nr_orphans = 0, nr_truncates = 0; 2151 #ifdef CONFIG_QUOTA 2152 int i; 2153 #endif 2154 if (!es->s_last_orphan) { 2155 jbd_debug(4, "no orphan inodes to clean up\n"); 2156 return; 2157 } 2158 2159 if (bdev_read_only(sb->s_bdev)) { 2160 ext4_msg(sb, KERN_ERR, "write access " 2161 "unavailable, skipping orphan cleanup"); 2162 return; 2163 } 2164 2165 /* Check if feature set would not allow a r/w mount */ 2166 if (!ext4_feature_set_ok(sb, 0)) { 2167 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2168 "unknown ROCOMPAT features"); 2169 return; 2170 } 2171 2172 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2173 /* don't clear list on RO mount w/ errors */ 2174 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2175 jbd_debug(1, "Errors on filesystem, " 2176 "clearing orphan list.\n"); 2177 es->s_last_orphan = 0; 2178 } 2179 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2180 return; 2181 } 2182 2183 if (s_flags & MS_RDONLY) { 2184 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2185 sb->s_flags &= ~MS_RDONLY; 2186 } 2187 #ifdef CONFIG_QUOTA 2188 /* Needed for iput() to work correctly and not trash data */ 2189 sb->s_flags |= MS_ACTIVE; 2190 /* Turn on quotas so that they are updated correctly */ 2191 for (i = 0; i < MAXQUOTAS; i++) { 2192 if (EXT4_SB(sb)->s_qf_names[i]) { 2193 int ret = ext4_quota_on_mount(sb, i); 2194 if (ret < 0) 2195 ext4_msg(sb, KERN_ERR, 2196 "Cannot turn on journaled " 2197 "quota: error %d", ret); 2198 } 2199 } 2200 #endif 2201 2202 while (es->s_last_orphan) { 2203 struct inode *inode; 2204 2205 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2206 if (IS_ERR(inode)) { 2207 es->s_last_orphan = 0; 2208 break; 2209 } 2210 2211 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2212 dquot_initialize(inode); 2213 if (inode->i_nlink) { 2214 if (test_opt(sb, DEBUG)) 2215 ext4_msg(sb, KERN_DEBUG, 2216 "%s: truncating inode %lu to %lld bytes", 2217 __func__, inode->i_ino, inode->i_size); 2218 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2219 inode->i_ino, inode->i_size); 2220 mutex_lock(&inode->i_mutex); 2221 truncate_inode_pages(inode->i_mapping, inode->i_size); 2222 ext4_truncate(inode); 2223 mutex_unlock(&inode->i_mutex); 2224 nr_truncates++; 2225 } else { 2226 if (test_opt(sb, DEBUG)) 2227 ext4_msg(sb, KERN_DEBUG, 2228 "%s: deleting unreferenced inode %lu", 2229 __func__, inode->i_ino); 2230 jbd_debug(2, "deleting unreferenced inode %lu\n", 2231 inode->i_ino); 2232 nr_orphans++; 2233 } 2234 iput(inode); /* The delete magic happens here! */ 2235 } 2236 2237 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2238 2239 if (nr_orphans) 2240 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2241 PLURAL(nr_orphans)); 2242 if (nr_truncates) 2243 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2244 PLURAL(nr_truncates)); 2245 #ifdef CONFIG_QUOTA 2246 /* Turn quotas off */ 2247 for (i = 0; i < MAXQUOTAS; i++) { 2248 if (sb_dqopt(sb)->files[i]) 2249 dquot_quota_off(sb, i); 2250 } 2251 #endif 2252 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2253 } 2254 2255 /* 2256 * Maximal extent format file size. 2257 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2258 * extent format containers, within a sector_t, and within i_blocks 2259 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2260 * so that won't be a limiting factor. 2261 * 2262 * However there is other limiting factor. We do store extents in the form 2263 * of starting block and length, hence the resulting length of the extent 2264 * covering maximum file size must fit into on-disk format containers as 2265 * well. Given that length is always by 1 unit bigger than max unit (because 2266 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2267 * 2268 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2269 */ 2270 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2271 { 2272 loff_t res; 2273 loff_t upper_limit = MAX_LFS_FILESIZE; 2274 2275 /* small i_blocks in vfs inode? */ 2276 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2277 /* 2278 * CONFIG_LBDAF is not enabled implies the inode 2279 * i_block represent total blocks in 512 bytes 2280 * 32 == size of vfs inode i_blocks * 8 2281 */ 2282 upper_limit = (1LL << 32) - 1; 2283 2284 /* total blocks in file system block size */ 2285 upper_limit >>= (blkbits - 9); 2286 upper_limit <<= blkbits; 2287 } 2288 2289 /* 2290 * 32-bit extent-start container, ee_block. We lower the maxbytes 2291 * by one fs block, so ee_len can cover the extent of maximum file 2292 * size 2293 */ 2294 res = (1LL << 32) - 1; 2295 res <<= blkbits; 2296 2297 /* Sanity check against vm- & vfs- imposed limits */ 2298 if (res > upper_limit) 2299 res = upper_limit; 2300 2301 return res; 2302 } 2303 2304 /* 2305 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2306 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2307 * We need to be 1 filesystem block less than the 2^48 sector limit. 2308 */ 2309 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2310 { 2311 loff_t res = EXT4_NDIR_BLOCKS; 2312 int meta_blocks; 2313 loff_t upper_limit; 2314 /* This is calculated to be the largest file size for a dense, block 2315 * mapped file such that the file's total number of 512-byte sectors, 2316 * including data and all indirect blocks, does not exceed (2^48 - 1). 2317 * 2318 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2319 * number of 512-byte sectors of the file. 2320 */ 2321 2322 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2323 /* 2324 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2325 * the inode i_block field represents total file blocks in 2326 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2327 */ 2328 upper_limit = (1LL << 32) - 1; 2329 2330 /* total blocks in file system block size */ 2331 upper_limit >>= (bits - 9); 2332 2333 } else { 2334 /* 2335 * We use 48 bit ext4_inode i_blocks 2336 * With EXT4_HUGE_FILE_FL set the i_blocks 2337 * represent total number of blocks in 2338 * file system block size 2339 */ 2340 upper_limit = (1LL << 48) - 1; 2341 2342 } 2343 2344 /* indirect blocks */ 2345 meta_blocks = 1; 2346 /* double indirect blocks */ 2347 meta_blocks += 1 + (1LL << (bits-2)); 2348 /* tripple indirect blocks */ 2349 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2350 2351 upper_limit -= meta_blocks; 2352 upper_limit <<= bits; 2353 2354 res += 1LL << (bits-2); 2355 res += 1LL << (2*(bits-2)); 2356 res += 1LL << (3*(bits-2)); 2357 res <<= bits; 2358 if (res > upper_limit) 2359 res = upper_limit; 2360 2361 if (res > MAX_LFS_FILESIZE) 2362 res = MAX_LFS_FILESIZE; 2363 2364 return res; 2365 } 2366 2367 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2368 ext4_fsblk_t logical_sb_block, int nr) 2369 { 2370 struct ext4_sb_info *sbi = EXT4_SB(sb); 2371 ext4_group_t bg, first_meta_bg; 2372 int has_super = 0; 2373 2374 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2375 2376 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2377 nr < first_meta_bg) 2378 return logical_sb_block + nr + 1; 2379 bg = sbi->s_desc_per_block * nr; 2380 if (ext4_bg_has_super(sb, bg)) 2381 has_super = 1; 2382 2383 return (has_super + ext4_group_first_block_no(sb, bg)); 2384 } 2385 2386 /** 2387 * ext4_get_stripe_size: Get the stripe size. 2388 * @sbi: In memory super block info 2389 * 2390 * If we have specified it via mount option, then 2391 * use the mount option value. If the value specified at mount time is 2392 * greater than the blocks per group use the super block value. 2393 * If the super block value is greater than blocks per group return 0. 2394 * Allocator needs it be less than blocks per group. 2395 * 2396 */ 2397 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2398 { 2399 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2400 unsigned long stripe_width = 2401 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2402 int ret; 2403 2404 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2405 ret = sbi->s_stripe; 2406 else if (stripe_width <= sbi->s_blocks_per_group) 2407 ret = stripe_width; 2408 else if (stride <= sbi->s_blocks_per_group) 2409 ret = stride; 2410 else 2411 ret = 0; 2412 2413 /* 2414 * If the stripe width is 1, this makes no sense and 2415 * we set it to 0 to turn off stripe handling code. 2416 */ 2417 if (ret <= 1) 2418 ret = 0; 2419 2420 return ret; 2421 } 2422 2423 /* sysfs supprt */ 2424 2425 struct ext4_attr { 2426 struct attribute attr; 2427 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2428 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2429 const char *, size_t); 2430 union { 2431 int offset; 2432 int deprecated_val; 2433 } u; 2434 }; 2435 2436 static int parse_strtoull(const char *buf, 2437 unsigned long long max, unsigned long long *value) 2438 { 2439 int ret; 2440 2441 ret = kstrtoull(skip_spaces(buf), 0, value); 2442 if (!ret && *value > max) 2443 ret = -EINVAL; 2444 return ret; 2445 } 2446 2447 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2448 struct ext4_sb_info *sbi, 2449 char *buf) 2450 { 2451 return snprintf(buf, PAGE_SIZE, "%llu\n", 2452 (s64) EXT4_C2B(sbi, 2453 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2454 } 2455 2456 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2457 struct ext4_sb_info *sbi, char *buf) 2458 { 2459 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2460 2461 if (!sb->s_bdev->bd_part) 2462 return snprintf(buf, PAGE_SIZE, "0\n"); 2463 return snprintf(buf, PAGE_SIZE, "%lu\n", 2464 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2465 sbi->s_sectors_written_start) >> 1); 2466 } 2467 2468 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2469 struct ext4_sb_info *sbi, char *buf) 2470 { 2471 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2472 2473 if (!sb->s_bdev->bd_part) 2474 return snprintf(buf, PAGE_SIZE, "0\n"); 2475 return snprintf(buf, PAGE_SIZE, "%llu\n", 2476 (unsigned long long)(sbi->s_kbytes_written + 2477 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2478 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2479 } 2480 2481 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2482 struct ext4_sb_info *sbi, 2483 const char *buf, size_t count) 2484 { 2485 unsigned long t; 2486 int ret; 2487 2488 ret = kstrtoul(skip_spaces(buf), 0, &t); 2489 if (ret) 2490 return ret; 2491 2492 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2493 return -EINVAL; 2494 2495 sbi->s_inode_readahead_blks = t; 2496 return count; 2497 } 2498 2499 static ssize_t sbi_ui_show(struct ext4_attr *a, 2500 struct ext4_sb_info *sbi, char *buf) 2501 { 2502 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2503 2504 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2505 } 2506 2507 static ssize_t sbi_ui_store(struct ext4_attr *a, 2508 struct ext4_sb_info *sbi, 2509 const char *buf, size_t count) 2510 { 2511 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset); 2512 unsigned long t; 2513 int ret; 2514 2515 ret = kstrtoul(skip_spaces(buf), 0, &t); 2516 if (ret) 2517 return ret; 2518 *ui = t; 2519 return count; 2520 } 2521 2522 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2523 struct ext4_sb_info *sbi, char *buf) 2524 { 2525 return snprintf(buf, PAGE_SIZE, "%llu\n", 2526 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2527 } 2528 2529 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2530 struct ext4_sb_info *sbi, 2531 const char *buf, size_t count) 2532 { 2533 unsigned long long val; 2534 int ret; 2535 2536 if (parse_strtoull(buf, -1ULL, &val)) 2537 return -EINVAL; 2538 ret = ext4_reserve_clusters(sbi, val); 2539 2540 return ret ? ret : count; 2541 } 2542 2543 static ssize_t trigger_test_error(struct ext4_attr *a, 2544 struct ext4_sb_info *sbi, 2545 const char *buf, size_t count) 2546 { 2547 int len = count; 2548 2549 if (!capable(CAP_SYS_ADMIN)) 2550 return -EPERM; 2551 2552 if (len && buf[len-1] == '\n') 2553 len--; 2554 2555 if (len) 2556 ext4_error(sbi->s_sb, "%.