xref: /openbmc/linux/fs/ext4/super.c (revision f3a8b664)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_extents.h"	/* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55 
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59 
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 			     unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 					struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 				   struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 		       const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81 static struct inode *ext4_get_journal_inode(struct super_block *sb,
82 					    unsigned int journal_inum);
83 
84 /*
85  * Lock ordering
86  *
87  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88  * i_mmap_rwsem (inode->i_mmap_rwsem)!
89  *
90  * page fault path:
91  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92  *   page lock -> i_data_sem (rw)
93  *
94  * buffered write path:
95  * sb_start_write -> i_mutex -> mmap_sem
96  * sb_start_write -> i_mutex -> transaction start -> page lock ->
97  *   i_data_sem (rw)
98  *
99  * truncate:
100  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101  *   i_mmap_rwsem (w) -> page lock
102  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103  *   transaction start -> i_data_sem (rw)
104  *
105  * direct IO:
106  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107  * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108  *   transaction start -> i_data_sem (rw)
109  *
110  * writepages:
111  * transaction start -> page lock(s) -> i_data_sem (rw)
112  */
113 
114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115 static struct file_system_type ext2_fs_type = {
116 	.owner		= THIS_MODULE,
117 	.name		= "ext2",
118 	.mount		= ext4_mount,
119 	.kill_sb	= kill_block_super,
120 	.fs_flags	= FS_REQUIRES_DEV,
121 };
122 MODULE_ALIAS_FS("ext2");
123 MODULE_ALIAS("ext2");
124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125 #else
126 #define IS_EXT2_SB(sb) (0)
127 #endif
128 
129 
130 static struct file_system_type ext3_fs_type = {
131 	.owner		= THIS_MODULE,
132 	.name		= "ext3",
133 	.mount		= ext4_mount,
134 	.kill_sb	= kill_block_super,
135 	.fs_flags	= FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("ext3");
138 MODULE_ALIAS("ext3");
139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140 
141 static int ext4_verify_csum_type(struct super_block *sb,
142 				 struct ext4_super_block *es)
143 {
144 	if (!ext4_has_feature_metadata_csum(sb))
145 		return 1;
146 
147 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148 }
149 
150 static __le32 ext4_superblock_csum(struct super_block *sb,
151 				   struct ext4_super_block *es)
152 {
153 	struct ext4_sb_info *sbi = EXT4_SB(sb);
154 	int offset = offsetof(struct ext4_super_block, s_checksum);
155 	__u32 csum;
156 
157 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158 
159 	return cpu_to_le32(csum);
160 }
161 
162 static int ext4_superblock_csum_verify(struct super_block *sb,
163 				       struct ext4_super_block *es)
164 {
165 	if (!ext4_has_metadata_csum(sb))
166 		return 1;
167 
168 	return es->s_checksum == ext4_superblock_csum(sb, es);
169 }
170 
171 void ext4_superblock_csum_set(struct super_block *sb)
172 {
173 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174 
175 	if (!ext4_has_metadata_csum(sb))
176 		return;
177 
178 	es->s_checksum = ext4_superblock_csum(sb, es);
179 }
180 
181 void *ext4_kvmalloc(size_t size, gfp_t flags)
182 {
183 	void *ret;
184 
185 	ret = kmalloc(size, flags | __GFP_NOWARN);
186 	if (!ret)
187 		ret = __vmalloc(size, flags, PAGE_KERNEL);
188 	return ret;
189 }
190 
191 void *ext4_kvzalloc(size_t size, gfp_t flags)
192 {
193 	void *ret;
194 
195 	ret = kzalloc(size, flags | __GFP_NOWARN);
196 	if (!ret)
197 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198 	return ret;
199 }
200 
201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202 			       struct ext4_group_desc *bg)
203 {
204 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
205 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207 }
208 
209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210 			       struct ext4_group_desc *bg)
211 {
212 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215 }
216 
217 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218 			      struct ext4_group_desc *bg)
219 {
220 	return le32_to_cpu(bg->bg_inode_table_lo) |
221 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223 }
224 
225 __u32 ext4_free_group_clusters(struct super_block *sb,
226 			       struct ext4_group_desc *bg)
227 {
228 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231 }
232 
233 __u32 ext4_free_inodes_count(struct super_block *sb,
234 			      struct ext4_group_desc *bg)
235 {
236 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239 }
240 
241 __u32 ext4_used_dirs_count(struct super_block *sb,
242 			      struct ext4_group_desc *bg)
243 {
244 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247 }
248 
249 __u32 ext4_itable_unused_count(struct super_block *sb,
250 			      struct ext4_group_desc *bg)
251 {
252 	return le16_to_cpu(bg->bg_itable_unused_lo) |
253 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255 }
256 
257 void ext4_block_bitmap_set(struct super_block *sb,
258 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
259 {
260 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263 }
264 
265 void ext4_inode_bitmap_set(struct super_block *sb,
266 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
267 {
268 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
269 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271 }
272 
273 void ext4_inode_table_set(struct super_block *sb,
274 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
275 {
276 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279 }
280 
281 void ext4_free_group_clusters_set(struct super_block *sb,
282 				  struct ext4_group_desc *bg, __u32 count)
283 {
284 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287 }
288 
289 void ext4_free_inodes_set(struct super_block *sb,
290 			  struct ext4_group_desc *bg, __u32 count)
291 {
292 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295 }
296 
297 void ext4_used_dirs_set(struct super_block *sb,
298 			  struct ext4_group_desc *bg, __u32 count)
299 {
300 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303 }
304 
305 void ext4_itable_unused_set(struct super_block *sb,
306 			  struct ext4_group_desc *bg, __u32 count)
307 {
308 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311 }
312 
313 
314 static void __save_error_info(struct super_block *sb, const char *func,
315 			    unsigned int line)
316 {
317 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318 
319 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320 	if (bdev_read_only(sb->s_bdev))
321 		return;
322 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323 	es->s_last_error_time = cpu_to_le32(get_seconds());
324 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325 	es->s_last_error_line = cpu_to_le32(line);
326 	if (!es->s_first_error_time) {
327 		es->s_first_error_time = es->s_last_error_time;
328 		strncpy(es->s_first_error_func, func,
329 			sizeof(es->s_first_error_func));
330 		es->s_first_error_line = cpu_to_le32(line);
331 		es->s_first_error_ino = es->s_last_error_ino;
332 		es->s_first_error_block = es->s_last_error_block;
333 	}
334 	/*
335 	 * Start the daily error reporting function if it hasn't been
336 	 * started already
337 	 */
338 	if (!es->s_error_count)
339 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340 	le32_add_cpu(&es->s_error_count, 1);
341 }
342 
343 static void save_error_info(struct super_block *sb, const char *func,
344 			    unsigned int line)
345 {
346 	__save_error_info(sb, func, line);
347 	ext4_commit_super(sb, 1);
348 }
349 
350 /*
351  * The del_gendisk() function uninitializes the disk-specific data
352  * structures, including the bdi structure, without telling anyone
353  * else.  Once this happens, any attempt to call mark_buffer_dirty()
354  * (for example, by ext4_commit_super), will cause a kernel OOPS.
355  * This is a kludge to prevent these oops until we can put in a proper
356  * hook in del_gendisk() to inform the VFS and file system layers.
357  */
358 static int block_device_ejected(struct super_block *sb)
359 {
360 	struct inode *bd_inode = sb->s_bdev->bd_inode;
361 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362 
363 	return bdi->dev == NULL;
364 }
365 
366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367 {
368 	struct super_block		*sb = journal->j_private;
369 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
370 	int				error = is_journal_aborted(journal);
371 	struct ext4_journal_cb_entry	*jce;
372 
373 	BUG_ON(txn->t_state == T_FINISHED);
374 	spin_lock(&sbi->s_md_lock);
375 	while (!list_empty(&txn->t_private_list)) {
376 		jce = list_entry(txn->t_private_list.next,
377 				 struct ext4_journal_cb_entry, jce_list);
378 		list_del_init(&jce->jce_list);
379 		spin_unlock(&sbi->s_md_lock);
380 		jce->jce_func(sb, jce, error);
381 		spin_lock(&sbi->s_md_lock);
382 	}
383 	spin_unlock(&sbi->s_md_lock);
384 }
385 
386 /* Deal with the reporting of failure conditions on a filesystem such as
387  * inconsistencies detected or read IO failures.
388  *
389  * On ext2, we can store the error state of the filesystem in the
390  * superblock.  That is not possible on ext4, because we may have other
391  * write ordering constraints on the superblock which prevent us from
392  * writing it out straight away; and given that the journal is about to
393  * be aborted, we can't rely on the current, or future, transactions to
394  * write out the superblock safely.
395  *
396  * We'll just use the jbd2_journal_abort() error code to record an error in
397  * the journal instead.  On recovery, the journal will complain about
398  * that error until we've noted it down and cleared it.
399  */
400 
401 static void ext4_handle_error(struct super_block *sb)
402 {
403 	if (sb->s_flags & MS_RDONLY)
404 		return;
405 
406 	if (!test_opt(sb, ERRORS_CONT)) {
407 		journal_t *journal = EXT4_SB(sb)->s_journal;
408 
409 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410 		if (journal)
411 			jbd2_journal_abort(journal, -EIO);
412 	}
413 	if (test_opt(sb, ERRORS_RO)) {
414 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415 		/*
416 		 * Make sure updated value of ->s_mount_flags will be visible
417 		 * before ->s_flags update
418 		 */
419 		smp_wmb();
420 		sb->s_flags |= MS_RDONLY;
421 	}
422 	if (test_opt(sb, ERRORS_PANIC)) {
423 		if (EXT4_SB(sb)->s_journal &&
424 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425 			return;
426 		panic("EXT4-fs (device %s): panic forced after error\n",
427 			sb->s_id);
428 	}
429 }
430 
431 #define ext4_error_ratelimit(sb)					\
432 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
433 			     "EXT4-fs error")
434 
435 void __ext4_error(struct super_block *sb, const char *function,
436 		  unsigned int line, const char *fmt, ...)
437 {
438 	struct va_format vaf;
439 	va_list args;
440 
441 	if (ext4_error_ratelimit(sb)) {
442 		va_start(args, fmt);
443 		vaf.fmt = fmt;
444 		vaf.va = &args;
445 		printk(KERN_CRIT
446 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447 		       sb->s_id, function, line, current->comm, &vaf);
448 		va_end(args);
449 	}
450 	save_error_info(sb, function, line);
451 	ext4_handle_error(sb);
452 }
453 
454 void __ext4_error_inode(struct inode *inode, const char *function,
455 			unsigned int line, ext4_fsblk_t block,
456 			const char *fmt, ...)
457 {
458 	va_list args;
459 	struct va_format vaf;
460 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461 
462 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463 	es->s_last_error_block = cpu_to_le64(block);
464 	if (ext4_error_ratelimit(inode->i_sb)) {
465 		va_start(args, fmt);
466 		vaf.fmt = fmt;
467 		vaf.va = &args;
468 		if (block)
469 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470 			       "inode #%lu: block %llu: comm %s: %pV\n",
471 			       inode->i_sb->s_id, function, line, inode->i_ino,
472 			       block, current->comm, &vaf);
473 		else
474 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 			       "inode #%lu: comm %s: %pV\n",
476 			       inode->i_sb->s_id, function, line, inode->i_ino,
477 			       current->comm, &vaf);
478 		va_end(args);
479 	}
480 	save_error_info(inode->i_sb, function, line);
481 	ext4_handle_error(inode->i_sb);
482 }
483 
484 void __ext4_error_file(struct file *file, const char *function,
485 		       unsigned int line, ext4_fsblk_t block,
486 		       const char *fmt, ...)
487 {
488 	va_list args;
489 	struct va_format vaf;
490 	struct ext4_super_block *es;
491 	struct inode *inode = file_inode(file);
492 	char pathname[80], *path;
493 
494 	es = EXT4_SB(inode->i_sb)->s_es;
495 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 	if (ext4_error_ratelimit(inode->i_sb)) {
497 		path = file_path(file, pathname, sizeof(pathname));
498 		if (IS_ERR(path))
499 			path = "(unknown)";
500 		va_start(args, fmt);
501 		vaf.fmt = fmt;
502 		vaf.va = &args;
503 		if (block)
504 			printk(KERN_CRIT
505 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506 			       "block %llu: comm %s: path %s: %pV\n",
507 			       inode->i_sb->s_id, function, line, inode->i_ino,
508 			       block, current->comm, path, &vaf);
509 		else
510 			printk(KERN_CRIT
511 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512 			       "comm %s: path %s: %pV\n",
513 			       inode->i_sb->s_id, function, line, inode->i_ino,
514 			       current->comm, path, &vaf);
515 		va_end(args);
516 	}
517 	save_error_info(inode->i_sb, function, line);
518 	ext4_handle_error(inode->i_sb);
519 }
520 
521 const char *ext4_decode_error(struct super_block *sb, int errno,
522 			      char nbuf[16])
523 {
524 	char *errstr = NULL;
525 
526 	switch (errno) {
527 	case -EFSCORRUPTED:
528 		errstr = "Corrupt filesystem";
529 		break;
530 	case -EFSBADCRC:
531 		errstr = "Filesystem failed CRC";
532 		break;
533 	case -EIO:
534 		errstr = "IO failure";
535 		break;
536 	case -ENOMEM:
537 		errstr = "Out of memory";
538 		break;
539 	case -EROFS:
540 		if (!sb || (EXT4_SB(sb)->s_journal &&
541 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542 			errstr = "Journal has aborted";
543 		else
544 			errstr = "Readonly filesystem";
545 		break;
546 	default:
547 		/* If the caller passed in an extra buffer for unknown
548 		 * errors, textualise them now.  Else we just return
549 		 * NULL. */
550 		if (nbuf) {
551 			/* Check for truncated error codes... */
552 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553 				errstr = nbuf;
554 		}
555 		break;
556 	}
557 
558 	return errstr;
559 }
560 
561 /* __ext4_std_error decodes expected errors from journaling functions
562  * automatically and invokes the appropriate error response.  */
563 
564 void __ext4_std_error(struct super_block *sb, const char *function,
565 		      unsigned int line, int errno)
566 {
567 	char nbuf[16];
568 	const char *errstr;
569 
570 	/* Special case: if the error is EROFS, and we're not already
571 	 * inside a transaction, then there's really no point in logging
572 	 * an error. */
573 	if (errno == -EROFS && journal_current_handle() == NULL &&
574 	    (sb->s_flags & MS_RDONLY))
575 		return;
576 
577 	if (ext4_error_ratelimit(sb)) {
578 		errstr = ext4_decode_error(sb, errno, nbuf);
579 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580 		       sb->s_id, function, line, errstr);
581 	}
582 
583 	save_error_info(sb, function, line);
584 	ext4_handle_error(sb);
585 }
586 
587 /*
588  * ext4_abort is a much stronger failure handler than ext4_error.  The
589  * abort function may be used to deal with unrecoverable failures such
590  * as journal IO errors or ENOMEM at a critical moment in log management.
591  *
592  * We unconditionally force the filesystem into an ABORT|READONLY state,
593  * unless the error response on the fs has been set to panic in which
594  * case we take the easy way out and panic immediately.
595  */
596 
597 void __ext4_abort(struct super_block *sb, const char *function,
598 		unsigned int line, const char *fmt, ...)
599 {
600 	struct va_format vaf;
601 	va_list args;
602 
603 	save_error_info(sb, function, line);
604 	va_start(args, fmt);
605 	vaf.fmt = fmt;
606 	vaf.va = &args;
607 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
608 	       sb->s_id, function, line, &vaf);
609 	va_end(args);
610 
611 	if ((sb->s_flags & MS_RDONLY) == 0) {
612 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
613 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
614 		/*
615 		 * Make sure updated value of ->s_mount_flags will be visible
616 		 * before ->s_flags update
617 		 */
618 		smp_wmb();
619 		sb->s_flags |= MS_RDONLY;
620 		if (EXT4_SB(sb)->s_journal)
621 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
622 		save_error_info(sb, function, line);
623 	}
624 	if (test_opt(sb, ERRORS_PANIC)) {
625 		if (EXT4_SB(sb)->s_journal &&
626 		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
627 			return;
628 		panic("EXT4-fs panic from previous error\n");
629 	}
630 }
631 
632 void __ext4_msg(struct super_block *sb,
633 		const char *prefix, const char *fmt, ...)
634 {
635 	struct va_format vaf;
636 	va_list args;
637 
638 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
639 		return;
640 
641 	va_start(args, fmt);
642 	vaf.fmt = fmt;
643 	vaf.va = &args;
644 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
645 	va_end(args);
646 }
647 
648 #define ext4_warning_ratelimit(sb)					\
649 		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
650 			     "EXT4-fs warning")
651 
652 void __ext4_warning(struct super_block *sb, const char *function,
653 		    unsigned int line, const char *fmt, ...)
654 {
655 	struct va_format vaf;
656 	va_list args;
657 
658 	if (!ext4_warning_ratelimit(sb))
659 		return;
660 
661 	va_start(args, fmt);
662 	vaf.fmt = fmt;
663 	vaf.va = &args;
664 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
665 	       sb->s_id, function, line, &vaf);
666 	va_end(args);
667 }
668 
669 void __ext4_warning_inode(const struct inode *inode, const char *function,
670 			  unsigned int line, const char *fmt, ...)
671 {
672 	struct va_format vaf;
673 	va_list args;
674 
675 	if (!ext4_warning_ratelimit(inode->i_sb))
676 		return;
677 
678 	va_start(args, fmt);
679 	vaf.fmt = fmt;
680 	vaf.va = &args;
681 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
682 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
683 	       function, line, inode->i_ino, current->comm, &vaf);
684 	va_end(args);
685 }
686 
687 void __ext4_grp_locked_error(const char *function, unsigned int line,
688 			     struct super_block *sb, ext4_group_t grp,
689 			     unsigned long ino, ext4_fsblk_t block,
690 			     const char *fmt, ...)
691 __releases(bitlock)
692 __acquires(bitlock)
693 {
694 	struct va_format vaf;
695 	va_list args;
696 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
697 
698 	es->s_last_error_ino = cpu_to_le32(ino);
699 	es->s_last_error_block = cpu_to_le64(block);
700 	__save_error_info(sb, function, line);
701 
702 	if (ext4_error_ratelimit(sb)) {
703 		va_start(args, fmt);
704 		vaf.fmt = fmt;
705 		vaf.va = &args;
706 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
707 		       sb->s_id, function, line, grp);
708 		if (ino)
709 			printk(KERN_CONT "inode %lu: ", ino);
710 		if (block)
711 			printk(KERN_CONT "block %llu:",
712 			       (unsigned long long) block);
713 		printk(KERN_CONT "%pV\n", &vaf);
714 		va_end(args);
715 	}
716 
717 	if (test_opt(sb, ERRORS_CONT)) {
718 		ext4_commit_super(sb, 0);
719 		return;
720 	}
721 
722 	ext4_unlock_group(sb, grp);
723 	ext4_handle_error(sb);
724 	/*
725 	 * We only get here in the ERRORS_RO case; relocking the group
726 	 * may be dangerous, but nothing bad will happen since the
727 	 * filesystem will have already been marked read/only and the
728 	 * journal has been aborted.  We return 1 as a hint to callers
729 	 * who might what to use the return value from
730 	 * ext4_grp_locked_error() to distinguish between the
731 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
732 	 * aggressively from the ext4 function in question, with a
733 	 * more appropriate error code.
734 	 */
735 	ext4_lock_group(sb, grp);
736 	return;
737 }
738 
739 void ext4_update_dynamic_rev(struct super_block *sb)
740 {
741 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
742 
743 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
744 		return;
745 
746 	ext4_warning(sb,
747 		     "updating to rev %d because of new feature flag, "
748 		     "running e2fsck is recommended",
749 		     EXT4_DYNAMIC_REV);
750 
751 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
752 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
753 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
754 	/* leave es->s_feature_*compat flags alone */
755 	/* es->s_uuid will be set by e2fsck if empty */
756 
757 	/*
758 	 * The rest of the superblock fields should be zero, and if not it
759 	 * means they are likely already in use, so leave them alone.  We
760 	 * can leave it up to e2fsck to clean up any inconsistencies there.