*s", len, buf); 2557 return count; 2558 } 2559 2560 static ssize_t sbi_deprecated_show(struct ext4_attr *a, 2561 struct ext4_sb_info *sbi, char *buf) 2562 { 2563 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val); 2564 } 2565 2566 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2567 static struct ext4_attr ext4_attr_##_name = { \ 2568 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2569 .show = _show, \ 2570 .store = _store, \ 2571 .u = { \ 2572 .offset = offsetof(struct ext4_sb_info, _elname),\ 2573 }, \ 2574 } 2575 #define EXT4_ATTR(name, mode, show, store) \ 2576 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2577 2578 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2579 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2580 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2581 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2582 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2583 #define ATTR_LIST(name) &ext4_attr_##name.attr 2584 #define EXT4_DEPRECATED_ATTR(_name, _val) \ 2585 static struct ext4_attr ext4_attr_##_name = { \ 2586 .attr = {.name = __stringify(_name), .mode = 0444 }, \ 2587 .show = sbi_deprecated_show, \ 2588 .u = { \ 2589 .deprecated_val = _val, \ 2590 }, \ 2591 } 2592 2593 EXT4_RO_ATTR(delayed_allocation_blocks); 2594 EXT4_RO_ATTR(session_write_kbytes); 2595 EXT4_RO_ATTR(lifetime_write_kbytes); 2596 EXT4_RW_ATTR(reserved_clusters); 2597 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2598 inode_readahead_blks_store, s_inode_readahead_blks); 2599 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2600 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2601 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2602 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2603 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2604 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2605 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2606 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128); 2607 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2608 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2609 2610 static struct attribute *ext4_attrs[] = { 2611 ATTR_LIST(delayed_allocation_blocks), 2612 ATTR_LIST(session_write_kbytes), 2613 ATTR_LIST(lifetime_write_kbytes), 2614 ATTR_LIST(reserved_clusters), 2615 ATTR_LIST(inode_readahead_blks), 2616 ATTR_LIST(inode_goal), 2617 ATTR_LIST(mb_stats), 2618 ATTR_LIST(mb_max_to_scan), 2619 ATTR_LIST(mb_min_to_scan), 2620 ATTR_LIST(mb_order2_req), 2621 ATTR_LIST(mb_stream_req), 2622 ATTR_LIST(mb_group_prealloc), 2623 ATTR_LIST(max_writeback_mb_bump), 2624 ATTR_LIST(extent_max_zeroout_kb), 2625 ATTR_LIST(trigger_fs_error), 2626 NULL, 2627 }; 2628 2629 /* Features this copy of ext4 supports */ 2630 EXT4_INFO_ATTR(lazy_itable_init); 2631 EXT4_INFO_ATTR(batched_discard); 2632 EXT4_INFO_ATTR(meta_bg_resize); 2633 2634 static struct attribute *ext4_feat_attrs[] = { 2635 ATTR_LIST(lazy_itable_init), 2636 ATTR_LIST(batched_discard), 2637 ATTR_LIST(meta_bg_resize), 2638 NULL, 2639 }; 2640 2641 static ssize_t ext4_attr_show(struct kobject *kobj, 2642 struct attribute *attr, char *buf) 2643 { 2644 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2645 s_kobj); 2646 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2647 2648 return a->show ? a->show(a, sbi, buf) : 0; 2649 } 2650 2651 static ssize_t ext4_attr_store(struct kobject *kobj, 2652 struct attribute *attr, 2653 const char *buf, size_t len) 2654 { 2655 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2656 s_kobj); 2657 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2658 2659 return a->store ? a->store(a, sbi, buf, len) : 0; 2660 } 2661 2662 static void ext4_sb_release(struct kobject *kobj) 2663 { 2664 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2665 s_kobj); 2666 complete(&sbi->s_kobj_unregister); 2667 } 2668 2669 static const struct sysfs_ops ext4_attr_ops = { 2670 .show = ext4_attr_show, 2671 .store = ext4_attr_store, 2672 }; 2673 2674 static struct kobj_type ext4_ktype = { 2675 .default_attrs = ext4_attrs, 2676 .sysfs_ops = &ext4_attr_ops, 2677 .release = ext4_sb_release, 2678 }; 2679 2680 static void ext4_feat_release(struct kobject *kobj) 2681 { 2682 complete(&ext4_feat->f_kobj_unregister); 2683 } 2684 2685 static struct kobj_type ext4_feat_ktype = { 2686 .default_attrs = ext4_feat_attrs, 2687 .sysfs_ops = &ext4_attr_ops, 2688 .release = ext4_feat_release, 2689 }; 2690 2691 /* 2692 * Check whether this filesystem can be mounted based on 2693 * the features present and the RDONLY/RDWR mount requested. 2694 * Returns 1 if this filesystem can be mounted as requested, 2695 * 0 if it cannot be. 2696 */ 2697 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2698 { 2699 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2700 ext4_msg(sb, KERN_ERR, 2701 "Couldn't mount because of " 2702 "unsupported optional features (%x)", 2703 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2704 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2705 return 0; 2706 } 2707 2708 if (readonly) 2709 return 1; 2710 2711 /* Check that feature set is OK for a read-write mount */ 2712 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2713 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2714 "unsupported optional features (%x)", 2715 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2716 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2717 return 0; 2718 } 2719 /* 2720 * Large file size enabled file system can only be mounted 2721 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2722 */ 2723 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2724 if (sizeof(blkcnt_t) < sizeof(u64)) { 2725 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2726 "cannot be mounted RDWR without " 2727 "CONFIG_LBDAF"); 2728 return 0; 2729 } 2730 } 2731 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2732 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2733 ext4_msg(sb, KERN_ERR, 2734 "Can't support bigalloc feature without " 2735 "extents feature\n"); 2736 return 0; 2737 } 2738 2739 #ifndef CONFIG_QUOTA 2740 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2741 !readonly) { 2742 ext4_msg(sb, KERN_ERR, 2743 "Filesystem with quota feature cannot be mounted RDWR " 2744 "without CONFIG_QUOTA"); 2745 return 0; 2746 } 2747 #endif /* CONFIG_QUOTA */ 2748 return 1; 2749 } 2750 2751 /* 2752 * This function is called once a day if we have errors logged 2753 * on the file system 2754 */ 2755 static void print_daily_error_info(unsigned long arg) 2756 { 2757 struct super_block *sb = (struct super_block *) arg; 2758 struct ext4_sb_info *sbi; 2759 struct ext4_super_block *es; 2760 2761 sbi = EXT4_SB(sb); 2762 es = sbi->s_es; 2763 2764 if (es->s_error_count) 2765 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2766 le32_to_cpu(es->s_error_count)); 2767 if (es->s_first_error_time) { 2768 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2769 sb->s_id, le32_to_cpu(es->s_first_error_time), 2770 (int) sizeof(es->s_first_error_func), 2771 es->s_first_error_func, 2772 le32_to_cpu(es->s_first_error_line)); 2773 if (es->s_first_error_ino) 2774 printk(": inode %u", 2775 le32_to_cpu(es->s_first_error_ino)); 2776 if (es->s_first_error_block) 2777 printk(": block %llu", (unsigned long long) 2778 le64_to_cpu(es->s_first_error_block)); 2779 printk("\n"); 2780 } 2781 if (es->s_last_error_time) { 2782 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2783 sb->s_id, le32_to_cpu(es->s_last_error_time), 2784 (int) sizeof(es->s_last_error_func), 2785 es->s_last_error_func, 2786 le32_to_cpu(es->s_last_error_line)); 2787 if (es->s_last_error_ino) 2788 printk(": inode %u", 2789 le32_to_cpu(es->s_last_error_ino)); 2790 if (es->s_last_error_block) 2791 printk(": block %llu", (unsigned long long) 2792 le64_to_cpu(es->s_last_error_block)); 2793 printk("\n"); 2794 } 2795 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2796 } 2797 2798 /* Find next suitable group and run ext4_init_inode_table */ 2799 static int ext4_run_li_request(struct ext4_li_request *elr) 2800 { 2801 struct ext4_group_desc *gdp = NULL; 2802 ext4_group_t group, ngroups; 2803 struct super_block *sb; 2804 unsigned long timeout = 0; 2805 int ret = 0; 2806 2807 sb = elr->lr_super; 2808 ngroups = EXT4_SB(sb)->s_groups_count; 2809 2810 sb_start_write(sb); 2811 for (group = elr->lr_next_group; group < ngroups; group++) { 2812 gdp = ext4_get_group_desc(sb, group, NULL); 2813 if (!gdp) { 2814 ret = 1; 2815 break; 2816 } 2817 2818 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2819 break; 2820 } 2821 2822 if (group >= ngroups) 2823 ret = 1; 2824 2825 if (!ret) { 2826 timeout = jiffies; 2827 ret = ext4_init_inode_table(sb, group, 2828 elr->lr_timeout ? 0 : 1); 2829 if (elr->lr_timeout == 0) { 2830 timeout = (jiffies - timeout) * 2831 elr->lr_sbi->s_li_wait_mult; 2832 elr->lr_timeout = timeout; 2833 } 2834 elr->lr_next_sched = jiffies + elr->lr_timeout; 2835 elr->lr_next_group = group + 1; 2836 } 2837 sb_end_write(sb); 2838 2839 return ret; 2840 } 2841 2842 /* 2843 * Remove lr_request from the list_request and free the 2844 * request structure. Should be called with li_list_mtx held 2845 */ 2846 static void ext4_remove_li_request(struct ext4_li_request *elr) 2847 { 2848 struct ext4_sb_info *sbi; 2849 2850 if (!elr) 2851 return; 2852 2853 sbi = elr->lr_sbi; 2854 2855 list_del(&elr->lr_request); 2856 sbi->s_li_request = NULL; 2857 kfree(elr); 2858 } 2859 2860 static void ext4_unregister_li_request(struct super_block *sb) 2861 { 2862 mutex_lock(&ext4_li_mtx); 2863 if (!ext4_li_info) { 2864 mutex_unlock(&ext4_li_mtx); 2865 return; 2866 } 2867 2868 mutex_lock(&ext4_li_info->li_list_mtx); 2869 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2870 mutex_unlock(&ext4_li_info->li_list_mtx); 2871 mutex_unlock(&ext4_li_mtx); 2872 } 2873 2874 static struct task_struct *ext4_lazyinit_task; 2875 2876 /* 2877 * This is the function where ext4lazyinit thread lives. It walks 2878 * through the request list searching for next scheduled filesystem. 2879 * When such a fs is found, run the lazy initialization request 2880 * (ext4_rn_li_request) and keep track of the time spend in this 2881 * function. Based on that time we compute next schedule time of 2882 * the request. When walking through the list is complete, compute 2883 * next waking time and put itself into sleep. 2884 */ 2885 static int ext4_lazyinit_thread(void *arg) 2886 { 2887 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2888 struct list_head *pos, *n; 2889 struct ext4_li_request *elr; 2890 unsigned long next_wakeup, cur; 2891 2892 BUG_ON(NULL == eli); 2893 2894 cont_thread: 2895 while (true) { 2896 next_wakeup = MAX_JIFFY_OFFSET; 2897 2898 mutex_lock(&eli->li_list_mtx); 2899 if (list_empty(&eli->li_request_list)) { 2900 mutex_unlock(&eli->li_list_mtx); 2901 goto exit_thread; 2902 } 2903 2904 list_for_each_safe(pos, n, &eli->li_request_list) { 2905 elr = list_entry(pos, struct ext4_li_request, 2906 lr_request); 2907 2908 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2909 if (ext4_run_li_request(elr) != 0) { 2910 /* error, remove the lazy_init job */ 2911 ext4_remove_li_request(elr); 2912 continue; 2913 } 2914 } 2915 2916 if (time_before(elr->lr_next_sched, next_wakeup)) 2917 next_wakeup = elr->lr_next_sched; 2918 } 2919 mutex_unlock(&eli->li_list_mtx); 2920 2921 try_to_freeze(); 2922 2923 cur = jiffies; 2924 if ((time_after_eq(cur, next_wakeup)) || 2925 (MAX_JIFFY_OFFSET == next_wakeup)) { 2926 cond_resched(); 2927 continue; 2928 } 2929 2930 schedule_timeout_interruptible(next_wakeup - cur); 2931 2932 if (kthread_should_stop()) { 2933 ext4_clear_request_list(); 2934 goto exit_thread; 2935 } 2936 } 2937 2938 exit_thread: 2939 /* 2940 * It looks like the request list is empty, but we need 2941 * to check it under the li_list_mtx lock, to prevent any 2942 * additions into it, and of course we should lock ext4_li_mtx 2943 * to atomically free the list and ext4_li_info, because at 2944 * this point another ext4 filesystem could be registering 2945 * new one. 2946 */ 2947 mutex_lock(&ext4_li_mtx); 2948 mutex_lock(&eli->li_list_mtx); 2949 if (!list_empty(&eli->li_request_list)) { 2950 mutex_unlock(&eli->li_list_mtx); 2951 mutex_unlock(&ext4_li_mtx); 2952 goto cont_thread; 2953 } 2954 mutex_unlock(&eli->li_list_mtx); 2955 kfree(ext4_li_info); 2956 ext4_li_info = NULL; 2957 mutex_unlock(&ext4_li_mtx); 2958 2959 return 0; 2960 } 2961 2962 static void ext4_clear_request_list(void) 2963 { 2964 struct list_head *pos, *n; 2965 struct ext4_li_request *elr; 2966 2967 mutex_lock(&ext4_li_info->li_list_mtx); 2968 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2969 elr = list_entry(pos, struct ext4_li_request, 2970 lr_request); 2971 ext4_remove_li_request(elr); 2972 } 2973 mutex_unlock(&ext4_li_info->li_list_mtx); 2974 } 2975 2976 static int ext4_run_lazyinit_thread(void) 2977 { 2978 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2979 ext4_li_info, "ext4lazyinit"); 2980 if (IS_ERR(ext4_lazyinit_task)) { 2981 int err = PTR_ERR(ext4_lazyinit_task); 2982 ext4_clear_request_list(); 2983 kfree(ext4_li_info); 2984 ext4_li_info = NULL; 2985 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2986 "initialization thread\n", 2987 err); 2988 return err; 2989 } 2990 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2991 return 0; 2992 } 2993 2994 /* 2995 * Check whether it make sense to run itable init. thread or not. 2996 * If there is at least one uninitialized inode table, return 2997 * corresponding group number, else the loop goes through all 2998 * groups and return total number of groups. 