761 	 */
762 }
763 
764 /*
765  * Open the external journal device
766  */
767 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
768 {
769 	struct block_device *bdev;
770 	char b[BDEVNAME_SIZE];
771 
772 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
773 	if (IS_ERR(bdev))
774 		goto fail;
775 	return bdev;
776 
777 fail:
778 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
779 			__bdevname(dev, b), PTR_ERR(bdev));
780 	return NULL;
781 }
782 
783 /*
784  * Release the journal device
785  */
786 static void ext4_blkdev_put(struct block_device *bdev)
787 {
788 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
789 }
790 
791 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
792 {
793 	struct block_device *bdev;
794 	bdev = sbi->journal_bdev;
795 	if (bdev) {
796 		ext4_blkdev_put(bdev);
797 		sbi->journal_bdev = NULL;
798 	}
799 }
800 
801 static inline struct inode *orphan_list_entry(struct list_head *l)
802 {
803 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
804 }
805 
806 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
807 {
808 	struct list_head *l;
809 
810 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
811 		 le32_to_cpu(sbi->s_es->s_last_orphan));
812 
813 	printk(KERN_ERR "sb_info orphan list:\n");
814 	list_for_each(l, &sbi->s_orphan) {
815 		struct inode *inode = orphan_list_entry(l);
816 		printk(KERN_ERR "  "
817 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
818 		       inode->i_sb->s_id, inode->i_ino, inode,
819 		       inode->i_mode, inode->i_nlink,
820 		       NEXT_ORPHAN(inode));
821 	}
822 }
823 
824 static void ext4_put_super(struct super_block *sb)
825 {
826 	struct ext4_sb_info *sbi = EXT4_SB(sb);
827 	struct ext4_super_block *es = sbi->s_es;
828 	int i, err;
829 
830 	ext4_unregister_li_request(sb);
831 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
832 
833 	flush_workqueue(sbi->rsv_conversion_wq);
834 	destroy_workqueue(sbi->rsv_conversion_wq);
835 
836 	if (sbi->s_journal) {
837 		err = jbd2_journal_destroy(sbi->s_journal);
838 		sbi->s_journal = NULL;
839 		if (err < 0)
840 			ext4_abort(sb, "Couldn't clean up the journal");
841 	}
842 
843 	ext4_unregister_sysfs(sb);
844 	ext4_es_unregister_shrinker(sbi);
845 	del_timer_sync(&sbi->s_err_report);
846 	ext4_release_system_zone(sb);
847 	ext4_mb_release(sb);
848 	ext4_ext_release(sb);
849 
850 	if (!(sb->s_flags & MS_RDONLY)) {
851 		ext4_clear_feature_journal_needs_recovery(sb);
852 		es->s_state = cpu_to_le16(sbi->s_mount_state);
853 	}
854 	if (!(sb->s_flags & MS_RDONLY))
855 		ext4_commit_super(sb, 1);
856 
857 	for (i = 0; i < sbi->s_gdb_count; i++)
858 		brelse(sbi->s_group_desc[i]);
859 	kvfree(sbi->s_group_desc);
860 	kvfree(sbi->s_flex_groups);
861 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
862 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
863 	percpu_counter_destroy(&sbi->s_dirs_counter);
864 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
865 	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
866 	brelse(sbi->s_sbh);
867 #ifdef CONFIG_QUOTA
868 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
869 		kfree(sbi->s_qf_names[i]);
870 #endif
871 
872 	/* Debugging code just in case the in-memory inode orphan list
873 	 * isn't empty.  The on-disk one can be non-empty if we've
874 	 * detected an error and taken the fs readonly, but the
875 	 * in-memory list had better be clean by this point. */
876 	if (!list_empty(&sbi->s_orphan))
877 		dump_orphan_list(sb, sbi);
878 	J_ASSERT(list_empty(&sbi->s_orphan));
879 
880 	sync_blockdev(sb->s_bdev);
881 	invalidate_bdev(sb->s_bdev);
882 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
883 		/*
884 		 * Invalidate the journal device's buffers.  We don't want them
885 		 * floating about in memory - the physical journal device may
886 		 * hotswapped, and it breaks the `ro-after' testing code.
887 		 */
888 		sync_blockdev(sbi->journal_bdev);
889 		invalidate_bdev(sbi->journal_bdev);
890 		ext4_blkdev_remove(sbi);
891 	}
892 	if (sbi->s_mb_cache) {
893 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
894 		sbi->s_mb_cache = NULL;
895 	}
896 	if (sbi->s_mmp_tsk)
897 		kthread_stop(sbi->s_mmp_tsk);
898 	sb->s_fs_info = NULL;
899 	/*
900 	 * Now that we are completely done shutting down the
901 	 * superblock, we need to actually destroy the kobject.
902 	 */
903 	kobject_put(&sbi->s_kobj);
904 	wait_for_completion(&sbi->s_kobj_unregister);
905 	if (sbi->s_chksum_driver)
906 		crypto_free_shash(sbi->s_chksum_driver);
907 	kfree(sbi->s_blockgroup_lock);
908 	kfree(sbi);
909 }
910 
911 static struct kmem_cache *ext4_inode_cachep;
912 
913 /*
914  * Called inside transaction, so use GFP_NOFS
915  */
916 static struct inode *ext4_alloc_inode(struct super_block *sb)
917 {
918 	struct ext4_inode_info *ei;
919 
920 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
921 	if (!ei)
922 		return NULL;
923 
924 	ei->vfs_inode.i_version = 1;
925 	spin_lock_init(&ei->i_raw_lock);
926 	INIT_LIST_HEAD(&ei->i_prealloc_list);
927 	spin_lock_init(&ei->i_prealloc_lock);
928 	ext4_es_init_tree(&ei->i_es_tree);
929 	rwlock_init(&ei->i_es_lock);
930 	INIT_LIST_HEAD(&ei->i_es_list);
931 	ei->i_es_all_nr = 0;
932 	ei->i_es_shk_nr = 0;
933 	ei->i_es_shrink_lblk = 0;
934 	ei->i_reserved_data_blocks = 0;
935 	ei->i_reserved_meta_blocks = 0;
936 	ei->i_allocated_meta_blocks = 0;
937 	ei->i_da_metadata_calc_len = 0;
938 	ei->i_da_metadata_calc_last_lblock = 0;
939 	spin_lock_init(&(ei->i_block_reservation_lock));
940 #ifdef CONFIG_QUOTA
941 	ei->i_reserved_quota = 0;
942 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
943 #endif
944 	ei->jinode = NULL;
945 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
946 	spin_lock_init(&ei->i_completed_io_lock);
947 	ei->i_sync_tid = 0;
948 	ei->i_datasync_tid = 0;
949 	atomic_set(&ei->i_unwritten, 0);
950 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
951 	return &ei->vfs_inode;
952 }
953 
954 static int ext4_drop_inode(struct inode *inode)
955 {
956 	int drop = generic_drop_inode(inode);
957 
958 	trace_ext4_drop_inode(inode, drop);
959 	return drop;
960 }
961 
962 static void ext4_i_callback(struct rcu_head *head)
963 {
964 	struct inode *inode = container_of(head, struct inode, i_rcu);
965 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
966 }
967 
968 static void ext4_destroy_inode(struct inode *inode)
969 {
970 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
971 		ext4_msg(inode->i_sb, KERN_ERR,
972 			 "Inode %lu (%p): orphan list check failed!",
973 			 inode->i_ino, EXT4_I(inode));
974 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
975 				EXT4_I(inode), sizeof(struct ext4_inode_info),
976 				true);
977 		dump_stack();
978 	}
979 	call_rcu(&inode->i_rcu, ext4_i_callback);
980 }
981 
982 static void init_once(void *foo)
983 {
984 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
985 
986 	INIT_LIST_HEAD(&ei->i_orphan);
987 	init_rwsem(&ei->xattr_sem);
988 	init_rwsem(&ei->i_data_sem);
989 	init_rwsem(&ei->i_mmap_sem);
990 	inode_init_once(&ei->vfs_inode);
991 }
992 
993 static int __init init_inodecache(void)
994 {
995 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
996 					     sizeof(struct ext4_inode_info),
997 					     0, (SLAB_RECLAIM_ACCOUNT|
998 						SLAB_MEM_SPREAD|SLAB_ACCOUNT),
999 					     init_once);
1000 	if (ext4_inode_cachep == NULL)
1001 		return -ENOMEM;
1002 	return 0;
1003 }
1004 
1005 static void destroy_inodecache(void)
1006 {
1007 	/*
1008 	 * Make sure all delayed rcu free inodes are flushed before we
1009 	 * destroy cache.
1010 	 */
1011 	rcu_barrier();
1012 	kmem_cache_destroy(ext4_inode_cachep);
1013 }
1014 
1015 void ext4_clear_inode(struct inode *inode)
1016 {
1017 	invalidate_inode_buffers(inode);
1018 	clear_inode(inode);
1019 	dquot_drop(inode);
1020 	ext4_discard_preallocations(inode);
1021 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1022 	if (EXT4_I(inode)->jinode) {
1023 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1024 					       EXT4_I(inode)->jinode);
1025 		jbd2_free_inode(EXT4_I(inode)->jinode);
1026 		EXT4_I(inode)->jinode = NULL;
1027 	}
1028 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1029 	fscrypt_put_encryption_info(inode, NULL);
1030 #endif
1031 }
1032 
1033 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 					u64 ino, u32 generation)
1035 {
1036 	struct inode *inode;
1037 
1038 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 		return ERR_PTR(-ESTALE);
1040 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 		return ERR_PTR(-ESTALE);
1042 
1043 	/* iget isn't really right if the inode is currently unallocated!!
1044 	 *
1045 	 * ext4_read_inode will return a bad_inode if the inode had been
1046 	 * deleted, so we should be safe.
1047 	 *
1048 	 * Currently we don't know the generation for parent directory, so
1049 	 * a generation of 0 means "accept any"
1050 	 */
1051 	inode = ext4_iget_normal(sb, ino);
1052 	if (IS_ERR(inode))
1053 		return ERR_CAST(inode);
1054 	if (generation && inode->i_generation != generation) {
1055 		iput(inode);
1056 		return ERR_PTR(-ESTALE);
1057 	}
1058 
1059 	return inode;
1060 }
1061 
1062 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 					int fh_len, int fh_type)
1064 {
1065 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 				    ext4_nfs_get_inode);
1067 }
1068 
1069 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 					int fh_len, int fh_type)
1071 {
1072 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 				    ext4_nfs_get_inode);
1074 }
1075 
1076 /*
1077  * Try to release metadata pages (indirect blocks, directories) which are
1078  * mapped via the block device.  Since these pages could have journal heads
1079  * which would prevent try_to_free_buffers() from freeing them, we must use
1080  * jbd2 layer's try_to_free_buffers() function to release them.
1081  */
1082 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 				 gfp_t wait)
1084 {
1085 	journal_t *journal = EXT4_SB(sb)->s_journal;
1086 
1087 	WARN_ON(PageChecked(page));
1088 	if (!page_has_buffers(page))
1089 		return 0;
1090 	if (journal)
1091 		return jbd2_journal_try_to_free_buffers(journal, page,
1092 						wait & ~__GFP_DIRECT_RECLAIM);
1093 	return try_to_free_buffers(page);
1094 }
1095 
1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1097 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1098 {
1099 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1100 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1101 }
1102 
1103 static int ext4_key_prefix(struct inode *inode, u8 **key)
1104 {
1105 	*key = EXT4_SB(inode->i_sb)->key_prefix;
1106 	return EXT4_SB(inode->i_sb)->key_prefix_size;
1107 }
1108 
1109 static int ext4_prepare_context(struct inode *inode)
1110 {
1111 	return ext4_convert_inline_data(inode);
1112 }
1113 
1114 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1115 							void *fs_data)
1116 {
1117 	handle_t *handle;
1118 	int res, res2;
1119 
1120 	/* fs_data is null when internally used. */
1121 	if (fs_data) {
1122 		res  = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1123 				EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx,
1124 				len, 0);
1125 		if (!res) {
1126 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1127 			ext4_clear_inode_state(inode,
1128 					EXT4_STATE_MAY_INLINE_DATA);
1129 		}
1130 		return res;
1131 	}
1132 
1133 	handle = ext4_journal_start(inode, EXT4_HT_MISC,
1134 			ext4_jbd2_credits_xattr(inode));
1135 	if (IS_ERR(handle))
1136 		return PTR_ERR(handle);
1137 
1138 	res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1139 			EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx,
1140 			len, 0);
1141 	if (!res) {
1142 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1143 		res = ext4_mark_inode_dirty(handle, inode);
1144 		if (res)
1145 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1146 	}
1147 	res2 = ext4_journal_stop(handle);
1148 	if (!res)
1149 		res = res2;
1150 	return res;
1151 }
1152 
1153 static int ext4_dummy_context(struct inode *inode)
1154 {
1155 	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1156 }
1157 
1158 static unsigned ext4_max_namelen(struct inode *inode)
1159 {
1160 	return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1161 		EXT4_NAME_LEN;
1162 }
1163 
1164 static struct fscrypt_operations ext4_cryptops = {
1165 	.get_context		= ext4_get_context,
1166 	.key_prefix		= ext4_key_prefix,
1167 	.prepare_context	= ext4_prepare_context,
1168 	.set_context		= ext4_set_context,
1169 	.dummy_context		= ext4_dummy_context,
1170 	.is_encrypted		= ext4_encrypted_inode,
1171 	.empty_dir		= ext4_empty_dir,
1172 	.max_namelen		= ext4_max_namelen,
1173 };
1174 #else
1175 static struct fscrypt_operations ext4_cryptops = {
1176 	.is_encrypted		= ext4_encrypted_inode,
1177 };
1178 #endif
1179 
1180 #ifdef CONFIG_QUOTA
1181 static char *quotatypes[] = INITQFNAMES;
1182 #define QTYPE2NAME(t) (quotatypes[t])
1183 
1184 static int ext4_write_dquot(struct dquot *dquot);
1185 static int ext4_acquire_dquot(struct dquot *dquot);
1186 static int ext4_release_dquot(struct dquot *dquot);
1187 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1188 static int ext4_write_info(struct super_block *sb, int type);
1189 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1190 			 struct path *path);
1191 static int ext4_quota_off(struct super_block *sb, int type);
1192 static int ext4_quota_on_mount(struct super_block *sb, int type);
1193 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1194 			       size_t len, loff_t off);
1195 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1196 				const char *data, size_t len, loff_t off);
1197 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1198 			     unsigned int flags);
1199 static int ext4_enable_quotas(struct super_block *sb);
1200 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1201 
1202 static struct dquot **ext4_get_dquots(struct inode *inode)
1203 {
1204 	return EXT4_I(inode)->i_dquot;
1205 }
1206 
1207 static const struct dquot_operations ext4_quota_operations = {
1208 	.get_reserved_space = ext4_get_reserved_space,
1209 	.write_dquot	= ext4_write_dquot,
1210 	.acquire_dquot	= ext4_acquire_dquot,
1211 	.release_dquot	= ext4_release_dquot,
1212 	.mark_dirty	= ext4_mark_dquot_dirty,
1213 	.write_info	= ext4_write_info,
1214 	.alloc_dquot	= dquot_alloc,
1215 	.destroy_dquot	= dquot_destroy,
1216 	.get_projid	= ext4_get_projid,
1217 	.get_next_id	= ext4_get_next_id,
1218 };
1219 
1220 static const struct quotactl_ops ext4_qctl_operations = {
1221 	.quota_on	= ext4_quota_on,
1222 	.quota_off	= ext4_quota_off,
1223 	.quota_sync	= dquot_quota_sync,
1224 	.get_state	= dquot_get_state,
1225 	.set_info	= dquot_set_dqinfo,
1226 	.get_dqblk	= dquot_get_dqblk,
1227 	.set_dqblk	= dquot_set_dqblk,
1228 	.get_nextdqblk	= dquot_get_next_dqblk,
1229 };
1230 #endif
1231 
1232 static const struct super_operations ext4_sops = {
1233 	.alloc_inode	= ext4_alloc_inode,
1234 	.destroy_inode	= ext4_destroy_inode,
1235 	.write_inode	= ext4_write_inode,
1236 	.dirty_inode	= ext4_dirty_inode,
1237 	.drop_inode	= ext4_drop_inode,
1238 	.evict_inode	= ext4_evict_inode,
1239 	.put_super	= ext4_put_super,
1240 	.sync_fs	= ext4_sync_fs,
1241 	.freeze_fs	= ext4_freeze,
1242 	.unfreeze_fs	= ext4_unfreeze,
1243 	.statfs		= ext4_statfs,
1244 	.remount_fs	= ext4_remount,
1245 	.show_options	= ext4_show_options,
1246 #ifdef CONFIG_QUOTA
1247 	.quota_read	= ext4_quota_read,
1248 	.quota_write	= ext4_quota_write,
1249 	.get_dquots	= ext4_get_dquots,
1250 #endif
1251 	.bdev_try_to_free_page = bdev_try_to_free_page,
1252 };
1253 
1254 static const struct export_operations ext4_export_ops = {
1255 	.fh_to_dentry = ext4_fh_to_dentry,
1256 	.fh_to_parent = ext4_fh_to_parent,
1257 	.get_parent = ext4_get_parent,
1258 };
1259 
1260 enum {
1261 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1262 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1263 	Opt_nouid32, Opt_debug, Opt_removed,
1264 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1265 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1266 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1267 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1268 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1269 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1270 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1271 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1272 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1273 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1274 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1275 	Opt_lazytime, Opt_nolazytime,
1276 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1277 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1278 	Opt_dioread_nolock, Opt_dioread_lock,
1279 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1280 	Opt_max_dir_size_kb, Opt_nojournal_checksum,
1281 };
1282 
1283 static const match_table_t tokens = {
1284 	{Opt_bsd_df, "bsddf"},
1285 	{Opt_minix_df, "minixdf"},
1286 	{Opt_grpid, "grpid"},
1287 	{Opt_grpid, "bsdgroups"},
1288 	{Opt_nogrpid, "nogrpid"},
1289 	{Opt_nogrpid, "sysvgroups"},
1290 	{Opt_resgid, "resgid=%u"},
1291 	{Opt_resuid, "resuid=%u"},
1292 	{Opt_sb, "sb=%u"},
1293 	{Opt_err_cont, "errors=continue"},
1294 	{Opt_err_panic, "errors=panic"},
1295 	{Opt_err_ro, "errors=remount-ro"},
1296 	{Opt_nouid32, "nouid32"},
1297 	{Opt_debug, "debug"},
1298 	{Opt_removed, "oldalloc"},
1299 	{Opt_removed, "orlov"},
1300 	{Opt_user_xattr, "user_xattr"},
1301 	{Opt_nouser_xattr, "nouser_xattr"},
1302 	{Opt_acl, "acl"},
1303 	{Opt_noacl, "noacl"},
1304 	{Opt_noload, "norecovery"},
1305 	{Opt_noload, "noload"},
1306 	{Opt_removed, "nobh"},
1307 	{Opt_removed, "bh"},
1308 	{Opt_commit, "commit=%u"},
1309 	{Opt_min_batch_time, "min_batch_time=%u"},
1310 	{Opt_max_batch_time, "max_batch_time=%u"},
1311 	{Opt_journal_dev, "journal_dev=%u"},
1312 	{Opt_journal_path, "journal_path=%s"},
1313 	{Opt_journal_checksum, "journal_checksum"},
1314 	{Opt_nojournal_checksum, "nojournal_checksum"},
1315 	{Opt_journal_async_commit, "journal_async_commit"},
1316 	{Opt_abort, "abort"},
1317 	{Opt_data_journal, "data=journal"},
1318 	{Opt_data_ordered, "data=ordered"},
1319 	{Opt_data_writeback, "data=writeback"},
1320 	{Opt_data_err_abort, "data_err=abort"},
1321 	{Opt_data_err_ignore, "data_err=ignore"},
1322 	{Opt_offusrjquota, "usrjquota="},
1323 	{Opt_usrjquota, "usrjquota=%s"},
1324 	{Opt_offgrpjquota, "grpjquota="},
1325 	{Opt_grpjquota, "grpjquota=%s"},
1326 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1327 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1328 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1329 	{Opt_grpquota, "grpquota"},
1330 	{Opt_noquota, "noquota"},
1331 	{Opt_quota, "quota"},
1332 	{Opt_usrquota, "usrquota"},
1333 	{Opt_prjquota, "prjquota"},
1334 	{Opt_barrier, "barrier=%u"},
1335 	{Opt_barrier, "barrier"},
1336 	{Opt_nobarrier, "nobarrier"},
1337 	{Opt_i_version, "i_version"},
1338 	{Opt_dax, "dax"},
1339 	{Opt_stripe, "stripe=%u"},
1340 	{Opt_delalloc, "delalloc"},
1341 	{Opt_lazytime, "lazytime"},
1342 	{Opt_nolazytime, "nolazytime"},
1343 	{Opt_nodelalloc, "nodelalloc"},
1344 	{Opt_removed, "mblk_io_submit"},
1345 	{Opt_removed, "nomblk_io_submit"},
1346 	{Opt_block_validity, "block_validity"},
1347 	{Opt_noblock_validity, "noblock_validity"},
1348 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1349 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1350 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1351 	{Opt_auto_da_alloc, "auto_da_alloc"},
1352 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1353 	{Opt_dioread_nolock, "dioread_nolock"},
1354 	{Opt_dioread_lock, "dioread_lock"},
1355 	{Opt_discard, "discard"},
1356 	{Opt_nodiscard, "nodiscard"},
1357 	{Opt_init_itable, "init_itable=%u"},
1358 	{Opt_init_itable, "init_itable"},
1359 	{Opt_noinit_itable, "noinit_itable"},
1360 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1361 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1362 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1363 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1364 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1365 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1366 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1367 	{Opt_err, NULL},
1368 };
1369 
1370 static ext4_fsblk_t get_sb_block(void **data)
1371 {
1372 	ext4_fsblk_t	sb_block;
1373 	char		*options = (char *) *data;
1374 
1375 	if (!options || strncmp(options, "sb=", 3) != 0)
1376 		return 1;	/* Default location */
1377 
1378 	options += 3;
1379 	/* TODO: use simple_strtoll with >32bit ext4 */
1380 	sb_block = simple_strtoul(options, &options, 0);
1381 	if (*options && *options != ',') {
1382 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1383 		       (char *) *data);
1384 		return 1;
1385 	}
1386 	if (*options == ',')
1387 		options++;
1388 	*data = (void *) options;
1389 
1390 	return sb_block;
1391 }
1392 
1393 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1394 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1395 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1396 
1397 #ifdef CONFIG_QUOTA
1398 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1399 {
1400 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1401 	char *qname;
1402 	int ret = -1;
1403 
1404 	if (sb_any_quota_loaded(sb) &&
1405 		!sbi->s_qf_names[qtype]) {
1406 		ext4_msg(sb, KERN_ERR,
1407 			"Cannot change journaled "
1408 			"quota options when quota turned on");
1409 		return -1;
1410 	}
1411 	if (ext4_has_feature_quota(sb)) {
1412 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1413 			 "ignored when QUOTA feature is enabled");
1414 		return 1;
1415 	}
1416 	qname = match_strdup(args);
1417 	if (!qname) {
1418 		ext4_msg(sb, KERN_ERR,
1419 			"Not enough memory for storing quotafile name");
1420 		return -1;
1421 	}
1422 	if (sbi->s_qf_names[qtype]) {
1423 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1424 			ret = 1;
1425 		else
1426 			ext4_msg(sb, KERN_ERR,
1427 				 "%s quota file already specified",
1428 				 QTYPE2NAME(qtype));
1429 		goto errout;
1430 	}
1431 	if (strchr(qname, '/')) {
1432 		ext4_msg(sb, KERN_ERR,
1433 			"quotafile must be on filesystem root");
1434 		goto errout;
1435 	}
1436 	sbi->s_qf_names[qtype] = qname;
1437 	set_opt(sb, QUOTA);
1438 	return 1;
1439 errout:
1440 	kfree(qname);
1441 	return ret;
1442 }
1443 
1444 static int clear_qf_name(struct super_block *sb, int qtype)
1445 {
1446 
1447 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1448 
1449 	if (sb_any_quota_loaded(sb) &&
1450 		sbi->s_qf_names[qtype]) {
1451 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1452 			" when quota turned on");
1453 		return -1;
1454 	}
1455 	kfree(sbi->s_qf_names[qtype]);
1456 	sbi->s_qf_names[qtype] = NULL;
1457 	return 1;
1458 }
1459 #endif
1460 
1461 #define MOPT_SET	0x0001
1462 #define MOPT_CLEAR	0x0002
1463 #define MOPT_NOSUPPORT	0x0004
1464 #define MOPT_EXPLICIT	0x0008
1465 #define MOPT_CLEAR_ERR	0x0010
1466 #define MOPT_GTE0	0x0020
1467 #ifdef CONFIG_QUOTA
1468 #define MOPT_Q		0
1469 #define MOPT_QFMT	0x0040
1470 #else
1471 #define MOPT_Q		MOPT_NOSUPPORT
1472 #define MOPT_QFMT	MOPT_NOSUPPORT
1473 #endif
1474 #define MOPT_DATAJ	0x0080
1475 #define MOPT_NO_EXT2	0x0100
1476 #define MOPT_NO_EXT3	0x0200
1477 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1478 #define MOPT_STRING	0x0400
1479 
1480 static const struct mount_opts {
1481 	int	token;
1482 	int	mount_opt;
1483 	int	flags;
1484 } ext4_mount_opts[] = {
1485 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1486 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1487 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1488 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1489 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1490 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1491 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1492 	 MOPT_EXT4_ONLY | MOPT_SET},
1493 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1494 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1495 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1496 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1497 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1498 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1499 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1500 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1501 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1502 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1503 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1504 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1505 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1506 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1507 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1508 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1509 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1510 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1511 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1512 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1513 	 MOPT_NO_EXT2},
1514 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1515 	 MOPT_NO_EXT2},
1516 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1517 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1518 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1519 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1520 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1521 	{Opt_commit, 0, MOPT_GTE0},
1522 	{Opt_max_batch_time, 0, MOPT_GTE0},
1523 	{Opt_min_batch_time, 0, MOPT_GTE0},
1524 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1525 	{Opt_init_itable, 0, MOPT_GTE0},
1526 	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1527 	{Opt_stripe, 0, MOPT_GTE0},
1528 	{Opt_resuid, 0, MOPT_GTE0},
1529 	{Opt_resgid, 0, MOPT_GTE0},
1530 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1531 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1532 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1533 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1534 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1535 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1536 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1537 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1538 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1539 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1540 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1541 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1542 #else
1543 	{Opt_acl, 0, MOPT_NOSUPPORT},
1544 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1545 #endif
1546 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1547 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1548 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1549 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1550 							MOPT_SET | MOPT_Q},
1551 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1552 							MOPT_SET | MOPT_Q},
1553 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1554 							MOPT_SET | MOPT_Q},
1555 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1556 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1557 							MOPT_CLEAR | MOPT_Q},
1558 	{Opt_usrjquota, 0, MOPT_Q},
1559 	{Opt_grpjquota, 0, MOPT_Q},
1560 	{Opt_offusrjquota, 0, MOPT_Q},
1561 	{Opt_offgrpjquota, 0, MOPT_Q},
1562 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1563 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1564 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1565 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1566 	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1567 	{Opt_err, 0, 0}
1568 };
1569 
1570 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1571 			    substring_t *args, unsigned long *journal_devnum,
1572 			    unsigned int *journal_ioprio, int is_remount)
1573 {
1574 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1575 	const struct mount_opts *m;
1576 	kuid_t uid;
1577 	kgid_t gid;
1578 	int arg = 0;
1579 
1580 #ifdef CONFIG_QUOTA
1581 	if (token == Opt_usrjquota)
1582 		return set_qf_name(sb, USRQUOTA, &args[0]);
1583 	else if (token == Opt_grpjquota)
1584 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1585 	else if (token == Opt_offusrjquota)
1586 		return clear_qf_name(sb, USRQUOTA);
1587 	else if (token == Opt_offgrpjquota)
1588 		return clear_qf_name(sb, GRPQUOTA);
1589 #endif
1590 	switch (token) {
1591 	case Opt_noacl:
1592 	case Opt_nouser_xattr:
1593 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1594 		break;
1595 	case Opt_sb:
1596 		return 1;	/* handled by get_sb_block() */
1597 	case Opt_removed:
1598 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1599 		return 1;
1600 	case Opt_abort:
1601 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1602 		return 1;
1603 	case Opt_i_version:
1604 		sb->s_flags |= MS_I_VERSION;
1605 		return 1;
1606 	case Opt_lazytime:
1607 		sb->s_flags |= MS_LAZYTIME;
1608 		return 1;
1609 	case Opt_nolazytime:
1610 		sb->s_flags &= ~MS_LAZYTIME;
1611 		return 1;
1612 	}
1613 
1614 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1615 		if (token == m->token)
1616 			break;
1617 
1618 	if (m->token == Opt_err) {
1619 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1620 			 "or missing value", opt);
1621 		return -1;
1622 	}
1623 
1624 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1625 		ext4_msg(sb, KERN_ERR,
1626 			 "Mount option \"%s\" incompatible with ext2", opt);
1627 		return -1;
1628 	}
1629 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1630 		ext4_msg(sb, KERN_ERR,
1631 			 "Mount option \"%s\" incompatible with ext3", opt);
1632 		return -1;
1633 	}
1634 
1635 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1636 		return -1;
1637 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1638 		return -1;
1639 	if (m->flags & MOPT_EXPLICIT) {
1640 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1641 			set_opt2(sb, EXPLICIT_DELALLOC);
1642 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1643 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1644 		} else
1645 			return -1;
1646 	}
1647 	if (m->flags & MOPT_CLEAR_ERR)
1648 		clear_opt(sb, ERRORS_MASK);
1649 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1650 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1651 			 "options when quota turned on");
1652 		return -1;
1653 	}
1654 
1655 	if (m->flags & MOPT_NOSUPPORT) {
1656 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1657 	} else if (token == Opt_commit) {
1658 		if (arg == 0)
1659 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1660 		sbi->s_commit_interval = HZ * arg;
1661 	} else if (token == Opt_max_batch_time) {
1662 		sbi->s_max_batch_time = arg;
1663 	} else if (token == Opt_min_batch_time) {
1664 		sbi->s_min_batch_time = arg;
1665 	} else if (token == Opt_inode_readahead_blks) {
1666 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1667 			ext4_msg(sb, KERN_ERR,
1668 				 "EXT4-fs: inode_readahead_blks must be "
1669 				 "0 or a power of 2 smaller than 2^31");
1670 			return -1;
1671 		}
1672 		sbi->s_inode_readahead_blks = arg;
1673 	} else if (token == Opt_init_itable) {
1674 		set_opt(sb, INIT_INODE_TABLE);
1675 		if (!args->from)
1676 			arg = EXT4_DEF_LI_WAIT_MULT;
1677 		sbi->s_li_wait_mult = arg;
1678 	} else if (token == Opt_max_dir_size_kb) {
1679 		sbi->s_max_dir_size_kb = arg;
1680 	} else if (token == Opt_stripe) {
1681 		sbi->s_stripe = arg;
1682 	} else if (token == Opt_resuid) {
1683 		uid = make_kuid(current_user_ns(), arg);
1684 		if (!uid_valid(uid)) {
1685 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1686 			return -1;
1687 		}
1688 		sbi->s_resuid = uid;
1689 	} else if (token == Opt_resgid) {
1690 		gid = make_kgid(current_user_ns(), arg);
1691 		if (!gid_valid(gid)) {
1692 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1693 			return -1;
1694 		}
1695 		sbi->s_resgid = gid;
1696 	} else if (token == Opt_journal_dev) {
1697 		if (is_remount) {
1698 			ext4_msg(sb, KERN_ERR,
1699 				 "Cannot specify journal on remount");
1700 			return -1;
1701 		}
1702 		*journal_devnum = arg;
1703 	} else if (token == Opt_journal_path) {
1704 		char *journal_path;
1705 		struct inode *journal_inode;
1706 		struct path path;
1707 		int error;
1708 
1709 		if (is_remount) {
1710 			ext4_msg(sb, KERN_ERR,
1711 				 "Cannot specify journal on remount");
1712 			return -1;
1713 		}
1714 		journal_path = match_strdup(&args[0]);
1715 		if (!journal_path) {
1716 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1717 				"journal device string");
1718 			return -1;
1719 		}
1720 
1721 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1722 		if (error) {
1723 			ext4_msg(sb, KERN_ERR, "error: could not find "
1724 				"journal device path: error %d", error);
1725 			kfree(journal_path);
1726 			return -1;
1727 		}
1728 
1729 		journal_inode = d_inode(path.dentry);
1730 		if (!S_ISBLK(journal_inode->i_mode)) {
1731 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1732 				"is not a block device", journal_path);
1733 			path_put(&path);
1734 			kfree(journal_path);
1735 			return -1;
1736 		}
1737 
1738 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1739 		path_put(&path);
1740 		kfree(journal_path);
1741 	} else if (token == Opt_journal_ioprio) {
1742 		if (arg > 7) {
1743 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1744 				 " (must be 0-7)");
1745 			return -1;
1746 		}
1747 		*journal_ioprio =
1748 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1749 	} else if (token == Opt_test_dummy_encryption) {
1750 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1751 		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1752 		ext4_msg(sb, KERN_WARNING,
1753 			 "Test dummy encryption mode enabled");
1754 #else
1755 		ext4_msg(sb, KERN_WARNING,
1756 			 "Test dummy encryption mount option ignored");
1757 #endif
1758 	} else if (m->flags & MOPT_DATAJ) {
1759 		if (is_remount) {
1760 			if (!sbi->s_journal)
1761 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1762 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1763 				ext4_msg(sb, KERN_ERR,
1764 					 "Cannot change data mode on remount");
1765 				return -1;
1766 			}
1767 		} else {
1768 			clear_opt(sb, DATA_FLAGS);
1769 			sbi->s_mount_opt |= m->mount_opt;
1770 		}
1771 #ifdef CONFIG_QUOTA
1772 	} else if (m->flags & MOPT_QFMT) {
1773 		if (sb_any_quota_loaded(sb) &&
1774 		    sbi->s_jquota_fmt != m->mount_opt) {
1775 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1776 				 "quota options when quota turned on");
1777 			return -1;
1778 		}
1779 		if (ext4_has_feature_quota(sb)) {
1780 			ext4_msg(sb, KERN_INFO,
1781 				 "Quota format mount options ignored "
1782 				 "when QUOTA feature is enabled");
1783 			return 1;
1784 		}
1785 		sbi->s_jquota_fmt = m->mount_opt;
1786 #endif
1787 	} else if (token == Opt_dax) {
1788 #ifdef CONFIG_FS_DAX
1789 		ext4_msg(sb, KERN_WARNING,
1790 		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1791 			sbi->s_mount_opt |= m->mount_opt;
1792 #else
1793 		ext4_msg(sb, KERN_INFO, "dax option not supported");
1794 		return -1;
1795 #endif
1796 	} else if (token == Opt_data_err_abort) {
1797 		sbi->s_mount_opt |= m->mount_opt;
1798 	} else if (token == Opt_data_err_ignore) {
1799 		sbi->s_mount_opt &= ~m->mount_opt;
1800 	} else {
1801 		if (!args->from)
1802 			arg = 1;
1803 		if (m->flags & MOPT_CLEAR)
1804 			arg = !arg;
1805 		else if (unlikely(!(m->flags & MOPT_SET))) {
1806 			ext4_msg(sb, KERN_WARNING,
1807 				 "buggy handling of option %s", opt);
1808 			WARN_ON(1);
1809 			return -1;
1810 		}
1811 		if (arg != 0)
1812 			sbi->s_mount_opt |= m->mount_opt;
1813 		else
1814 			sbi->s_mount_opt &= ~m->mount_opt;
1815 	}
1816 	return 1;
1817 }
1818 
1819 static int parse_options(char *options, struct super_block *sb,
1820 			 unsigned long *journal_devnum,
1821 			 unsigned int *journal_ioprio,
1822 			 int is_remount)
1823 {
1824 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1825 	char *p;
1826 	substring_t args[MAX_OPT_ARGS];
1827 	int token;
1828 
1829 	if (!options)
1830 		return 1;
1831 
1832 	while ((p = strsep(&options, ",")) != NULL) {
1833 		if (!*p)
1834 			continue;
1835 		/*
1836 		 * Initialize args struct so we know whether arg was
1837 		 * found; some options take optional arguments.
1838 		 */
1839 		args[0].to = args[0].from = NULL;
1840 		token = match_token(p, tokens, args);
1841 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1842 				     journal_ioprio, is_remount) < 0)
1843 			return 0;
1844 	}
1845 #ifdef CONFIG_QUOTA
1846 	/*
1847 	 * We do the test below only for project quotas. 'usrquota' and
1848 	 * 'grpquota' mount options are allowed even without quota feature
1849 	 * to support legacy quotas in quota files.
1850 	 */
1851 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1852 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1853 			 "Cannot enable project quota enforcement.");
1854 		return 0;
1855 	}
1856 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1857 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1858 			clear_opt(sb, USRQUOTA);
1859 
1860 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1861 			clear_opt(sb, GRPQUOTA);
1862 
1863 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1864 			ext4_msg(sb, KERN_ERR, "old and new quota "
1865 					"format mixing");
1866 			return 0;
1867 		}
1868 
1869 		if (!sbi->s_jquota_fmt) {
1870 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1871 					"not specified");
1872 			return 0;
1873 		}
1874 	}
1875 #endif
1876 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1877 		int blocksize =
1878 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1879 
1880 		if (blocksize < PAGE_SIZE) {
1881 			ext4_msg(sb, KERN_ERR, "can't mount with "
1882 				 "dioread_nolock if block size != PAGE_SIZE");
1883 			return 0;
1884 		}
1885 	}
1886 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1887 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1888 		ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1889 			 "in data=ordered mode");
1890 		return 0;
1891 	}
1892 	return 1;
1893 }
1894 
1895 static inline void ext4_show_quota_options(struct seq_file *seq,
1896 					   struct super_block *sb)
1897 {
1898 #if defined(CONFIG_QUOTA)
1899 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1900 
1901 	if (sbi->s_jquota_fmt) {
1902 		char *fmtname = "";
1903 
1904 		switch (sbi->s_jquota_fmt) {
1905 		case QFMT_VFS_OLD:
1906 			fmtname = "vfsold";
1907 			break;
1908 		case QFMT_VFS_V0:
1909 			fmtname = "vfsv0";
1910 			break;
1911 		case QFMT_VFS_V1:
1912 			fmtname = "vfsv1";
1913 			break;
1914 		}
1915 		seq_printf(seq, ",jqfmt=%s", fmtname);
1916 	}
1917 
1918 	if (sbi->s_qf_names[USRQUOTA])
1919 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1920 
1921 	if (sbi->s_qf_names[GRPQUOTA])
1922 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1923 #endif
1924 }
1925 
1926 static const char *token2str(int token)
1927 {
1928 	const struct match_token *t;
1929 
1930 	for (t = tokens; t->token != Opt_err; t++)
1931 		if (t->token == token && !strchr(t->pattern, '='))
1932 			break;
1933 	return t->pattern;
1934 }
1935 
1936 /*
1937  * Show an option if
1938  *  - it's set to a non-default value OR
1939  *  - if the per-sb default is different from the global default
1940  */
1941 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1942 			      int nodefs)
1943 {
1944 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1945 	struct ext4_super_block *es = sbi->s_es;
1946 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1947 	const struct mount_opts *m;
1948 	char sep = nodefs ? '\n' : ',';
1949 
1950 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1951 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1952 
1953 	if (sbi->s_sb_block != 1)
1954 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1955 
1956 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1957 		int want_set = m->flags & MOPT_SET;
1958 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1959 		    (m->flags & MOPT_CLEAR_ERR))
1960 			continue;
1961 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1962 			continue; /* skip if same as the default */
1963 		if ((want_set &&
1964 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1965 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1966 			continue; /* select Opt_noFoo vs Opt_Foo */
1967 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1968 	}
1969 
1970 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1971 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1972 		SEQ_OPTS_PRINT("resuid=%u",
1973 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1974 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1975 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1976 		SEQ_OPTS_PRINT("resgid=%u",
1977 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1978 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1979 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1980 		SEQ_OPTS_PUTS("errors=remount-ro");
1981 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1982 		SEQ_OPTS_PUTS("errors=continue");
1983 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1984 		SEQ_OPTS_PUTS("errors=panic");
1985 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1986 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1987 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1988 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1989 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1990 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1991 	if (sb->s_flags & MS_I_VERSION)
1992 		SEQ_OPTS_PUTS("i_version");
1993 	if (nodefs || sbi->s_stripe)
1994 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1995 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1996 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1997 			SEQ_OPTS_PUTS("data=journal");
1998 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1999 			SEQ_OPTS_PUTS("data=ordered");
2000 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2001 			SEQ_OPTS_PUTS("data=writeback");
2002 	}
2003 	if (nodefs ||
2004 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2005 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2006 			       sbi->s_inode_readahead_blks);
2007 
2008 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2009 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2010 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2011 	if (nodefs || sbi->s_max_dir_size_kb)
2012 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2013 	if (test_opt(sb, DATA_ERR_ABORT))
2014 		SEQ_OPTS_PUTS("data_err=abort");
2015 
2016 	ext4_show_quota_options(seq, sb);
2017 	return 0;
2018 }
2019 
2020 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2021 {
2022 	return _ext4_show_options(seq, root->d_sb, 0);
2023 }
2024 
2025 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2026 {
2027 	struct super_block *sb = seq->private;
2028 	int rc;
2029 
2030 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2031 	rc = _ext4_show_options(seq, sb, 1);
2032 	seq_puts(seq, "\n");
2033 	return rc;
2034 }
2035 
2036 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2037 			    int read_only)
2038 {
2039 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2040 	int res = 0;
2041 
2042 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2043 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2044 			 "forcing read-only mode");
2045 		res = MS_RDONLY;
2046 	}
2047 	if (read_only)
2048 		goto done;
2049 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2050 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2051 			 "running e2fsck is recommended");
2052 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2053 		ext4_msg(sb, KERN_WARNING,
2054 			 "warning: mounting fs with errors, "
2055 			 "running e2fsck is recommended");
2056 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2057 		 le16_to_cpu(es->s_mnt_count) >=
2058 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2059 		ext4_msg(sb, KERN_WARNING,
2060 			 "warning: maximal mount count reached, "
2061 			 "running e2fsck is recommended");
2062 	else if (le32_to_cpu(es->s_checkinterval) &&
2063 		(le32_to_cpu(es->s_lastcheck) +
2064 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2065 		ext4_msg(sb, KERN_WARNING,
2066 			 "warning: checktime reached, "
2067 			 "running e2fsck is recommended");
2068 	if (!sbi->s_journal)
2069 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2070 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2071 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2072 	le16_add_cpu(&es->s_mnt_count, 1);
2073 	es->s_mtime = cpu_to_le32(get_seconds());
2074 	ext4_update_dynamic_rev(sb);
2075 	if (sbi->s_journal)
2076 		ext4_set_feature_journal_needs_recovery(sb);
2077 
2078 	ext4_commit_super(sb, 1);
2079 done:
2080 	if (test_opt(sb, DEBUG))
2081 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2082 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2083 			sb->s_blocksize,
2084 			sbi->s_groups_count,
2085 			EXT4_BLOCKS_PER_GROUP(sb),
2086 			EXT4_INODES_PER_GROUP(sb),
2087 			sbi->s_mount_opt, sbi->s_mount_opt2);
2088 
2089 	cleancache_init_fs(sb);
2090 	return res;
2091 }
2092 
2093 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2094 {
2095 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2096 	struct flex_groups *new_groups;
2097 	int size;
2098 
2099 	if (!sbi->s_log_groups_per_flex)
2100 		return 0;
2101 
2102 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2103 	if (size <= sbi->s_flex_groups_allocated)
2104 		return 0;
2105 
2106 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2107 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2108 	if (!new_groups) {
2109 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2110 			 size / (int) sizeof(struct flex_groups));
2111 		return -ENOMEM;
2112 	}
2113 
2114 	if (sbi->s_flex_groups) {
2115 		memcpy(new_groups, sbi->s_flex_groups,
2116 		       (sbi->s_flex_groups_allocated *
2117 			sizeof(struct flex_groups)));
2118 		kvfree(sbi->s_flex_groups);
2119 	}
2120 	sbi->s_flex_groups = new_groups;
2121 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2122 	return 0;
2123 }
2124 
2125 static int ext4_fill_flex_info(struct super_block *sb)
2126 {
2127 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2128 	struct ext4_group_desc *gdp = NULL;
2129 	ext4_group_t flex_group;
2130 	int i, err;
2131 
2132 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2133 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2134 		sbi->s_log_groups_per_flex = 0;
2135 		return 1;
2136 	}
2137 
2138 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2139 	if (err)
2140 		goto failed;
2141 
2142 	for (i = 0; i < sbi->s_groups_count; i++) {
2143 		gdp = ext4_get_group_desc(sb, i, NULL);
2144 
2145 		flex_group = ext4_flex_group(sbi, i);
2146 		atomic_add(ext4_free_inodes_count(sb, gdp),
2147 			   &sbi->s_flex_groups[flex_group].free_inodes);
2148 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2149 			     &sbi->s_flex_groups[flex_group].free_clusters);
2150 		atomic_add(ext4_used_dirs_count(sb, gdp),
2151 			   &sbi->s_flex_groups[flex_group].used_dirs);
2152 	}
2153 
2154 	return 1;
2155 failed:
2156 	return 0;
2157 }
2158 
2159 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2160 				   struct ext4_group_desc *gdp)
2161 {
2162 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2163 	__u16 crc = 0;
2164 	__le32 le_group = cpu_to_le32(block_group);
2165 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2166 
2167 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2168 		/* Use new metadata_csum algorithm */
2169 		__u32 csum32;
2170 		__u16 dummy_csum = 0;
2171 
2172 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2173 				     sizeof(le_group));
2174 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2175 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2176 				     sizeof(dummy_csum));
2177 		offset += sizeof(dummy_csum);
2178 		if (offset < sbi->s_desc_size)
2179 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2180 					     sbi->s_desc_size - offset);
2181 
2182 		crc = csum32 & 0xFFFF;
2183 		goto out;
2184 	}
2185 
2186 	/* old crc16 code */
2187 	if (!ext4_has_feature_gdt_csum(sb))
2188 		return 0;
2189 
2190 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2191 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2192 	crc = crc16(crc, (__u8 *)gdp, offset);
2193 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2194 	/* for checksum of struct ext4_group_desc do the rest...*/
2195 	if (ext4_has_feature_64bit(sb) &&
2196 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2197 		crc = crc16(crc, (__u8 *)gdp + offset,
2198 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2199 				offset);
2200 
2201 out:
2202 	return cpu_to_le16(crc);
2203 }
2204 
2205 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2206 				struct ext4_group_desc *gdp)
2207 {
2208 	if (ext4_has_group_desc_csum(sb) &&
2209 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2210 		return 0;
2211 
2212 	return 1;
2213 }
2214 
2215 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2216 			      struct ext4_group_desc *gdp)
2217 {
2218 	if (!ext4_has_group_desc_csum(sb))
2219 		return;
2220 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2221 }
2222 
2223 /* Called at mount-time, super-block is locked */
2224 static int ext4_check_descriptors(struct super_block *sb,
2225 				  ext4_fsblk_t sb_block,
2226 				  ext4_group_t *first_not_zeroed)
2227 {
2228 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2229 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2230 	ext4_fsblk_t last_block;
2231 	ext4_fsblk_t block_bitmap;
2232 	ext4_fsblk_t inode_bitmap;
2233 	ext4_fsblk_t inode_table;
2234 	int flexbg_flag = 0;
2235 	ext4_group_t i, grp = sbi->s_groups_count;
2236 
2237 	if (ext4_has_feature_flex_bg(sb))
2238 		flexbg_flag = 1;
2239 
2240 	ext4_debug("Checking group descriptors");
2241 
2242 	for (i = 0; i < sbi->s_groups_count; i++) {
2243 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2244 
2245 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2246 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2247 		else
2248 			last_block = first_block +
2249 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2250 
2251 		if ((grp == sbi->s_groups_count) &&
2252 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2253 			grp = i;
2254 
2255 		block_bitmap = ext4_block_bitmap(sb, gdp);
2256 		if (block_bitmap == sb_block) {
2257 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2258 				 "Block bitmap for group %u overlaps "
2259 				 "superblock", i);
2260 		}
2261 		if (block_bitmap < first_block || block_bitmap > last_block) {
2262 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2263 			       "Block bitmap for group %u not in group "
2264 			       "(block %llu)!", i, block_bitmap);
2265 			return 0;
2266 		}
2267 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2268 		if (inode_bitmap == sb_block) {
2269 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2270 				 "Inode bitmap for group %u overlaps "
2271 				 "superblock", i);
2272 		}
2273 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2274 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2275 			       "Inode bitmap for group %u not in group "
2276 			       "(block %llu)!", i, inode_bitmap);
2277 			return 0;
2278 		}
2279 		inode_table = ext4_inode_table(sb, gdp);
2280 		if (inode_table == sb_block) {
2281 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2282 				 "Inode table for group %u overlaps "
2283 				 "superblock", i);
2284 		}
2285 		if (inode_table < first_block ||
2286 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2287 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2288 			       "Inode table for group %u not in group "
2289 			       "(block %llu)!", i, inode_table);
2290 			return 0;
2291 		}
2292 		ext4_lock_group(sb, i);
2293 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2294 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2295 				 "Checksum for group %u failed (%u!=%u)",
2296 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2297 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2298 			if (!(sb->s_flags & MS_RDONLY)) {
2299 				ext4_unlock_group(sb, i);
2300 				return 0;
2301 			}
2302 		}
2303 		ext4_unlock_group(sb, i);
2304 		if (!flexbg_flag)
2305 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2306 	}
2307 	if (NULL != first_not_zeroed)
2308 		*first_not_zeroed = grp;
2309 	return 1;
2310 }
2311 
2312 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2313  * the superblock) which were deleted from all directories, but held open by
2314  * a process at the time of a crash.  We walk the list and try to delete these
2315  * inodes at recovery time (only with a read-write filesystem).