2999 */ 3000 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3001 { 3002 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3003 struct ext4_group_desc *gdp = NULL; 3004 3005 for (group = 0; group < ngroups; group++) { 3006 gdp = ext4_get_group_desc(sb, group, NULL); 3007 if (!gdp) 3008 continue; 3009 3010 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3011 break; 3012 } 3013 3014 return group; 3015 } 3016 3017 static int ext4_li_info_new(void) 3018 { 3019 struct ext4_lazy_init *eli = NULL; 3020 3021 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3022 if (!eli) 3023 return -ENOMEM; 3024 3025 INIT_LIST_HEAD(&eli->li_request_list); 3026 mutex_init(&eli->li_list_mtx); 3027 3028 eli->li_state |= EXT4_LAZYINIT_QUIT; 3029 3030 ext4_li_info = eli; 3031 3032 return 0; 3033 } 3034 3035 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3036 ext4_group_t start) 3037 { 3038 struct ext4_sb_info *sbi = EXT4_SB(sb); 3039 struct ext4_li_request *elr; 3040 unsigned long rnd; 3041 3042 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3043 if (!elr) 3044 return NULL; 3045 3046 elr->lr_super = sb; 3047 elr->lr_sbi = sbi; 3048 elr->lr_next_group = start; 3049 3050 /* 3051 * Randomize first schedule time of the request to 3052 * spread the inode table initialization requests 3053 * better. 3054 */ 3055 get_random_bytes(&rnd, sizeof(rnd)); 3056 elr->lr_next_sched = jiffies + (unsigned long)rnd % 3057 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 3058 3059 return elr; 3060 } 3061 3062 int ext4_register_li_request(struct super_block *sb, 3063 ext4_group_t first_not_zeroed) 3064 { 3065 struct ext4_sb_info *sbi = EXT4_SB(sb); 3066 struct ext4_li_request *elr = NULL; 3067 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3068 int ret = 0; 3069 3070 mutex_lock(&ext4_li_mtx); 3071 if (sbi->s_li_request != NULL) { 3072 /* 3073 * Reset timeout so it can be computed again, because 3074 * s_li_wait_mult might have changed. 3075 */ 3076 sbi->s_li_request->lr_timeout = 0; 3077 goto out; 3078 } 3079 3080 if (first_not_zeroed == ngroups || 3081 (sb->s_flags & MS_RDONLY) || 3082 !test_opt(sb, INIT_INODE_TABLE)) 3083 goto out; 3084 3085 elr = ext4_li_request_new(sb, first_not_zeroed); 3086 if (!elr) { 3087 ret = -ENOMEM; 3088 goto out; 3089 } 3090 3091 if (NULL == ext4_li_info) { 3092 ret = ext4_li_info_new(); 3093 if (ret) 3094 goto out; 3095 } 3096 3097 mutex_lock(&ext4_li_info->li_list_mtx); 3098 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3099 mutex_unlock(&ext4_li_info->li_list_mtx); 3100 3101 sbi->s_li_request = elr; 3102 /* 3103 * set elr to NULL here since it has been inserted to 3104 * the request_list and the removal and free of it is 3105 * handled by ext4_clear_request_list from now on. 3106 */ 3107 elr = NULL; 3108 3109 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3110 ret = ext4_run_lazyinit_thread(); 3111 if (ret) 3112 goto out; 3113 } 3114 out: 3115 mutex_unlock(&ext4_li_mtx); 3116 if (ret) 3117 kfree(elr); 3118 return ret; 3119 } 3120 3121 /* 3122 * We do not need to lock anything since this is called on 3123 * module unload. 3124 */ 3125 static void ext4_destroy_lazyinit_thread(void) 3126 { 3127 /* 3128 * If thread exited earlier 3129 * there's nothing to be done. 3130 */ 3131 if (!ext4_li_info || !ext4_lazyinit_task) 3132 return; 3133 3134 kthread_stop(ext4_lazyinit_task); 3135 } 3136 3137 static int set_journal_csum_feature_set(struct super_block *sb) 3138 { 3139 int ret = 1; 3140 int compat, incompat; 3141 struct ext4_sb_info *sbi = EXT4_SB(sb); 3142 3143 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3145 /* journal checksum v2 */ 3146 compat = 0; 3147 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3148 } else { 3149 /* journal checksum v1 */ 3150 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3151 incompat = 0; 3152 } 3153 3154 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3155 ret = jbd2_journal_set_features(sbi->s_journal, 3156 compat, 0, 3157 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3158 incompat); 3159 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3160 ret = jbd2_journal_set_features(sbi->s_journal, 3161 compat, 0, 3162 incompat); 3163 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3164 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3165 } else { 3166 jbd2_journal_clear_features(sbi->s_journal, 3167 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3168 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3169 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3170 } 3171 3172 return ret; 3173 } 3174 3175 /* 3176 * Note: calculating the overhead so we can be compatible with 3177 * historical BSD practice is quite difficult in the face of 3178 * clusters/bigalloc. This is because multiple metadata blocks from 3179 * different block group can end up in the same allocation cluster. 3180 * Calculating the exact overhead in the face of clustered allocation 3181 * requires either O(all block bitmaps) in memory or O(number of block 3182 * groups**2) in time. We will still calculate the superblock for 3183 * older file systems --- and if we come across with a bigalloc file 3184 * system with zero in s_overhead_clusters the estimate will be close to 3185 * correct especially for very large cluster sizes --- but for newer 3186 * file systems, it's better to calculate this figure once at mkfs 3187 * time, and store it in the superblock. If the superblock value is 3188 * present (even for non-bigalloc file systems), we will use it. 3189 */ 3190 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3191 char *buf) 3192 { 3193 struct ext4_sb_info *sbi = EXT4_SB(sb); 3194 struct ext4_group_desc *gdp; 3195 ext4_fsblk_t first_block, last_block, b; 3196 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3197 int s, j, count = 0; 3198 3199 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3200 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3201 sbi->s_itb_per_group + 2); 3202 3203 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3204 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3205 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3206 for (i = 0; i < ngroups; i++) { 3207 gdp = ext4_get_group_desc(sb, i, NULL); 3208 b = ext4_block_bitmap(sb, gdp); 3209 if (b >= first_block && b <= last_block) { 3210 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3211 count++; 3212 } 3213 b = ext4_inode_bitmap(sb, gdp); 3214 if (b >= first_block && b <= last_block) { 3215 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3216 count++; 3217 } 3218 b = ext4_inode_table(sb, gdp); 3219 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3220 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3221 int c = EXT4_B2C(sbi, b - first_block); 3222 ext4_set_bit(c, buf); 3223 count++; 3224 } 3225 if (i != grp) 3226 continue; 3227 s = 0; 3228 if (ext4_bg_has_super(sb, grp)) { 3229 ext4_set_bit(s++, buf); 3230 count++; 3231 } 3232 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3233 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3234 count++; 3235 } 3236 } 3237 if (!count) 3238 return 0; 3239 return EXT4_CLUSTERS_PER_GROUP(sb) - 3240 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3241 } 3242 3243 /* 3244 * Compute the overhead and stash it in sbi->s_overhead 3245 */ 3246 int ext4_calculate_overhead(struct super_block *sb) 3247 { 3248 struct ext4_sb_info *sbi = EXT4_SB(sb); 3249 struct ext4_super_block *es = sbi->s_es; 3250 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3251 ext4_fsblk_t overhead = 0; 3252 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3253 3254 if (!buf) 3255 return -ENOMEM; 3256 3257 /* 3258 * Compute the overhead (FS structures). This is constant 3259 * for a given filesystem unless the number of block groups 3260 * changes so we cache the previous value until it does. 3261 */ 3262 3263 /* 3264 * All of the blocks before first_data_block are overhead 3265 */ 3266 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3267 3268 /* 3269 * Add the overhead found in each block group 3270 */ 3271 for (i = 0; i < ngroups; i++) { 3272 int blks; 3273 3274 blks = count_overhead(sb, i, buf); 3275 overhead += blks; 3276 if (blks) 3277 memset(buf, 0, PAGE_SIZE); 3278 cond_resched(); 3279 } 3280 /* Add the journal blocks as well */ 3281 if (sbi->s_journal) 3282 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3283 3284 sbi->s_overhead = overhead; 3285 smp_wmb(); 3286 free_page((unsigned long) buf); 3287 return 0; 3288 } 3289 3290 3291 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi) 3292 { 3293 ext4_fsblk_t resv_clusters; 3294 3295 /* 3296 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3297 * This should cover the situations where we can not afford to run 3298 * out of space like for example punch hole, or converting 3299 * uninitialized extents in delalloc path. In most cases such 3300 * allocation would require 1, or 2 blocks, higher numbers are 3301 * very rare. 3302 */ 3303 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits; 3304 3305 do_div(resv_clusters, 50); 3306 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3307 3308 return resv_clusters; 3309 } 3310 3311 3312 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3313 { 3314 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3315 sbi->s_cluster_bits; 3316 3317 if (count >= clusters) 3318 return -EINVAL; 3319 3320 atomic64_set(&sbi->s_resv_clusters, count); 3321 return 0; 3322 } 3323 3324 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3325 { 3326 char *orig_data = kstrdup(data, GFP_KERNEL); 3327 struct buffer_head *bh; 3328 struct ext4_super_block *es = NULL; 3329 struct ext4_sb_info *sbi; 3330 ext4_fsblk_t block; 3331 ext4_fsblk_t sb_block = get_sb_block(&data); 3332 ext4_fsblk_t logical_sb_block; 3333 unsigned long offset = 0; 3334 unsigned long journal_devnum = 0; 3335 unsigned long def_mount_opts; 3336 struct inode *root; 3337 char *cp; 3338 const char *descr; 3339 int ret = -ENOMEM; 3340 int blocksize, clustersize; 3341 unsigned int db_count; 3342 unsigned int i; 3343 int needs_recovery, has_huge_files, has_bigalloc; 3344 __u64 blocks_count; 3345 int err = 0; 3346 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3347 ext4_group_t first_not_zeroed; 3348 3349 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3350 if (!sbi) 3351 goto out_free_orig; 3352 3353 sbi->s_blockgroup_lock = 3354 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3355 if (!sbi->s_blockgroup_lock) { 3356 kfree(sbi); 3357 goto out_free_orig; 3358 } 3359 sb->s_fs_info = sbi; 3360 sbi->s_sb = sb; 3361 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3362 sbi->s_sb_block = sb_block; 3363 if (sb->s_bdev->bd_part) 3364 sbi->s_sectors_written_start = 3365 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3366 3367 /* Cleanup superblock name */ 3368 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3369 *cp = '!'; 3370 3371 /* -EINVAL is default */ 3372 ret = -EINVAL; 3373 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3374 if (!blocksize) { 3375 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3376 goto out_fail; 3377 } 3378 3379 /* 3380 * The ext4 superblock will not be buffer aligned for other than 1kB 3381 * block sizes. We need to calculate the offset from buffer start. 3382 */ 3383 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3384 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3385 offset = do_div(logical_sb_block, blocksize); 3386 } else { 3387 logical_sb_block = sb_block; 3388 } 3389 3390 if (!(bh = sb_bread(sb, logical_sb_block))) { 3391 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3392 goto out_fail; 3393 } 3394 /* 3395 * Note: s_es must be initialized as soon as possible because 3396 * some ext4 macro-instructions depend on its value 3397 */ 3398 es = (struct ext4_super_block *) (bh->b_data + offset); 3399 sbi->s_es = es; 3400 sb->s_magic = le16_to_cpu(es->s_magic); 3401 if (sb->s_magic != EXT4_SUPER_MAGIC) 3402 goto cantfind_ext4; 3403 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3404 3405 /* Warn if metadata_csum and gdt_csum are both set. */ 3406 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3407 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3408 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3409 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3410 "redundant flags; please run fsck."); 3411 3412 /* Check for a known checksum algorithm */ 3413 if (!ext4_verify_csum_type(sb, es)) { 3414 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3415 "unknown checksum algorithm."); 3416 silent = 1; 3417 goto cantfind_ext4; 3418 } 3419 3420 /* Load the checksum driver */ 3421 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3422 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3423 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3424 if (IS_ERR(sbi->s_chksum_driver)) { 3425 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3426 ret = PTR_ERR(sbi->s_chksum_driver); 3427 sbi->s_chksum_driver = NULL; 3428 goto failed_mount; 3429 } 3430 } 3431 3432 /* Check superblock checksum */ 3433 if (!ext4_superblock_csum_verify(sb, es)) { 3434 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3435 "invalid superblock checksum. Run e2fsck?"); 3436 silent = 1; 3437 goto cantfind_ext4; 3438 } 3439 3440 /* Precompute checksum seed for all metadata */ 3441 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3442 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3443 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3444 sizeof(es->s_uuid)); 3445 3446 /* Set defaults before we parse the mount options */ 3447 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3448 set_opt(sb, INIT_INODE_TABLE); 3449 if (def_mount_opts & EXT4_DEFM_DEBUG) 3450 set_opt(sb, DEBUG); 3451 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3452 set_opt(sb, GRPID); 3453 if (def_mount_opts & EXT4_DEFM_UID16) 3454 set_opt(sb, NO_UID32); 3455 /* xattr user namespace & acls are now defaulted on */ 3456 set_opt(sb, XATTR_USER); 3457 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3458 set_opt(sb, POSIX_ACL); 3459 #endif 3460 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3461 set_opt(sb, JOURNAL_DATA); 3462 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3463 set_opt(sb, ORDERED_DATA); 3464 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3465 set_opt(sb, WRITEBACK_DATA); 3466 3467 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3468 set_opt(sb, ERRORS_PANIC); 3469 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3470 set_opt(sb, ERRORS_CONT); 3471 else 3472 set_opt(sb, ERRORS_RO); 3473 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3474 set_opt(sb, BLOCK_VALIDITY); 3475 if (def_mount_opts & EXT4_DEFM_DISCARD) 3476 set_opt(sb, DISCARD); 3477 3478 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3479 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3480 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3481 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3482 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3483 3484 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3485 set_opt(sb, BARRIER); 3486 3487 /* 3488 * enable delayed allocation by default 3489 * Use -o nodelalloc to turn it off 3490 */ 3491 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3492 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3493 set_opt(sb, DELALLOC); 3494 3495 /* 3496 * set default s_li_wait_mult for lazyinit, for the case there is 3497 * no mount option specified. 3498 */ 3499 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3500 3501 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3502 &journal_devnum, &journal_ioprio, 0)) { 3503 ext4_msg(sb, KERN_WARNING, 3504 "failed to parse options in superblock: %s", 3505 sbi->s_es->s_mount_opts); 3506 } 3507 sbi->s_def_mount_opt = sbi->s_mount_opt; 3508 if (!parse_options((char *) data, sb, &journal_devnum, 3509 &journal_ioprio, 0)) 3510 goto failed_mount; 3511 3512 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3513 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3514 "with data=journal disables delayed " 3515 "allocation and O_DIRECT support!\n"); 3516 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3517 ext4_msg(sb, KERN_ERR, "can't mount with " 3518 "both data=journal and delalloc"); 3519 goto failed_mount; 3520 } 3521 if (test_opt(sb, DIOREAD_NOLOCK)) { 3522 ext4_msg(sb, KERN_ERR, "can't mount with " 3523 "both data=journal and dioread_nolock"); 3524 goto failed_mount; 3525 } 3526 if (test_opt(sb, DELALLOC)) 3527 clear_opt(sb, DELALLOC); 3528 } 3529 3530 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3531 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3532 3533 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3534 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3535 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3536 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3537 ext4_msg(sb, KERN_WARNING, 3538 "feature flags set on rev 0 fs, " 3539 "running e2fsck is recommended"); 3540 3541 if (IS_EXT2_SB(sb)) { 3542 if (ext2_feature_set_ok(sb)) 3543 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3544 "using the ext4 subsystem"); 3545 else { 3546 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3547 "to feature incompatibilities"); 3548 goto failed_mount; 3549 } 3550 } 3551 3552 if (IS_EXT3_SB(sb)) { 3553 if (ext3_feature_set_ok(sb)) 3554 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3555 "using the ext4 subsystem"); 3556 else { 3557 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3558 "to feature incompatibilities"); 3559 goto failed_mount; 3560 } 3561 } 3562 3563 /* 3564 * Check feature flags regardless of the revision level, since we 3565 * previously didn't change the revision level when setting the flags, 3566 * so there is a chance incompat flags are set on a rev 0 filesystem. 3567 */ 3568 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3569 goto failed_mount; 3570 3571 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3572 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3573 blocksize > EXT4_MAX_BLOCK_SIZE) { 3574 ext4_msg(sb, KERN_ERR, 3575 "Unsupported filesystem blocksize %d", blocksize); 3576 goto failed_mount; 3577 } 3578 3579 if (sb->s_blocksize != blocksize) { 3580 /* Validate the filesystem blocksize */ 3581 if (!sb_set_blocksize(sb, blocksize)) { 3582 ext4_msg(sb, KERN_ERR, "bad block size %d", 3583 blocksize); 3584 goto failed_mount; 3585 } 3586 3587 brelse(bh); 3588 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3589 offset = do_div(logical_sb_block, blocksize); 3590 bh = sb_bread(sb, logical_sb_block); 3591 if (!bh) { 3592 ext4_msg(sb, KERN_ERR, 3593 "Can't read superblock on 2nd try"); 3594 goto failed_mount; 3595 } 3596 es = (struct ext4_super_block *)(bh->b_data + offset); 3597 sbi->s_es = es; 3598 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3599 ext4_msg(sb, KERN_ERR, 3600 "Magic mismatch, very weird!"); 3601 goto failed_mount; 3602 } 3603 } 3604 3605 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3606 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3607 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3608 has_huge_files); 3609 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3610 3611 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3612 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3613 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3614 } else { 3615 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3616 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3617 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3618 (!is_power_of_2(sbi->s_inode_size)) || 3619 (sbi->s_inode_size > blocksize)) { 3620 ext4_msg(sb, KERN_ERR, 3621 "unsupported inode size: %d", 3622 sbi->s_inode_size); 3623 goto failed_mount; 3624 } 3625 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3626 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3627 } 3628 3629 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3630 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3631 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3632 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3633 !is_power_of_2(sbi->s_desc_size)) { 3634 ext4_msg(sb, KERN_ERR, 3635 "unsupported descriptor size %lu", 3636 sbi->s_desc_size); 3637 goto failed_mount; 3638 } 3639 } else 3640 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3641 3642 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3643 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3644 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3645 goto cantfind_ext4; 3646 3647 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3648 if (sbi->s_inodes_per_block == 0) 3649 goto cantfind_ext4; 3650 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3651 sbi->s_inodes_per_block; 3652 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3653 sbi->s_sbh = bh; 3654 sbi->s_mount_state = le16_to_cpu(es->s_state); 3655 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3656 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3657 3658 for (i = 0; i < 4; i++) 3659 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3660 sbi->s_def_hash_version = es->s_def_hash_version; 3661 i = le32_to_cpu(es->s_flags); 3662 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3663 sbi->s_hash_unsigned = 3; 3664 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3665 #ifdef __CHAR_UNSIGNED__ 3666 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3667 sbi->s_hash_unsigned = 3; 3668 #else 3669 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3670 #endif 3671 } 3672 3673 /* Handle clustersize */ 3674 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3675 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3676 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3677 if (has_bigalloc) { 3678 if (clustersize < blocksize) { 3679 ext4_msg(sb, KERN_ERR, 3680 "cluster size (%d) smaller than " 3681 "block size (%d)", clustersize, blocksize); 3682 goto failed_mount; 3683 } 3684 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3685 le32_to_cpu(es->s_log_block_size); 3686 sbi->s_clusters_per_group = 3687 le32_to_cpu(es->s_clusters_per_group); 3688 if (sbi->s_clusters_per_group > blocksize * 8) { 3689 ext4_msg(sb, KERN_ERR, 3690 "#clusters per group too big: %lu", 3691 sbi->s_clusters_per_group); 3692 goto failed_mount; 3693 } 3694 if (sbi->s_blocks_per_group != 3695 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3696 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3697 "clusters per group (%lu) inconsistent", 3698 sbi->s_blocks_per_group, 3699 sbi->s_clusters_per_group); 3700 goto failed_mount; 3701 } 3702 } else { 3703 if (clustersize != blocksize) { 3704 ext4_warning(sb, "fragment/cluster size (%d) != " 3705 "block size (%d)", clustersize, 3706 blocksize); 3707 clustersize = blocksize; 3708 } 3709 if (sbi->s_blocks_per_group > blocksize * 8) { 3710 ext4_msg(sb, KERN_ERR, 3711 "#blocks per group too big: %lu", 3712 sbi->s_blocks_per_group); 3713 goto failed_mount; 3714 } 3715 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3716 sbi->s_cluster_bits = 0; 3717 } 3718 sbi->s_cluster_ratio = clustersize / blocksize; 3719 3720 if (sbi->s_inodes_per_group > blocksize * 8) { 3721 ext4_msg(sb, KERN_ERR, 3722 "#inodes per group too big: %lu", 3723 sbi->s_inodes_per_group); 3724 goto failed_mount; 3725 } 3726 3727 /* Do we have standard group size of clustersize * 8 blocks ? */ 3728 if (sbi->s_blocks_per_group == clustersize << 3) 3729 set_opt2(sb, STD_GROUP_SIZE); 3730 3731 /* 3732 * Test whether we have more sectors than will fit in sector_t, 3733 * and whether the max offset is addressable by the page cache. 3734 */ 3735 err = generic_check_addressable(sb->s_blocksize_bits, 3736 ext4_blocks_count(es)); 3737 if (err) { 3738 ext4_msg(sb, KERN_ERR, "filesystem" 3739 " too large to mount safely on this system"); 3740 if (sizeof(sector_t) < 8) 3741 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3742 goto failed_mount; 3743 } 3744 3745 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3746 goto cantfind_ext4; 3747 3748 /* check blocks count against device size */ 3749 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3750 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3751 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3752 "exceeds size of device (%llu blocks)", 3753 ext4_blocks_count(es), blocks_count); 3754 goto failed_mount; 3755 } 3756 3757 /* 3758 * It makes no sense for the first data block to be beyond the end 3759 * of the filesystem. 