2316  *
2317  * In order to keep the orphan inode chain consistent during traversal (in
2318  * case of crash during recovery), we link each inode into the superblock
2319  * orphan list_head and handle it the same way as an inode deletion during
2320  * normal operation (which journals the operations for us).
2321  *
2322  * We only do an iget() and an iput() on each inode, which is very safe if we
2323  * accidentally point at an in-use or already deleted inode.  The worst that
2324  * can happen in this case is that we get a "bit already cleared" message from
2325  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2326  * e2fsck was run on this filesystem, and it must have already done the orphan
2327  * inode cleanup for us, so we can safely abort without any further action.
2328  */
2329 static void ext4_orphan_cleanup(struct super_block *sb,
2330 				struct ext4_super_block *es)
2331 {
2332 	unsigned int s_flags = sb->s_flags;
2333 	int nr_orphans = 0, nr_truncates = 0;
2334 #ifdef CONFIG_QUOTA
2335 	int i;
2336 #endif
2337 	if (!es->s_last_orphan) {
2338 		jbd_debug(4, "no orphan inodes to clean up\n");
2339 		return;
2340 	}
2341 
2342 	if (bdev_read_only(sb->s_bdev)) {
2343 		ext4_msg(sb, KERN_ERR, "write access "
2344 			"unavailable, skipping orphan cleanup");
2345 		return;
2346 	}
2347 
2348 	/* Check if feature set would not allow a r/w mount */
2349 	if (!ext4_feature_set_ok(sb, 0)) {
2350 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2351 			 "unknown ROCOMPAT features");
2352 		return;
2353 	}
2354 
2355 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2356 		/* don't clear list on RO mount w/ errors */
2357 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2358 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2359 				  "clearing orphan list.\n");
2360 			es->s_last_orphan = 0;
2361 		}
2362 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2363 		return;
2364 	}
2365 
2366 	if (s_flags & MS_RDONLY) {
2367 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2368 		sb->s_flags &= ~MS_RDONLY;
2369 	}
2370 #ifdef CONFIG_QUOTA
2371 	/* Needed for iput() to work correctly and not trash data */
2372 	sb->s_flags |= MS_ACTIVE;
2373 	/* Turn on quotas so that they are updated correctly */
2374 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2375 		if (EXT4_SB(sb)->s_qf_names[i]) {
2376 			int ret = ext4_quota_on_mount(sb, i);
2377 			if (ret < 0)
2378 				ext4_msg(sb, KERN_ERR,
2379 					"Cannot turn on journaled "
2380 					"quota: error %d", ret);
2381 		}
2382 	}
2383 #endif
2384 
2385 	while (es->s_last_orphan) {
2386 		struct inode *inode;
2387 
2388 		/*
2389 		 * We may have encountered an error during cleanup; if
2390 		 * so, skip the rest.
2391 		 */
2392 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2393 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2394 			es->s_last_orphan = 0;
2395 			break;
2396 		}
2397 
2398 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2399 		if (IS_ERR(inode)) {
2400 			es->s_last_orphan = 0;
2401 			break;
2402 		}
2403 
2404 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2405 		dquot_initialize(inode);
2406 		if (inode->i_nlink) {
2407 			if (test_opt(sb, DEBUG))
2408 				ext4_msg(sb, KERN_DEBUG,
2409 					"%s: truncating inode %lu to %lld bytes",
2410 					__func__, inode->i_ino, inode->i_size);
2411 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2412 				  inode->i_ino, inode->i_size);
2413 			inode_lock(inode);
2414 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2415 			ext4_truncate(inode);
2416 			inode_unlock(inode);
2417 			nr_truncates++;
2418 		} else {
2419 			if (test_opt(sb, DEBUG))
2420 				ext4_msg(sb, KERN_DEBUG,
2421 					"%s: deleting unreferenced inode %lu",
2422 					__func__, inode->i_ino);
2423 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2424 				  inode->i_ino);
2425 			nr_orphans++;
2426 		}
2427 		iput(inode);  /* The delete magic happens here! */
2428 	}
2429 
2430 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2431 
2432 	if (nr_orphans)
2433 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2434 		       PLURAL(nr_orphans));
2435 	if (nr_truncates)
2436 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2437 		       PLURAL(nr_truncates));
2438 #ifdef CONFIG_QUOTA
2439 	/* Turn quotas off */
2440 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2441 		if (sb_dqopt(sb)->files[i])
2442 			dquot_quota_off(sb, i);
2443 	}
2444 #endif
2445 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2446 }
2447 
2448 /*
2449  * Maximal extent format file size.
2450  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2451  * extent format containers, within a sector_t, and within i_blocks
2452  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2453  * so that won't be a limiting factor.
2454  *
2455  * However there is other limiting factor. We do store extents in the form
2456  * of starting block and length, hence the resulting length of the extent
2457  * covering maximum file size must fit into on-disk format containers as
2458  * well. Given that length is always by 1 unit bigger than max unit (because
2459  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2460  *
2461  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2462  */
2463 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2464 {
2465 	loff_t res;
2466 	loff_t upper_limit = MAX_LFS_FILESIZE;
2467 
2468 	/* small i_blocks in vfs inode? */
2469 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2470 		/*
2471 		 * CONFIG_LBDAF is not enabled implies the inode
2472 		 * i_block represent total blocks in 512 bytes
2473 		 * 32 == size of vfs inode i_blocks * 8
2474 		 */
2475 		upper_limit = (1LL << 32) - 1;
2476 
2477 		/* total blocks in file system block size */
2478 		upper_limit >>= (blkbits - 9);
2479 		upper_limit <<= blkbits;
2480 	}
2481 
2482 	/*
2483 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2484 	 * by one fs block, so ee_len can cover the extent of maximum file
2485 	 * size
2486 	 */
2487 	res = (1LL << 32) - 1;
2488 	res <<= blkbits;
2489 
2490 	/* Sanity check against vm- & vfs- imposed limits */
2491 	if (res > upper_limit)
2492 		res = upper_limit;
2493 
2494 	return res;
2495 }
2496 
2497 /*
2498  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2499  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2500  * We need to be 1 filesystem block less than the 2^48 sector limit.
2501  */
2502 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2503 {
2504 	loff_t res = EXT4_NDIR_BLOCKS;
2505 	int meta_blocks;
2506 	loff_t upper_limit;
2507 	/* This is calculated to be the largest file size for a dense, block
2508 	 * mapped file such that the file's total number of 512-byte sectors,
2509 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2510 	 *
2511 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2512 	 * number of 512-byte sectors of the file.
2513 	 */
2514 
2515 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2516 		/*
2517 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2518 		 * the inode i_block field represents total file blocks in
2519 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2520 		 */
2521 		upper_limit = (1LL << 32) - 1;
2522 
2523 		/* total blocks in file system block size */
2524 		upper_limit >>= (bits - 9);
2525 
2526 	} else {
2527 		/*
2528 		 * We use 48 bit ext4_inode i_blocks
2529 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2530 		 * represent total number of blocks in
2531 		 * file system block size
2532 		 */
2533 		upper_limit = (1LL << 48) - 1;
2534 
2535 	}
2536 
2537 	/* indirect blocks */
2538 	meta_blocks = 1;
2539 	/* double indirect blocks */
2540 	meta_blocks += 1 + (1LL << (bits-2));
2541 	/* tripple indirect blocks */
2542 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2543 
2544 	upper_limit -= meta_blocks;
2545 	upper_limit <<= bits;
2546 
2547 	res += 1LL << (bits-2);
2548 	res += 1LL << (2*(bits-2));
2549 	res += 1LL << (3*(bits-2));
2550 	res <<= bits;
2551 	if (res > upper_limit)
2552 		res = upper_limit;
2553 
2554 	if (res > MAX_LFS_FILESIZE)
2555 		res = MAX_LFS_FILESIZE;
2556 
2557 	return res;
2558 }
2559 
2560 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2561 				   ext4_fsblk_t logical_sb_block, int nr)
2562 {
2563 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2564 	ext4_group_t bg, first_meta_bg;
2565 	int has_super = 0;
2566 
2567 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2568 
2569 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2570 		return logical_sb_block + nr + 1;
2571 	bg = sbi->s_desc_per_block * nr;
2572 	if (ext4_bg_has_super(sb, bg))
2573 		has_super = 1;
2574 
2575 	/*
2576 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2577 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2578 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2579 	 * compensate.
2580 	 */
2581 	if (sb->s_blocksize == 1024 && nr == 0 &&
2582 	    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2583 		has_super++;
2584 
2585 	return (has_super + ext4_group_first_block_no(sb, bg));
2586 }
2587 
2588 /**
2589  * ext4_get_stripe_size: Get the stripe size.
2590  * @sbi: In memory super block info
2591  *
2592  * If we have specified it via mount option, then
2593  * use the mount option value. If the value specified at mount time is
2594  * greater than the blocks per group use the super block value.
2595  * If the super block value is greater than blocks per group return 0.
2596  * Allocator needs it be less than blocks per group.
2597  *
2598  */
2599 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2600 {
2601 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2602 	unsigned long stripe_width =
2603 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2604 	int ret;
2605 
2606 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2607 		ret = sbi->s_stripe;
2608 	else if (stripe_width <= sbi->s_blocks_per_group)
2609 		ret = stripe_width;
2610 	else if (stride <= sbi->s_blocks_per_group)
2611 		ret = stride;
2612 	else
2613 		ret = 0;
2614 
2615 	/*
2616 	 * If the stripe width is 1, this makes no sense and
2617 	 * we set it to 0 to turn off stripe handling code.
2618 	 */
2619 	if (ret <= 1)
2620 		ret = 0;
2621 
2622 	return ret;
2623 }
2624 
2625 /*
2626  * Check whether this filesystem can be mounted based on
2627  * the features present and the RDONLY/RDWR mount requested.
2628  * Returns 1 if this filesystem can be mounted as requested,
2629  * 0 if it cannot be.
2630  */
2631 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2632 {
2633 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2634 		ext4_msg(sb, KERN_ERR,
2635 			"Couldn't mount because of "
2636 			"unsupported optional features (%x)",
2637 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2638 			~EXT4_FEATURE_INCOMPAT_SUPP));
2639 		return 0;
2640 	}
2641 
2642 	if (readonly)
2643 		return 1;
2644 
2645 	if (ext4_has_feature_readonly(sb)) {
2646 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2647 		sb->s_flags |= MS_RDONLY;
2648 		return 1;
2649 	}
2650 
2651 	/* Check that feature set is OK for a read-write mount */
2652 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2653 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2654 			 "unsupported optional features (%x)",
2655 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2656 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2657 		return 0;
2658 	}
2659 	/*
2660 	 * Large file size enabled file system can only be mounted
2661 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2662 	 */
2663 	if (ext4_has_feature_huge_file(sb)) {
2664 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2665 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2666 				 "cannot be mounted RDWR without "
2667 				 "CONFIG_LBDAF");
2668 			return 0;
2669 		}
2670 	}
2671 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2672 		ext4_msg(sb, KERN_ERR,
2673 			 "Can't support bigalloc feature without "
2674 			 "extents feature\n");
2675 		return 0;
2676 	}
2677 
2678 #ifndef CONFIG_QUOTA
2679 	if (ext4_has_feature_quota(sb) && !readonly) {
2680 		ext4_msg(sb, KERN_ERR,
2681 			 "Filesystem with quota feature cannot be mounted RDWR "
2682 			 "without CONFIG_QUOTA");
2683 		return 0;
2684 	}
2685 	if (ext4_has_feature_project(sb) && !readonly) {
2686 		ext4_msg(sb, KERN_ERR,
2687 			 "Filesystem with project quota feature cannot be mounted RDWR "
2688 			 "without CONFIG_QUOTA");
2689 		return 0;
2690 	}
2691 #endif  /* CONFIG_QUOTA */
2692 	return 1;
2693 }
2694 
2695 /*
2696  * This function is called once a day if we have errors logged
2697  * on the file system
2698  */
2699 static void print_daily_error_info(unsigned long arg)
2700 {
2701 	struct super_block *sb = (struct super_block *) arg;
2702 	struct ext4_sb_info *sbi;
2703 	struct ext4_super_block *es;
2704 
2705 	sbi = EXT4_SB(sb);
2706 	es = sbi->s_es;
2707 
2708 	if (es->s_error_count)
2709 		/* fsck newer than v1.41.13 is needed to clean this condition. */
2710 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2711 			 le32_to_cpu(es->s_error_count));
2712 	if (es->s_first_error_time) {
2713 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2714 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2715 		       (int) sizeof(es->s_first_error_func),
2716 		       es->s_first_error_func,
2717 		       le32_to_cpu(es->s_first_error_line));
2718 		if (es->s_first_error_ino)
2719 			printk(KERN_CONT ": inode %u",
2720 			       le32_to_cpu(es->s_first_error_ino));
2721 		if (es->s_first_error_block)
2722 			printk(KERN_CONT ": block %llu", (unsigned long long)
2723 			       le64_to_cpu(es->s_first_error_block));
2724 		printk(KERN_CONT "\n");
2725 	}
2726 	if (es->s_last_error_time) {
2727 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2728 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2729 		       (int) sizeof(es->s_last_error_func),
2730 		       es->s_last_error_func,
2731 		       le32_to_cpu(es->s_last_error_line));
2732 		if (es->s_last_error_ino)
2733 			printk(KERN_CONT ": inode %u",
2734 			       le32_to_cpu(es->s_last_error_ino));
2735 		if (es->s_last_error_block)
2736 			printk(KERN_CONT ": block %llu", (unsigned long long)
2737 			       le64_to_cpu(es->s_last_error_block));
2738 		printk(KERN_CONT "\n");
2739 	}
2740 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2741 }
2742 
2743 /* Find next suitable group and run ext4_init_inode_table */
2744 static int ext4_run_li_request(struct ext4_li_request *elr)
2745 {
2746 	struct ext4_group_desc *gdp = NULL;
2747 	ext4_group_t group, ngroups;
2748 	struct super_block *sb;
2749 	unsigned long timeout = 0;
2750 	int ret = 0;
2751 
2752 	sb = elr->lr_super;
2753 	ngroups = EXT4_SB(sb)->s_groups_count;
2754 
2755 	for (group = elr->lr_next_group; group < ngroups; group++) {
2756 		gdp = ext4_get_group_desc(sb, group, NULL);
2757 		if (!gdp) {
2758 			ret = 1;
2759 			break;
2760 		}
2761 
2762 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2763 			break;
2764 	}
2765 
2766 	if (group >= ngroups)
2767 		ret = 1;
2768 
2769 	if (!ret) {
2770 		timeout = jiffies;
2771 		ret = ext4_init_inode_table(sb, group,
2772 					    elr->lr_timeout ? 0 : 1);
2773 		if (elr->lr_timeout == 0) {
2774 			timeout = (jiffies - timeout) *
2775 				  elr->lr_sbi->s_li_wait_mult;
2776 			elr->lr_timeout = timeout;
2777 		}
2778 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2779 		elr->lr_next_group = group + 1;
2780 	}
2781 	return ret;
2782 }
2783 
2784 /*
2785  * Remove lr_request from the list_request and free the
2786  * request structure. Should be called with li_list_mtx held
2787  */
2788 static void ext4_remove_li_request(struct ext4_li_request *elr)
2789 {
2790 	struct ext4_sb_info *sbi;
2791 
2792 	if (!elr)
2793 		return;
2794 
2795 	sbi = elr->lr_sbi;
2796 
2797 	list_del(&elr->lr_request);
2798 	sbi->s_li_request = NULL;
2799 	kfree(elr);
2800 }
2801 
2802 static void ext4_unregister_li_request(struct super_block *sb)
2803 {
2804 	mutex_lock(&ext4_li_mtx);
2805 	if (!ext4_li_info) {
2806 		mutex_unlock(&ext4_li_mtx);
2807 		return;
2808 	}
2809 
2810 	mutex_lock(&ext4_li_info->li_list_mtx);
2811 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2812 	mutex_unlock(&ext4_li_info->li_list_mtx);
2813 	mutex_unlock(&ext4_li_mtx);
2814 }
2815 
2816 static struct task_struct *ext4_lazyinit_task;
2817 
2818 /*
2819  * This is the function where ext4lazyinit thread lives. It walks
2820  * through the request list searching for next scheduled filesystem.
2821  * When such a fs is found, run the lazy initialization request
2822  * (ext4_rn_li_request) and keep track of the time spend in this
2823  * function. Based on that time we compute next schedule time of
2824  * the request. When walking through the list is complete, compute
2825  * next waking time and put itself into sleep.