3760 */ 3761 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3762 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3763 "block %u is beyond end of filesystem (%llu)", 3764 le32_to_cpu(es->s_first_data_block), 3765 ext4_blocks_count(es)); 3766 goto failed_mount; 3767 } 3768 blocks_count = (ext4_blocks_count(es) - 3769 le32_to_cpu(es->s_first_data_block) + 3770 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3771 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3772 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3773 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3774 "(block count %llu, first data block %u, " 3775 "blocks per group %lu)", sbi->s_groups_count, 3776 ext4_blocks_count(es), 3777 le32_to_cpu(es->s_first_data_block), 3778 EXT4_BLOCKS_PER_GROUP(sb)); 3779 goto failed_mount; 3780 } 3781 sbi->s_groups_count = blocks_count; 3782 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3783 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3784 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3785 EXT4_DESC_PER_BLOCK(sb); 3786 sbi->s_group_desc = ext4_kvmalloc(db_count * 3787 sizeof(struct buffer_head *), 3788 GFP_KERNEL); 3789 if (sbi->s_group_desc == NULL) { 3790 ext4_msg(sb, KERN_ERR, "not enough memory"); 3791 ret = -ENOMEM; 3792 goto failed_mount; 3793 } 3794 3795 if (ext4_proc_root) 3796 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3797 3798 if (sbi->s_proc) 3799 proc_create_data("options", S_IRUGO, sbi->s_proc, 3800 &ext4_seq_options_fops, sb); 3801 3802 bgl_lock_init(sbi->s_blockgroup_lock); 3803 3804 for (i = 0; i < db_count; i++) { 3805 block = descriptor_loc(sb, logical_sb_block, i); 3806 sbi->s_group_desc[i] = sb_bread(sb, block); 3807 if (!sbi->s_group_desc[i]) { 3808 ext4_msg(sb, KERN_ERR, 3809 "can't read group descriptor %d", i); 3810 db_count = i; 3811 goto failed_mount2; 3812 } 3813 } 3814 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3815 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3816 goto failed_mount2; 3817 } 3818 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3819 if (!ext4_fill_flex_info(sb)) { 3820 ext4_msg(sb, KERN_ERR, 3821 "unable to initialize " 3822 "flex_bg meta info!"); 3823 goto failed_mount2; 3824 } 3825 3826 sbi->s_gdb_count = db_count; 3827 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3828 spin_lock_init(&sbi->s_next_gen_lock); 3829 3830 init_timer(&sbi->s_err_report); 3831 sbi->s_err_report.function = print_daily_error_info; 3832 sbi->s_err_report.data = (unsigned long) sb; 3833 3834 /* Register extent status tree shrinker */ 3835 ext4_es_register_shrinker(sbi); 3836 3837 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3838 ext4_count_free_clusters(sb)); 3839 if (!err) { 3840 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3841 ext4_count_free_inodes(sb)); 3842 } 3843 if (!err) { 3844 err = percpu_counter_init(&sbi->s_dirs_counter, 3845 ext4_count_dirs(sb)); 3846 } 3847 if (!err) { 3848 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3849 } 3850 if (!err) { 3851 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3852 } 3853 if (err) { 3854 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3855 goto failed_mount3; 3856 } 3857 3858 sbi->s_stripe = ext4_get_stripe_size(sbi); 3859 sbi->s_extent_max_zeroout_kb = 32; 3860 3861 /* 3862 * set up enough so that it can read an inode 3863 */ 3864 if (!test_opt(sb, NOLOAD) && 3865 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3866 sb->s_op = &ext4_sops; 3867 else 3868 sb->s_op = &ext4_nojournal_sops; 3869 sb->s_export_op = &ext4_export_ops; 3870 sb->s_xattr = ext4_xattr_handlers; 3871 #ifdef CONFIG_QUOTA 3872 sb->dq_op = &ext4_quota_operations; 3873 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3874 sb->s_qcop = &ext4_qctl_sysfile_operations; 3875 else 3876 sb->s_qcop = &ext4_qctl_operations; 3877 #endif 3878 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3879 3880 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3881 mutex_init(&sbi->s_orphan_lock); 3882 3883 sb->s_root = NULL; 3884 3885 needs_recovery = (es->s_last_orphan != 0 || 3886 EXT4_HAS_INCOMPAT_FEATURE(sb, 3887 EXT4_FEATURE_INCOMPAT_RECOVER)); 3888 3889 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3890 !(sb->s_flags & MS_RDONLY)) 3891 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3892 goto failed_mount3; 3893 3894 /* 3895 * The first inode we look at is the journal inode. Don't try 3896 * root first: it may be modified in the journal! 3897 */ 3898 if (!test_opt(sb, NOLOAD) && 3899 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3900 if (ext4_load_journal(sb, es, journal_devnum)) 3901 goto failed_mount3; 3902 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3903 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3904 ext4_msg(sb, KERN_ERR, "required journal recovery " 3905 "suppressed and not mounted read-only"); 3906 goto failed_mount_wq; 3907 } else { 3908 clear_opt(sb, DATA_FLAGS); 3909 sbi->s_journal = NULL; 3910 needs_recovery = 0; 3911 goto no_journal; 3912 } 3913 3914 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3915 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3916 JBD2_FEATURE_INCOMPAT_64BIT)) { 3917 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3918 goto failed_mount_wq; 3919 } 3920 3921 if (!set_journal_csum_feature_set(sb)) { 3922 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3923 "feature set"); 3924 goto failed_mount_wq; 3925 } 3926 3927 /* We have now updated the journal if required, so we can 3928 * validate the data journaling mode. */ 3929 switch (test_opt(sb, DATA_FLAGS)) { 3930 case 0: 3931 /* No mode set, assume a default based on the journal 3932 * capabilities: ORDERED_DATA if the journal can 3933 * cope, else JOURNAL_DATA 3934 */ 3935 if (jbd2_journal_check_available_features 3936 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3937 set_opt(sb, ORDERED_DATA); 3938 else 3939 set_opt(sb, JOURNAL_DATA); 3940 break; 3941 3942 case EXT4_MOUNT_ORDERED_DATA: 3943 case EXT4_MOUNT_WRITEBACK_DATA: 3944 if (!jbd2_journal_check_available_features 3945 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3946 ext4_msg(sb, KERN_ERR, "Journal does not support " 3947 "requested data journaling mode"); 3948 goto failed_mount_wq; 3949 } 3950 default: 3951 break; 3952 } 3953 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3954 3955 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3956 3957 /* 3958 * The journal may have updated the bg summary counts, so we 3959 * need to update the global counters. 3960 */ 3961 percpu_counter_set(&sbi->s_freeclusters_counter, 3962 ext4_count_free_clusters(sb)); 3963 percpu_counter_set(&sbi->s_freeinodes_counter, 3964 ext4_count_free_inodes(sb)); 3965 percpu_counter_set(&sbi->s_dirs_counter, 3966 ext4_count_dirs(sb)); 3967 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3968 3969 no_journal: 3970 /* 3971 * Get the # of file system overhead blocks from the 3972 * superblock if present. 3973 */ 3974 if (es->s_overhead_clusters) 3975 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3976 else { 3977 err = ext4_calculate_overhead(sb); 3978 if (err) 3979 goto failed_mount_wq; 3980 } 3981 3982 /* 3983 * The maximum number of concurrent works can be high and 3984 * concurrency isn't really necessary. Limit it to 1. 3985 */ 3986 EXT4_SB(sb)->rsv_conversion_wq = 3987 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3988 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3989 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3990 ret = -ENOMEM; 3991 goto failed_mount4; 3992 } 3993 3994 /* 3995 * The jbd2_journal_load will have done any necessary log recovery, 3996 * so we can safely mount the rest of the filesystem now. 3997 */ 3998 3999 root = ext4_iget(sb, EXT4_ROOT_INO); 4000 if (IS_ERR(root)) { 4001 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4002 ret = PTR_ERR(root); 4003 root = NULL; 4004 goto failed_mount4; 4005 } 4006 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4007 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4008 iput(root); 4009 goto failed_mount4; 4010 } 4011 sb->s_root = d_make_root(root); 4012 if (!sb->s_root) { 4013 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4014 ret = -ENOMEM; 4015 goto failed_mount4; 4016 } 4017 4018 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4019 sb->s_flags |= MS_RDONLY; 4020 4021 /* determine the minimum size of new large inodes, if present */ 4022 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4023 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4024 EXT4_GOOD_OLD_INODE_SIZE; 4025 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4026 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 4027 if (sbi->s_want_extra_isize < 4028 le16_to_cpu(es->s_want_extra_isize)) 4029 sbi->s_want_extra_isize = 4030 le16_to_cpu(es->s_want_extra_isize); 4031 if (sbi->s_want_extra_isize < 4032 le16_to_cpu(es->s_min_extra_isize)) 4033 sbi->s_want_extra_isize = 4034 le16_to_cpu(es->s_min_extra_isize); 4035 } 4036 } 4037 /* Check if enough inode space is available */ 4038 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4039 sbi->s_inode_size) { 4040 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4041 EXT4_GOOD_OLD_INODE_SIZE; 4042 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4043 "available"); 4044 } 4045 4046 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi)); 4047 if (err) { 4048 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 4049 "reserved pool", ext4_calculate_resv_clusters(sbi)); 4050 goto failed_mount4a; 4051 } 4052 4053 err = ext4_setup_system_zone(sb); 4054 if (err) { 4055 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4056 "zone (%d)", err); 4057 goto failed_mount4a; 4058 } 4059 4060 ext4_ext_init(sb); 4061 err = ext4_mb_init(sb); 4062 if (err) { 4063 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4064 err); 4065 goto failed_mount5; 4066 } 4067 4068 err = ext4_register_li_request(sb, first_not_zeroed); 4069 if (err) 4070 goto failed_mount6; 4071 4072 sbi->s_kobj.kset = ext4_kset; 4073 init_completion(&sbi->s_kobj_unregister); 4074 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4075 "%s", sb->s_id); 4076 if (err) 4077 goto failed_mount7; 4078 4079 #ifdef CONFIG_QUOTA 4080 /* Enable quota usage during mount. */ 4081 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4082 !(sb->s_flags & MS_RDONLY)) { 4083 err = ext4_enable_quotas(sb); 4084 if (err) 4085 goto failed_mount8; 4086 } 4087 #endif /* CONFIG_QUOTA */ 4088 4089 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4090 ext4_orphan_cleanup(sb, es); 4091 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4092 if (needs_recovery) { 4093 ext4_msg(sb, KERN_INFO, "recovery complete"); 4094 ext4_mark_recovery_complete(sb, es); 4095 } 4096 if (EXT4_SB(sb)->s_journal) { 4097 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4098 descr = " journalled data mode"; 4099 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4100 descr = " ordered data mode"; 4101 else 4102 descr = " writeback data mode"; 4103 } else 4104 descr = "out journal"; 4105 4106 if (test_opt(sb, DISCARD)) { 4107 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4108 if (!blk_queue_discard(q)) 4109 ext4_msg(sb, KERN_WARNING, 4110 "mounting with \"discard\" option, but " 4111 "the device does not support discard"); 4112 } 4113 4114 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4115 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4116 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4117 4118 if (es->s_error_count) 4119 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4120 4121 kfree(orig_data); 4122 return 0; 4123 4124 cantfind_ext4: 4125 if (!silent) 4126 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4127 goto failed_mount; 4128 4129 #ifdef CONFIG_QUOTA 4130 failed_mount8: 4131 kobject_del(&sbi->s_kobj); 4132 #endif 4133 failed_mount7: 4134 ext4_unregister_li_request(sb); 4135 failed_mount6: 4136 ext4_mb_release(sb); 4137 failed_mount5: 4138 ext4_ext_release(sb); 4139 ext4_release_system_zone(sb); 4140 failed_mount4a: 4141 dput(sb->s_root); 4142 sb->s_root = NULL; 4143 failed_mount4: 4144 ext4_msg(sb, KERN_ERR, "mount failed"); 4145 if (EXT4_SB(sb)->rsv_conversion_wq) 4146 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4147 failed_mount_wq: 4148 if (sbi->s_journal) { 4149 jbd2_journal_destroy(sbi->s_journal); 4150 sbi->s_journal = NULL; 4151 } 4152 failed_mount3: 4153 ext4_es_unregister_shrinker(sbi); 4154 del_timer(&sbi->s_err_report); 4155 if (sbi->s_flex_groups) 4156 ext4_kvfree(sbi->s_flex_groups); 4157 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4158 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4159 percpu_counter_destroy(&sbi->s_dirs_counter); 4160 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4161 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4162 if (sbi->s_mmp_tsk) 4163 kthread_stop(sbi->s_mmp_tsk); 4164 failed_mount2: 4165 for (i = 0; i < db_count; i++) 4166 brelse(sbi->s_group_desc[i]); 4167 ext4_kvfree(sbi->s_group_desc); 4168 failed_mount: 4169 if (sbi->s_chksum_driver) 4170 crypto_free_shash(sbi->s_chksum_driver); 4171 if (sbi->s_proc) { 4172 remove_proc_entry("options", sbi->s_proc); 4173 remove_proc_entry(sb->s_id, ext4_proc_root); 4174 } 4175 #ifdef CONFIG_QUOTA 4176 for (i = 0; i < MAXQUOTAS; i++) 4177 kfree(sbi->s_qf_names[i]); 4178 #endif 4179 ext4_blkdev_remove(sbi); 4180 brelse(bh); 4181 out_fail: 4182 sb->s_fs_info = NULL; 4183 kfree(sbi->s_blockgroup_lock); 4184 kfree(sbi); 4185 out_free_orig: 4186 kfree(orig_data); 4187 return err ? err : ret; 4188 } 4189 4190 /* 4191 * Setup any per-fs journal parameters now. We'll do this both on 4192 * initial mount, once the journal has been initialised but before we've 4193 * done any recovery; and again on any subsequent remount. 4194 */ 4195 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4196 { 4197 struct ext4_sb_info *sbi = EXT4_SB(sb); 4198 4199 journal->j_commit_interval = sbi->s_commit_interval; 4200 journal->j_min_batch_time = sbi->s_min_batch_time; 4201 journal->j_max_batch_time = sbi->s_max_batch_time; 4202 4203 write_lock(&journal->j_state_lock); 4204 if (test_opt(sb, BARRIER)) 4205 journal->j_flags |= JBD2_BARRIER; 4206 else 4207 journal->j_flags &= ~JBD2_BARRIER; 4208 if (test_opt(sb, DATA_ERR_ABORT)) 4209 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4210 else 4211 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4212 write_unlock(&journal->j_state_lock); 4213 } 4214 4215 static journal_t *ext4_get_journal(struct super_block *sb, 4216 unsigned int journal_inum) 4217 { 4218 struct inode *journal_inode; 4219 journal_t *journal; 4220 4221 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4222 4223 /* First, test for the existence of a valid inode on disk. Bad 4224 * things happen if we iget() an unused inode, as the subsequent 4225 * iput() will try to delete it. */ 4226 4227 journal_inode = ext4_iget(sb, journal_inum); 4228 if (IS_ERR(journal_inode)) { 4229 ext4_msg(sb, KERN_ERR, "no journal found"); 4230 return NULL; 4231 } 4232 if (!journal_inode->i_nlink) { 4233 make_bad_inode(journal_inode); 4234 iput(journal_inode); 4235 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4236 return NULL; 4237 } 4238 4239 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4240 journal_inode, journal_inode->i_size); 4241 if (!S_ISREG(journal_inode->i_mode)) { 4242 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4243 iput(journal_inode); 4244 return NULL; 4245 } 4246 4247 journal = jbd2_journal_init_inode(journal_inode); 4248 if (!journal) { 4249 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4250 iput(journal_inode); 4251 return NULL; 4252 } 4253 journal->j_private = sb; 4254 ext4_init_journal_params(sb, journal); 4255 return journal; 4256 } 4257 4258 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4259 dev_t j_dev) 4260 { 4261 struct buffer_head *bh; 4262 journal_t *journal; 4263 ext4_fsblk_t start; 4264 ext4_fsblk_t len; 4265 int hblock, blocksize; 4266 ext4_fsblk_t sb_block; 4267 unsigned long offset; 4268 struct ext4_super_block *es; 4269 struct block_device *bdev; 4270 4271 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4272 4273 bdev = ext4_blkdev_get(j_dev, sb); 4274 if (bdev == NULL) 4275 return NULL; 4276 4277 blocksize = sb->s_blocksize; 4278 hblock = bdev_logical_block_size(bdev); 4279 if (blocksize < hblock) { 4280 ext4_msg(sb, KERN_ERR, 4281 "blocksize too small for journal device"); 4282 goto out_bdev; 4283 } 4284 4285 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4286 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4287 set_blocksize(bdev, blocksize); 4288 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4289 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4290 "external journal"); 4291 goto out_bdev; 4292 } 4293 4294 es = (struct ext4_super_block *) (bh->b_data + offset); 4295 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4296 !(le32_to_cpu(es->s_feature_incompat) & 4297 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4298 ext4_msg(sb, KERN_ERR, "external journal has " 4299 "bad superblock"); 4300 brelse(bh); 4301 goto out_bdev; 4302 } 4303 4304 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4305 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4306 brelse(bh); 4307 goto out_bdev; 4308 } 4309 4310 len = ext4_blocks_count(es); 4311 start = sb_block + 1; 4312 brelse(bh); /* we're done with the superblock */ 4313 4314 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4315 start, len, blocksize); 4316 if (!journal) { 4317 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4318 goto out_bdev; 4319 } 4320 journal->j_private = sb; 4321 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4322 wait_on_buffer(journal->j_sb_buffer); 4323 if (!buffer_uptodate(journal->j_sb_buffer)) { 4324 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4325 goto out_journal; 4326 } 4327 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4328 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4329 "user (unsupported) - %d", 4330 be32_to_cpu(journal->j_superblock->s_nr_users)); 4331 goto out_journal; 4332 } 4333 EXT4_SB(sb)->journal_bdev = bdev; 4334 ext4_init_journal_params(sb, journal); 4335 return journal; 4336 4337 out_journal: 4338 jbd2_journal_destroy(journal); 4339 out_bdev: 4340 ext4_blkdev_put(bdev); 4341 return NULL; 4342 } 4343 4344 static int ext4_load_journal(struct super_block *sb, 4345 struct ext4_super_block *es, 4346 unsigned long journal_devnum) 4347 { 4348 journal_t *journal; 4349 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4350 dev_t journal_dev; 4351 int err = 0; 4352 int really_read_only; 4353 4354 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4355 4356 if (journal_devnum && 4357 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4358 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4359 "numbers have changed"); 4360 journal_dev = new_decode_dev(journal_devnum); 4361 } else 4362 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4363 4364 really_read_only = bdev_read_only(sb->s_bdev); 4365 4366 /* 4367 * Are we loading a blank journal or performing recovery after a 4368 * crash? For recovery, we need to check in advance whether we 4369 * can get read-write access to the device. 4370 */ 4371 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4372 if (sb->s_flags & MS_RDONLY) { 4373 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4374 "required on readonly filesystem"); 4375 if (really_read_only) { 4376 ext4_msg(sb, KERN_ERR, "write access " 4377 "unavailable, cannot proceed"); 4378 return -EROFS; 4379 } 4380 ext4_msg(sb, KERN_INFO, "write access will " 4381 "be enabled during recovery"); 4382 } 4383 } 4384 4385 if (journal_inum && journal_dev) { 4386 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4387 "and inode journals!"); 4388 return -EINVAL; 4389 } 4390 4391 if (journal_inum) { 4392 if (!(journal = ext4_get_journal(sb, journal_inum))) 4393 return -EINVAL; 4394 } else { 4395 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4396 return -EINVAL; 4397 } 4398 4399 if (!(journal->j_flags & JBD2_BARRIER)) 4400 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4401 4402 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4403 err = jbd2_journal_wipe(journal, !really_read_only); 4404 if (!err) { 4405 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4406 if (save) 4407 memcpy(save, ((char *) es) + 4408 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4409 err = jbd2_journal_load(journal); 4410 if (save) 4411 memcpy(((char *) es) + EXT4_S_ERR_START, 4412 save, EXT4_S_ERR_LEN); 4413 kfree(save); 4414 } 4415 4416 if (err) { 4417 ext4_msg(sb, KERN_ERR, "error loading journal"); 4418 jbd2_journal_destroy(journal); 4419 return err; 4420 } 4421 4422 EXT4_SB(sb)->s_journal = journal; 4423 ext4_clear_journal_err(sb, es); 4424 4425 if (!really_read_only && journal_devnum && 4426 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4427 es->s_journal_dev = cpu_to_le32(journal_devnum); 4428 4429 /* Make sure we flush the recovery flag to disk. */ 4430 ext4_commit_super(sb, 1); 4431 } 4432 4433 return 0; 4434 } 4435 4436 static int ext4_commit_super(struct super_block *sb, int sync) 4437 { 4438 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4439 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4440 int error = 0; 4441 4442 if (!sbh || block_device_ejected(sb)) 4443 return error; 4444 if (buffer_write_io_error(sbh)) { 4445 /* 4446 * Oh, dear. A previous attempt to write the 4447 * superblock failed. This could happen because the 4448 * USB device was yanked out. Or it could happen to 4449 * be a transient write error and maybe the block will 4450 * be remapped. Nothing we can do but to retry the 4451 * write and hope for the best. 4452 */ 4453 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4454 "superblock detected"); 4455 clear_buffer_write_io_error(sbh); 4456 set_buffer_uptodate(sbh); 4457 } 4458 /* 4459 * If the file system is mounted read-only, don't update the 4460 * superblock write time. This avoids updating the superblock 4461 * write time when we are mounting the root file system 4462 * read/only but we need to replay the journal; at that point, 4463 * for people who are east of GMT and who make their clock 4464 * tick in localtime for Windows bug-for-bug compatibility, 4465 * the clock is set in the future, and this will cause e2fsck 4466 * to complain and force a full file system check. 4467 */ 4468 if (!(sb->s_flags & MS_RDONLY)) 4469 es->s_wtime = cpu_to_le32(get_seconds()); 4470 if (sb->s_bdev->bd_part) 4471 es->s_kbytes_written = 4472 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4473 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4474 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4475 else 4476 es->s_kbytes_written = 4477 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4478 ext4_free_blocks_count_set(es, 4479 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4480 &EXT4_SB(sb)->s_freeclusters_counter))); 4481 es->s_free_inodes_count = 4482 cpu_to_le32(percpu_counter_sum_positive( 4483 &EXT4_SB(sb)->s_freeinodes_counter)); 4484 BUFFER_TRACE(sbh, "marking dirty"); 4485 ext4_superblock_csum_set(sb); 4486 mark_buffer_dirty(sbh); 4487 if (sync) { 4488 error = sync_dirty_buffer(sbh); 4489 if (error) 4490 return error; 4491 4492 error = buffer_write_io_error(sbh); 4493 if (error) { 4494 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4495 "superblock"); 4496 clear_buffer_write_io_error(sbh); 4497 set_buffer_uptodate(sbh); 4498 } 4499 } 4500 return error; 4501 } 4502 4503 /* 4504 * Have we just finished recovery? If so, and if we are mounting (or 4505 * remounting) the filesystem readonly, then we will end up with a 4506 * consistent fs on disk. Record that fact. 4507 */ 4508 static void ext4_mark_recovery_complete(struct super_block *sb, 4509 struct ext4_super_block *es) 4510 { 4511 journal_t *journal = EXT4_SB(sb)->s_journal; 4512 4513 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4514 BUG_ON(journal != NULL); 4515 return; 4516 } 4517 jbd2_journal_lock_updates(journal); 4518 if (jbd2_journal_flush(journal) < 0) 4519 goto out; 4520 4521 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4522 sb->s_flags & MS_RDONLY) { 4523 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4524 ext4_commit_super(sb, 1); 4525 } 4526 4527 out: 4528 jbd2_journal_unlock_updates(journal); 4529 } 4530 4531 /* 4532 * If we are mounting (or read-write remounting) a filesystem whose journal 4533 * has recorded an error from a previous lifetime, move that error to the 4534 * main filesystem now. 4535 */ 4536 static void ext4_clear_journal_err(struct super_block *sb, 4537 struct ext4_super_block *es) 4538 { 4539 journal_t *journal; 4540 int j_errno; 4541 const char *errstr; 4542 4543 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4544 4545 journal = EXT4_SB(sb)->s_journal; 4546 4547 /* 4548 * Now check for any error status which may have been recorded in the 4549 * journal by a prior ext4_error() or ext4_abort() 4550 */ 4551 4552 j_errno = jbd2_journal_errno(journal); 4553 if (j_errno) { 4554 char nbuf[16]; 4555 4556 errstr = ext4_decode_error(sb, j_errno, nbuf); 4557 ext4_warning(sb, "Filesystem error recorded " 4558 "from previous mount: %s", errstr); 4559 ext4_warning(sb, "Marking fs in need of filesystem check."); 4560 4561 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4562 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4563 ext4_commit_super(sb, 1); 4564 4565 jbd2_journal_clear_err(journal); 4566 jbd2_journal_update_sb_errno(journal); 4567 } 4568 } 4569 4570 /* 4571 * Force the running and committing transactions to commit, 4572 * and wait on the commit. 4573 */ 4574 int ext4_force_commit(struct super_block *sb) 4575 { 4576 journal_t *journal; 4577 4578 if (sb->s_flags & MS_RDONLY) 4579 return 0; 4580 4581 journal = EXT4_SB(sb)->s_journal; 4582 return ext4_journal_force_commit(journal); 4583 } 4584 4585 static int ext4_sync_fs(struct super_block *sb, int wait) 4586 { 4587 int ret = 0; 4588 tid_t target; 4589 bool needs_barrier = false; 4590 struct ext4_sb_info *sbi = EXT4_SB(sb); 4591 4592 trace_ext4_sync_fs(sb, wait); 4593 flush_workqueue(sbi->rsv_conversion_wq); 4594 /* 4595 * Writeback quota in non-journalled quota case - journalled quota has 4596 * no dirty dquots 4597 */ 4598 dquot_writeback_dquots(sb, -1); 4599 /* 4600 * Data writeback is possible w/o journal transaction, so barrier must 4601 * being sent at the end of the function. But we can skip it if 4602 * transaction_commit will do it for us. 4603 */ 4604 target = jbd2_get_latest_transaction(sbi->s_journal); 4605 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4606 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4607 needs_barrier = true; 4608 4609 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4610 if (wait) 4611 ret = jbd2_log_wait_commit(sbi->s_journal, target); 4612 } 4613 if (needs_barrier) { 4614 int err; 4615 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4616 if (!ret) 4617 ret = err; 4618 } 4619 4620 return ret; 4621 } 4622 4623 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait) 4624 { 4625 int ret = 0; 4626 4627 trace_ext4_sync_fs(sb, wait); 4628 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4629 dquot_writeback_dquots(sb, -1); 4630 if (wait && test_opt(sb, BARRIER)) 4631 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4632 4633 return ret; 4634 } 4635 4636 /* 4637 * LVM calls this function before a (read-only) snapshot is created. This 4638 * gives us a chance to flush the journal completely and mark the fs clean. 