2826  */
2827 static int ext4_lazyinit_thread(void *arg)
2828 {
2829 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2830 	struct list_head *pos, *n;
2831 	struct ext4_li_request *elr;
2832 	unsigned long next_wakeup, cur;
2833 
2834 	BUG_ON(NULL == eli);
2835 
2836 cont_thread:
2837 	while (true) {
2838 		next_wakeup = MAX_JIFFY_OFFSET;
2839 
2840 		mutex_lock(&eli->li_list_mtx);
2841 		if (list_empty(&eli->li_request_list)) {
2842 			mutex_unlock(&eli->li_list_mtx);
2843 			goto exit_thread;
2844 		}
2845 		list_for_each_safe(pos, n, &eli->li_request_list) {
2846 			int err = 0;
2847 			int progress = 0;
2848 			elr = list_entry(pos, struct ext4_li_request,
2849 					 lr_request);
2850 
2851 			if (time_before(jiffies, elr->lr_next_sched)) {
2852 				if (time_before(elr->lr_next_sched, next_wakeup))
2853 					next_wakeup = elr->lr_next_sched;
2854 				continue;
2855 			}
2856 			if (down_read_trylock(&elr->lr_super->s_umount)) {
2857 				if (sb_start_write_trylock(elr->lr_super)) {
2858 					progress = 1;
2859 					/*
2860 					 * We hold sb->s_umount, sb can not
2861 					 * be removed from the list, it is
2862 					 * now safe to drop li_list_mtx
2863 					 */
2864 					mutex_unlock(&eli->li_list_mtx);
2865 					err = ext4_run_li_request(elr);
2866 					sb_end_write(elr->lr_super);
2867 					mutex_lock(&eli->li_list_mtx);
2868 					n = pos->next;
2869 				}
2870 				up_read((&elr->lr_super->s_umount));
2871 			}
2872 			/* error, remove the lazy_init job */
2873 			if (err) {
2874 				ext4_remove_li_request(elr);
2875 				continue;
2876 			}
2877 			if (!progress) {
2878 				elr->lr_next_sched = jiffies +
2879 					(prandom_u32()
2880 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2881 			}
2882 			if (time_before(elr->lr_next_sched, next_wakeup))
2883 				next_wakeup = elr->lr_next_sched;
2884 		}
2885 		mutex_unlock(&eli->li_list_mtx);
2886 
2887 		try_to_freeze();
2888 
2889 		cur = jiffies;
2890 		if ((time_after_eq(cur, next_wakeup)) ||
2891 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2892 			cond_resched();
2893 			continue;
2894 		}
2895 
2896 		schedule_timeout_interruptible(next_wakeup - cur);
2897 
2898 		if (kthread_should_stop()) {
2899 			ext4_clear_request_list();
2900 			goto exit_thread;
2901 		}
2902 	}
2903 
2904 exit_thread:
2905 	/*
2906 	 * It looks like the request list is empty, but we need
2907 	 * to check it under the li_list_mtx lock, to prevent any
2908 	 * additions into it, and of course we should lock ext4_li_mtx
2909 	 * to atomically free the list and ext4_li_info, because at
2910 	 * this point another ext4 filesystem could be registering
2911 	 * new one.
2912 	 */
2913 	mutex_lock(&ext4_li_mtx);
2914 	mutex_lock(&eli->li_list_mtx);
2915 	if (!list_empty(&eli->li_request_list)) {
2916 		mutex_unlock(&eli->li_list_mtx);
2917 		mutex_unlock(&ext4_li_mtx);
2918 		goto cont_thread;
2919 	}
2920 	mutex_unlock(&eli->li_list_mtx);
2921 	kfree(ext4_li_info);
2922 	ext4_li_info = NULL;
2923 	mutex_unlock(&ext4_li_mtx);
2924 
2925 	return 0;
2926 }
2927 
2928 static void ext4_clear_request_list(void)
2929 {
2930 	struct list_head *pos, *n;
2931 	struct ext4_li_request *elr;
2932 
2933 	mutex_lock(&ext4_li_info->li_list_mtx);
2934 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2935 		elr = list_entry(pos, struct ext4_li_request,
2936 				 lr_request);
2937 		ext4_remove_li_request(elr);
2938 	}
2939 	mutex_unlock(&ext4_li_info->li_list_mtx);
2940 }
2941 
2942 static int ext4_run_lazyinit_thread(void)
2943 {
2944 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2945 					 ext4_li_info, "ext4lazyinit");
2946 	if (IS_ERR(ext4_lazyinit_task)) {
2947 		int err = PTR_ERR(ext4_lazyinit_task);
2948 		ext4_clear_request_list();
2949 		kfree(ext4_li_info);
2950 		ext4_li_info = NULL;
2951 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2952 				 "initialization thread\n",
2953 				 err);
2954 		return err;
2955 	}
2956 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2957 	return 0;
2958 }
2959 
2960 /*
2961  * Check whether it make sense to run itable init. thread or not.
2962  * If there is at least one uninitialized inode table, return
2963  * corresponding group number, else the loop goes through all
2964  * groups and return total number of groups.
2965  */
2966 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2967 {
2968 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2969 	struct ext4_group_desc *gdp = NULL;
2970 
2971 	for (group = 0; group < ngroups; group++) {
2972 		gdp = ext4_get_group_desc(sb, group, NULL);
2973 		if (!gdp)
2974 			continue;
2975 
2976 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2977 			break;
2978 	}
2979 
2980 	return group;
2981 }
2982 
2983 static int ext4_li_info_new(void)
2984 {
2985 	struct ext4_lazy_init *eli = NULL;
2986 
2987 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2988 	if (!eli)
2989 		return -ENOMEM;
2990 
2991 	INIT_LIST_HEAD(&eli->li_request_list);
2992 	mutex_init(&eli->li_list_mtx);
2993 
2994 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2995 
2996 	ext4_li_info = eli;
2997 
2998 	return 0;
2999 }
3000 
3001 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3002 					    ext4_group_t start)
3003 {
3004 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3005 	struct ext4_li_request *elr;
3006 
3007 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3008 	if (!elr)
3009 		return NULL;
3010 
3011 	elr->lr_super = sb;
3012 	elr->lr_sbi = sbi;
3013 	elr->lr_next_group = start;
3014 
3015 	/*
3016 	 * Randomize first schedule time of the request to
3017 	 * spread the inode table initialization requests
3018 	 * better.
3019 	 */
3020 	elr->lr_next_sched = jiffies + (prandom_u32() %
3021 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3022 	return elr;
3023 }
3024 
3025 int ext4_register_li_request(struct super_block *sb,
3026 			     ext4_group_t first_not_zeroed)
3027 {
3028 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3029 	struct ext4_li_request *elr = NULL;
3030 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3031 	int ret = 0;
3032 
3033 	mutex_lock(&ext4_li_mtx);
3034 	if (sbi->s_li_request != NULL) {
3035 		/*
3036 		 * Reset timeout so it can be computed again, because
3037 		 * s_li_wait_mult might have changed.
3038 		 */
3039 		sbi->s_li_request->lr_timeout = 0;
3040 		goto out;
3041 	}
3042 
3043 	if (first_not_zeroed == ngroups ||
3044 	    (sb->s_flags & MS_RDONLY) ||
3045 	    !test_opt(sb, INIT_INODE_TABLE))
3046 		goto out;
3047 
3048 	elr = ext4_li_request_new(sb, first_not_zeroed);
3049 	if (!elr) {
3050 		ret = -ENOMEM;
3051 		goto out;
3052 	}
3053 
3054 	if (NULL == ext4_li_info) {
3055 		ret = ext4_li_info_new();
3056 		if (ret)
3057 			goto out;
3058 	}
3059 
3060 	mutex_lock(&ext4_li_info->li_list_mtx);
3061 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3062 	mutex_unlock(&ext4_li_info->li_list_mtx);
3063 
3064 	sbi->s_li_request = elr;
3065 	/*
3066 	 * set elr to NULL here since it has been inserted to
3067 	 * the request_list and the removal and free of it is
3068 	 * handled by ext4_clear_request_list from now on.
3069 	 */
3070 	elr = NULL;
3071 
3072 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3073 		ret = ext4_run_lazyinit_thread();
3074 		if (ret)
3075 			goto out;
3076 	}
3077 out:
3078 	mutex_unlock(&ext4_li_mtx);
3079 	if (ret)
3080 		kfree(elr);
3081 	return ret;
3082 }
3083 
3084 /*
3085  * We do not need to lock anything since this is called on
3086  * module unload.
3087  */
3088 static void ext4_destroy_lazyinit_thread(void)
3089 {
3090 	/*
3091 	 * If thread exited earlier
3092 	 * there's nothing to be done.
3093 	 */
3094 	if (!ext4_li_info || !ext4_lazyinit_task)
3095 		return;
3096 
3097 	kthread_stop(ext4_lazyinit_task);
3098 }
3099 
3100 static int set_journal_csum_feature_set(struct super_block *sb)
3101 {
3102 	int ret = 1;
3103 	int compat, incompat;
3104 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 
3106 	if (ext4_has_metadata_csum(sb)) {
3107 		/* journal checksum v3 */
3108 		compat = 0;
3109 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3110 	} else {
3111 		/* journal checksum v1 */
3112 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3113 		incompat = 0;
3114 	}
3115 
3116 	jbd2_journal_clear_features(sbi->s_journal,
3117 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3118 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3119 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3120 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3121 		ret = jbd2_journal_set_features(sbi->s_journal,
3122 				compat, 0,
3123 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3124 				incompat);
3125 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3126 		ret = jbd2_journal_set_features(sbi->s_journal,
3127 				compat, 0,
3128 				incompat);
3129 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3130 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3131 	} else {
3132 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3133 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3134 	}
3135 
3136 	return ret;
3137 }
3138 
3139 /*
3140  * Note: calculating the overhead so we can be compatible with
3141  * historical BSD practice is quite difficult in the face of
3142  * clusters/bigalloc.  This is because multiple metadata blocks from
3143  * different block group can end up in the same allocation cluster.
3144  * Calculating the exact overhead in the face of clustered allocation
3145  * requires either O(all block bitmaps) in memory or O(number of block
3146  * groups**2) in time.  We will still calculate the superblock for
3147  * older file systems --- and if we come across with a bigalloc file
3148  * system with zero in s_overhead_clusters the estimate will be close to
3149  * correct especially for very large cluster sizes --- but for newer
3150  * file systems, it's better to calculate this figure once at mkfs
3151  * time, and store it in the superblock.  If the superblock value is
3152  * present (even for non-bigalloc file systems), we will use it.
3153  */
3154 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3155 			  char *buf)
3156 {
3157 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3158 	struct ext4_group_desc	*gdp;
3159 	ext4_fsblk_t		first_block, last_block, b;
3160 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3161 	int			s, j, count = 0;
3162 
3163 	if (!ext4_has_feature_bigalloc(sb))
3164 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3165 			sbi->s_itb_per_group + 2);
3166 
3167 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3168 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3169 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3170 	for (i = 0; i < ngroups; i++) {
3171 		gdp = ext4_get_group_desc(sb, i, NULL);
3172 		b = ext4_block_bitmap(sb, gdp);
3173 		if (b >= first_block && b <= last_block) {
3174 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3175 			count++;
3176 		}
3177 		b = ext4_inode_bitmap(sb, gdp);
3178 		if (b >= first_block && b <= last_block) {
3179 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3180 			count++;
3181 		}
3182 		b = ext4_inode_table(sb, gdp);
3183 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3184 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3185 				int c = EXT4_B2C(sbi, b - first_block);
3186 				ext4_set_bit(c, buf);
3187 				count++;
3188 			}
3189 		if (i != grp)
3190 			continue;
3191 		s = 0;
3192 		if (ext4_bg_has_super(sb, grp)) {
3193 			ext4_set_bit(s++, buf);
3194 			count++;
3195 		}
3196 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3197 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3198 			count++;
3199 		}
3200 	}
3201 	if (!count)
3202 		return 0;
3203 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3204 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3205 }
3206 
3207 /*
3208  * Compute the overhead and stash it in sbi->s_overhead
3209  */
3210 int ext4_calculate_overhead(struct super_block *sb)
3211 {
3212 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3213 	struct ext4_super_block *es = sbi->s_es;
3214 	struct inode *j_inode;
3215 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3216 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3217 	ext4_fsblk_t overhead = 0;
3218 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3219 
3220 	if (!buf)
3221 		return -ENOMEM;
3222 
3223 	/*
3224 	 * Compute the overhead (FS structures).  This is constant
3225 	 * for a given filesystem unless the number of block groups
3226 	 * changes so we cache the previous value until it does.
3227 	 */
3228 
3229 	/*
3230 	 * All of the blocks before first_data_block are overhead
3231 	 */
3232 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3233 
3234 	/*
3235 	 * Add the overhead found in each block group
3236 	 */
3237 	for (i = 0; i < ngroups; i++) {
3238 		int blks;
3239 
3240 		blks = count_overhead(sb, i, buf);
3241 		overhead += blks;
3242 		if (blks)
3243 			memset(buf, 0, PAGE_SIZE);
3244 		cond_resched();
3245 	}
3246 
3247 	/*
3248 	 * Add the internal journal blocks whether the journal has been
3249 	 * loaded or not
3250 	 */
3251 	if (sbi->s_journal && !sbi->journal_bdev)
3252 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3253 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3254 		j_inode = ext4_get_journal_inode(sb, j_inum);
3255 		if (j_inode) {
3256 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3257 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3258 			iput(j_inode);
3259 		} else {
3260 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3261 		}
3262 	}
3263 	sbi->s_overhead = overhead;
3264 	smp_wmb();
3265 	free_page((unsigned long) buf);
3266 	return 0;
3267 }
3268 
3269 static void ext4_set_resv_clusters(struct super_block *sb)
3270 {
3271 	ext4_fsblk_t resv_clusters;
3272 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3273 
3274 	/*
3275 	 * There's no need to reserve anything when we aren't using extents.
3276 	 * The space estimates are exact, there are no unwritten extents,
3277 	 * hole punching doesn't need new metadata... This is needed especially
3278 	 * to keep ext2/3 backward compatibility.
3279 	 */
3280 	if (!ext4_has_feature_extents(sb))
3281 		return;
3282 	/*
3283 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3284 	 * This should cover the situations where we can not afford to run
3285 	 * out of space like for example punch hole, or converting
3286 	 * unwritten extents in delalloc path. In most cases such
3287 	 * allocation would require 1, or 2 blocks, higher numbers are
3288 	 * very rare.
3289 	 */
3290 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3291 			 sbi->s_cluster_bits);
3292 
3293 	do_div(resv_clusters, 50);
3294 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3295 
3296 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3297 }
3298 
3299 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3300 {
3301 	char *orig_data = kstrdup(data, GFP_KERNEL);
3302 	struct buffer_head *bh;
3303 	struct ext4_super_block *es = NULL;
3304 	struct ext4_sb_info *sbi;
3305 	ext4_fsblk_t block;
3306 	ext4_fsblk_t sb_block = get_sb_block(&data);
3307 	ext4_fsblk_t logical_sb_block;
3308 	unsigned long offset = 0;
3309 	unsigned long journal_devnum = 0;
3310 	unsigned long def_mount_opts;
3311 	struct inode *root;
3312 	const char *descr;
3313 	int ret = -ENOMEM;
3314 	int blocksize, clustersize;
3315 	unsigned int db_count;
3316 	unsigned int i;
3317 	int needs_recovery, has_huge_files, has_bigalloc;
3318 	__u64 blocks_count;
3319 	int err = 0;
3320 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3321 	ext4_group_t first_not_zeroed;
3322 
3323 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3324 	if (!sbi)
3325 		goto out_free_orig;
3326 
3327 	sbi->s_blockgroup_lock =
3328 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3329 	if (!sbi->s_blockgroup_lock) {
3330 		kfree(sbi);
3331 		goto out_free_orig;
3332 	}
3333 	sb->s_fs_info = sbi;
3334 	sbi->s_sb = sb;
3335 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3336 	sbi->s_sb_block = sb_block;
3337 	if (sb->s_bdev->bd_part)
3338 		sbi->s_sectors_written_start =
3339 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3340 
3341 	/* Cleanup superblock name */
3342 	strreplace(sb->s_id, '/', '!');
3343 
3344 	/* -EINVAL is default */
3345 	ret = -EINVAL;
3346 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3347 	if (!blocksize) {
3348 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3349 		goto out_fail;
3350 	}
3351 
3352 	/*
3353 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3354 	 * block sizes.  We need to calculate the offset from buffer start.
3355 	 */
3356 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3357 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3358 		offset = do_div(logical_sb_block, blocksize);
3359 	} else {
3360 		logical_sb_block = sb_block;
3361 	}
3362 
3363 	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3364 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3365 		goto out_fail;
3366 	}
3367 	/*
3368 	 * Note: s_es must be initialized as soon as possible because
3369 	 *       some ext4 macro-instructions depend on its value
3370 	 */
3371 	es = (struct ext4_super_block *) (bh->b_data + offset);
3372 	sbi->s_es = es;
3373 	sb->s_magic = le16_to_cpu(es->s_magic);
3374 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3375 		goto cantfind_ext4;
3376 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3377 
3378 	/* Warn if metadata_csum and gdt_csum are both set. */
3379 	if (ext4_has_feature_metadata_csum(sb) &&
3380 	    ext4_has_feature_gdt_csum(sb))
3381 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3382 			     "redundant flags; please run fsck.");
3383 
3384 	/* Check for a known checksum algorithm */
3385 	if (!ext4_verify_csum_type(sb, es)) {
3386 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3387 			 "unknown checksum algorithm.");
3388 		silent = 1;
3389 		goto cantfind_ext4;
3390 	}
3391 
3392 	/* Load the checksum driver */
3393 	if (ext4_has_feature_metadata_csum(sb)) {
3394 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3395 		if (IS_ERR(sbi->s_chksum_driver)) {
3396 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3397 			ret = PTR_ERR(sbi->s_chksum_driver);
3398 			sbi->s_chksum_driver = NULL;
3399 			goto failed_mount;
3400 		}
3401 	}
3402 
3403 	/* Check superblock checksum */
3404 	if (!ext4_superblock_csum_verify(sb, es)) {
3405 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3406 			 "invalid superblock checksum.  Run e2fsck?");
3407 		silent = 1;
3408 		ret = -EFSBADCRC;
3409 		goto cantfind_ext4;
3410 	}
3411 
3412 	/* Precompute checksum seed for all metadata */
3413 	if (ext4_has_feature_csum_seed(sb))
3414 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3415 	else if (ext4_has_metadata_csum(sb))
3416 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3417 					       sizeof(es->s_uuid));
3418 
3419 	/* Set defaults before we parse the mount options */
3420 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3421 	set_opt(sb, INIT_INODE_TABLE);
3422 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3423 		set_opt(sb, DEBUG);
3424 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3425 		set_opt(sb, GRPID);
3426 	if (def_mount_opts & EXT4_DEFM_UID16)
3427 		set_opt(sb, NO_UID32);
3428 	/* xattr user namespace & acls are now defaulted on */
3429 	set_opt(sb, XATTR_USER);
3430 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3431 	set_opt(sb, POSIX_ACL);
3432 #endif
3433 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3434 	if (ext4_has_metadata_csum(sb))
3435 		set_opt(sb, JOURNAL_CHECKSUM);
3436 
3437 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3438 		set_opt(sb, JOURNAL_DATA);
3439 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3440 		set_opt(sb, ORDERED_DATA);
3441 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3442 		set_opt(sb, WRITEBACK_DATA);
3443 
3444 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3445 		set_opt(sb, ERRORS_PANIC);
3446 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3447 		set_opt(sb, ERRORS_CONT);
3448 	else
3449 		set_opt(sb, ERRORS_RO);
3450 	/* block_validity enabled by default; disable with noblock_validity */
3451 	set_opt(sb, BLOCK_VALIDITY);
3452 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3453 		set_opt(sb, DISCARD);
3454 
3455 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3456 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3457 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3458 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3459 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3460 
3461 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3462 		set_opt(sb, BARRIER);
3463 
3464 	/*
3465 	 * enable delayed allocation by default
3466 	 * Use -o nodelalloc to turn it off
3467 	 */
3468 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3469 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3470 		set_opt(sb, DELALLOC);
3471 
3472 	/*
3473 	 * set default s_li_wait_mult for lazyinit, for the case there is
3474 	 * no mount option specified.