4639 * 4640 * Note that only this function cannot bring a filesystem to be in a clean 4641 * state independently. It relies on upper layer to stop all data & metadata 4642 * modifications. 4643 */ 4644 static int ext4_freeze(struct super_block *sb) 4645 { 4646 int error = 0; 4647 journal_t *journal; 4648 4649 if (sb->s_flags & MS_RDONLY) 4650 return 0; 4651 4652 journal = EXT4_SB(sb)->s_journal; 4653 4654 /* Now we set up the journal barrier. */ 4655 jbd2_journal_lock_updates(journal); 4656 4657 /* 4658 * Don't clear the needs_recovery flag if we failed to flush 4659 * the journal. 4660 */ 4661 error = jbd2_journal_flush(journal); 4662 if (error < 0) 4663 goto out; 4664 4665 /* Journal blocked and flushed, clear needs_recovery flag. */ 4666 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4667 error = ext4_commit_super(sb, 1); 4668 out: 4669 /* we rely on upper layer to stop further updates */ 4670 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4671 return error; 4672 } 4673 4674 /* 4675 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4676 * flag here, even though the filesystem is not technically dirty yet. 4677 */ 4678 static int ext4_unfreeze(struct super_block *sb) 4679 { 4680 if (sb->s_flags & MS_RDONLY) 4681 return 0; 4682 4683 /* Reset the needs_recovery flag before the fs is unlocked. */ 4684 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4685 ext4_commit_super(sb, 1); 4686 return 0; 4687 } 4688 4689 /* 4690 * Structure to save mount options for ext4_remount's benefit 4691 */ 4692 struct ext4_mount_options { 4693 unsigned long s_mount_opt; 4694 unsigned long s_mount_opt2; 4695 kuid_t s_resuid; 4696 kgid_t s_resgid; 4697 unsigned long s_commit_interval; 4698 u32 s_min_batch_time, s_max_batch_time; 4699 #ifdef CONFIG_QUOTA 4700 int s_jquota_fmt; 4701 char *s_qf_names[MAXQUOTAS]; 4702 #endif 4703 }; 4704 4705 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4706 { 4707 struct ext4_super_block *es; 4708 struct ext4_sb_info *sbi = EXT4_SB(sb); 4709 unsigned long old_sb_flags; 4710 struct ext4_mount_options old_opts; 4711 int enable_quota = 0; 4712 ext4_group_t g; 4713 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4714 int err = 0; 4715 #ifdef CONFIG_QUOTA 4716 int i, j; 4717 #endif 4718 char *orig_data = kstrdup(data, GFP_KERNEL); 4719 4720 /* Store the original options */ 4721 old_sb_flags = sb->s_flags; 4722 old_opts.s_mount_opt = sbi->s_mount_opt; 4723 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4724 old_opts.s_resuid = sbi->s_resuid; 4725 old_opts.s_resgid = sbi->s_resgid; 4726 old_opts.s_commit_interval = sbi->s_commit_interval; 4727 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4728 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4729 #ifdef CONFIG_QUOTA 4730 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4731 for (i = 0; i < MAXQUOTAS; i++) 4732 if (sbi->s_qf_names[i]) { 4733 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4734 GFP_KERNEL); 4735 if (!old_opts.s_qf_names[i]) { 4736 for (j = 0; j < i; j++) 4737 kfree(old_opts.s_qf_names[j]); 4738 kfree(orig_data); 4739 return -ENOMEM; 4740 } 4741 } else 4742 old_opts.s_qf_names[i] = NULL; 4743 #endif 4744 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4745 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4746 4747 /* 4748 * Allow the "check" option to be passed as a remount option. 4749 */ 4750 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4751 err = -EINVAL; 4752 goto restore_opts; 4753 } 4754 4755 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4756 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4757 ext4_msg(sb, KERN_ERR, "can't mount with " 4758 "both data=journal and delalloc"); 4759 err = -EINVAL; 4760 goto restore_opts; 4761 } 4762 if (test_opt(sb, DIOREAD_NOLOCK)) { 4763 ext4_msg(sb, KERN_ERR, "can't mount with " 4764 "both data=journal and dioread_nolock"); 4765 err = -EINVAL; 4766 goto restore_opts; 4767 } 4768 } 4769 4770 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4771 ext4_abort(sb, "Abort forced by user"); 4772 4773 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4774 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4775 4776 es = sbi->s_es; 4777 4778 if (sbi->s_journal) { 4779 ext4_init_journal_params(sb, sbi->s_journal); 4780 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4781 } 4782 4783 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4784 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4785 err = -EROFS; 4786 goto restore_opts; 4787 } 4788 4789 if (*flags & MS_RDONLY) { 4790 err = dquot_suspend(sb, -1); 4791 if (err < 0) 4792 goto restore_opts; 4793 4794 /* 4795 * First of all, the unconditional stuff we have to do 4796 * to disable replay of the journal when we next remount 4797 */ 4798 sb->s_flags |= MS_RDONLY; 4799 4800 /* 4801 * OK, test if we are remounting a valid rw partition 4802 * readonly, and if so set the rdonly flag and then 4803 * mark the partition as valid again. 4804 */ 4805 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4806 (sbi->s_mount_state & EXT4_VALID_FS)) 4807 es->s_state = cpu_to_le16(sbi->s_mount_state); 4808 4809 if (sbi->s_journal) 4810 ext4_mark_recovery_complete(sb, es); 4811 } else { 4812 /* Make sure we can mount this feature set readwrite */ 4813 if (!ext4_feature_set_ok(sb, 0)) { 4814 err = -EROFS; 4815 goto restore_opts; 4816 } 4817 /* 4818 * Make sure the group descriptor checksums 4819 * are sane. If they aren't, refuse to remount r/w. 4820 */ 4821 for (g = 0; g < sbi->s_groups_count; g++) { 4822 struct ext4_group_desc *gdp = 4823 ext4_get_group_desc(sb, g, NULL); 4824 4825 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4826 ext4_msg(sb, KERN_ERR, 4827 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4828 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4829 le16_to_cpu(gdp->bg_checksum)); 4830 err = -EINVAL; 4831 goto restore_opts; 4832 } 4833 } 4834 4835 /* 4836 * If we have an unprocessed orphan list hanging 4837 * around from a previously readonly bdev mount, 4838 * require a full umount/remount for now. 4839 */ 4840 if (es->s_last_orphan) { 4841 ext4_msg(sb, KERN_WARNING, "Couldn't " 4842 "remount RDWR because of unprocessed " 4843 "orphan inode list. Please " 4844 "umount/remount instead"); 4845 err = -EINVAL; 4846 goto restore_opts; 4847 } 4848 4849 /* 4850 * Mounting a RDONLY partition read-write, so reread 4851 * and store the current valid flag. (It may have 4852 * been changed by e2fsck since we originally mounted 4853 * the partition.) 4854 */ 4855 if (sbi->s_journal) 4856 ext4_clear_journal_err(sb, es); 4857 sbi->s_mount_state = le16_to_cpu(es->s_state); 4858 if (!ext4_setup_super(sb, es, 0)) 4859 sb->s_flags &= ~MS_RDONLY; 4860 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4861 EXT4_FEATURE_INCOMPAT_MMP)) 4862 if (ext4_multi_mount_protect(sb, 4863 le64_to_cpu(es->s_mmp_block))) { 4864 err = -EROFS; 4865 goto restore_opts; 4866 } 4867 enable_quota = 1; 4868 } 4869 } 4870 4871 /* 4872 * Reinitialize lazy itable initialization thread based on 4873 * current settings 4874 */ 4875 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4876 ext4_unregister_li_request(sb); 4877 else { 4878 ext4_group_t first_not_zeroed; 4879 first_not_zeroed = ext4_has_uninit_itable(sb); 4880 ext4_register_li_request(sb, first_not_zeroed); 4881 } 4882 4883 ext4_setup_system_zone(sb); 4884 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4885 ext4_commit_super(sb, 1); 4886 4887 #ifdef CONFIG_QUOTA 4888 /* Release old quota file names */ 4889 for (i = 0; i < MAXQUOTAS; i++) 4890 kfree(old_opts.s_qf_names[i]); 4891 if (enable_quota) { 4892 if (sb_any_quota_suspended(sb)) 4893 dquot_resume(sb, -1); 4894 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4895 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4896 err = ext4_enable_quotas(sb); 4897 if (err) 4898 goto restore_opts; 4899 } 4900 } 4901 #endif 4902 4903 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4904 kfree(orig_data); 4905 return 0; 4906 4907 restore_opts: 4908 sb->s_flags = old_sb_flags; 4909 sbi->s_mount_opt = old_opts.s_mount_opt; 4910 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4911 sbi->s_resuid = old_opts.s_resuid; 4912 sbi->s_resgid = old_opts.s_resgid; 4913 sbi->s_commit_interval = old_opts.s_commit_interval; 4914 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4915 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4916 #ifdef CONFIG_QUOTA 4917 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4918 for (i = 0; i < MAXQUOTAS; i++) { 4919 kfree(sbi->s_qf_names[i]); 4920 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4921 } 4922 #endif 4923 kfree(orig_data); 4924 return err; 4925 } 4926 4927 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4928 { 4929 struct super_block *sb = dentry->d_sb; 4930 struct ext4_sb_info *sbi = EXT4_SB(sb); 4931 struct ext4_super_block *es = sbi->s_es; 4932 ext4_fsblk_t overhead = 0, resv_blocks; 4933 u64 fsid; 4934 s64 bfree; 4935 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4936 4937 if (!test_opt(sb, MINIX_DF)) 4938 overhead = sbi->s_overhead; 4939 4940 buf->f_type = EXT4_SUPER_MAGIC; 4941 buf->f_bsize = sb->s_blocksize; 4942 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4943 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4944 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4945 /* prevent underflow in case that few free space is available */ 4946 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4947 buf->f_bavail = buf->f_bfree - 4948 (ext4_r_blocks_count(es) + resv_blocks); 4949 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4950 buf->f_bavail = 0; 4951 buf->f_files = le32_to_cpu(es->s_inodes_count); 4952 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4953 buf->f_namelen = EXT4_NAME_LEN; 4954 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4955 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4956 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4957 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4958 4959 return 0; 4960 } 4961 4962 /* Helper function for writing quotas on sync - we need to start transaction 4963 * before quota file is locked for write. Otherwise the are possible deadlocks: 4964 * Process 1 Process 2 4965 * ext4_create() quota_sync() 4966 * jbd2_journal_start() write_dquot() 4967 * dquot_initialize() down(dqio_mutex) 4968 * down(dqio_mutex) jbd2_journal_start() 4969 * 4970 */ 4971 4972 #ifdef CONFIG_QUOTA 4973 4974 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4975 { 4976 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4977 } 4978 4979 static int ext4_write_dquot(struct dquot *dquot) 4980 { 4981 int ret, err; 4982 handle_t *handle; 4983 struct inode *inode; 4984 4985 inode = dquot_to_inode(dquot); 4986 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4987 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4988 if (IS_ERR(handle)) 4989 return PTR_ERR(handle); 4990 ret = dquot_commit(dquot); 4991 err = ext4_journal_stop(handle); 4992 if (!ret) 4993 ret = err; 4994 return ret; 4995 } 4996 4997 static int ext4_acquire_dquot(struct dquot *dquot) 4998 { 4999 int ret, err; 5000 handle_t *handle; 5001 5002 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5003 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5004 if (IS_ERR(handle)) 5005 return PTR_ERR(handle); 5006 ret = dquot_acquire(dquot); 5007 err = ext4_journal_stop(handle); 5008 if (!ret) 5009 ret = err; 5010 return ret; 5011 } 5012 5013 static int ext4_release_dquot(struct dquot *dquot) 5014 { 5015 int ret, err; 5016 handle_t *handle; 5017 5018 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5019 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5020 if (IS_ERR(handle)) { 5021 /* Release dquot anyway to avoid endless cycle in dqput() */ 5022 dquot_release(dquot); 5023 return PTR_ERR(handle); 5024 } 5025 ret = dquot_release(dquot); 5026 err = ext4_journal_stop(handle); 5027 if (!ret) 5028 ret = err; 5029 return ret; 5030 } 5031 5032 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5033 { 5034 struct super_block *sb = dquot->dq_sb; 5035 struct ext4_sb_info *sbi = EXT4_SB(sb); 5036 5037 /* Are we journaling quotas? */ 5038 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 5039 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5040 dquot_mark_dquot_dirty(dquot); 5041 return ext4_write_dquot(dquot); 5042 } else { 5043 return dquot_mark_dquot_dirty(dquot); 5044 } 5045 } 5046 5047 static int ext4_write_info(struct super_block *sb, int type) 5048 { 5049 int ret, err; 5050 handle_t *handle; 5051 5052 /* Data block + inode block */ 5053 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 5054 if (IS_ERR(handle)) 5055 return PTR_ERR(handle); 5056 ret = dquot_commit_info(sb, type); 5057 err = ext4_journal_stop(handle); 5058 if (!ret) 5059 ret = err; 5060 return ret; 5061 } 5062 5063 /* 5064 * Turn on quotas during mount time - we need to find 5065 * the quota file and such... 5066 */ 5067 static int ext4_quota_on_mount(struct super_block *sb, int type) 5068 { 5069 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5070 EXT4_SB(sb)->s_jquota_fmt, type); 5071 } 5072 5073 /* 5074 * Standard function to be called on quota_on 5075 */ 5076 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5077 struct path *path) 5078 { 5079 int err; 5080 5081 if (!test_opt(sb, QUOTA)) 5082 return -EINVAL; 5083 5084 /* Quotafile not on the same filesystem? */ 5085 if (path->dentry->d_sb != sb) 5086 return -EXDEV; 5087 /* Journaling quota? */ 5088 if (EXT4_SB(sb)->s_qf_names[type]) { 5089 /* Quotafile not in fs root? */ 5090 if (path->dentry->d_parent != sb->s_root) 5091 ext4_msg(sb, KERN_WARNING, 5092 "Quota file not on filesystem root. " 5093 "Journaled quota will not work"); 5094 } 5095 5096 /* 5097 * When we journal data on quota file, we have to flush journal to see 5098 * all updates to the file when we bypass pagecache... 