3475 	 */
3476 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3477 
3478 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3479 			   &journal_devnum, &journal_ioprio, 0)) {
3480 		ext4_msg(sb, KERN_WARNING,
3481 			 "failed to parse options in superblock: %s",
3482 			 sbi->s_es->s_mount_opts);
3483 	}
3484 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3485 	if (!parse_options((char *) data, sb, &journal_devnum,
3486 			   &journal_ioprio, 0))
3487 		goto failed_mount;
3488 
3489 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3490 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3491 			    "with data=journal disables delayed "
3492 			    "allocation and O_DIRECT support!\n");
3493 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3494 			ext4_msg(sb, KERN_ERR, "can't mount with "
3495 				 "both data=journal and delalloc");
3496 			goto failed_mount;
3497 		}
3498 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3499 			ext4_msg(sb, KERN_ERR, "can't mount with "
3500 				 "both data=journal and dioread_nolock");
3501 			goto failed_mount;
3502 		}
3503 		if (test_opt(sb, DAX)) {
3504 			ext4_msg(sb, KERN_ERR, "can't mount with "
3505 				 "both data=journal and dax");
3506 			goto failed_mount;
3507 		}
3508 		if (test_opt(sb, DELALLOC))
3509 			clear_opt(sb, DELALLOC);
3510 	} else {
3511 		sb->s_iflags |= SB_I_CGROUPWB;
3512 	}
3513 
3514 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3515 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3516 
3517 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3518 	    (ext4_has_compat_features(sb) ||
3519 	     ext4_has_ro_compat_features(sb) ||
3520 	     ext4_has_incompat_features(sb)))
3521 		ext4_msg(sb, KERN_WARNING,
3522 		       "feature flags set on rev 0 fs, "
3523 		       "running e2fsck is recommended");
3524 
3525 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3526 		set_opt2(sb, HURD_COMPAT);
3527 		if (ext4_has_feature_64bit(sb)) {
3528 			ext4_msg(sb, KERN_ERR,
3529 				 "The Hurd can't support 64-bit file systems");
3530 			goto failed_mount;
3531 		}
3532 	}
3533 
3534 	if (IS_EXT2_SB(sb)) {
3535 		if (ext2_feature_set_ok(sb))
3536 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3537 				 "using the ext4 subsystem");
3538 		else {
3539 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3540 				 "to feature incompatibilities");
3541 			goto failed_mount;
3542 		}
3543 	}
3544 
3545 	if (IS_EXT3_SB(sb)) {
3546 		if (ext3_feature_set_ok(sb))
3547 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3548 				 "using the ext4 subsystem");
3549 		else {
3550 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3551 				 "to feature incompatibilities");
3552 			goto failed_mount;
3553 		}
3554 	}
3555 
3556 	/*
3557 	 * Check feature flags regardless of the revision level, since we
3558 	 * previously didn't change the revision level when setting the flags,
3559 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3560 	 */
3561 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3562 		goto failed_mount;
3563 
3564 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3565 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3566 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3567 		ext4_msg(sb, KERN_ERR,
3568 		       "Unsupported filesystem blocksize %d", blocksize);
3569 		goto failed_mount;
3570 	}
3571 
3572 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3573 		ext4_msg(sb, KERN_ERR,
3574 			 "Number of reserved GDT blocks insanely large: %d",
3575 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3576 		goto failed_mount;
3577 	}
3578 
3579 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3580 		err = bdev_dax_supported(sb, blocksize);
3581 		if (err)
3582 			goto failed_mount;
3583 	}
3584 
3585 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3586 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3587 			 es->s_encryption_level);
3588 		goto failed_mount;
3589 	}
3590 
3591 	if (sb->s_blocksize != blocksize) {
3592 		/* Validate the filesystem blocksize */
3593 		if (!sb_set_blocksize(sb, blocksize)) {
3594 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3595 					blocksize);
3596 			goto failed_mount;
3597 		}
3598 
3599 		brelse(bh);
3600 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3601 		offset = do_div(logical_sb_block, blocksize);
3602 		bh = sb_bread_unmovable(sb, logical_sb_block);
3603 		if (!bh) {
3604 			ext4_msg(sb, KERN_ERR,
3605 			       "Can't read superblock on 2nd try");
3606 			goto failed_mount;
3607 		}
3608 		es = (struct ext4_super_block *)(bh->b_data + offset);
3609 		sbi->s_es = es;
3610 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3611 			ext4_msg(sb, KERN_ERR,
3612 			       "Magic mismatch, very weird!");
3613 			goto failed_mount;
3614 		}
3615 	}
3616 
3617 	has_huge_files = ext4_has_feature_huge_file(sb);
3618 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3619 						      has_huge_files);
3620 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3621 
3622 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3623 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3624 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3625 	} else {
3626 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3627 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3628 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3629 		    (!is_power_of_2(sbi->s_inode_size)) ||
3630 		    (sbi->s_inode_size > blocksize)) {
3631 			ext4_msg(sb, KERN_ERR,
3632 			       "unsupported inode size: %d",
3633 			       sbi->s_inode_size);
3634 			goto failed_mount;
3635 		}
3636 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3637 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3638 	}
3639 
3640 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3641 	if (ext4_has_feature_64bit(sb)) {
3642 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3643 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3644 		    !is_power_of_2(sbi->s_desc_size)) {
3645 			ext4_msg(sb, KERN_ERR,
3646 			       "unsupported descriptor size %lu",
3647 			       sbi->s_desc_size);
3648 			goto failed_mount;
3649 		}
3650 	} else
3651 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3652 
3653 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3654 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3655 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3656 		goto cantfind_ext4;
3657 
3658 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3659 	if (sbi->s_inodes_per_block == 0)
3660 		goto cantfind_ext4;
3661 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3662 					sbi->s_inodes_per_block;
3663 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3664 	sbi->s_sbh = bh;
3665 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3666 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3667 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3668 
3669 	for (i = 0; i < 4; i++)
3670 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3671 	sbi->s_def_hash_version = es->s_def_hash_version;
3672 	if (ext4_has_feature_dir_index(sb)) {
3673 		i = le32_to_cpu(es->s_flags);
3674 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3675 			sbi->s_hash_unsigned = 3;
3676 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3677 #ifdef __CHAR_UNSIGNED__
3678 			if (!(sb->s_flags & MS_RDONLY))
3679 				es->s_flags |=
3680 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3681 			sbi->s_hash_unsigned = 3;
3682 #else
3683 			if (!(sb->s_flags & MS_RDONLY))
3684 				es->s_flags |=
3685 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3686 #endif
3687 		}
3688 	}
3689 
3690 	/* Handle clustersize */
3691 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3692 	has_bigalloc = ext4_has_feature_bigalloc(sb);
3693 	if (has_bigalloc) {
3694 		if (clustersize < blocksize) {
3695 			ext4_msg(sb, KERN_ERR,
3696 				 "cluster size (%d) smaller than "
3697 				 "block size (%d)", clustersize, blocksize);
3698 			goto failed_mount;
3699 		}
3700 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3701 			le32_to_cpu(es->s_log_block_size);
3702 		sbi->s_clusters_per_group =
3703 			le32_to_cpu(es->s_clusters_per_group);
3704 		if (sbi->s_clusters_per_group > blocksize * 8) {
3705 			ext4_msg(sb, KERN_ERR,
3706 				 "#clusters per group too big: %lu",
3707 				 sbi->s_clusters_per_group);
3708 			goto failed_mount;
3709 		}
3710 		if (sbi->s_blocks_per_group !=
3711 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3712 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3713 				 "clusters per group (%lu) inconsistent",
3714 				 sbi->s_blocks_per_group,
3715 				 sbi->s_clusters_per_group);
3716 			goto failed_mount;
3717 		}
3718 	} else {
3719 		if (clustersize != blocksize) {
3720 			ext4_warning(sb, "fragment/cluster size (%d) != "
3721 				     "block size (%d)", clustersize,
3722 				     blocksize);
3723 			clustersize = blocksize;
3724 		}
3725 		if (sbi->s_blocks_per_group > blocksize * 8) {
3726 			ext4_msg(sb, KERN_ERR,
3727 				 "#blocks per group too big: %lu",
3728 				 sbi->s_blocks_per_group);
3729 			goto failed_mount;
3730 		}
3731 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3732 		sbi->s_cluster_bits = 0;
3733 	}
3734 	sbi->s_cluster_ratio = clustersize / blocksize;
3735 
3736 	if (sbi->s_inodes_per_group > blocksize * 8) {
3737 		ext4_msg(sb, KERN_ERR,
3738 		       "#inodes per group too big: %lu",
3739 		       sbi->s_inodes_per_group);
3740 		goto failed_mount;
3741 	}
3742 
3743 	/* Do we have standard group size of clustersize * 8 blocks ? */
3744 	if (sbi->s_blocks_per_group == clustersize << 3)
3745 		set_opt2(sb, STD_GROUP_SIZE);
3746 
3747 	/*
3748 	 * Test whether we have more sectors than will fit in sector_t,
3749 	 * and whether the max offset is addressable by the page cache.
3750 	 */
3751 	err = generic_check_addressable(sb->s_blocksize_bits,
3752 					ext4_blocks_count(es));
3753 	if (err) {
3754 		ext4_msg(sb, KERN_ERR, "filesystem"
3755 			 " too large to mount safely on this system");
3756 		if (sizeof(sector_t) < 8)
3757 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3758 		goto failed_mount;
3759 	}
3760 
3761 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3762 		goto cantfind_ext4;
3763 
3764 	/* check blocks count against device size */
3765 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3766 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3767 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3768 		       "exceeds size of device (%llu blocks)",
3769 		       ext4_blocks_count(es), blocks_count);
3770 		goto failed_mount;
3771 	}
3772 
3773 	/*
3774 	 * It makes no sense for the first data block to be beyond the end
3775 	 * of the filesystem.
3776 	 */
3777 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3778 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3779 			 "block %u is beyond end of filesystem (%llu)",
3780 			 le32_to_cpu(es->s_first_data_block),
3781 			 ext4_blocks_count(es));
3782 		goto failed_mount;
3783 	}
3784 	blocks_count = (ext4_blocks_count(es) -
3785 			le32_to_cpu(es->s_first_data_block) +
3786 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3787 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3788 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3789 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3790 		       "(block count %llu, first data block %u, "
3791 		       "blocks per group %lu)", sbi->s_groups_count,
3792 		       ext4_blocks_count(es),
3793 		       le32_to_cpu(es->s_first_data_block),
3794 		       EXT4_BLOCKS_PER_GROUP(sb));
3795 		goto failed_mount;
3796 	}
3797 	sbi->s_groups_count = blocks_count;
3798 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3799 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3800 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3801 		   EXT4_DESC_PER_BLOCK(sb);
3802 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3803 					  sizeof(struct buffer_head *),
3804 					  GFP_KERNEL);
3805 	if (sbi->s_group_desc == NULL) {
3806 		ext4_msg(sb, KERN_ERR, "not enough memory");
3807 		ret = -ENOMEM;
3808 		goto failed_mount;
3809 	}
3810 
3811 	bgl_lock_init(sbi->s_blockgroup_lock);
3812 
3813 	for (i = 0; i < db_count; i++) {
3814 		block = descriptor_loc(sb, logical_sb_block, i);
3815 		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3816 		if (!sbi->s_group_desc[i]) {
3817 			ext4_msg(sb, KERN_ERR,
3818 			       "can't read group descriptor %d", i);
3819 			db_count = i;
3820 			goto failed_mount2;
3821 		}
3822 	}
3823 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3824 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3825 		ret = -EFSCORRUPTED;
3826 		goto failed_mount2;
3827 	}
3828 
3829 	sbi->s_gdb_count = db_count;
3830 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3831 	spin_lock_init(&sbi->s_next_gen_lock);
3832 
3833 	setup_timer(&sbi->s_err_report, print_daily_error_info,
3834 		(unsigned long) sb);
3835 
3836 	/* Register extent status tree shrinker */
3837 	if (ext4_es_register_shrinker(sbi))
3838 		goto failed_mount3;
3839 
3840 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3841 	sbi->s_extent_max_zeroout_kb = 32;
3842 
3843 	/*
3844 	 * set up enough so that it can read an inode
3845 	 */
3846 	sb->s_op = &ext4_sops;
3847 	sb->s_export_op = &ext4_export_ops;
3848 	sb->s_xattr = ext4_xattr_handlers;
3849 	sb->s_cop = &ext4_cryptops;
3850 #ifdef CONFIG_QUOTA
3851 	sb->dq_op = &ext4_quota_operations;
3852 	if (ext4_has_feature_quota(sb))
3853 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3854 	else
3855 		sb->s_qcop = &ext4_qctl_operations;
3856 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3857 #endif
3858 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3859 
3860 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3861 	mutex_init(&sbi->s_orphan_lock);
3862 
3863 	sb->s_root = NULL;
3864 
3865 	needs_recovery = (es->s_last_orphan != 0 ||
3866 			  ext4_has_feature_journal_needs_recovery(sb));
3867 
3868 	if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3869 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3870 			goto failed_mount3a;
3871 
3872 	/*
3873 	 * The first inode we look at is the journal inode.  Don't try
3874 	 * root first: it may be modified in the journal!
3875 	 */
3876 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3877 		if (ext4_load_journal(sb, es, journal_devnum))
3878 			goto failed_mount3a;
3879 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3880 		   ext4_has_feature_journal_needs_recovery(sb)) {
3881 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3882 		       "suppressed and not mounted read-only");
3883 		goto failed_mount_wq;
3884 	} else {
3885 		/* Nojournal mode, all journal mount options are illegal */
3886 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3887 			ext4_msg(sb, KERN_ERR, "can't mount with "
3888 				 "journal_checksum, fs mounted w/o journal");
3889 			goto failed_mount_wq;
3890 		}
3891 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3892 			ext4_msg(sb, KERN_ERR, "can't mount with "
3893 				 "journal_async_commit, fs mounted w/o journal");
3894 			goto failed_mount_wq;
3895 		}
3896 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3897 			ext4_msg(sb, KERN_ERR, "can't mount with "
3898 				 "commit=%lu, fs mounted w/o journal",
3899 				 sbi->s_commit_interval / HZ);
3900 			goto failed_mount_wq;
3901 		}
3902 		if (EXT4_MOUNT_DATA_FLAGS &
3903 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3904 			ext4_msg(sb, KERN_ERR, "can't mount with "
3905 				 "data=, fs mounted w/o journal");
3906 			goto failed_mount_wq;
3907 		}
3908 		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3909 		clear_opt(sb, JOURNAL_CHECKSUM);
3910 		clear_opt(sb, DATA_FLAGS);
3911 		sbi->s_journal = NULL;
3912 		needs_recovery = 0;
3913 		goto no_journal;
3914 	}
3915 
3916 	if (ext4_has_feature_64bit(sb) &&
3917 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3918 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3919 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3920 		goto failed_mount_wq;
3921 	}
3922 
3923 	if (!set_journal_csum_feature_set(sb)) {
3924 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3925 			 "feature set");
3926 		goto failed_mount_wq;
3927 	}
3928 
3929 	/* We have now updated the journal if required, so we can
3930 	 * validate the data journaling mode. */
3931 	switch (test_opt(sb, DATA_FLAGS)) {
3932 	case 0:
3933 		/* No mode set, assume a default based on the journal
3934 		 * capabilities: ORDERED_DATA if the journal can
3935 		 * cope, else JOURNAL_DATA
3936 		 */
3937 		if (jbd2_journal_check_available_features
3938 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3939 			set_opt(sb, ORDERED_DATA);
3940 		else
3941 			set_opt(sb, JOURNAL_DATA);
3942 		break;
3943 
3944 	case EXT4_MOUNT_ORDERED_DATA:
3945 	case EXT4_MOUNT_WRITEBACK_DATA:
3946 		if (!jbd2_journal_check_available_features
3947 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3948 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3949 			       "requested data journaling mode");
3950 			goto failed_mount_wq;
3951 		}
3952 	default:
3953 		break;
3954 	}
3955 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3956 
3957 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3958 
3959 no_journal:
3960 	sbi->s_mb_cache = ext4_xattr_create_cache();
3961 	if (!sbi->s_mb_cache) {
3962 		ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3963 		goto failed_mount_wq;
3964 	}
3965 
3966 	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3967 	    (blocksize != PAGE_SIZE)) {
3968 		ext4_msg(sb, KERN_ERR,
3969 			 "Unsupported blocksize for fs encryption");
3970 		goto failed_mount_wq;
3971 	}
3972 
3973 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3974 	    !ext4_has_feature_encrypt(sb)) {
3975 		ext4_set_feature_encrypt(sb);
3976 		ext4_commit_super(sb, 1);
3977 	}
3978 
3979 	/*
3980 	 * Get the # of file system overhead blocks from the
3981 	 * superblock if present.
3982 	 */
3983 	if (es->s_overhead_clusters)
3984 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3985 	else {
3986 		err = ext4_calculate_overhead(sb);
3987 		if (err)
3988 			goto failed_mount_wq;
3989 	}
3990 
3991 	/*
3992 	 * The maximum number of concurrent works can be high and
3993 	 * concurrency isn't really necessary.  Limit it to 1.
3994 	 */
3995 	EXT4_SB(sb)->rsv_conversion_wq =
3996 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3997 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
3998 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3999 		ret = -ENOMEM;
4000 		goto failed_mount4;
4001 	}
4002 
4003 	/*
4004 	 * The jbd2_journal_load will have done any necessary log recovery,
4005 	 * so we can safely mount the rest of the filesystem now.
4006 	 */
4007 
4008 	root = ext4_iget(sb, EXT4_ROOT_INO);
4009 	if (IS_ERR(root)) {
4010 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4011 		ret = PTR_ERR(root);
4012 		root = NULL;
4013 		goto failed_mount4;
4014 	}
4015 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4016 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4017 		iput(root);
4018 		goto failed_mount4;
4019 	}
4020 	sb->s_root = d_make_root(root);
4021 	if (!sb->s_root) {
4022 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4023 		ret = -ENOMEM;
4024 		goto failed_mount4;
4025 	}
4026 
4027 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4028 		sb->s_flags |= MS_RDONLY;
4029 
4030 	/* determine the minimum size of new large inodes, if present */
4031 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4032 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4033 						     EXT4_GOOD_OLD_INODE_SIZE;
4034 		if (ext4_has_feature_extra_isize(sb)) {
4035 			if (sbi->s_want_extra_isize <
4036 			    le16_to_cpu(es->s_want_extra_isize))
4037 				sbi->s_want_extra_isize =
4038 					le16_to_cpu(es->s_want_extra_isize);
4039 			if (sbi->s_want_extra_isize <
4040 			    le16_to_cpu(es->s_min_extra_isize))
4041 				sbi->s_want_extra_isize =
4042 					le16_to_cpu(es->s_min_extra_isize);
4043 		}
4044 	}
4045 	/* Check if enough inode space is available */
4046 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4047 							sbi->s_inode_size) {
4048 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4049 						       EXT4_GOOD_OLD_INODE_SIZE;
4050 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4051 			 "available");
4052 	}
4053 
4054 	ext4_set_resv_clusters(sb);
4055 
4056 	err = ext4_setup_system_zone(sb);
4057 	if (err) {
4058 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4059 			 "zone (%d)", err);
4060 		goto failed_mount4a;
4061 	}
4062 
4063 	ext4_ext_init(sb);
4064 	err = ext4_mb_init(sb);
4065 	if (err) {
4066 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4067 			 err);
4068 		goto failed_mount5;
4069 	}
4070 
4071 	block = ext4_count_free_clusters(sb);
4072 	ext4_free_blocks_count_set(sbi->s_es,
4073 				   EXT4_C2B(sbi, block));
4074 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4075 				  GFP_KERNEL);
4076 	if (!err) {
4077 		unsigned long freei = ext4_count_free_inodes(sb);
4078 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4079 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4080 					  GFP_KERNEL);
4081 	}
4082 	if (!err)
4083 		err = percpu_counter_init(&sbi->s_dirs_counter,
4084 					  ext4_count_dirs(sb), GFP_KERNEL);
4085 	if (!err)
4086 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4087 					  GFP_KERNEL);
4088 	if (!err)
4089 		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4090 
4091 	if (err) {
4092 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4093 		goto failed_mount6;
4094 	}
4095 
4096 	if (ext4_has_feature_flex_bg(sb))
4097 		if (!ext4_fill_flex_info(sb)) {
4098 			ext4_msg(sb, KERN_ERR,
4099 			       "unable to initialize "
4100 			       "flex_bg meta info!");
4101 			goto failed_mount6;
4102 		}
4103 
4104 	err = ext4_register_li_request(sb, first_not_zeroed);
4105 	if (err)
4106 		goto failed_mount6;
4107 
4108 	err = ext4_register_sysfs(sb);
4109 	if (err)
4110 		goto failed_mount7;
4111 
4112 #ifdef CONFIG_QUOTA
4113 	/* Enable quota usage during mount. */
4114 	if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4115 		err = ext4_enable_quotas(sb);
4116 		if (err)
4117 			goto failed_mount8;
4118 	}
4119 #endif  /* CONFIG_QUOTA */
4120 
4121 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4122 	ext4_orphan_cleanup(sb, es);
4123 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4124 	if (needs_recovery) {
4125 		ext4_msg(sb, KERN_INFO, "recovery complete");
4126 		ext4_mark_recovery_complete(sb, es);
4127 	}
4128 	if (EXT4_SB(sb)->s_journal) {
4129 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4130 			descr = " journalled data mode";
4131 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4132 			descr = " ordered data mode";
4133 		else
4134 			descr = " writeback data mode";
4135 	} else
4136 		descr = "out journal";
4137 
4138 	if (test_opt(sb, DISCARD)) {
4139 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4140 		if (!blk_queue_discard(q))
4141 			ext4_msg(sb, KERN_WARNING,
4142 				 "mounting with \"discard\" option, but "
4143 				 "the device does not support discard");
4144 	}
4145 
4146 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4147 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4148 			 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4149 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4150 
4151 	if (es->s_error_count)
4152 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4153 
4154 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4155 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4156 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4157 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4158 
4159 	kfree(orig_data);
4160 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4161 	memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4162 				EXT4_KEY_DESC_PREFIX_SIZE);
4163 	sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4164 #endif
4165 	return 0;
4166 
4167 cantfind_ext4:
4168 	if (!silent)
4169 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4170 	goto failed_mount;
4171 
4172 #ifdef CONFIG_QUOTA
4173 failed_mount8:
4174 	ext4_unregister_sysfs(sb);
4175 #endif
4176 failed_mount7:
4177 	ext4_unregister_li_request(sb);
4178 failed_mount6:
4179 	ext4_mb_release(sb);
4180 	if (sbi->s_flex_groups)
4181 		kvfree(sbi->s_flex_groups);
4182 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4183 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4184 	percpu_counter_destroy(&sbi->s_dirs_counter);
4185 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4186 failed_mount5:
4187 	ext4_ext_release(sb);
4188 	ext4_release_system_zone(sb);
4189 failed_mount4a:
4190 	dput(sb->s_root);
4191 	sb->s_root = NULL;
4192 failed_mount4:
4193 	ext4_msg(sb, KERN_ERR, "mount failed");
4194 	if (EXT4_SB(sb)->rsv_conversion_wq)
4195 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4196 failed_mount_wq:
4197 	if (sbi->s_mb_cache) {
4198 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
4199 		sbi->s_mb_cache = NULL;
4200 	}
4201 	if (sbi->s_journal) {
4202 		jbd2_journal_destroy(sbi->s_journal);
4203 		sbi->s_journal = NULL;
4204 	}
4205 failed_mount3a:
4206 	ext4_es_unregister_shrinker(sbi);
4207 failed_mount3:
4208 	del_timer_sync(&sbi->s_err_report);
4209 	if (sbi->s_mmp_tsk)
4210 		kthread_stop(sbi->s_mmp_tsk);
4211 failed_mount2:
4212 	for (i = 0; i < db_count; i++)
4213 		brelse(sbi->s_group_desc[i]);
4214 	kvfree(sbi->s_group_desc);
4215 failed_mount:
4216 	if (sbi->s_chksum_driver)
4217 		crypto_free_shash(sbi->s_chksum_driver);
4218 #ifdef CONFIG_QUOTA
4219 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4220 		kfree(sbi->s_qf_names[i]);
4221 #endif
4222 	ext4_blkdev_remove(sbi);
4223 	brelse(bh);
4224 out_fail:
4225 	sb->s_fs_info = NULL;
4226 	kfree(sbi->s_blockgroup_lock);
4227 	kfree(sbi);
4228 out_free_orig:
4229 	kfree(orig_data);
4230 	return err ? err : ret;
4231 }
4232 
4233 /*
4234  * Setup any per-fs journal parameters now.  We'll do this both on
4235  * initial mount, once the journal has been initialised but before we've
4236  * done any recovery; and again on any subsequent remount.
4237  */
4238 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4239 {
4240 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4241 
4242 	journal->j_commit_interval = sbi->s_commit_interval;
4243 	journal->j_min_batch_time = sbi->s_min_batch_time;
4244 	journal->j_max_batch_time = sbi->s_max_batch_time;
4245 
4246 	write_lock(&journal->j_state_lock);
4247 	if (test_opt(sb, BARRIER))
4248 		journal->j_flags |= JBD2_BARRIER;
4249 	else
4250 		journal->j_flags &= ~JBD2_BARRIER;
4251 	if (test_opt(sb, DATA_ERR_ABORT))
4252 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4253 	else
4254 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4255 	write_unlock(&journal->j_state_lock);
4256 }
4257 
4258 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4259 					     unsigned int journal_inum)
4260 {
4261 	struct inode *journal_inode;
4262 
4263 	/*
4264 	 * Test for the existence of a valid inode on disk.  Bad things
4265 	 * happen if we iget() an unused inode, as the subsequent iput()
4266 	 * will try to delete it.
4267 	 */
4268 	journal_inode = ext4_iget(sb, journal_inum);
4269 	if (IS_ERR(journal_inode)) {
4270 		ext4_msg(sb, KERN_ERR, "no journal found");
4271 		return NULL;
4272 	}
4273 	if (!journal_inode->i_nlink) {
4274 		make_bad_inode(journal_inode);
4275 		iput(journal_inode);
4276 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4277 		return NULL;
4278 	}
4279 
4280 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4281 		  journal_inode, journal_inode->i_size);
4282 	if (!S_ISREG(journal_inode->i_mode)) {
4283 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4284 		iput(journal_inode);
4285 		return NULL;
4286 	}
4287 	return journal_inode;
4288 }
4289 
4290 static journal_t *ext4_get_journal(struct super_block *sb,
4291 				   unsigned int journal_inum)
4292 {
4293 	struct inode *journal_inode;
4294 	journal_t *journal;
4295 
4296 	BUG_ON(!ext4_has_feature_journal(sb));
4297 
4298 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4299 	if (!journal_inode)
4300 		return NULL;
4301 
4302 	journal = jbd2_journal_init_inode(journal_inode);
4303 	if (!journal) {
4304 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4305 		iput(journal_inode);
4306 		return NULL;
4307 	}
4308 	journal->j_private = sb;
4309 	ext4_init_journal_params(sb, journal);
4310 	return journal;
4311 }
4312 
4313 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4314 				       dev_t j_dev)
4315 {
4316 	struct buffer_head *bh;
4317 	journal_t *journal;
4318 	ext4_fsblk_t start;
4319 	ext4_fsblk_t len;
4320 	int hblock, blocksize;
4321 	ext4_fsblk_t sb_block;
4322 	unsigned long offset;
4323 	struct ext4_super_block *es;
4324 	struct block_device *bdev;
4325 
4326 	BUG_ON(!ext4_has_feature_journal(sb));
4327 
4328 	bdev = ext4_blkdev_get(j_dev, sb);
4329 	if (bdev == NULL)
4330 		return NULL;
4331 
4332 	blocksize = sb->s_blocksize;
4333 	hblock = bdev_logical_block_size(bdev);
4334 	if (blocksize < hblock) {
4335 		ext4_msg(sb, KERN_ERR,
4336 			"blocksize too small for journal device");
4337 		goto out_bdev;
4338 	}
4339 
4340 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4341 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4342 	set_blocksize(bdev, blocksize);
4343 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4344 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4345 		       "external journal");
4346 		goto out_bdev;
4347 	}
4348 
4349 	es = (struct ext4_super_block *) (bh->b_data + offset);
4350 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4351 	    !(le32_to_cpu(es->s_feature_incompat) &
4352 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4353 		ext4_msg(sb, KERN_ERR, "external journal has "
4354 					"bad superblock");
4355 		brelse(bh);
4356 		goto out_bdev;
4357 	}
4358 
4359 	if ((le32_to_cpu(es->s_feature_ro_compat) &
4360 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4361 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4362 		ext4_msg(sb, KERN_ERR, "external journal has "
4363 				       "corrupt superblock");
4364 		brelse(bh);
4365 		goto out_bdev;
4366 	}
4367 
4368 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4369 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4370 		brelse(bh);
4371 		goto out_bdev;
4372 	}
4373 
4374 	len = ext4_blocks_count(es);
4375 	start = sb_block + 1;
4376 	brelse(bh);	/* we're done with the superblock */
4377 
4378 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4379 					start, len, blocksize);
4380 	if (!journal) {
4381 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4382 		goto out_bdev;
4383 	}
4384 	journal->j_private = sb;
4385 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4386 	wait_on_buffer(journal->j_sb_buffer);
4387 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4388 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4389 		goto out_journal;
4390 	}
4391 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4392 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4393 					"user (unsupported) - %d",
4394 			be32_to_cpu(journal->j_superblock->s_nr_users));
4395 		goto out_journal;
4396 	}
4397 	EXT4_SB(sb)->journal_bdev = bdev;
4398 	ext4_init_journal_params(sb, journal);
4399 	return journal;
4400 
4401 out_journal:
4402 	jbd2_journal_destroy(journal);
4403 out_bdev:
4404 	ext4_blkdev_put(bdev);
4405 	return NULL;
4406 }
4407 
4408 static int ext4_load_journal(struct super_block *sb,
4409 			     struct ext4_super_block *es,
4410 			     unsigned long journal_devnum)
4411 {
4412 	journal_t *journal;
4413 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4414 	dev_t journal_dev;
4415 	int err = 0;
4416 	int really_read_only;
4417 
4418 	BUG_ON(!ext4_has_feature_journal(sb));
4419 
4420 	if (journal_devnum &&
4421 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4422 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4423 			"numbers have changed");
4424 		journal_dev = new_decode_dev(journal_devnum);
4425 	} else
4426 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4427 
4428 	really_read_only = bdev_read_only(sb->s_bdev);
4429 
4430 	/*
4431 	 * Are we loading a blank journal or performing recovery after a
4432 	 * crash?  For recovery, we need to check in advance whether we
4433 	 * can get read-write access to the device.
4434 	 */
4435 	if (ext4_has_feature_journal_needs_recovery(sb)) {
4436 		if (sb->s_flags & MS_RDONLY) {
4437 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4438 					"required on readonly filesystem");
4439 			if (really_read_only) {
4440 				ext4_msg(sb, KERN_ERR, "write access "
4441 					"unavailable, cannot proceed");
4442 				return -EROFS;
4443 			}
4444 			ext4_msg(sb, KERN_INFO, "write access will "
4445 			       "be enabled during recovery");
4446 		}
4447 	}
4448 
4449 	if (journal_inum && journal_dev) {
4450 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4451 		       "and inode journals!");
4452 		return -EINVAL;
4453 	}
4454 
4455 	if (journal_inum) {
4456 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4457 			return -EINVAL;
4458 	} else {
4459 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4460 			return -EINVAL;
4461 	}
4462 
4463 	if (!(journal->j_flags & JBD2_BARRIER))
4464 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4465 
4466 	if (!ext4_has_feature_journal_needs_recovery(sb))
4467 		err = jbd2_journal_wipe(journal, !really_read_only);
4468 	if (!err) {
4469 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4470 		if (save)
4471 			memcpy(save, ((char *) es) +
4472 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4473 		err = jbd2_journal_load(journal);
4474 		if (save)
4475 			memcpy(((char *) es) + EXT4_S_ERR_START,
4476 			       save, EXT4_S_ERR_LEN);
4477 		kfree(save);
4478 	}
4479 
4480 	if (err) {
4481 		ext4_msg(sb, KERN_ERR, "error loading journal");
4482 		jbd2_journal_destroy(journal);
4483 		return err;
4484 	}
4485 
4486 	EXT4_SB(sb)->s_journal = journal;
4487 	ext4_clear_journal_err(sb, es);
4488 
4489 	if (!really_read_only && journal_devnum &&
4490 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4491 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4492 
4493 		/* Make sure we flush the recovery flag to disk. */
4494 		ext4_commit_super(sb, 1);
4495 	}
4496 
4497 	return 0;
4498 }
4499 
4500 static int ext4_commit_super(struct super_block *sb, int sync)
4501 {
4502 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4503 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4504 	int error = 0;
4505 
4506 	if (!sbh || block_device_ejected(sb))
4507 		return error;
4508 	/*
4509 	 * If the file system is mounted read-only, don't update the
4510 	 * superblock write time.  This avoids updating the superblock
4511 	 * write time when we are mounting the root file system
4512 	 * read/only but we need to replay the journal; at that point,
4513 	 * for people who are east of GMT and who make their clock
4514 	 * tick in localtime for Windows bug-for-bug compatibility,
4515 	 * the clock is set in the future, and this will cause e2fsck
4516 	 * to complain and force a full file system check.
4517 	 */
4518 	if (!(sb->s_flags & MS_RDONLY))
4519 		es->s_wtime = cpu_to_le32(get_seconds());
4520 	if (sb->s_bdev->bd_part)
4521 		es->s_kbytes_written =
4522 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4523 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4524 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4525 	else
4526 		es->s_kbytes_written =
4527 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4528 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4529 		ext4_free_blocks_count_set(es,
4530 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4531 				&EXT4_SB(sb)->s_freeclusters_counter)));
4532 	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4533 		es->s_free_inodes_count =
4534 			cpu_to_le32(percpu_counter_sum_positive(
4535 				&EXT4_SB(sb)->s_freeinodes_counter));
4536 	BUFFER_TRACE(sbh, "marking dirty");
4537 	ext4_superblock_csum_set(sb);
4538 	lock_buffer(sbh);
4539 	if (buffer_write_io_error(sbh)) {
4540 		/*
4541 		 * Oh, dear.  A previous attempt to write the
4542 		 * superblock failed.  This could happen because the
4543 		 * USB device was yanked out.  Or it could happen to
4544 		 * be a transient write error and maybe the block will
4545 		 * be remapped.  Nothing we can do but to retry the
4546 		 * write and hope for the best.
4547 		 */
4548 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4549 		       "superblock detected");
4550 		clear_buffer_write_io_error(sbh);
4551 		set_buffer_uptodate(sbh);
4552 	}
4553 	mark_buffer_dirty(sbh);
4554 	unlock_buffer(sbh);
4555 	if (sync) {
4556 		error = __sync_dirty_buffer(sbh,
4557 			test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4558 		if (error)
4559 			return error;
4560 
4561 		error = buffer_write_io_error(sbh);
4562 		if (error) {
4563 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4564 			       "superblock");
4565 			clear_buffer_write_io_error(sbh);
4566 			set_buffer_uptodate(sbh);
4567 		}
4568 	}
4569 	return error;
4570 }
4571 
4572 /*
4573  * Have we just finished recovery?  If so, and if we are mounting (or
4574  * remounting) the filesystem readonly, then we will end up with a
4575  * consistent fs on disk.  Record that fact.
4576  */
4577 static void ext4_mark_recovery_complete(struct super_block *sb,
4578 					struct ext4_super_block *es)
4579 {
4580 	journal_t *journal = EXT4_SB(sb)->s_journal;
4581 
4582 	if (!ext4_has_feature_journal(sb)) {
4583 		BUG_ON(journal != NULL);
4584 		return;
4585 	}
4586 	jbd2_journal_lock_updates(journal);
4587 	if (jbd2_journal_flush(journal) < 0)
4588 		goto out;
4589 
4590 	if (ext4_has_feature_journal_needs_recovery(sb) &&
4591 	    sb->s_flags & MS_RDONLY) {
4592 		ext4_clear_feature_journal_needs_recovery(sb);
4593 		ext4_commit_super(sb, 1);
4594 	}
4595 
4596 out:
4597 	jbd2_journal_unlock_updates(journal);
4598 }
4599 
4600 /*
4601  * If we are mounting (or read-write remounting) a filesystem whose journal
4602  * has recorded an error from a previous lifetime, move that error to the
4603  * main filesystem now.
4604  */
4605 static void ext4_clear_journal_err(struct super_block *sb,
4606 				   struct ext4_super_block *es)
4607 {
4608 	journal_t *journal;
4609 	int j_errno;
4610 	const char *errstr;
4611 
4612 	BUG_ON(!ext4_has_feature_journal(sb));
4613 
4614 	journal = EXT4_SB(sb)->s_journal;
4615 
4616 	/*
4617 	 * Now check for any error status which may have been recorded in the
4618 	 * journal by a prior ext4_error() or ext4_abort()
4619 	 */
4620 
4621 	j_errno = jbd2_journal_errno(journal);
4622 	if (j_errno) {
4623 		char nbuf[16];
4624 
4625 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4626 		ext4_warning(sb, "Filesystem error recorded "
4627 			     "from previous mount: %s", errstr);
4628 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4629 
4630 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4631 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4632 		ext4_commit_super(sb, 1);
4633 
4634 		jbd2_journal_clear_err(journal);
4635 		jbd2_journal_update_sb_errno(journal);
4636 	}
4637 }
4638 
4639 /*
4640  * Force the running and committing transactions to commit,
4641  * and wait on the commit.
4642  */
4643 int ext4_force_commit(struct super_block *sb)
4644 {
4645 	journal_t *journal;
4646 
4647 	if (sb->s_flags & MS_RDONLY)
4648 		return 0;
4649 
4650 	journal = EXT4_SB(sb)->s_journal;
4651 	return ext4_journal_force_commit(journal);
4652 }
4653 
4654 static int ext4_sync_fs(struct super_block *sb, int wait)
4655 {
4656 	int ret = 0;
4657 	tid_t target;
4658 	bool needs_barrier = false;
4659 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4660 
4661 	trace_ext4_sync_fs(sb, wait);
4662 	flush_workqueue(sbi->rsv_conversion_wq);
4663 	/*
4664 	 * Writeback quota in non-journalled quota case - journalled quota has
4665 	 * no dirty dquots
4666 	 */
4667 	dquot_writeback_dquots(sb, -1);
4668 	/*
4669 	 * Data writeback is possible w/o journal transaction, so barrier must
4670 	 * being sent at the end of the function. But we can skip it if
4671 	 * transaction_commit will do it for us.
4672 	 */
4673 	if (sbi->s_journal) {
4674 		target = jbd2_get_latest_transaction(sbi->s_journal);
4675 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4676 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4677 			needs_barrier = true;
4678 
4679 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4680 			if (wait)
4681 				ret = jbd2_log_wait_commit(sbi->s_journal,
4682 							   target);
4683 		}
4684 	} else if (wait && test_opt(sb, BARRIER))
4685 		needs_barrier = true;
4686 	if (needs_barrier) {
4687 		int err;
4688 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4689 		if (!ret)
4690 			ret = err;
4691 	}
4692 
4693 	return ret;
4694 }
4695 
4696 /*
4697  * LVM calls this function before a (read-only) snapshot is created.  This
4698  * gives us a chance to flush the journal completely and mark the fs clean.
4699  *
4700  * Note that only this function cannot bring a filesystem to be in a clean
4701  * state independently. It relies on upper layer to stop all data & metadata
4702  * modifications.
4703  */
4704 static int ext4_freeze(struct super_block *sb)
4705 {
4706 	int error = 0;
4707 	journal_t *journal;
4708 
4709 	if (sb->s_flags & MS_RDONLY)
4710 		return 0;
4711 
4712 	journal = EXT4_SB(sb)->s_journal;
4713 
4714 	if (journal) {
4715 		/* Now we set up the journal barrier. */
4716 		jbd2_journal_lock_updates(journal);
4717 
4718 		/*
4719 		 * Don't clear the needs_recovery flag if we failed to
4720 		 * flush the journal.
4721 		 */
4722 		error = jbd2_journal_flush(journal);
4723 		if (error < 0)
4724 			goto out;
4725 
4726 		/* Journal blocked and flushed, clear needs_recovery flag. */
4727 		ext4_clear_feature_journal_needs_recovery(sb);
4728 	}
4729 
4730 	error = ext4_commit_super(sb, 1);
4731 out:
4732 	if (journal)
4733 		/* we rely on upper layer to stop further updates */
4734 		jbd2_journal_unlock_updates(journal);
4735 	return error;
4736 }
4737 
4738 /*
4739  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4740  * flag here, even though the filesystem is not technically dirty yet.
4741  */
4742 static int ext4_unfreeze(struct super_block *sb)
4743 {
4744 	if (sb->s_flags & MS_RDONLY)
4745 		return 0;
4746 
4747 	if (EXT4_SB(sb)->s_journal) {
4748 		/* Reset the needs_recovery flag before the fs is unlocked. */
4749 		ext4_set_feature_journal_needs_recovery(sb);
4750 	}
4751 
4752 	ext4_commit_super(sb, 1);
4753 	return 0;
4754 }
4755 
4756 /*
4757  * Structure to save mount options for ext4_remount's benefit
4758  */
4759 struct ext4_mount_options {
4760 	unsigned long s_mount_opt;
4761 	unsigned long s_mount_opt2;
4762 	kuid_t s_resuid;
4763 	kgid_t s_resgid;
4764 	unsigned long s_commit_interval;
4765 	u32 s_min_batch_time, s_max_batch_time;
4766 #ifdef CONFIG_QUOTA
4767 	int s_jquota_fmt;
4768 	char *s_qf_names[EXT4_MAXQUOTAS];
4769 #endif
4770 };
4771 
4772 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4773 {
4774 	struct ext4_super_block *es;
4775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4776 	unsigned long old_sb_flags;
4777 	struct ext4_mount_options old_opts;
4778 	int enable_quota = 0;
4779 	ext4_group_t g;
4780 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4781 	int err = 0;
4782 #ifdef CONFIG_QUOTA
4783 	int i, j;
4784 #endif
4785 	char *orig_data = kstrdup(data, GFP_KERNEL);
4786 
4787 	/* Store the original options */
4788 	old_sb_flags = sb->s_flags;
4789 	old_opts.s_mount_opt = sbi->s_mount_opt;
4790 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4791 	old_opts.s_resuid = sbi->s_resuid;
4792 	old_opts.s_resgid = sbi->s_resgid;
4793 	old_opts.s_commit_interval = sbi->s_commit_interval;
4794 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4795 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4796 #ifdef CONFIG_QUOTA
4797 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4798 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4799 		if (sbi->s_qf_names[i]) {
4800 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4801 							 GFP_KERNEL);
4802 			if (!old_opts.s_qf_names[i]) {
4803 				for (j = 0; j < i; j++)
4804 					kfree(old_opts.s_qf_names[j]);
4805 				kfree(orig_data);
4806 				return -ENOMEM;
4807 			}
4808 		} else
4809 			old_opts.s_qf_names[i] = NULL;
4810 #endif
4811 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4812 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4813 
4814 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4815 		err = -EINVAL;
4816 		goto restore_opts;
4817 	}
4818 
4819 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4820 	    test_opt(sb, JOURNAL_CHECKSUM)) {
4821 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4822 			 "during remount not supported; ignoring");
4823 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4824 	}
4825 
4826 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4827 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4828 			ext4_msg(sb, KERN_ERR, "can't mount with "
4829 				 "both data=journal and delalloc");
4830 			err = -EINVAL;
4831 			goto restore_opts;
4832 		}
4833 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4834 			ext4_msg(sb, KERN_ERR, "can't mount with "
4835 				 "both data=journal and dioread_nolock");
4836 			err = -EINVAL;
4837 			goto restore_opts;
4838 		}
4839 		if (test_opt(sb, DAX)) {
4840 			ext4_msg(sb, KERN_ERR, "can't mount with "
4841 				 "both data=journal and dax");
4842 			err = -EINVAL;
4843 			goto restore_opts;
4844 		}
4845 	}
4846 
4847 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4848 		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4849 			"dax flag with busy inodes while remounting");
4850 		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4851 	}
4852 
4853 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4854 		ext4_abort(sb, "Abort forced by user");
4855 
4856 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4857 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4858 
4859 	es = sbi->s_es;
4860 
4861 	if (sbi->s_journal) {
4862 		ext4_init_journal_params(sb, sbi->s_journal);
4863 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4864 	}
4865 
4866 	if (*flags & MS_LAZYTIME)
4867 		sb->s_flags |= MS_LAZYTIME;
4868 
4869 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4870 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4871 			err = -EROFS;
4872 			goto restore_opts;
4873 		}
4874 
4875 		if (*flags & MS_RDONLY) {
4876 			err = sync_filesystem(sb);
4877 			if (err < 0)
4878 				goto restore_opts;
4879 			err = dquot_suspend(sb, -1);
4880 			if (err < 0)
4881 				goto restore_opts;
4882 
4883 			/*
4884 			 * First of all, the unconditional stuff we have to do
4885 			 * to disable replay of the journal when we next remount
4886 			 */
4887 			sb->s_flags |= MS_RDONLY;
4888 
4889 			/*
4890 			 * OK, test if we are remounting a valid rw partition
4891 			 * readonly, and if so set the rdonly flag and then
4892 			 * mark the partition as valid again.
4893 			 */
4894 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4895 			    (sbi->s_mount_state & EXT4_VALID_FS))
4896 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4897 
4898 			if (sbi->s_journal)
4899 				ext4_mark_recovery_complete(sb, es);
4900 		} else {
4901 			/* Make sure we can mount this feature set readwrite */
4902 			if (ext4_has_feature_readonly(sb) ||
4903 			    !ext4_feature_set_ok(sb, 0)) {
4904 				err = -EROFS;
4905 				goto restore_opts;
4906 			}
4907 			/*
4908 			 * Make sure the group descriptor checksums
4909 			 * are sane.  If they aren't, refuse to remount r/w.