5099 */ 5100 if (EXT4_SB(sb)->s_journal && 5101 ext4_should_journal_data(path->dentry->d_inode)) { 5102 /* 5103 * We don't need to lock updates but journal_flush() could 5104 * otherwise be livelocked... 5105 */ 5106 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5107 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5108 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5109 if (err) 5110 return err; 5111 } 5112 5113 return dquot_quota_on(sb, type, format_id, path); 5114 } 5115 5116 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5117 unsigned int flags) 5118 { 5119 int err; 5120 struct inode *qf_inode; 5121 unsigned long qf_inums[MAXQUOTAS] = { 5122 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5123 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5124 }; 5125 5126 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5127 5128 if (!qf_inums[type]) 5129 return -EPERM; 5130 5131 qf_inode = ext4_iget(sb, qf_inums[type]); 5132 if (IS_ERR(qf_inode)) { 5133 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5134 return PTR_ERR(qf_inode); 5135 } 5136 5137 /* Don't account quota for quota files to avoid recursion */ 5138 qf_inode->i_flags |= S_NOQUOTA; 5139 err = dquot_enable(qf_inode, type, format_id, flags); 5140 iput(qf_inode); 5141 5142 return err; 5143 } 5144 5145 /* Enable usage tracking for all quota types. */ 5146 static int ext4_enable_quotas(struct super_block *sb) 5147 { 5148 int type, err = 0; 5149 unsigned long qf_inums[MAXQUOTAS] = { 5150 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5151 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5152 }; 5153 5154 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5155 for (type = 0; type < MAXQUOTAS; type++) { 5156 if (qf_inums[type]) { 5157 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5158 DQUOT_USAGE_ENABLED); 5159 if (err) { 5160 ext4_warning(sb, 5161 "Failed to enable quota tracking " 5162 "(type=%d, err=%d). Please run " 5163 "e2fsck to fix.", type, err); 5164 return err; 5165 } 5166 } 5167 } 5168 return 0; 5169 } 5170 5171 /* 5172 * quota_on function that is used when QUOTA feature is set. 5173 */ 5174 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5175 int format_id) 5176 { 5177 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5178 return -EINVAL; 5179 5180 /* 5181 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5182 */ 5183 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5184 } 5185 5186 static int ext4_quota_off(struct super_block *sb, int type) 5187 { 5188 struct inode *inode = sb_dqopt(sb)->files[type]; 5189 handle_t *handle; 5190 5191 /* Force all delayed allocation blocks to be allocated. 5192 * Caller already holds s_umount sem */ 5193 if (test_opt(sb, DELALLOC)) 5194 sync_filesystem(sb); 5195 5196 if (!inode) 5197 goto out; 5198 5199 /* Update modification times of quota files when userspace can 5200 * start looking at them */ 5201 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5202 if (IS_ERR(handle)) 5203 goto out; 5204 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5205 ext4_mark_inode_dirty(handle, inode); 5206 ext4_journal_stop(handle); 5207 5208 out: 5209 return dquot_quota_off(sb, type); 5210 } 5211 5212 /* 5213 * quota_off function that is used when QUOTA feature is set. 5214 */ 5215 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5216 { 5217 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5218 return -EINVAL; 5219 5220 /* Disable only the limits. */ 5221 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5222 } 5223 5224 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5225 * acquiring the locks... As quota files are never truncated and quota code 5226 * itself serializes the operations (and no one else should touch the files) 5227 * we don't have to be afraid of races */ 5228 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5229 size_t len, loff_t off) 5230 { 5231 struct inode *inode = sb_dqopt(sb)->files[type]; 5232 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5233 int err = 0; 5234 int offset = off & (sb->s_blocksize - 1); 5235 int tocopy; 5236 size_t toread; 5237 struct buffer_head *bh; 5238 loff_t i_size = i_size_read(inode); 5239 5240 if (off > i_size) 5241 return 0; 5242 if (off+len > i_size) 5243 len = i_size-off; 5244 toread = len; 5245 while (toread > 0) { 5246 tocopy = sb->s_blocksize - offset < toread ? 5247 sb->s_blocksize - offset : toread; 5248 bh = ext4_bread(NULL, inode, blk, 0, &err); 5249 if (err) 5250 return err; 5251 if (!bh) /* A hole? */ 5252 memset(data, 0, tocopy); 5253 else 5254 memcpy(data, bh->b_data+offset, tocopy); 5255 brelse(bh); 5256 offset = 0; 5257 toread -= tocopy; 5258 data += tocopy; 5259 blk++; 5260 } 5261 return len; 5262 } 5263 5264 /* Write to quotafile (we know the transaction is already started and has 5265 * enough credits) */ 5266 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5267 const char *data, size_t len, loff_t off) 5268 { 5269 struct inode *inode = sb_dqopt(sb)->files[type]; 5270 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5271 int err = 0; 5272 int offset = off & (sb->s_blocksize - 1); 5273 struct buffer_head *bh; 5274 handle_t *handle = journal_current_handle(); 5275 5276 if (EXT4_SB(sb)->s_journal && !handle) { 5277 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5278 " cancelled because transaction is not started", 5279 (unsigned long long)off, (unsigned long long)len); 5280 return -EIO; 5281 } 5282 /* 5283 * Since we account only one data block in transaction credits, 5284 * then it is impossible to cross a block boundary. 5285 */ 5286 if (sb->s_blocksize - offset < len) { 5287 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5288 " cancelled because not block aligned", 5289 (unsigned long long)off, (unsigned long long)len); 5290 return -EIO; 5291 } 5292 5293 bh = ext4_bread(handle, inode, blk, 1, &err); 5294 if (!bh) 5295 goto out; 5296 err = ext4_journal_get_write_access(handle, bh); 5297 if (err) { 5298 brelse(bh); 5299 goto out; 5300 } 5301 lock_buffer(bh); 5302 memcpy(bh->b_data+offset, data, len); 5303 flush_dcache_page(bh->b_page); 5304 unlock_buffer(bh); 5305 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5306 brelse(bh); 5307 out: 5308 if (err) 5309 return err; 5310 if (inode->i_size < off + len) { 5311 i_size_write(inode, off + len); 5312 EXT4_I(inode)->i_disksize = inode->i_size; 5313 ext4_mark_inode_dirty(handle, inode); 5314 } 5315 return len; 5316 } 5317 5318 #endif 5319 5320 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5321 const char *dev_name, void *data) 5322 { 5323 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5324 } 5325 5326 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5327 static inline void register_as_ext2(void) 5328 { 5329 int err = register_filesystem(&ext2_fs_type); 5330 if (err) 5331 printk(KERN_WARNING 5332 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5333 } 5334 5335 static inline void unregister_as_ext2(void) 5336 { 5337 unregister_filesystem(&ext2_fs_type); 5338 } 5339 5340 static inline int ext2_feature_set_ok(struct super_block *sb) 5341 { 5342 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5343 return 0; 5344 if (sb->s_flags & MS_RDONLY) 5345 return 1; 5346 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5347 return 0; 5348 return 1; 5349 } 5350 #else 5351 static inline void register_as_ext2(void) { } 5352 static inline void unregister_as_ext2(void) { } 5353 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5354 #endif 5355 5356 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5357 static inline void register_as_ext3(void) 5358 { 5359 int err = register_filesystem(&ext3_fs_type); 5360 if (err) 5361 printk(KERN_WARNING 5362 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5363 } 5364 5365 static inline void unregister_as_ext3(void) 5366 { 5367 unregister_filesystem(&ext3_fs_type); 5368 } 5369 5370 static inline int ext3_feature_set_ok(struct super_block *sb) 5371 { 5372 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5373 return 0; 5374 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5375 return 0; 5376 if (sb->s_flags & MS_RDONLY) 5377 return 1; 5378 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5379 return 0; 5380 return 1; 5381 } 5382 #else 5383 static inline void register_as_ext3(void) { } 5384 static inline void unregister_as_ext3(void) { } 5385 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5386 #endif 5387 5388 static struct file_system_type ext4_fs_type = { 5389 .owner = THIS_MODULE, 5390 .name = "ext4", 5391 .mount = ext4_mount, 5392 .kill_sb = kill_block_super, 5393 .fs_flags = FS_REQUIRES_DEV, 5394 }; 5395 MODULE_ALIAS_FS("ext4"); 5396 5397 static int __init ext4_init_feat_adverts(void) 5398 { 5399 struct ext4_features *ef; 5400 int ret = -ENOMEM; 5401 5402 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5403 if (!ef) 5404 goto out; 5405 5406 ef->f_kobj.kset = ext4_kset; 5407 init_completion(&ef->f_kobj_unregister); 5408 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5409 "features"); 5410 if (ret) { 5411 kfree(ef); 5412 goto out; 5413 } 5414 5415 ext4_feat = ef; 5416 ret = 0; 5417 out: 5418 return ret; 5419 } 5420 5421 static void ext4_exit_feat_adverts(void) 5422 { 5423 kobject_put(&ext4_feat->f_kobj); 5424 wait_for_completion(&ext4_feat->f_kobj_unregister); 5425 kfree(ext4_feat); 5426 } 5427 5428 /* Shared across all ext4 file systems */ 5429 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5430 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5431 5432 static int __init ext4_init_fs(void) 5433 { 5434 int i, err; 5435 5436 ext4_li_info = NULL; 5437 mutex_init(&ext4_li_mtx); 5438 5439 /* Build-time check for flags consistency */ 5440 ext4_check_flag_values(); 5441 5442 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5443 mutex_init(&ext4__aio_mutex[i]); 5444 init_waitqueue_head(&ext4__ioend_wq[i]); 5445 } 5446 5447 err = ext4_init_es(); 5448 if (err) 5449 return err; 5450 5451 err = ext4_init_pageio(); 5452 if (err) 5453 goto out7; 5454 5455 err = ext4_init_system_zone(); 5456 if (err) 5457 goto out6; 5458 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5459 if (!ext4_kset) { 5460 err = -ENOMEM; 5461 goto out5; 5462 } 5463 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5464 5465 err = ext4_init_feat_adverts(); 5466 if (err) 5467 goto out4; 5468 5469 err = ext4_init_mballoc(); 5470 if (err) 5471 goto out3; 5472 5473 err = ext4_init_xattr(); 5474 if (err) 5475 goto out2; 5476 err = init_inodecache(); 5477 if (err) 5478 goto out1; 5479 register_as_ext3(); 5480 register_as_ext2(); 5481 err = register_filesystem(&ext4_fs_type); 5482 if (err) 5483 goto out; 5484 5485 return 0; 5486 out: 5487 unregister_as_ext2(); 5488 unregister_as_ext3(); 5489 destroy_inodecache(); 5490 out1: 5491 ext4_exit_xattr(); 5492 out2: 5493 ext4_exit_mballoc(); 5494 out3: 5495 ext4_exit_feat_adverts(); 5496 out4: 5497 if (ext4_proc_root) 5498 remove_proc_entry("fs/ext4", NULL); 5499 kset_unregister(ext4_kset); 5500 out5: 5501 ext4_exit_system_zone(); 5502 out6: 5503 ext4_exit_pageio(); 5504 out7: 5505 ext4_exit_es(); 5506 5507 return err; 5508 } 5509 5510 static void __exit ext4_exit_fs(void) 5511 { 5512 ext4_destroy_lazyinit_thread(); 5513 unregister_as_ext2(); 5514 unregister_as_ext3(); 5515 unregister_filesystem(&ext4_fs_type); 5516 destroy_inodecache(); 5517 ext4_exit_xattr(); 5518 ext4_exit_mballoc(); 5519 ext4_exit_feat_adverts(); 5520 remove_proc_entry("fs/ext4", NULL); 5521 kset_unregister(ext4_kset); 5522 ext4_exit_system_zone(); 5523 ext4_exit_pageio(); 5524 ext4_exit_es(); 5525 } 5526 5527 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5528 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5529 MODULE_LICENSE("GPL"); 5530 module_init(ext4_init_fs) 5531 module_exit(ext4_exit_fs) 5532