4910 			 */
4911 			for (g = 0; g < sbi->s_groups_count; g++) {
4912 				struct ext4_group_desc *gdp =
4913 					ext4_get_group_desc(sb, g, NULL);
4914 
4915 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4916 					ext4_msg(sb, KERN_ERR,
4917 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4918 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4919 					       le16_to_cpu(gdp->bg_checksum));
4920 					err = -EFSBADCRC;
4921 					goto restore_opts;
4922 				}
4923 			}
4924 
4925 			/*
4926 			 * If we have an unprocessed orphan list hanging
4927 			 * around from a previously readonly bdev mount,
4928 			 * require a full umount/remount for now.
4929 			 */
4930 			if (es->s_last_orphan) {
4931 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4932 				       "remount RDWR because of unprocessed "
4933 				       "orphan inode list.  Please "
4934 				       "umount/remount instead");
4935 				err = -EINVAL;
4936 				goto restore_opts;
4937 			}
4938 
4939 			/*
4940 			 * Mounting a RDONLY partition read-write, so reread
4941 			 * and store the current valid flag.  (It may have
4942 			 * been changed by e2fsck since we originally mounted
4943 			 * the partition.)
4944 			 */
4945 			if (sbi->s_journal)
4946 				ext4_clear_journal_err(sb, es);
4947 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4948 			if (!ext4_setup_super(sb, es, 0))
4949 				sb->s_flags &= ~MS_RDONLY;
4950 			if (ext4_has_feature_mmp(sb))
4951 				if (ext4_multi_mount_protect(sb,
4952 						le64_to_cpu(es->s_mmp_block))) {
4953 					err = -EROFS;
4954 					goto restore_opts;
4955 				}
4956 			enable_quota = 1;
4957 		}
4958 	}
4959 
4960 	/*
4961 	 * Reinitialize lazy itable initialization thread based on
4962 	 * current settings
4963 	 */
4964 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4965 		ext4_unregister_li_request(sb);
4966 	else {
4967 		ext4_group_t first_not_zeroed;
4968 		first_not_zeroed = ext4_has_uninit_itable(sb);
4969 		ext4_register_li_request(sb, first_not_zeroed);
4970 	}
4971 
4972 	ext4_setup_system_zone(sb);
4973 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4974 		ext4_commit_super(sb, 1);
4975 
4976 #ifdef CONFIG_QUOTA
4977 	/* Release old quota file names */
4978 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4979 		kfree(old_opts.s_qf_names[i]);
4980 	if (enable_quota) {
4981 		if (sb_any_quota_suspended(sb))
4982 			dquot_resume(sb, -1);
4983 		else if (ext4_has_feature_quota(sb)) {
4984 			err = ext4_enable_quotas(sb);
4985 			if (err)
4986 				goto restore_opts;
4987 		}
4988 	}
4989 #endif
4990 
4991 	*flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4992 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4993 	kfree(orig_data);
4994 	return 0;
4995 
4996 restore_opts:
4997 	sb->s_flags = old_sb_flags;
4998 	sbi->s_mount_opt = old_opts.s_mount_opt;
4999 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5000 	sbi->s_resuid = old_opts.s_resuid;
5001 	sbi->s_resgid = old_opts.s_resgid;
5002 	sbi->s_commit_interval = old_opts.s_commit_interval;
5003 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5004 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
5005 #ifdef CONFIG_QUOTA
5006 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5007 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5008 		kfree(sbi->s_qf_names[i]);
5009 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5010 	}
5011 #endif
5012 	kfree(orig_data);
5013 	return err;
5014 }
5015 
5016 #ifdef CONFIG_QUOTA
5017 static int ext4_statfs_project(struct super_block *sb,
5018 			       kprojid_t projid, struct kstatfs *buf)
5019 {
5020 	struct kqid qid;
5021 	struct dquot *dquot;
5022 	u64 limit;
5023 	u64 curblock;
5024 
5025 	qid = make_kqid_projid(projid);
5026 	dquot = dqget(sb, qid);
5027 	if (IS_ERR(dquot))
5028 		return PTR_ERR(dquot);
5029 	spin_lock(&dq_data_lock);
5030 
5031 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5032 		 dquot->dq_dqb.dqb_bsoftlimit :
5033 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5034 	if (limit && buf->f_blocks > limit) {
5035 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5036 		buf->f_blocks = limit;
5037 		buf->f_bfree = buf->f_bavail =
5038 			(buf->f_blocks > curblock) ?
5039 			 (buf->f_blocks - curblock) : 0;
5040 	}
5041 
5042 	limit = dquot->dq_dqb.dqb_isoftlimit ?
5043 		dquot->dq_dqb.dqb_isoftlimit :
5044 		dquot->dq_dqb.dqb_ihardlimit;
5045 	if (limit && buf->f_files > limit) {
5046 		buf->f_files = limit;
5047 		buf->f_ffree =
5048 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5049 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5050 	}
5051 
5052 	spin_unlock(&dq_data_lock);
5053 	dqput(dquot);
5054 	return 0;
5055 }
5056 #endif
5057 
5058 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5059 {
5060 	struct super_block *sb = dentry->d_sb;
5061 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5062 	struct ext4_super_block *es = sbi->s_es;
5063 	ext4_fsblk_t overhead = 0, resv_blocks;
5064 	u64 fsid;
5065 	s64 bfree;
5066 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5067 
5068 	if (!test_opt(sb, MINIX_DF))
5069 		overhead = sbi->s_overhead;
5070 
5071 	buf->f_type = EXT4_SUPER_MAGIC;
5072 	buf->f_bsize = sb->s_blocksize;
5073 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5074 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5075 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5076 	/* prevent underflow in case that few free space is available */
5077 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5078 	buf->f_bavail = buf->f_bfree -
5079 			(ext4_r_blocks_count(es) + resv_blocks);
5080 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5081 		buf->f_bavail = 0;
5082 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5083 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5084 	buf->f_namelen = EXT4_NAME_LEN;
5085 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5086 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5087 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5088 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5089 
5090 #ifdef CONFIG_QUOTA
5091 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5092 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5093 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5094 #endif
5095 	return 0;
5096 }
5097 
5098 /* Helper function for writing quotas on sync - we need to start transaction
5099  * before quota file is locked for write. Otherwise the are possible deadlocks:
5100  * Process 1                         Process 2
5101  * ext4_create()                     quota_sync()
5102  *   jbd2_journal_start()                  write_dquot()
5103  *   dquot_initialize()                         down(dqio_mutex)
5104  *     down(dqio_mutex)                    jbd2_journal_start()
5105  *
5106  */
5107 
5108 #ifdef CONFIG_QUOTA
5109 
5110 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5111 {
5112 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5113 }
5114 
5115 static int ext4_write_dquot(struct dquot *dquot)
5116 {
5117 	int ret, err;
5118 	handle_t *handle;
5119 	struct inode *inode;
5120 
5121 	inode = dquot_to_inode(dquot);
5122 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5123 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5124 	if (IS_ERR(handle))
5125 		return PTR_ERR(handle);
5126 	ret = dquot_commit(dquot);
5127 	err = ext4_journal_stop(handle);
5128 	if (!ret)
5129 		ret = err;
5130 	return ret;
5131 }
5132 
5133 static int ext4_acquire_dquot(struct dquot *dquot)
5134 {
5135 	int ret, err;
5136 	handle_t *handle;
5137 
5138 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5139 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5140 	if (IS_ERR(handle))
5141 		return PTR_ERR(handle);
5142 	ret = dquot_acquire(dquot);
5143 	err = ext4_journal_stop(handle);
5144 	if (!ret)
5145 		ret = err;
5146 	return ret;
5147 }
5148 
5149 static int ext4_release_dquot(struct dquot *dquot)
5150 {
5151 	int ret, err;
5152 	handle_t *handle;
5153 
5154 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5155 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5156 	if (IS_ERR(handle)) {
5157 		/* Release dquot anyway to avoid endless cycle in dqput() */
5158 		dquot_release(dquot);
5159 		return PTR_ERR(handle);
5160 	}
5161 	ret = dquot_release(dquot);
5162 	err = ext4_journal_stop(handle);
5163 	if (!ret)
5164 		ret = err;
5165 	return ret;
5166 }
5167 
5168 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5169 {
5170 	struct super_block *sb = dquot->dq_sb;
5171 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5172 
5173 	/* Are we journaling quotas? */
5174 	if (ext4_has_feature_quota(sb) ||
5175 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5176 		dquot_mark_dquot_dirty(dquot);
5177 		return ext4_write_dquot(dquot);
5178 	} else {
5179 		return dquot_mark_dquot_dirty(dquot);
5180 	}
5181 }
5182 
5183 static int ext4_write_info(struct super_block *sb, int type)
5184 {
5185 	int ret, err;
5186 	handle_t *handle;
5187 
5188 	/* Data block + inode block */
5189 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5190 	if (IS_ERR(handle))
5191 		return PTR_ERR(handle);
5192 	ret = dquot_commit_info(sb, type);
5193 	err = ext4_journal_stop(handle);
5194 	if (!ret)
5195 		ret = err;
5196 	return ret;
5197 }
5198 
5199 /*
5200  * Turn on quotas during mount time - we need to find
5201  * the quota file and such...
5202  */
5203 static int ext4_quota_on_mount(struct super_block *sb, int type)
5204 {
5205 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5206 					EXT4_SB(sb)->s_jquota_fmt, type);
5207 }
5208 
5209 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5210 {
5211 	struct ext4_inode_info *ei = EXT4_I(inode);
5212 
5213 	/* The first argument of lockdep_set_subclass has to be
5214 	 * *exactly* the same as the argument to init_rwsem() --- in
5215 	 * this case, in init_once() --- or lockdep gets unhappy
5216 	 * because the name of the lock is set using the
5217 	 * stringification of the argument to init_rwsem().
5218 	 */
5219 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5220 	lockdep_set_subclass(&ei->i_data_sem, subclass);
5221 }
5222 
5223 /*
5224  * Standard function to be called on quota_on
5225  */
5226 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5227 			 struct path *path)
5228 {
5229 	int err;
5230 
5231 	if (!test_opt(sb, QUOTA))
5232 		return -EINVAL;
5233 
5234 	/* Quotafile not on the same filesystem? */
5235 	if (path->dentry->d_sb != sb)
5236 		return -EXDEV;
5237 	/* Journaling quota? */
5238 	if (EXT4_SB(sb)->s_qf_names[type]) {
5239 		/* Quotafile not in fs root? */
5240 		if (path->dentry->d_parent != sb->s_root)
5241 			ext4_msg(sb, KERN_WARNING,
5242 				"Quota file not on filesystem root. "
5243 				"Journaled quota will not work");
5244 	}
5245 
5246 	/*
5247 	 * When we journal data on quota file, we have to flush journal to see
5248 	 * all updates to the file when we bypass pagecache...
5249 	 */
5250 	if (EXT4_SB(sb)->s_journal &&
5251 	    ext4_should_journal_data(d_inode(path->dentry))) {
5252 		/*
5253 		 * We don't need to lock updates but journal_flush() could
5254 		 * otherwise be livelocked...
5255 		 */
5256 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5257 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5258 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5259 		if (err)
5260 			return err;
5261 	}
5262 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5263 	err = dquot_quota_on(sb, type, format_id, path);
5264 	if (err)
5265 		lockdep_set_quota_inode(path->dentry->d_inode,
5266 					     I_DATA_SEM_NORMAL);
5267 	return err;
5268 }
5269 
5270 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5271 			     unsigned int flags)
5272 {
5273 	int err;
5274 	struct inode *qf_inode;
5275 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5276 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5277 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5278 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5279 	};
5280 
5281 	BUG_ON(!ext4_has_feature_quota(sb));
5282 
5283 	if (!qf_inums[type])
5284 		return -EPERM;
5285 
5286 	qf_inode = ext4_iget(sb, qf_inums[type]);
5287 	if (IS_ERR(qf_inode)) {
5288 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5289 		return PTR_ERR(qf_inode);
5290 	}
5291 
5292 	/* Don't account quota for quota files to avoid recursion */
5293 	qf_inode->i_flags |= S_NOQUOTA;
5294 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5295 	err = dquot_enable(qf_inode, type, format_id, flags);
5296 	iput(qf_inode);
5297 	if (err)
5298 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5299 
5300 	return err;
5301 }
5302 
5303 /* Enable usage tracking for all quota types. */
5304 static int ext4_enable_quotas(struct super_block *sb)
5305 {
5306 	int type, err = 0;
5307 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5308 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5309 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5310 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5311 	};
5312 	bool quota_mopt[EXT4_MAXQUOTAS] = {
5313 		test_opt(sb, USRQUOTA),
5314 		test_opt(sb, GRPQUOTA),
5315 		test_opt(sb, PRJQUOTA),
5316 	};
5317 
5318 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5319 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5320 		if (qf_inums[type]) {
5321 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5322 				DQUOT_USAGE_ENABLED |
5323 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5324 			if (err) {
5325 				ext4_warning(sb,
5326 					"Failed to enable quota tracking "
5327 					"(type=%d, err=%d). Please run "
5328 					"e2fsck to fix.", type, err);
5329 				return err;
5330 			}
5331 		}
5332 	}
5333 	return 0;
5334 }
5335 
5336 static int ext4_quota_off(struct super_block *sb, int type)
5337 {
5338 	struct inode *inode = sb_dqopt(sb)->files[type];
5339 	handle_t *handle;
5340 
5341 	/* Force all delayed allocation blocks to be allocated.
5342 	 * Caller already holds s_umount sem */
5343 	if (test_opt(sb, DELALLOC))
5344 		sync_filesystem(sb);
5345 
5346 	if (!inode)
5347 		goto out;
5348 
5349 	/* Update modification times of quota files when userspace can
5350 	 * start looking at them */
5351 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5352 	if (IS_ERR(handle))
5353 		goto out;
5354 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5355 	ext4_mark_inode_dirty(handle, inode);
5356 	ext4_journal_stop(handle);
5357 
5358 out:
5359 	return dquot_quota_off(sb, type);
5360 }
5361 
5362 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5363  * acquiring the locks... As quota files are never truncated and quota code
5364  * itself serializes the operations (and no one else should touch the files)
5365  * we don't have to be afraid of races */
5366 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5367 			       size_t len, loff_t off)
5368 {
5369 	struct inode *inode = sb_dqopt(sb)->files[type];
5370 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5371 	int offset = off & (sb->s_blocksize - 1);
5372 	int tocopy;
5373 	size_t toread;
5374 	struct buffer_head *bh;
5375 	loff_t i_size = i_size_read(inode);
5376 
5377 	if (off > i_size)
5378 		return 0;
5379 	if (off+len > i_size)
5380 		len = i_size-off;
5381 	toread = len;
5382 	while (toread > 0) {
5383 		tocopy = sb->s_blocksize - offset < toread ?
5384 				sb->s_blocksize - offset : toread;
5385 		bh = ext4_bread(NULL, inode, blk, 0);
5386 		if (IS_ERR(bh))
5387 			return PTR_ERR(bh);
5388 		if (!bh)	/* A hole? */
5389 			memset(data, 0, tocopy);
5390 		else
5391 			memcpy(data, bh->b_data+offset, tocopy);
5392 		brelse(bh);
5393 		offset = 0;
5394 		toread -= tocopy;
5395 		data += tocopy;
5396 		blk++;
5397 	}
5398 	return len;
5399 }
5400 
5401 /* Write to quotafile (we know the transaction is already started and has
5402  * enough credits) */
5403 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5404 				const char *data, size_t len, loff_t off)
5405 {
5406 	struct inode *inode = sb_dqopt(sb)->files[type];
5407 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5408 	int err, offset = off & (sb->s_blocksize - 1);
5409 	int retries = 0;
5410 	struct buffer_head *bh;
5411 	handle_t *handle = journal_current_handle();
5412 
5413 	if (EXT4_SB(sb)->s_journal && !handle) {
5414 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5415 			" cancelled because transaction is not started",
5416 			(unsigned long long)off, (unsigned long long)len);
5417 		return -EIO;
5418 	}
5419 	/*
5420 	 * Since we account only one data block in transaction credits,
5421 	 * then it is impossible to cross a block boundary.
5422 	 */
5423 	if (sb->s_blocksize - offset < len) {
5424 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5425 			" cancelled because not block aligned",
5426 			(unsigned long long)off, (unsigned long long)len);
5427 		return -EIO;
5428 	}
5429 
5430 	do {
5431 		bh = ext4_bread(handle, inode, blk,
5432 				EXT4_GET_BLOCKS_CREATE |
5433 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5434 	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5435 		 ext4_should_retry_alloc(inode->i_sb, &retries));
5436 	if (IS_ERR(bh))
5437 		return PTR_ERR(bh);
5438 	if (!bh)
5439 		goto out;
5440 	BUFFER_TRACE(bh, "get write access");
5441 	err = ext4_journal_get_write_access(handle, bh);
5442 	if (err) {
5443 		brelse(bh);
5444 		return err;
5445 	}
5446 	lock_buffer(bh);
5447 	memcpy(bh->b_data+offset, data, len);
5448 	flush_dcache_page(bh->b_page);
5449 	unlock_buffer(bh);
5450 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5451 	brelse(bh);
5452 out:
5453 	if (inode->i_size < off + len) {
5454 		i_size_write(inode, off + len);
5455 		EXT4_I(inode)->i_disksize = inode->i_size;
5456 		ext4_mark_inode_dirty(handle, inode);
5457 	}
5458 	return len;
5459 }
5460 
5461 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5462 {
5463 	const struct quota_format_ops	*ops;
5464 
5465 	if (!sb_has_quota_loaded(sb, qid->type))
5466 		return -ESRCH;
5467 	ops = sb_dqopt(sb)->ops[qid->type];
5468 	if (!ops || !ops->get_next_id)
5469 		return -ENOSYS;
5470 	return dquot_get_next_id(sb, qid);
5471 }
5472 #endif
5473 
5474 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5475 		       const char *dev_name, void *data)
5476 {
5477 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5478 }
5479 
5480 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5481 static inline void register_as_ext2(void)
5482 {
5483 	int err = register_filesystem(&ext2_fs_type);
5484 	if (err)
5485 		printk(KERN_WARNING
5486 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5487 }
5488 
5489 static inline void unregister_as_ext2(void)
5490 {
5491 	unregister_filesystem(&ext2_fs_type);
5492 }
5493 
5494 static inline int ext2_feature_set_ok(struct super_block *sb)
5495 {
5496 	if (ext4_has_unknown_ext2_incompat_features(sb))
5497 		return 0;
5498 	if (sb->s_flags & MS_RDONLY)
5499 		return 1;
5500 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5501 		return 0;
5502 	return 1;
5503 }
5504 #else
5505 static inline void register_as_ext2(void) { }
5506 static inline void unregister_as_ext2(void) { }
5507 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5508 #endif
5509 
5510 static inline void register_as_ext3(void)
5511 {
5512 	int err = register_filesystem(&ext3_fs_type);
5513 	if (err)
5514 		printk(KERN_WARNING
5515 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5516 }
5517 
5518 static inline void unregister_as_ext3(void)
5519 {
5520 	unregister_filesystem(&ext3_fs_type);
5521 }
5522 
5523 static inline int ext3_feature_set_ok(struct super_block *sb)
5524 {
5525 	if (ext4_has_unknown_ext3_incompat_features(sb))
5526 		return 0;
5527 	if (!ext4_has_feature_journal(sb))
5528 		return 0;
5529 	if (sb->s_flags & MS_RDONLY)
5530 		return 1;
5531 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5532 		return 0;
5533 	return 1;
5534 }
5535 
5536 static struct file_system_type ext4_fs_type = {
5537 	.owner		= THIS_MODULE,
5538 	.name		= "ext4",
5539 	.mount		= ext4_mount,
5540 	.kill_sb	= kill_block_super,
5541 	.fs_flags	= FS_REQUIRES_DEV,
5542 };
5543 MODULE_ALIAS_FS("ext4");
5544 
5545 /* Shared across all ext4 file systems */
5546 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5547 
5548 static int __init ext4_init_fs(void)
5549 {
5550 	int i, err;
5551 
5552 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5553 	ext4_li_info = NULL;
5554 	mutex_init(&ext4_li_mtx);
5555 
5556 	/* Build-time check for flags consistency */
5557 	ext4_check_flag_values();
5558 
5559 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5560 		init_waitqueue_head(&ext4__ioend_wq[i]);
5561 
5562 	err = ext4_init_es();
5563 	if (err)
5564 		return err;
5565 
5566 	err = ext4_init_pageio();
5567 	if (err)
5568 		goto out5;
5569 
5570 	err = ext4_init_system_zone();
5571 	if (err)
5572 		goto out4;
5573 
5574 	err = ext4_init_sysfs();
5575 	if (err)
5576 		goto out3;
5577 
5578 	err = ext4_init_mballoc();
5579 	if (err)
5580 		goto out2;
5581 	err = init_inodecache();
5582 	if (err)
5583 		goto out1;
5584 	register_as_ext3();
5585 	register_as_ext2();
5586 	err = register_filesystem(&ext4_fs_type);
5587 	if (err)
5588 		goto out;
5589 
5590 	return 0;
5591 out:
5592 	unregister_as_ext2();
5593 	unregister_as_ext3();
5594 	destroy_inodecache();
5595 out1:
5596 	ext4_exit_mballoc();
5597 out2:
5598 	ext4_exit_sysfs();
5599 out3:
5600 	ext4_exit_system_zone();
5601 out4:
5602 	ext4_exit_pageio();
5603 out5:
5604 	ext4_exit_es();
5605 
5606 	return err;
5607 }
5608 
5609 static void __exit ext4_exit_fs(void)
5610 {
5611 	ext4_destroy_lazyinit_thread();
5612 	unregister_as_ext2();
5613 	unregister_as_ext3();
5614 	unregister_filesystem(&ext4_fs_type);
5615 	destroy_inodecache();
5616 	ext4_exit_mballoc();
5617 	ext4_exit_sysfs();
5618 	ext4_exit_system_zone();
5619 	ext4_exit_pageio();
5620 	ext4_exit_es();
5621 }
5622 
5623 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5624 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5625 MODULE_LICENSE("GPL");
5626 module_init(ext4_init_fs)
5627 module_exit(ext4_exit_fs)
5628